
HAL Id: hal-04819775
https://hal.science/hal-04819775v1

Submitted on 4 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Diaspora: Resilience-Enabling Services for Real-Time
Distributed Workflows

Bogdan Nicolae, Justin Wozniak, Tekin Bicer, Hai Nguyen, Parth Patel,
Haochen Pan, Amal Gueroudji, Maxime Gonthier, Valerie Hayot-Sasson, Eliu

Huerta, et al.

To cite this version:
Bogdan Nicolae, Justin Wozniak, Tekin Bicer, Hai Nguyen, Parth Patel, et al.. Diaspora: Resilience-
Enabling Services for Real-Time Distributed Workflows. 2024 IEEE 20th International Conference
on e-Science (e-Science), Sep 2024, Osaka, Japan. pp.1-9, �10.1109/e-Science62913.2024.10678669�.
�hal-04819775�

https://hal.science/hal-04819775v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Diaspora: Resilience-Enabling Services for
Real-Time Distributed Workflows

Bogdan Nicolae∗, Justin M. Wozniak∗, Tekin Bicer∗, Hai Nguyen∗, Parth Patel∗, Haochen Pan∗, Amal Gueroudji∗,
Maxime Gonthier∗, Valerie Hayot-Sasson∗, Eliu Huerta∗, Kyle Chard∗, Ryan Chard∗, Matthieu Dorier∗,

Nageswara S. V. Rao†, Anees Al-Najjar†, Alessandra Corsi‡, Ian Foster∗

∗Argonne National Laboratory, †Oak Ridge National Laboratory, ‡Johns Hopkins University
Email: {bnicolae, woz, tbicer, hai.nguyen, parth.patel, hpan, agueroudji, mgonthier, vhayotsasson,

elihu, chard, rchard, mdorier, foster}@anl.gov, {raons, alnajjaram}@ornl.gov, acorsi2@jh.edu

Abstract—The need for real-time processing to enable auto-
mated decision making and experimental steering has driven a
shift from high-performance computing workflows on a central-
ized system to a distributed approach that integrates remote data
sources, edge devices, and diverse compute facilities. Under this
paradigm, data can be processed close to the source where it is
generated, thus reducing latency and bandwidth usage. System
resilience is thus a key challenge, requiring distributed workflows
to survive component failures and to meet stringent quality-
of-service requirements, which results in the need to mitigate
anomalies such as congestion and low availability of resources.
To address these challenges, we propose Diaspora, a unified
resilience framework that is inspired by event-driven communi-
cation patterns used in public clouds. Specifically, we propose an
event fabric that extends across sites, facilities, and computations
to provide timely, reliable, and accurate information about data,
application, and resource status. On top of the event fabric,
we build resilience-enabling services that combine QoS-aware
data streaming, resilient data views, resilient compute and data
resources, and anomaly detection and prediction, all of which
collectively enhance workflow resilience for these scientific cases.

Index Terms—real-time distributed HPC workflows, resilience,
high-availability, data streaming, elasticity, anomaly detection
and prediction

I. INTRODUCTION

The increase in real-time processing requirements of mod-
ern science workflows has disrupted the traditional, centralized
approach where large amounts of data are collected, stored,
and later processed on a single high-performance computing
(HPC) machine, to a distributed approach that aggregates
remote data sources and compute facilities: instruments, data
stores, edge devices, compute nodes belonging to different data
centers, etc. This increase in system complexity is motivated
by a confluence of factors, including increases in experimental
data volume and velocity, the emergence of science-informed
AI agents capable of rapid goal-oriented decision-making, and
advanced hardware that enables both of these.

Distributed workflows have several advantages: (1) perfor-
mance and scalability, thanks to techniques such as running
the workflow tasks close to the data sources, organizing the
computations into several overlapping intermediate stages, and
streaming the data between stages, which ultimately reduce the

latency compared with a centralized approach; (2) improved
resource utilization, thanks to better availability of resources
and load balancing, which minimizes idle time and maxi-
mizes throughput; (3) privacy and compliance, which can be
enforced by requiring the data to be processed at the edge
or within a specific jurisdiction; (4) time-sensitive decision-
making and steering of experiments, which is possible due to
the reduced latency.

Resilience beyond failures as a key challenge: To unlock
these advantages, distributed workflows need to be resilient.
In this case, resilience is not limited to surviving failures,
but instead needs to be complemented with new resilience
requirements due to the need to meet often stringent quality
of service constraints (e.g., for uninterrupted processing of
data streams). For example, data rates that are too low (e.g.,
due to temporary interruption or congestion on the network
links) or reduced availability of HPC systems are anomalies
that have a significant negative impact, which under certain
circumstances is even more severe than failures. Achieving
resilience requires methods for, on the one hand, detecting
anomalies and monitoring service levels, and on the other,
preparing for or responding to anomalies, for example via fault
tolerance, scalability, redundancy, and self-healing protocols,
and via adaptive management and partitioning of resources.
Thus, there is a need for a unified resilience framework that
hides the complexity of implementing and combining such
methods, while meeting the desired quality-of-service con-
straints that the HPC workflows need for real-time processing.

Contributions: In this position paper, we propose the foun-
dations for such a unifying framework. Experience in other
domains, such as public clouds, has demonstrated the power
of event-driven communication patterns as a foundation for a
wide range of resilience solutions. However, such approaches
remain virtually unexplored in the scientific computing com-
munity due to different scales, scopes, and service level
requirements. We seize this opportunity to argue in favor of
several integrated resilience solutions that leverage information
provided by an underlying event fabric to meet broad classes of
resilience needs. We summarize our contributions as follows:

1) We illustrate the need for surviving and performing well



during both failures and anomalies in the context of
time-sensitive HPC applications that have an end-to-end
urgency, such as the need to provide real-time feedback to
an experiment or to train AI models that are deployed at an
instrument for steering. We use ptychographic reconstruc-
tion as a science driver (§III).

2) We introduce a hierarchical event fabric to distribute
events regarding task and resource status and configuration
data, application data, and other information, as well as
aggregations of such data, with controllable availability,
consistency, and performance characteristics (§IV-A).

3) We propose resilience services that build on event streams
to implement resilience capabilities. Specifically, we discuss
the need for QoS-aware data streams that adapt to the
flow between producers and consumers (§IV-B); resilient
data views that automatically combine, cache, and reuse
data items from multiple data streams in a single resilient
abstraction (§IV-B); resilient compute and data, which
handles aspects of data and task replication, restart from
checkpoints, and elasticity (§IV-D); and anomaly detection
and prediction, which is instrumental in informing the
other services as much as possible in advance about failures
or anomalies likely to happen in the near future, thus giving
them a chance to prepare and take proactive actions (§IV-E).

4) We describe the integration of these services into a compre-
hensive, unified, resilient framework (§V).

II. RELATED WORK

Real-time HPC workflows: are increasingly popular in
various scientific domains, such as high energy physics [1],
[2], epidemic modeling [3], ptychographic reconstruction [4],
[5], tomography [6], and Laue diffraction [7]. These applica-
tions follow a common pattern involving: (i) data acquisition
from scientific instruments (e.g., ANL’s Advanced Photon
Sources) generating TB to PB per day [8], [9], (ii) real-time
processing [10], [11], and (iii) result publishing for experiment
adjustment [12]–[16], secondary analysis [1], [17], [18], and
offline uses [19]–[21].

Traditional HPC resilience: at the core of any scientific
computation are the data needed to make progress and/or that
must be persisted for later reuse. Especially when the tasks
are tightly coupled (e.g., MPI processes), the most widely
used technique is coordinated checkpoint-restart [22], which
requires that processes agree on a globally consistent state
to be independently captured piece-wise by the processes
and restarted from in case of failures. Without adequate data
resilience support to keep the checkpoints and other reusable
data safe, workflows may not complete successfully. In this
regard, parallel file systems [23] can provide reliability, for
example via replication or erasure coding, but have limited
aggregate I/O bandwidth and geographical distribution. I/O
libraries and middleware seek to overcome these challenges
via, e.g., multi-level caching (node-local memories [24],
[25]), burst buffers [26], key-value stores with versioning
support [27]), and asynchronous flushing and prefetching to
hide I/O latency [28]. Other optimizations include multi-

level resilience strategies adapted to the failure rate of each
level [29]), I/O aggregation [30], and forward recovery in case
a certain loss is acceptable (e.g., some missing contributions
to gradient averages can be tolerated in case of data-parallel
AI training [31]).

Resilience of loosely coupled tasks: While effective for
tightly coupled patterns, traditional HPC resilience techniques
are insufficient in distributed workflows. In this case, the
tasks running at different sites tend to be loosely coupled
and failures need to be contained at local level due to global
synchronization being prohibitively expensive. To address this
challenge, alternative strategies have been proposed. For exam-
ple, Condor logs tasks on stable storage and resubmits failed
tasks by using two-phase commit [32], [33]. Spark [34] keeps
track of intermediate resilient distributed data sets (RDDs),
which are reconstructed on-the-fly in case of failures by re-
executing the chain of tasks (recorded in a lineage) originally
used to obtain them. KerA [35] uses a replicated virtual log
structured approach for data streaming, which can be used
to separate stream partitioning from durability and resilience,
effectively enabling high throughput under concurrent access
without sacrificing resilience in face of failures. Globus Flows
records status on cloud storage [36]. Virtual data abstractions
(re)generate data from specifications as needed [37]. Individual
tasks may employ their own resilience strategies: while short-
running tasks can be simply re-executed from scratch in case
of failures, long-running tasks can be further protected using
checkpoint-restart strategies.

Enforcing real-time QoS constraints: beyond fault toler-
ance, distributed HPC workflows need to enforce real-time
QoS constraints, which is arguably even more challenging
than failures, because of an inherent difficulty of detecting,
predicting, and fixing anomalies that cause QoS violations
[38]–[40]. LSTMs have been used to predict anomalies in
electric grid networks [41], [42],hard drive disks [43], and
even earthquakes [44]. Lightweight deep neural networks have
been implemented inside operating system kernels [45], [46],
and have been successful at predicting more difficult latency-
sensitive anomalies, such as those appearing in 4G networks
for cloud gaming [47]. Once detected and predicted, miti-
gating these anomalies involves trade-offs among consistency,
availability, and partition tolerance [48], [49]. Current efforts,
such as event-driven methods [50]–[52], micro-services [53]–
[55], specialized queuing [56]–[58], scheduling [59], [60], and
resource management systems [61], focus on preventing incor-
rect outputs due to failures but often neglect maintaining QoS
despite anomalies. Additionally, limited attention is given to
integrating different workflow patterns with varying resilience
requirements in research infrastructures.

III. MOTIVATING EXAMPLE: PTYCHOGRAPHY

Ptychography is an advanced data-intensive imaging tech-
nique that provides high-spatial resolutions—sub-10 nm—on
large field-of-view [4], [5]. It consists of two main stages: (i)
2D ptychography, in which a sample is exposed to X-ray beam
and scanned, while overlapping 2D diffraction patterns are

2



collected from high-speed detectors; and (ii) 3D tomography
(or laminography), in which the sample is rotated on a rotation
stage. 3D ptychography experiments at synchrotron radiation
facilities can take extended periods and result in hundreds
of TBs to PB-scale datasets [62], [63]. Processing of such
datasets, e.g., 2D and 3D reconstruction tasks coupled with
AI/ML-based image enhancement or science-specific steps
(denoising, segmentation, anomaly detection, etc.), requires
not only advanced computing techniques [64]–[68], and long-
running workflows [18], [69] but also the usage of large-scale
resources [70]–[73].

Fig. 1. An HPC machine is used to train ML models for fast data pre-
processing close to a scientific instrument.

Since the time slot allocated for the use of the beamline is
limited, real-time reconstruction of ptychography data is crit-
ical, e.g., for timely decision-making, adjusting and steering
experiments, and ensuring science-relevant data acquisition.
For example, in a quest to reduce latency to a level that allows
for real-time 2D reconstruction, AI models (e.g., PtychoNN)
are a promising avenue [74], [75], as they are much faster
and consume less resources than traditional techniques. Since
each object is unique and the beam cannot be stopped, it is
not possible to use a pre-trained model or pause the workflow
until we trained one. Instead, we need to apply an online
solution consisting of the following steps: (1) training warm-
up: transfer the full diffraction patterns to the HPC machine,
use a classic (but expensive) algorithm to reconstruct the
images, while at the same time training a learning model
using these images as ground truth; (2) switch to inferences:
as soon as the learning model is accurate enough, transfer it to
the edge and use it to pre-process the diffraction patterns; (3)
fine-tuning: continue receiving a subset of the full diffraction
patterns, refine the learning model (continue the training), and
periodically send a checkpoint of the model to the edge to
improve the quality of the inferences [76], [77]. This pattern
is illustrated in Figure 1.

From a resilience perspective, there are multiple simulta-
neous constraints that need to be satisfied. First, if the data
flow between the scientific instrument and the HPC machine
is bottlenecked or temporarily interrupted, alternatives such as
data replay or reduction (compression, decimation, aggrega-
tion, interpolation) are needed that trade off quality for re-
duced latency. Second, data from multiple sources (diffraction
patterns and reconstructed images) needs to be combined and
streamed as atomic and resilient data units in order to enable

the AI model training. Third, if the traditional or AI-enabled
reconstruction fails, the affected processes need to be restarted
from a checkpoint and they need to catch up with the rest
of the workflow by revisiting and recomputing the lost data
items. This may require more resources (i.e. elastic scale-up)
and a buffer to retain a recent history of the streamed data
items. Fourth, the sooner an anomaly can be predicted, the
better domain experts can plan their experiments in order to
optimize the performance-quality trade-off.

IV. RESILIENT ABSTRACTIONS

To address the limitations of state-of-art approaches, we en-
vision a series of composable abstractions that build on top of
each other and can be selectively combined by distributed HPC
workflows to achieve a desired trade-off between performance,
quality of service/results and resilience requirements.

A. Event Fabric Foundation

Given the need to complement resilience beyond traditional
checkpoint-restart with support for containing local failures
within loosely coupled tasks and with support to enforce QoS
constraints, a possible starting point is to identify a common
denominator. The proven robustness of event-driven architec-
tures adopted in the cloud computing community to address
resilience and elasticity has prompted us to try to emulate a
similar foundation for distributed HPC workflows. Events are
central to event-driven architectures. They record messages
of interest in the workflow and are organized into topics,
each of which may have an arbitrary number of publishers
and subscribers. By making the streaming of events resilient
and matching publishers and subscribers around topics on
a need-to-know basis, failures and QoS anomalies can be
contained to local groups of interest, enabling self-healing
without excessive synchronization.

As a consequence, we propose a specialized hierarchical
event fabric to be uses as a resilience foundation. It extends
from HPC at the edge to the globally accessible cloud and
combines a high-speed HPC event fabric, capable of exploiting
extreme transfer rates in HPC centers, with a cloud-hosted
event fabric that spans administrative domains, which extends
the reach of topics to publishers and subscribers belonging to
remote tasks.

Mofka, a high-speed HPC event fabric: is a distributed
event streaming service, designed using Mochi [78], a collec-
tion of methodologies and components to enable the rapid
development of HPC data services. Mofka is analogous
Kafka [50], and offers similar functionalities while leveraging
HPC platform capabilities such as high-throughput and low-
latency networks, remote direct memory access (RDMA), mul-
ticore CPUs and local NVMe storage devices. Mofka provides
an infrastructure for task decoupling within HPC workflows
and a better impedance matching between publishers and
subscribers, which is geared towards high performance access
under concurrency. Specifically, publishers and subscribers do
not need to explicitly synchronize with each other anymore,
or even live within the same job. Mofka makes use of local

3



persistent storage such as local SSDs to be able to restart
after a crash, avoinding when possible the use of files on the
PFS for persisting events, thus avoiding I/O bottlenecks. Data
duplication can also be enabled composably via Mochi for
resilience.

Octopus, a cloud-hosted event fabric: is built on Ama-
zon’s Managed Streaming for Apache Kafka (MSK). It is
implemented as a multi-tenant service via which users can
create and manage their own topics, and applications/services
can then publish/consume events to/from topics. Deployed as
a public REST service, Octopus relies on Globus Auth [79], a
standards-compliant identity and access management platform,
for authorization. Octopus implements the Globus Action
Provider interface, enabling Globus Flows [36] to publish
and consume events from arbitrary topics. This allows user-
defined flows, for example, supporting real-time analysis of
instrument data, to exchange information as they progress and
also to adapt their performance in response to failures. Octopus
implements a managed trigger model that supports automated
actions in response to specified events. It allows users to define
arbitrary triggers as Python functions using the function-as-a-
service (FaaS) paradigm to execute the function and evaluate
the action to perform. Octopus uses AWS EventBridge to filter
events and AWS Lambda to execute functions.

B. QoS-Aware Data Streams

The producer-consumer pattern is often used in real-time
HPC workflows to enable efficient concurrent processing at
large scale. This pattern divides tasks between producers,
which generate data, and consumers, which process it. Pro-
ducers and consumers may be geographically distributed (e.g.,
edge and HPC machines, different HPC machines). By de-
coupling these roles, the system can achieve greater flexibility
and scalability, allowing multiple producers and consumers
to operate simultaneously in a pipeline without unnecessary
delays. Data streams serve as a powerful abstraction to connect
the producers and consumers by offering seamless and efficient
data transfers between them. In HPC workflows, producers
and consumers typically execute long-running computations
on large datasets. In this context, resilience techniques that
enable data integrity and continuity such as those provided by
low-level protocols (e.g., retransmission in the case TCP/IP)
and event the event fabric (e.g., replication of topics) are often
insufficient. This happens for two reasons: (1) interruptions
may be more severe (e.g., links going down or failed processes
that need to restart from a checkpoint and catch up with the
rest of the workflow); (2) even under correct operation, links
may be congested (e.g., WAN links shared by multiple users),
or compute resources may be oversubscribed, leading to poor
quality-of-service whose negative impact is as damaging as
failures (e.g., slow consumers that can process only a subset
of the streamed data).

Thus, there is a need to provide a comprehensive high-level
resilient data streaming abstraction that handles such anoma-
lies gracefully. In these sense, we propose three important
capabilities: (1) automated buffering and replay of data

items, which scaveges the free memory of the compute nodes
hosting the producers and consumers (e.g., GPU HBM, host
memory, local storage) in order to retain a history of the items
accesses (produced or consumed) by the stream during normal
runtime. Then, in case of restart due to failures, the stream can
replay the items even if they during the previous run they were
removed from the event fabric topics; (2) flexible flow control
that matches the production rate with the consumption rate
of the data items, either by elastically allocating resources to
the producers and consumers (e.g., spawning more processes)
or introducing additional intermediate stages to enable aggre-
gations (e.g., group multiple overlapping diffraction patterns)
or reorderings (e.g., re-arrange diffraction patterns in a mini-
batch based on the overlapping pattern) to reduce the amount
of data processed in successive stages; (3) user-defined data
reconstruction, which enables users to specify a custom tech-
nique that is transparently employed to replace missing data
items due to failures or stalls (e.g., interpolation, generators
based on AI models, etc.).

Thus, resilient data streams enable HPC workflows to fine-
tune the trade-off between performance, quality of the results,
loss due to failures and poor QoS for producer-consumer
patterns, while hiding the complexity of handling anomalies.

C. Resilient Data Views

Applications often require consolidated views of datasets
from different streams, each with its own structure and con-
sistency constraints. For instance, in a ptychography workflow
(as described in §III), diffraction patterns used in image recon-
struction can be paired with the resulting images to train gen-
erative AI models. These models, when trained appropriately,
can provide faster reconstruction alternatives. However, a naive
approach to building such training pipelines is complex and
inefficient: it must continuously monitor incoming diffraction
patterns, wait for the conventional reconstruction to produce a
ground truth image, and then combine both inputs to form new
training samples. This process involves numerous potential
failure points that increase complexity, and it often leads to
redundant data storage since training samples replicate data
that may be needed by other tasks.

To address these challenges of complexity and redundancy,
we propose the resilient data view abstraction, which dynami-
cally assembles zero-copy, consistent collections of data. The
core idea is to allow users to define data sources, specify
relationships between items, and impose constraints (e.g.,
every K items in one source must pair with one item in another
source). The resilient data view then operates as a meta-
stream, presenting new items (through pointers, not copies)
only when all constraints are met. By relying on resilient
data streams (discussed in §IV-B) as the original sources, this
approach effectively masks failures from users since recovery
can be managed by the underlying resilient streams. Notably, if
multiple data views share the same sources, repairing a single
resilient stream can heal all dependent views.

Resilience is handled at multiple levels. First, data view
pointers are kept up-to-date even as original items are dis-

4



carded (e.g., due to data expiration). This is achieved either
by automatically discarding stale data view items (under the
assumption that the liveness of all original data items is
a precondition for the liveness of an item exposed by the
data view) or by temporarily creating extra copies until all
dependencies are resolved. Second, since the repair protocols
of the underlying streams may be costly, they can be supple-
mented with checkpointing and versioning techniques. These
methods capture consistent snapshots of data views, enabling
independent recovery without relying on the original streams.
This layered resilience ensures that data views remain robust
and consistent even in dynamic, failure-prone environments.

D. Elastically Resilient Compute and Data

Part of mitigating failures and anomalies is automated elas-
tic resource (re)allocation and task reconfiguration/migration
with minimal input from the application. In this regard, we
propose two novel solutions for addressing these challenges,
namely, resilient compute pools and resilient dynamic data
storage/replication algorithms.

Resilient compute pools: aim to address challenges related
to failures occurring on compute infrastructure. This solution
will allow for the construction of resource pools that work to
maintain, in a resilient fashion, sets of resources with specified
properties: e.g., minimum total size, a certain geographical dis-
tribution, minimum number of nodes per site. Geographically
distributed tasks require a minimum resource level at each site,
with resource deficits due to increased demand or reduced
supply potentially compromising overall progress or leading
to subtle errors such as bias due to reduced contributions
from straggling training tasks. To address this issue, we have
created a prototype in Parsl [80], a parallel programming
library for Python, and will build upon this prototype to deliver
similar capabilities in Globus Compute [81], a federated FaaS
platform built on Parsl that allows users to provision compute
pools on different resources (HPC, Cloud, edge) and for
users to then dispatch computational tasks to remote compute
pools. We have extended Parsl to send task and resource
information to Octopus, and also to consume event streams
when making scheduling and task retry decisions [82]. In
addition to maintaining a minimum level of resource avail-
ablility, two other important aspects merit further discussion:
(1) compute elasticity, which is essential in enabling tasks that
suffered a failure or anomaly that required a restart from a
checkpoint to scale-up if needed in order to recompute the lost
computation faster, thus being able to catch up with the rest of
the tasks; (2) live migration of tasks, which can be triggered
by failure detection and prediction in order to proactively
and seamlessly move tasks from one site to another with
minimal service interruption. Both present interesting HPC-
oriented opportunities for innovation (e.g., live task migration
that incrementally moves dirty data structures between sites
until the increment is small enough to switch over seamlessly,
similar to VM live migration).

Resilient dynamic data storage: addresses the issue of
keeping persistent data secure and available in a heteroge-

neous, multi-site configuration. We envision novel algorithms
that consider factors such as I/O bandwidth saturation, failure
rates, and latency constraints. In this case, classic replication
and erasure coding techniques used for single HPC centers
are insufficient to address more complex trade-offs arising
in a multi-site configuration: due to changing conditions and
competition for I/O bandwidth outside of the control of appli-
cations (e.g., shared parallel file systems), it may be necessary
to dynamically switch between replication and erasure coding
at potentially fine granularity (e.g., small chunks of data) to
meet both resilience and high availability requirements.

E. Anomaly Detection and Prediction

Ideally, it should be possible to predict and respond to
various forms of congestion, such as in the network, shared
filesystem, or compute system, before user workflows are
impacted. Consider the experiment data collection system in
Figure 2, a simplified depiction of our motivating ptychogra-
phy use case (§III).

Detector FS Facility FS HPC Site FS

Stream
Aggregation

Performance data

LSTM Workflow
Controls

Experiment
Data Source

Fig. 2. Multiple-hop data transfers between edge and HPC system are
monitored and streamed to an LSTM, which learns anomaly patterns and
makes predictions.

Different workflows will have different performance data
streams and metrics, and will also want to be able to select
from emerging prediction models that may be best for their
use cases. We aim here make it easy for users to train and
apply arbitrary models to event streams: e.g., to infer metrics
on hidden system components, make short-term predictions on
individual metrics, and even generate alerts about imminent
system congestion dynamics and fault-triggering conditions.
To this end, we are developing system interfaces that allow the
use of a simple declarative notation (e.g., as in some complex
event processing systems [83], [84]) to specify the stream(s)
to be monitored and the model method(s) to be applied, such
as those described in §II.

In the Diaspora architecture, we can integrate such models
to simple anomaly prediction problems that arise in the context
of our target applications: for example, by applying ML meth-
ods to event streams to predict network degradation or reduc-
tions in available compute resources. We can also link multiple
such models (corresponding, for example, to different network
connections, compute resources, application components, ex-
ternally observable activities) to form virtual infrastructure
twins [85]: i.e., predictive networks that approximate some
aspect(s) of the real infrastructure and its applications. Such
networks may be able to learn usage patterns with respect to a

5



particular application, estimate relationships among queues, or
identify sources of congestion, anomalous behavior, or points
of failure. If we can thus obtain a useful representation of an
entire infrastructure from just a partial view of its state, this
will represent a significant advance in distributed systems.

V. DIASPORA: A COMPREHENSIVE RESILIENCE
FRAMEWORK

We integrate the event fabric and the resilience abstractions
into Diaspora, a comprehensive resilience framework for real-
time, distributed HPC workflows, as illustrated in Figure 3.

Fig. 3. Diaspora integrates the event fabric and the resilience abstractions.

Specifically, the software stack consisting of the event
fabric, resilient compute and data, QoS-aware data streams,
resilient data views and the detection/prediction module is
deployed on both the edge infrastructure/scientific instruments,
as well as the HPC data centers.

Users interact with Diaspora by following these steps:
(1) submit the application workflows to a Diaspora-enabled
setup; (2) configure the resilient compute and data service
with policies for elastic allocation of resources, checkpointing
strategy (e.g., checkpoint interval) and restart strategy (e.g.,
resources needed to allow computations to catch up), data
availability (replication, erasure coding); (3) configure the data
streaming policies by specifying a buffering strategy (e.g.,
sliding window), flow-control QoS (e.g., expected data rate
between producers and consumers) and alternative strategies
to reconstruct lost or slow data items in case of failures and
anomalies (e.g., data reduction, interpolation, generative AI
models); (4) configure the detection and prediction module
with example triggers for alternative strategies that are used
as a starting point to learn and adapt based on anomaly severity
and predicted duration.

The QoS-aware data streams use the event fabric as a low-
level transport mechanism for the data items. In turn, the
resilient data views use several QoS-aware data streams as
the data sources used in the consolidation. Furthermore, the
resilience services use the event fabric for state monitoring,
control messages and information exchanges in addition to the

actual streamed data items. For example, the resilient compute
and data service needs to constantly exchange information
about resource availability and occupation between the differ-
ent sites in order to enable load balancing through elasticity,
replication and live migration. The detection and prediction
module needs to collect and aggregate distributed monitoring
information that is processed and disseminated to the rest of
the components.

The development and testing are supported by virtual infras-
tructure twins (VIT) that emulate hosts and networks to create
a software environment nearly identical to the actual so that
workflow codes can be executed without change [85], [86].
They enable testing without requiring access to the physical
system and can enable testing conditions beyond those of
physical systems.

VI. CONCLUSIONS AND FUTURE WORK

Modern scientific experiments are coupled systems with
diverse data sources, variable communication patterns, and
demanding computing requirements. They run as distributed
HPC workflows that combine edge infrastructure (e.g., scien-
tific instruments) with HPC data centers. In this context, real-
time processing is paramount, facilitating better performance
and scalability, improved resource utilization, and the ability to
enable time-sensitive decision making and experimental steer-
ing. Resilience of such real-time distributed workflows is a key
challenge, as it needs to extend traditional checkpoint-restart
HPC approaches with support for fault tolerance of loosely
coupled wokflows and support for enforcing QoS constraints.
To this end, Diaspora provides a resilient framework that relies
on a set of composable resilient abstractions, all of which are
bound together by a streaming model that emphasizes an even-
driven design. These abstractions hide away the complexity of
resilience from application developers, which improves their
productivity without sacrificing flexibility in choosing complex
trade-offs between performance, quality of service and results,
and resilience requirements.

As a next step, we plan to implement the proposed abstrac-
tions and integrate them together in a framework, which we
will demonstrate with the Ptychography application and an-
other related application that follows a similar pattern, namely
Laue diffraction [7]. Other applications will be considered as
follows. Sensor networks for smart cities [87] will involve
complex distributed computing patterns, including calculations
on edge devices and HPC resources, therefore benefiting
from resilient compute resources and QoS-aware data streams.
Multi-messenger astronomy [19] attempts to utilize diverse
telescope and particle detector-based data sources, involving
distributed instruments and data streams. This application can
take advantage of resilient data views. Fusion energy experi-
ments [88] are coupled with advanced computing resources
for simulation, data management, and AI-based investigations.
In this case, all components are vital in orchestrating such a
complex workflow.

6



ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
Department of Energy (DOE), Office of Science, Office of
Advanced Scientific Computing Research, under Contracts
DE-AC02-06CH11357 and DE-AC02-05CH11231.

REFERENCES

[1] O. Aberle, C. Adorisio, A. Adraktas, M. Ady, J. Albertone, L. Alberty,
M. Alcaide Leon, A. Alekou, D. Alesini, B. Almeida Ferreira et al.,
“High-Luminosity Large Hadron Collider (HL-LHC): Technical design
report,” CERN, Tech. Rep. CERN-2020-010, 2020.

[2] G. Barrand, I. Belyaev, P. Binko, M. Cattaneo, R. Chytracek, G. Corti,
M. Frank, G. Gracia, J. Harvey, E. Van Herwijnen et al., “GAUDI—a
software architecture and framework for building HEP data processing
applications,” Computer physics communications, vol. 140, no. 1-2, pp.
45–55, 2001.

[3] N. Collier, J. M. Wozniak, A. Stevens, Y. Babuji, M. Binois, A. Fadikar,
A. Würth, K. Chard, and J. Ozik, “Developing distributed high-
performance computing capabilities of an open science platform for
robust epidemic analysis,” in 2023 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2023,
pp. 868–877.

[4] P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer,
“High-resolution scanning x-ray diffraction microscopy,” Science, vol.
321, no. 5887, pp. 379–382, 2008.

[5] M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C. M. Kewish, R. Wepf,
O. Bunk, and F. Pfeiffer, “Ptychographic x-ray computed tomography
at the nanoscale,” Nature, vol. 467, no. 7314, pp. 436–439, 2010.

[6] Z. Liu, T. Bicer, R. Kettimuthu, D. Gursoy, F. De Carlo, and I. Foster,
“TomoGAN: Low-dose synchrotron x-ray tomography with generative
adversarial networks,” JOSA A, vol. 37, no. 3, pp. 422–434, 2020.

[7] M. Prince, D. Gürsoy, D. Sheyfer, R. Chard, B. Côté, H. Parraga,
B. Frosik, J. Tischler, and N. Schwarz, “Demonstrating cross-facility
data processing at scale with Laue microdiffraction,” in Proceedings
of the SC ’23 Workshops of The International Conference on
High Performance Computing, Network, Storage, and Analysis, ser.
SC-W ’23. New York, NY, USA: Association for Computing
Machinery, 2023, p. 2133–2139. [Online]. Available: https://doi.org/10.
1145/3624062.3624613

[8] C. Wang, U. Steiner, and A. Sepe, “Synchrotron big data science,” Small,
vol. 14, no. 46, p. 1802291, 2018.

[9] I. Bird, “Computing for the Large Hadron Collider,” Annual Review of
Nuclear and Particle Science, vol. 61, no. 1, pp. 99–118, 2011.

[10] E. A. Huerta, A. Khan, X. Huang, M. Tian, M. Levental, R. Chard,
W. Wei, M. Heflin, D. S. Katz, V. Kindratenko, D. Mu, B. Blaiszik, and
I. Foster, “Accelerated, scalable and reproducible AI-driven gravitational
wave detection,” Nature Astronomy, vol. 5, pp. 1062–1068, Jul. 2021.

[11] N. Ravi, P. Chaturvedi, E. A. Huerta, Z. Liu, R. Chard, A. Scourtas,
K. J. Schmidt, K. Chard, B. Blaiszik, and I. Foster, “FAIR principles
for AI models, with a practical application for accelerated high energy
diffraction microscopy,” Scientific Data, vol. 9, no. 1, p. 657, November
2022. [Online]. Available: https://doi.org/10.1038/s41597-022-01712-9

[12] S. Steiner, J. Wolf, S. Glatzel, A. Andreou, J. M. Granda, G. Keenan,
T. Hinkley, G. Aragon-Camarasa, P. J. Kitson, D. Angelone et al.,
“Organic synthesis in a modular robotic system driven by a chemical
programming language,” Science, vol. 363, no. 6423, p. eaav2211, 2019.

[13] B. Burger, P. M. Maffettone, V. V. Gusev, C. M. Aitchison, Y. Bai,
X. Wang, X. Li, B. M. Alston, B. Li, R. Clowes et al., “A mobile
robotic chemist,” Nature, vol. 583, no. 7815, pp. 237–241, 2020.

[14] M. M. Flores-Leonar, L. M. Mejı́a-Mendoza, A. Aguilar-Granda,
B. Sanchez-Lengeling, H. Tribukait, C. Amador-Bedolla, and A. Aspuru-
Guzik, “Materials acceleration platforms: On the way to autonomous
experimentation,” Current Opinion in Green and Sustainable Chemistry,
vol. 25, p. 100370, 2020.

[15] A. Vriza, H. Chan, and J. Xu, “Self-driving laboratory for polymer
electronics,” Chemistry of Materials, vol. 35, no. 8, pp. 3046–3056,
2023.

[16] P. W. Nega, Z. Li, V. Ghosh, J. Thapa, S. Sun, N. T. P. Hartono, M. A. N.
Nellikkal, A. J. Norquist, T. Buonassisi, E. M. Chan et al., “Using
automated serendipity to discover how trace water promotes and inhibits
lead halide perovskite crystal formation,” Applied Physics Letters, vol.
119, no. 4, 2021.

[17] P. A. Meyer, S. Socias, J. Key, E. Ransey, E. C. Tjon, A. Buschiazzo,
M. Lei, C. Botka, J. Withrow, D. Neau et al., “Data publication
with the Structural Biology Data Grid supports live analysis,” Nature
Communications, vol. 7, no. 1, p. 10882, 2016.

[18] R. Vescovi, R. Chard, N. D. Saint, B. Blaiszik, J. Pruyne, T. Bicer,
A. Lavens, Z. Liu, M. E. Papka, S. Narayanan et al., “Linking scientific
instruments and computation: Patterns, technologies, and experiences,”
Patterns, vol. 3, no. 10, 2022.

[19] M. Branchesi, “Multi-messenger astronomy: gravitational waves, neutri-
nos, photons, and cosmic rays,” in Journal of Physics: conference series,
vol. 718, no. 2. IOP Publishing, 2016, p. 022004.

[20] E. A. Huerta, G. Allen, I. Andreoni, J. M. Antelis, E. Bachelet, G. B.
Berriman, F. B. Bianco, R. Biswas, M. Carrasco Kind, K. Chard et al.,
“Enabling real-time multi-messenger astrophysics discoveries with deep
learning,” Nature Reviews Physics, vol. 1, no. 10, pp. 600–608, 2019.

[21] P. Mészáros, D. B. Fox, C. Hanna, and K. Murase, “Multi-messenger
astrophysics,” Nature Reviews Physics, vol. 1, no. 10, pp. 585–599, 2019.

[22] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A
survey of rollback-recovery protocols in message-passing systems,”
ACM Comput. Surv., vol. 34, no. 3, p. 375–408, sep 2002.

[23] P. Dickens and J. Logan, “Towards a high performance implementation
of MPI-IO on the Lustre file system,” in OTM ’08: Proceedings of
the OTM 2008 Confederated International Conferences, CoopIS, DOA,
GADA, IS, and ODBASE 2008. Part I on On the Move to Meaningful
Internet Systems, Monterrey, Mexico, 2008, pp. 870–885.

[24] B. Nicolae, A. Moody, E. Gonsiorowski, K. Mohror, and
F. Cappello, “VeloC: Towards high performance adaptive asynchronous
checkpointing at large scale,” in IPDPS’19: The 2019 IEEE
International Parallel and Distributed Processing Symposium, Rio
de Janeiro, Brazil, 2019, pp. 911–920. [Online]. Available:
https://hal.inria.fr/hal-02184203

[25] T. Bicer, W. Jiang, and G. Agrawal, “Supporting fault tolerance in
a data-intensive computing middleware,” in 2010 IEEE International
Symposium on Parallel & Distributed Processing (IPDPS). IEEE, 2010,
pp. 1–12.

[26] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,
and C. Maltzahn, “On the role of burst buffers in leadership-class storage
systems,” in IEEE Conference on Massive Data Storage, Pacific Grove,
CA, Apr. 2012.

[27] B. Nicolae, “Scalable multi-versioning ordered key-value stores
with persistent memory support,” in IPDPS 2022: The 36th IEEE
International Parallel and Distributed Processing Symposium, Lyon,
France, 2022, pp. 93–103. [Online]. Available: https://hal.inria.fr/
hal-03598396

[28] A. Maurya, M. Rafique, T. Tonellot, H. AlSalem, F. Cappello, and
B. Nicolae, “GPU-enabled asynchronous multi-level checkpoint caching
and prefetching,” in HPDC’23: The 32nd International Symposium on
High-Performance Parallel and Distributed Computing, Orlando, USA,
2023, pp. 73–85. [Online]. Available: https://hal.inria.fr/hal-04119928

[29] B. Nicolae, A. Moody, G. Kosinovsky, K. Mohror, and F. Cappello,
“VELOC: VEry Low Overhead Checkpointing in the age of
exascale,” in SuperCheck’21: The First International Symposium on
Checkpointing for Supercomputing, Virtual Event, 2021. [Online].
Available: https://arxiv.org/pdf/2103.02131.pdf

[30] M. J. Gossman, B. Nicolae, and J. C. Calhoun, “Scalable i/o aggre-
gation for asynchronous multi-level checkpointing,” Future Generation
Computer Systems, vol. 160, pp. 420–432, 2024.

[31] B. Nicolae, T. Hobson, O. Yildiz, T. Peterka, and D. Morozov,
“Towards low-overhead resilience for data parallel deep learning,” in
CCGrid’22: The 22th IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing, Messina, Italy, 2022, pp. 336–345.
[Online]. Available: https://hal.inria.fr/hal-03631882

[32] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, “Condor-G:
A computation management agent for multi-institutional grids,” Cluster
Computing, vol. 5, pp. 237–246, 2002.

[33] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in prac-
tice: The Condor experience,” Concurrency and Computation: Practice
and Experience, vol. 17, no. 2-4, pp. 323–356, 2005.

[34] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in 9th
USENIX Conference on Networked Systems Design and Implementation,
San Jose, USA, 2012, pp. 2–2.

7

https://doi.org/10.1145/3624062.3624613
https://doi.org/10.1145/3624062.3624613
https://doi.org/10.1038/s41597-022-01712-9
https://hal.inria.fr/hal-02184203
https://hal.inria.fr/hal-03598396
https://hal.inria.fr/hal-03598396
https://hal.inria.fr/hal-04119928
https://arxiv.org/pdf/2103.02131.pdf
https://hal.inria.fr/hal-03631882


[35] O. Marcu, A. Costan, B. Nicolae, and G. Antoniu, “Virtual log-structured
storage for high-performance streaming,” in CLUSTER’21: The 2021
IEEE International Conference on Cluster Computing, Portland, USA,
2021, pp. 135–145. [Online]. Available: https://hal.inria.fr/hal-03300796

[36] R. Chard, J. Pruyne, K. McKee, J. Bryan, B. Raumann, R. Anan-
thakrishnan, K. Chard, and I. T. Foster, “Globus automation services:
Research process automation across the space–time continuum,” Future
Generation Computer Systems, vol. 142, pp. 393–409, 2023.

[37] Y. Zhao, M. Wilde, I. Foster, J. Voeckler, J. Dobson, E. Gilbert,
T. Jordan, and E. Quigg, “Virtual data grid middleware services for
data-intensive science,” Concurrency and Computation: Practice and
Experience, vol. 18, no. 6, pp. 595–608, 2006.

[38] P. Huang, C. Guo, J. R. Lorch, L. Zhou, and Y. Dang, “Capturing and
enhancing in situ system observability for failure detection,” in 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), 2018, pp. 1–16.

[39] S. Karumuri, F. Solleza, S. Zdonik, and N. Tatbul, “Towards observabil-
ity data management at scale,” ACM Sigmod Record, vol. 49, no. 4, pp.
18–23, 2021.

[40] B. Li, X. Peng, Q. Xiang, H. Wang, T. Xie, J. Sun, and X. Liu, “Enjoy
your observability: an industrial survey of microservice tracing and
analysis,” Empirical Software Engineering, vol. 27, pp. 1–28, 2022.

[41] Z. Ouyang, B. Sun, W. Tang, T. Han, and K. Zhang, “Attention
based Bi-LSTM for power line partial discharge fault detection,” in
4th International Conference on Electronics and Electrical Engineering
Technology, ser. EEET 2021. New York, NY, USA: Association
for Computing Machinery, 2022, p. 28–33. [Online]. Available:
https://doi.org/10.1145/3508297.3508302

[42] W. Chen, J. Zhou, Z. Yuan, and J. Chen, “An LSTM-based online
fault diagnosis method for capacitor voltage transformer,” in 2021
International Conference on Mechanical, Aerospace and Automotive
Engineering, ser. CMAAE 2021. New York, NY, USA: Association
for Computing Machinery, 2022, p. 347–351. [Online]. Available:
https://doi.org/10.1145/3518781.3519179

[43] Y. Wang, X. Dong, L. Wang, W. Chen, and X. Zhang, “Optimizing
small-sample disk fault detection based on LSTM-GAN model,” ACM
Trans. Archit. Code Optim., vol. 19, no. 1, jan 2022. [Online].
Available: https://doi.org/10.1145/3500917

[44] A. Berhich, F.-Z. Belouadha, and M. I. Kabbaj, “LSTM-based
models for earthquake prediction,” in 3rd International Conference on
Networking, Information Systems and Security, ser. NISS2020. New
York, NY, USA: Association for Computing Machinery, 2020. [Online].
Available: https://doi.org/10.1145/3386723.3387865

[45] I. U. Akgun, A. S. Aydin, A. Burford, M. McNeill, M. Arkhangelskiy,
and E. Zadok, “Improving storage systems using machine learning,”
ACM Trans. Storage, vol. 19, no. 1, jan 2023. [Online]. Available:
https://doi.org/10.1145/3568429

[46] J. Chen, S. S. Banerjee, Z. T. Kalbarczyk, and R. K. Iyer, “Machine
learning for load balancing in the Linux kernel,” in 11th ACM SIGOPS
Asia-Pacific Workshop on Systems, ser. APSys ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 67–74. [Online].
Available: https://doi.org/10.1145/3409963.3410492

[47] J. R. Ky, B. Mathieu, A. Lahmadi, and R. Boutaba, “Assessing un-
supervised machine learning solutions for anomaly detection in cloud
gaming sessions,” in 18th International Conference on Network and
Service Management, ser. CNSM ’22. Laxenburg, AUT: International
Federation for Information Processing, 2023.

[48] E. Brewer, “CAP twelve years later: How the ‘rules’ have changed,”
Computer, vol. 45, no. 2, pp. 23–29, 2012.

[49] S. Gilbert and N. Lynch, “Perspectives on the CAP theorem,” Computer,
vol. 45, no. 2, pp. 30–36, 2012.

[50] J. Kreps et al., “Kafka: A distributed messaging system for log process-
ing,” in Proceedings of the NetDB, vol. 11, no. 2011. Athens, Greece,
2011, pp. 1–7.

[51] M. Ott, W. Shin, N. Bourassa, T. Wilde, S. Ceballos, M. Romanus, and
N. Bates, “Global experiences with HPC operational data measurement,
collection and analysis,” in 2020 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 2020, pp. 499–508.

[52] J. Thaler, W. Shin, S. Roberts, J. H. Rogers, and T. Rosedahl, “Hybrid
approach to HPC cluster telemetry and hardware log analytics,” in
2020 IEEE High Performance Extreme Computing Conference (HPEC).
IEEE, 2020, pp. 1–7.

[53] L. Ramakrishnan, P. T. Zbiegel, S. Campbell, R. Bradshaw, R. S.
Canon, S. Coghlan, I. Sakrejda, N. Desai, T. Declerck, and A. Liu,

“Magellan: experiences from a science cloud,” in Proceedings of the
2nd international workshop on Scientific cloud computing, 2011, pp.
49–58.

[54] J.-S. Vöckler, G. Juve, E. Deelman, M. Rynge, and B. Berriman, “Ex-
periences using cloud computing for a scientific workflow application,”
in Proceedings of the 2nd international workshop on Scientific cloud
computing, 2011, pp. 15–24.

[55] C. L. Gentemann, C. Holdgraf, R. Abernathey, D. Crichton, J. Collian-
der, E. J. Kearns, Y. Panda, and R. P. Signell, “Science storms the cloud,”
AGU Advances, vol. 2, no. 2, p. e2020AV000354, 2021.

[56] E. Gaussier, D. Glesser, V. Reis, and D. Trystram, “Improving backfilling
by using machine learning to predict running times,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2015, pp. 1–10.

[57] W. Smith, V. Taylor, and I. Foster, “Using run-time predictions to
estimate queue wait times and improve scheduler performance,” in Job
Scheduling Strategies for Parallel Processing: IPPS/SPDP’99Workshop,
JSSPP’99 San Juan, Puerto Rico, April 16, 1999 Proceedings 5.
Springer, 1999, pp. 202–219.

[58] G. P. Rodrigo, P.-O. Östberg, E. Elmroth, K. Antypas, R. Gerber, and
L. Ramakrishnan, “Towards understanding HPC users and systems: a
NERSC case study,” Journal of Parallel and Distributed Computing,
vol. 111, pp. 206–221, 2018.

[59] W. Smith, I. Foster, and V. Taylor, “Predicting application run times with
historical information,” Journal of Parallel and Distributed Computing,
vol. 64, no. 9, pp. 1007–1016, 2004.

[60] A. Matsunaga and J. A. Fortes, “On the use of machine learning to
predict the time and resources consumed by applications,” in 2010
10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing. IEEE, 2010, pp. 495–504.

[61] C. Guok, D. Robertson, M. Thompson, J. Lee, B. Tierney, and W. John-
ston, “Intra and interdomain circuit provisioning using the OSCARS
reservation system,” in 2006 3rd International Conference on Broadband
Communications, Networks and Systems. IEEE, 2006, pp. 1–8.

[62] X. Yu, V. Nikitin, D. J. Ching, S. Aslan, D. Gürsoy, and T. Biçer,
“Scalable and accurate multi-GPU-based image reconstruction of large-
scale ptychography data,” Scientific reports, vol. 12, no. 1, p. 5334,
2022.

[63] M. Hidayetoğlu, T. Bicer, S. G. De Gonzalo, B. Ren, V. De Andrade,
D. Gursoy, R. Kettimuthu, I. T. Foster, and W. H. Wen-mei, “Petascale
XCT: 3D image reconstruction with hierarchical communications on
multi-GPU nodes,” in SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. IEEE, 2020, pp.
1–13.

[64] J. Liu, B. Nicolae, D. Li, J. M. Wozniak, T. Bicer, Z. Liu, and I. Foster,
“Large scale caching and streaming of training data for online deep
learning,” in Proceedings of the 12th Workshop on AI and Scientific
Computing at Scale using Flexible Computing Infrastructures, 2022, pp.
19–26.

[65] Z. Liu, T. Bicer, R. Kettimuthu, D. Gursoy, F. De Carlo, and I. Foster,
“TomoGAN: Low-dose x-ray tomography with generative adversarial
networks,” in arXiv preprint arXiv:1902.07582, 2019.

[66] A. V. Babu, T. Zhou, S. Kandel, T. Bicer, Z. Liu, W. Judge, D. J. Ching,
Y. Jiang, S. Veseli, S. Henke et al., “Deep learning at the edge enables
real-time streaming ptychographic imaging,” Nature Communications,
vol. 14, no. 1, p. 7059, 2023.

[67] T. Bouvier, B. Nicolae, A. Costan, T. Bicer, I. Foster, and G. Antoniu,
“Efficient distributed continual learning for steering experiments in real-
time,” Future Generation Computer Systems, 2024.

[68] C. Benmore, T. Bicer, M. K. Chan, Z. Di, D. a. Gürsoy, I. Hwang,
N. Kuklev, D. Lin, Z. Liu, I. Lobach et al., “Advancing ai/ml at the
advanced photon source,” Synchrotron Radiation News, vol. 35, no. 4,
pp. 28–35, 2022.

[69] T. Bicer, X. Yu, D. J. Ching, R. Chard, M. J. Cherukara, B. Nicolae,
R. Kettimuthu, and I. T. Foster, “High-performance ptychographic
reconstruction with federated facilities,” in Smoky Mountains Compu-
tational Sciences and Engineering Conference. Springer International
Publishing Cham, 2021, pp. 173–189.

[70] M. Hidayetoğlu, T. Biçer, S. G. de Gonzalo, B. Ren, D. Gürsoy, R. Ket-
timuthu, I. T. Foster, and W.-m. W. Hwu, “Memxct: Memory-centric x-
ray ct reconstruction with massive parallelization,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2019, p. 85.

8

https://hal.inria.fr/hal-03300796
https://doi.org/10.1145/3508297.3508302
https://doi.org/10.1145/3518781.3519179
https://doi.org/10.1145/3500917
https://doi.org/10.1145/3386723.3387865
https://doi.org/10.1145/3568429
https://doi.org/10.1145/3409963.3410492


[71] X. Yu, T. Bicer, R. Kettimuthu, and I. Foster, “Topology-aware optimiza-
tions for multi-GPU ptychographic image reconstruction,” in Proceed-
ings of the ACM International Conference on Supercomputing, 2021,
pp. 354–366.

[72] B. Ma, V. Nikitin, D. Li, and T. Bicer, “Accelerated laminographic image
reconstruction using GPUs,” Electronic Imaging, vol. 36, pp. 1–6, 2024.

[73] T. Bicer, D. Gürsoy, V. D. Andrade, R. Kettimuthu, W. Scullin, F. D.
Carlo, and I. T. Foster, “Trace: a high-throughput tomographic re-
construction engine for large-scale datasets,” Advanced structural and
chemical imaging, vol. 3, pp. 1–10, 2017.

[74] M. J. Cherukara, T. Zhou, Y. Nashed, P. Enfedaque, A. Hexemer, R. J.
Harder, and M. V. Holt, “AI-enabled high-resolution scanning coherent
diffraction imaging,” Applied Physics Letters, vol. 117, no. 4, 2020.

[75] M. J. Cherukara, Y. S. Nashed, and R. J. Harder, “Real-time coherent
diffraction inversion using deep generative networks,” Scientific reports,
vol. 8, no. 1, p. 16520, 2018.

[76] A. V. Babu, T. Bicer, S. Kandel, T. Zhou, D. J. Ching, S. Henke,
S. Veseli, R. Chard, A. Miceli, and M. J. Cherukara, “AI-assisted
automated workflow for real-time x-ray ptychography data analysis via
federated resources,” Electronic Imaging, vol. 35, no. 11, pp. 1–6, 2023.

[77] A. V Babu, Z. Liu, T. Bicer, and S. Veseli, “Real-time edge inference for
ptychographic nanoscale xray imaging,” Argonne National Lab.(ANL),
Argonne, IL (United States), Tech. Rep., 2021.

[78] R. B. Ross, G. Amvrosiadis, P. H. Carns, C. D. Cranor, and M. Dorier,
“Mochi: Composing data services for high-performance computing
environments,” Journal of Computer Science and Technology, vol. 35,
pp. 121 – 144, 2020.

[79] S. Tuecke, R. Ananthakrishnan, K. Chard, M. Lidman, B. McCollam,
S. Rosen, and I. Foster, “Globus Auth: A research identity and access
management platform,” in 2016 IEEE 12th International Conference on
e-Science (e-Science), 2016, pp. 203–212.

[80] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar,
L. Lacinski, R. Chard, J. M. Wozniak, I. Foster, M. Wilde, and
K. Chard, “Parsl: Pervasive parallel programming in Python,” in
Proceedings of the 28th International Symposium on High-Performance
Parallel and Distributed Computing, ser. HPDC ’19. New York, NY,

USA: Association for Computing Machinery, 2019, p. 25–36. [Online].
Available: https://doi.org/10.1145/3307681.3325400

[81] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik,
I. Foster, and K. Chard, “funcX: A federated function serving fabric
for science,” in Proceedings of the 29th International symposium on
high-performance parallel and distributed computing, 2020, pp. 65–76.

[82] H. Pan, R. Chard, S. Zhou, A. Kamatar, R. Vescovi, V. Hayot-Sasson,
A. Bauer, M. Gonthier, K. Chard, and I. Foster, “Octopus: Experiences
with a hybrid event-driven architecture for distributed scientific
computing,” 2024. [Online]. Available: https://arxiv.org/abs/2407.11432

[83] D. Luckham, The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Addison-Wesley Read-
ing, 2002.

[84] G. Cugola and A. Margara, “Processing flows of information: From data
stream to complex event processing,” ACM Computing Surveys, vol. 44,
no. 3, pp. 1–62, 2012.

[85] A. Al-Najjar and N. S. V. Rao, “Virtual Infrastructure Twin for
computing-instrument ecosystems: Software and measurements,” IEEE
Access, pp. 1–1, 2023.

[86] N. S. V. Rao, A. Al-Najjar, , H. Zandi, R. Sankaran, S. E. Hicks,
K. Roccapriori, and D. Mukherjee, “Virtual infrastructure twins: Soft-
ware testing platforms for computing-instrument ecosystems,” in Pro-
ceedings of Smoky Moutains Computational Sciences and Engineering
Conference, D. Kothe, A. Geist, S. Pophale, H. Liu, and S. Parete-Koon,
Eds. Springer, 2022.

[87] Y. Kim, S. Park, S. Shahkarami, R. Sankaran, N. Ferrier, and P. Beck-
man, “Goal-driven scheduling model in edge computing for smart city
applications,” Journal of Parallel and Distributed Computing, vol. 167,
pp. 97–108, 2022.

[88] S. Smith, E. Belli, O. Meneghini, R. Budiardja, D. Schissel, J. Candy,
T. Neiser, and A. Eubanks, “A vision for coupling operation of US
fusion facilities with HPC systems and the implications for workflows
and data management,” in Accelerating Science and Engineering Dis-
coveries Through Integrated Research Infrastructure for Experiment, Big
Data, Modeling and Simulation: 22nd Smoky Mountains Computational
Sciences and Engineering Conference. Springer, 2023, pp. 87–100.

9

https://doi.org/10.1145/3307681.3325400
https://arxiv.org/abs/2407.11432


The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce,

prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the
Government. The Department of Energy will provide public
access to these results of federally sponsored research in
accordance with the DOE Public Access Plan. http://energy.
gov/downloads/doe-public-accessplan

10

http://energy.gov/downloads/doe-public-accessplan
http://energy.gov/downloads/doe-public-accessplan

	Introduction
	Related work
	Motivating Example: Ptychography
	Resilient abstractions
	Event Fabric Foundation
	QoS-Aware Data Streams
	Resilient Data Views
	Elastically Resilient Compute and Data
	Anomaly Detection and Prediction

	Diaspora: A Comprehensive Resilience Framework
	Conclusions and Future Work
	References

