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Abstract

Segmentation in medical imaging is an essential and often preliminary task in
the image processing chain, driving numerous efforts towards the design of ro-
bust segmentation algorithms. Supervised learning methods achieve excellent
performances when fed with a sufficient amount of labeled data. However, such
labels are typically highly time-consuming, error-prone and expensive to pro-
duce. Alternatively, semi-supervised learning approaches leverage both labeled
and unlabeled data, and are very useful when only a small fraction of the dataset
is labeled. They are particularly useful for cerebrovascular segmentation, given
that labeling a single volume requires several hours for an expert. In addition
to the challenge posed by insufficient annotations, there are concerns regard-
ing annotation consistency. The task of annotating the cerebrovascular tree is
inherently ambiguous. Due to the discrete nature of images, the borders and
extremities of vessels are often unclear. Consequently, annotations heavily rely
on the expert subjectivity and on the underlying clinical objective. These dis-
crepancies significantly increase the complexity of the segmentation task for the
model and consequently impair the results. Consequently, it becomes imper-
ative to provide clinicians with precise guidelines to improve the annotation
process and construct more uniform datasets. In this article, we investigate the
data dependency of deep learning methods within the context of imperfect data
and semi-supervised learning, for cerebrovascular segmentation. Specifically,
this study compares various state-of-the-art semi-supervised methods based on
unsupervised regularization and evaluates their performance in diverse quantity
and quality data scenarios. Based on these experiments, we provide guidelines
for the annotation and training of cerebrovascular segmentation models.

Keywords: semi-supervised learning, cerebrovascular segmentation,
annotation quality, benchmark
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1. Introduction

In medical imaging, many pipelines used in clinical applications start by the
segmentation of specific target structures. Consequently, the segmentation task
has been widely investigated in the image processing community. In particular,
deep-learning methods have successfully alleviated performance bottlenecks and
yield state-of-the-art results [1]. Currently, most segmentation approaches de-
veloped in this context rely on the U-Net architecture comprising convolutional
[2, 3, 4] and/or transformer-based [5, 6, 7] layers.

In the context of vascular segmentation [8, 9], cerebrovascular segmentation
stands out as one of the most complex tasks. This complexity arises from the in-
tricate nature of the brain vascular network, which comprises numerous tortuous
vessels with a complex structure, featuring cycles and a tree-like topology. While
conventional U-Net models have been applied to cerebrovascular segmentation
[10, 11], recent advancements have introduced more sophisticated architectures
[12, 13, 14, 15]. However, these approaches rely on supervised learning which
requires a large quantity of labeled data, specifically the annotation of the whole
brain vascular network across numerous 3D images.

Unfortunately, these annotations have to be produced and/or carefully re-
viewed by medical experts which is heavily time-consuming [16]. As a result,
most cerebrovascular segmentation datasets contain a limited number of labeled
training data, thereby limiting the performance of trained models.

In addition to the lack of labeled data, another significant challenge arises
from the considerable variability in cerebrovascular labels. This variability
comes from several factors. Firstly, the definition of a cerebrovascular label
varies depending on the specific application of interest [17]. Some datasets con-
centrate solely on major vessels, such as the circle of Willis (TopCow [16]), while
others include all arteries but exclude veins (Bullitt [18], IXI [19]). Despite the
adoption of a global annotation policy, the limit regarding where to stop anno-
tating can be ambiguous and vary from one dataset to another. For instance,
when stating “all arteries are labeled”, some datasets may or may not include
the ophthalmic arteries and the arteries supplying blood to the scalp.

Even though the same annotation policy is shared between two datasets,
variations in the extent of labels may arise depending on the annotator. Firstly,
due to the discrete nature of annotations, the status (inside or outside the
vascular label) of voxels on the vessel borders becomes ambiguous and is subject
to the annotator’s discretion. Secondly, a similar issue arises when labeling a
vessel near the image resolution limit. The annotators may choose to stop
labeling at different positions.

These numerous sources of vascular label variability create what is commonly
referred to as concept shift [20, 21]. During training, the model tries to learn
the concept of “vessel” based on the provided labels. However, this concept
may undergo changes depending on the annotator responsible for its creation
(inter-expert variability) or even the moment of the label creation (intra-expert
variability). This concept shift is often even more important when using several
datasets during the same training, as slight changes in the annotation policy
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may lead to systematic bias in the concept of vessel. For example, the extent
of the artery border as well as the arteries included in the label in the Bullitt
dataset compared to the IXI dataset are significantly different (Fig. 1). This
concept shift tends to reduce the performance of the segmentation model and
the stability of the training. Additionally, it causes problems when evaluating a
model on a dataset exhibiting a concept shift compared to the one used during
training.

Secondly, extensively labeling cerebrovascular structures is a laborious task,
making it prone to significant variations in the quality of annotations. Notably,
common imperfections observed in cerebrovascular labels include missed vessels,
disconnections or holes within a labeled vessel, and the inadvertent labeling of
veins in datasets intended for arterial annotation (illustrated in Fig.1). Another
common imperfection is the absence of spatial continuity in labels, especially
when annotations are exclusively conducted in a single 2D plane, typically the
axial one. These imperfections generate noisy labels, further complicating the
training process of the segmentation model.

This problem of imperfect annotations is closely linked with the problem
of annotations scarcity. When confronted with a limited quantity of labeled
data, the absence of diversity in annotations can result in deep learning models
exhibiting an overfitting behavior on the specific concept and/or noise present
on the labels of the training dataset, potentially introducing the biases discussed
above. Hence, there is a notable interest in examining these issues together.

As discussed before, the challenges of data scarcity, concept shift and noisy
labels are more pronounced in cerebrovascular segmentation compared to other
segmentation applications. Thus they constitute an important performance bot-
tleneck for supervised segmentation methods. Yet, to the best of our knowledge,
this has not been studied.

To address both the scarcity of cerebrovascular annotations and the chal-
lenges related to their quality and consistency, there has been a growing inter-
est in semi-supervised methods. These methods tackle the problem of lack of
annotation by leveraging unlabeled data, alongside labeled data, to increase the
model performance. Three distinct strategies can be identified [22]: (1) gener-
ating pseudo-labels to train a supervised model [23, 24, 25]; (2) using unlabeled
data to perform an unsupervised regularization; (3) employing unlabeled data
to learn prior knowledge through self-supervised tasks [26, 27]. The most preva-
lent strategy among these is the unsupervised regularization approach, further
categorized into four types [22]: (1) consistency learning [28, 29, 30, 31, 32, 33];
(2) co-training [34, 35]; (3) adversarial learning [36, 37, 38]; and (4) entropy
minimization [39]. In this study, we only focus on the unsupervised regular-
ization approaches, as they also address the challenge of data imperfection by
limiting overfitting.

Semi-supervised with unsupervised regularization methods have been ap-
plied to cerebrovascular segmentation. For instance, [40] proposed a mean-
teacher framework where the consistency loss was guided by a region connec-
tivity model to introduce anatomical constraints. Also, [41] proposed to use, in
addition to the segmentation model, a generative model that reconstructs the
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Figure 1: Illustration of noisy labels and concept shift problem arising on two cerebrovascular
datasets : Bullitt [18] (left) and IXI [19] (right). First row: 2D slices with labels overlaid
in light red, vessels with ambiguous boundaries indicated by green arrows and noisy labels
(such as missing vessels or vessel disconnections), marked by orange arrows. Second row: 3D
view showing the disparities in the extent of the labels for the same global annotation policy
“labeling all cerebrovascular arteries”. Third row: maximum intensity projection (MIP) of
the 3D volume.

input image from the segmentation outputs. A reconstruction loss was then
computed to add another unsupervised regularization.

Employing semi-supervised cerebrovascular segmentation strategies seems
appealing to cope with the lack of labeled data. Indeed, this approach not
only boosts the model performance but also regularizes the training and limits
overfitting. Nonetheless, it remains mandatory to include a sufficient amount of
labeled data to enable the network to grasp the concept of a vessel. Moreover,
this sufficient amount of labeled data highly depends on the quality of the
annotations. Therefore, when encountering a new cerebrovascular segmentation
challenge, finding a balance between the quantity of labeled data, their quality,
and the chosen approach becomes paramount.

In this article, our goal is to formulate guidelines to assist the community in
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finding this balance when addressing a cerebrovascular segmentation problem.
In particular, we try to address the following questions:

• When is it more interesting to use a semi-supervised approach than a fully
supervised approach for cerebrovascular segmentation?

• What type of semi-supervised approach should be used for cerebrovascular
segmentation?

• Can semi-supervised learning methods effectively mitigate overfitting on
the annotated data they use?

• Is the quality of annotation more crucial than quantity?

• What types of annotation imperfections most significantly degrade seg-
mentation results and should be primarily avoided?

To do so, we identified five state-of-the-art semi-supervised segmentation
approaches for medical images, along with a fully supervised baseline and com-
pared them on two different cerebrovascular datasets. We specifically examine
their behavior with respect to the number of available labeled data. We also
study the sensibility of these approaches to the specific labeled samples that are
used during training. We finally investigate the impact of several common im-
perfection types found in cerebrovascular labels: missing vessels, vessel border
over- and under-segmentation.

The remainder of this article is organized as follows. Sect. 2 presents the
datasets and semi-supervised methods used in this study. Sect. 3 details both
the experimental setup and the outcomes of the conducted experiments. Finally,
in Sect. 4, we discuss the results and conclusions of this study.

2. Materials and methods

In this section, we present the datasets as well as the employed semi-supervised
learning approaches.

2.1. Datasets

We used the public dataset Bullitt [18] composed of 109 Time-of-Flight Mag-
netic Resonance Angiography (TOF-MRA) images of healthy patients acquired
from the same center with a Siemens Allegra 3T system and 34 annotations.
All volumes have the same resolution, with voxels of size 0.51×0.51×0.80 mm3

and a shape of 448×448×128. We split this dataset into 94 volumes (including
19 annotated ones) for training, and 15 annotated volumes for test.

We also used the public dataset IXI [19] originally containing nearly 600
TOF-MRA images acquired from three different centers: Guy’s hospital, Lon-
don, UK (316 patients), Hammersmith Hospital, London, UK (181 patients)
and Institute of Psychiatry, London, UK (73 patients). Each of these patients
is unique, and no patient underwent scans in different centers. For the three
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Figure 2: Visualization for three different patients of the different deteriorations carried out on
the Bullitt dataset to investigate the impact of concept-shift in cerebrovascular segmentation.

centers, a limited number of annotations were available: fifteen, four and three
respectively. We chose to restrict this study to one center in order to avoid
the well-known performance drop linked to domain shift. Under these hypothe-
ses, we used the 316 images from the Guy’s hospital center as it presented the
highest number of annotations. All volumes were acquired at a consistent res-
olution with voxel dimensions of 0.47 × 0.47 × 0.80 mm3, resulting in a size
of 512 × 512 × 100 voxels. We randomly split the dataset into 311 images for
training (301 without annotations and 10 with annotations), and 5 annotated
images for testing.

For both datasets, the splitting between the training and test sets of the
annotated volumes was performed randomly.

2.2. Metrics

In this study, our focus was restricted to two metrics. We first used the Dice
score (DSC) [42], defined as:

DSC =
2 · tp

2 · tp+ fp+ fn
(1)

where tp, fp, fn are the true positives, false positives and false negatives, re-
spectively.

Additionally, we incorporated the clDice score [43] that was built upon
the Dice paradigm to mitigate bias towards large vessels, thus offering a more
adapted evaluation for vessel segmentation, especially in the case of complete
vascular networks that exhibit varying radius branches.

To compute the clDice score, we first extract the centerlines CGT and CP

from the ground truth segmentation mask SGT and the predicted segmentation
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SP , respectively. Then, we compute the ratio of CP inside SGT , called topology
precision (Tp), and the ratio of CGT inside SP , called topology sensitivity (Ts):

Tp =
|CP ∩ SGT |

CP
(2)

Ts =
|CGT ∩ SP |

CGT
(3)

Then, clDice is defined as the harmonic mean of Tp and Ts:

clDice =
2 · Tp · Ts
Tp+ Ts

(4)

2.3. Methods

In this section, we present the five semi-supervised learning methods which
were selected for comparison purposes. These methods all belong to the group of
unsupervised regularization methods. They differ in their regularization strat-
egy: consistency upon input noise [28, 30], adversarial consistency [36], task
level consistency [29], and mutual consistency [31].

2.3.1. Mean-teacher

Among the semi-supervised methods, the mean-teacher model [28] is a popu-
lar backbone (Fig. 3). In this framework, two different models are used, namely
a teacher and a student. Only the student model is trained through back-
propagation, while the teacher weights are updated by the exponential moving
average of the student weights. The training procedure leverages the unlabeled
data by performing an unsupervised regularization through a consistency loss.
More precisely, the input data is disturbed with two different random Gaussian
noises, leading to two slightly different inputs for the student and teacher mod-
els, respectively. Then, the consistency loss is used between the outputs of the
student and teacher models, forcing these outputs to be consistent despite the
perturbation. This regularization allows to leverage unlabeled data and improve
the model performance. The model loss L to optimize is:

L = Ls + λc · Lc (5)

with Ls the supervised segmentation loss computed on the labeled samples, Lc

the consistency loss computed on the unlabeled samples and λc ≥ 0 a parameter
setting the weight of the consistency loss. For every method, the parameter λc

evolves during training and follows a Gaussian warming up function.

2.3.2. Uncertainty-aware mean-teacher

The uncertainty-aware mean-teacher [30] relies on the mean-teacher frame-
work. It proposes to monitor the consistency regularization by using uncertainty.
The uncertainty on the output of the teacher model is estimated with Monte-
Carlo dropout. The model performs N forward passes with different dropouts,
and the uncertainty is estimated by the entropy of these N predictions.
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Figure 3: Illustration of the mean-teacher model leveraging both labeled and unlabeled data
for cerebrovascular segmentation.

More formally, by setting P c
n the probability volume of the c-th class of the

n-th forward pass, the uncertainty volume is defined as:

U = −
∑
c

Uc log(Uc) (6)

with:

Uc =
1

N

∑
n

P c
n (7)

This uncertainty is used to monitor the consistency regularization. The
computation of the consistency loss is restricted to voxels falling below a given
threshold. Throughout training, this threshold is dynamically adjusted, ensur-
ing that the consistency loss is computed only on voxels where the teacher’s
prediction is reliable in the early stages of training, thereby enhancing regular-
ization robustness. Conversely, as training progresses, the consistency loss is
expanded to incorporate a broader set of ambiguous voxels, thereby capturing
more complex information.

Let us consider Pt the prediction of the teacher and Ps the prediction of the
student. We mask them with the uncertainty volume, as follows:

Pmask
t = I(U < τ).Pt (8)

Pmask
s = I(U < τ).Ps (9)

with τ a dynamically adjusted treshold and I the indicator function. The thresh-
old τ is defined by a Gaussian warming up function:

τ(t) = ln(2)

(
3

4
+

1

4
exp

(
−5

(
1− t

tmax

)2
))
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Figure 4: Visual results for Bullitt dataset from experiment 1. Segmentation results are
presented for two patients, each method and two dataset compositions.

where t is the current training step and tmax the final training step.
The final model loss to optimize can be written as:

L = Ls + λc · Lc(Pmask
t ,Pmask

s ) (10)

with Ls the supervised segmentation loss computed on the labeled samples, Lc

the consistency loss and λc ≥ 0 a parameter setting the weight of the consistency
loss.

2.3.3. Shape-aware semi-supervised network

The shape-aware semi-supervised (SASSnet) model [36] uses adversarial learn-
ing to enforce consistency of unlabeled and labeled data predictions. In this
method, the regularization is not done on the segmentation output but on a
signed distance map output to enforce geometric shape constraints.

Towards this goal, a multi-task architecture is built with a shared encoder
and a decoder with two output heads: one for segmentation and one for signed
distance map regression. The supervised loss Ls is then the combination of the
segmentation loss Lseg and the mean squared error loss for the signed distance
map Lsdm:

Ls = Lseg + α.Lsdm (11)

with α ≥ 0 a parameter balancing the two losses.
Then, a discriminator is designed to distinguish between the labeled and

unlabeled datasets. More precisely, this discriminator receives the original im-
age and the signed distance map as inputs and is required to classify whether
the input originates from labeled data or unlabeled data. Optimizing this dis-
criminator in an adversarial learning scheme helps to learn shape-aware features
shared by both labeled and unlabeled datasets.
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Figure 5: Visual results for IXI dataset from experiment 1. Segmentation results are presented
for two patients, each method and two data dataset compositions.

The final training objective to optimize is written as:

L(θ, ζ) = Ls(θ) + λc · Ladv(θ, ζ) (12)

with θ the parameters of the segmentation network, ζ the parameter of the
discriminator, Ladv the adversarial loss and λc ≥ 0 a weight to control the
importance of each loss. The optimization process is performed following:

min
θ

max
ζ

L(θ, ζ) (13)

2.3.4. Dual-task consistency network

The dual-task consistency (DTC) network is based on task level consistency.
Similarly to SASSnet [36], the framework consists of a voxel-wise segmentation
head and a signed distance map regression head. The supervised loss is a com-
bination of the segmentation loss Lseg and the mean squared error loss for the
signed distance map Lsdm:

Ls = Lseg + α · Lsdm (14)

However, by contrast with SASSnet, the unsupervised regularization is per-
formed by consistency regularization. Indeed, the signed distance map is trans-
formed into a segmentation map, leading to a slightly different result than the
segmentation head output. A consistency loss is finally used to enforce consis-
tency between these two segmentation maps.

The mapping from the signed distance map to the segmentation map is
approximated by the function T (zi) defined for a signed distance map value zi
of pixel i by:

T (zi) = (1 + e−k.zi)−1 (15)
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with k a parameter set to −1500. Then, the consistency loss Lc is computed
between the obtained segmentation map and the output of the segmentation
head. The final model loss is defined as:

Ltotal = Ls + λc · Lc (16)

with Ls the segmentation loss computed on labeled data, Lc the consistency
loss and λc ≥ 0 a parameter setting the contribution of the consistency loss.

2.3.5. Mutual consistency network

The mutual consistency network (MC-Net) [31] consists of one shared en-
coder and two different decoders. The two decoders have a slightly different
architecture. Since their outputs are different, the consistency loss enforces the
consistency between them. More precisely, if we consider PA the prediction of
the first decoder and PB the prediction of the second decoder, PA and PB are
transformed into soft labels sPA and sPB through a sharpening function:

sP =
P 1

T

P 1
T + (1− P)

1
T

(17)

with T a parameter to control the sharpening, set to 0.1.
Then sPA is used to supervise PB while sPB is used to supervise PA. This

enforces the prediction consistency between the two decoders and promote low-
entropy predictions. Finally, the loss to optimize is defined by:

L = LsegA + LsegB + λc ·
(
Lc(sPA,PB) + Lc(sPB,PA)

)
(18)

with LsegA the supervised segmentation loss for the first decoder, LsegB the
supervised segmentation loss for the second decoder, Lc the consistency loss
and λc ≥ 0 a parameter setting the weight of the consistency loss.

3. Experiments and results

In this section, we explain in details the experiments carried out to inves-
tigate the semi-supervised learning approaches described above and to provide
annotations guidelines for cerebrovascular segmentation.

3.1. Experimental setup

We performed three sets of experiments, aiming at addressing the questions
raised in the introduction.

3.1.1. Experiment 1

The purpose of the first experiment is to conduct a comparative analysis
among various semi-supervised learning methods and assess their performance in
comparison to a supervised baseline. More specifically, we aim to clarify in which
context (i.e. with how many data available) semi-supervised learning brings a
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Figure 6: DSC (a) and clDice (b) scores obtained on the test set for the Bullitt dataset,
depending on the dataset composition. Each curve corresponds to a different method. The
transparent bands represent the standard deviation.
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Figure 7: DSC (a) and clDice (b) scores obtained on the test set for the IXI dataset, depending
on the dataset composition. Each curve corresponds to a different method. The transparent
bands represent the standard deviation.

significant improvement with respect to the supervised baseline. To this end, we
evaluated all the methods on two datasets and with several dataset compositions
(Tab. 3). Specifically, we increased the number of labeled data used for training
while keeping the dataset size constant. For each data composition, one random
training seed was selected, and one training was performed for each method.

3.1.2. Experiment 2

In a low-data regime, the risk of overfitting is very high and the performance
of the model highly depends on the data used for training. We aim at investigat-
ing in which extent the semi-supervised learning framework succeeds to reduce
both overfitting and dependency to the data used for training.

To achieve that goal, we compare a representative semi-supervised approach,
the UA-MT method [30], to the supervised baseline with several different data
seeds. We choose the UA-MT method among the semi-supervised methods as
it is the most established method in the literature.

In this experiment, we selected the first five data compositions with the least
number of labeled data (1 to 5). For each data composition and for each method
(UA-MT and the baseline), we trained nine models, each with a different seed
to select the labeled samples. The seeds were selected randomly but remained
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nsamples
U-Net MT UA-MT SASSnet DTC MC-Net

DSC clDice DSC clDice DSC clDice DSC clDice DSC clDice DSC clDice

1
0.593
± 0.025

0.685
± 0.033

0.632
± 0.015

0.753
± 0.012

0.631
± 0.012

0.750
± 0.010

0.626
± 0.013

0.742
± 0.013

0.624
± 0.014

0.747
± 0.011

0.639
± 0.017

0.771
± 0.018

2
0.616
± 0.021

0.728
± 0.024

0.686
± 0.016

0.799
± 0.012

0.686
± 0.014

0.800
± 0.012

0.679
± 0.016

0.793
± 0.011

0.683
± 0.015

0.795
± 0.012

0.655
± 0.021

0.789
± 0.013

3
0.649
± 0.017

0.732
± 0.022

0.702
± 0.013

0.811
± 0.014

0.701
± 0.013

0.812
± 0.012

0.697
± 0.015

0.807
± 0.013

0.694
± 0.015

0.809
± 0.015

0.691
± 0.017

0.813
± 0.013

4
0.657
± 0.019

0.748
± 0.023

0.711
± 0.014

0.822
± 0.014

0.709
± 0.014

0.819
± 0.014

0.707
± 0.012

0.817
± 0.013

0.706
± 0.012

0.817
± 0.011

0.680
± 0.019

0.811
± 0.014

5
0.647
± 0.020

0.764
± 0.017

0.715
± 0.012

0.825
± 0.014

0.712
± 0.010

0.821
± 0.011

0.714
± 0.012

0.823
± 0.012

0.714
± 0.014

0.823
± 0.015

0.702
± 0.016

0.818
± 0.013

7
0.680
± 0.014

0.775
± 0.014

0.715
± 0.013

0.825
± 0.012

0.713
± 0.014

0.824
± 0.013

0.712
± 0.014

0.822
± 0.012

0.713
± 0.013

0.823
± 0.013

0.708
± 0.014

0.824
± 0.016

9
0.686
± 0.024

0.773
± 0.028

0.712
± 0.011

0.825
± 0.014

0.711
± 0.013

0.824
± 0.012

0.717
± 0.014

0.827
± 0.015

0.715
± 0.013

0.827
± 0.013

0.712
± 0.014

0.822
± 0.016

12
0.691
± 0.018

0.799
± 0.017

0.718
± 0.013

0.828
± 0.014

0.716
± 0.012

0.828
± 0.013

0.718
± 0.013

0.828
± 0.012

0.713
± 0.014

0.825
± 0.014

0.717
± 0.015

0.828
± 0.016

15
0.697
± 0.015

0.797
± 0.016

0.716
± 0.013

0.825
± 0.014

0.717
± 0.013

0.827
± 0.013

0.713
± 0.014

0.827
± 0.014

0.712
± 0.013

0.826
± 0.014

0.718
± 0.012

0.829
± 0.012

18
0.712
± 0.016

0.805
± 0.016

0.717
± 0.013

0.829
± 0.014

0.718
± 0.012

0.828
± 0.013

0.720
± 0.013

0.831
± 0.013

0.722
± 0.014

0.833
± 0.014

0.724
± 0.017

0.831
± 0.019

Table 1: DSC and clDice for each method on Bullitt dataset, depending on the dataset
composition.

nsamples U-Net MT UA-MT SASSnet DTC MC-Net
DSC clDice DSC clDice DSC clDice DSC clDice DSC clDice DSC clDice

1
0.704
± 0.047

0.663
± 0.070

0.742
± 0.029

0.746
± 0.032

0.746
± 0.029

0.755
± 0.029

0.755
± 0.028

0.775
± 0.022

0.741
± 0.031

0.749
± 0.032

0.744
± 0.021

0.775
± 0.016

2
0.712
± 0.050

0.703
± 0.056

0.785
± 0.030

0.837
± 0.033

0.785
± 0.030

0.836
± 0.034

0.783
± 0.028

0.836
± 0.029

0.785
± 0.027

0.838
± 0.030

0.791
± 0.031

0.849
± 0.030

3
0.744
± 0.048

0.725
± 0.064

0.773
± 0.034

0.833
± 0.036

0.773
± 0.033

0.829
± 0.032

0.781
± 0.028

0.847
± 0.026

0.779
± 0.031

0.844
± 0.030

0.784
± 0.024

0.846
± 0.017

4
0.718
± 0.034

0.734
± 0.041

0.783
± 0.028

0.851
± 0.030

0.782
± 0.028

0.849
± 0.032

0.782
± 0.028

0.850
± 0.028

0.788
± 0.028

0.855
± 0.030

0.785
± 0.024

0.852
± 0.023

5
0.762
± 0.039

0.793
± 0.033

0.780
± 0.029

0.846
± 0.029

0.783
± 0.031

0.848
± 0.034

0.781
± 0.029

0.844
± 0.029

0.776
± 0.031

0.838
± 0.032

0.795
± 0.028

0.864
± 0.026

6
0.726
± 0.029

0.680
± 0.039

0.790
± 0.030

0.859
± 0.031

0.782
± 0.031

0.851
± 0.030

0.788
± 0.029

0.857
± 0.030

0.788
± 0.028

0.857
± 0.029

0.794
± 0.028

0.863
± 0.024

7
0.784
± 0.032

0.817
± 0.037

0.791
± 0.025

0.862
± 0.025

0.792
± 0.026

0.857
± 0.028

0.782
± 0.026

0.850
± 0.028

0.784
± 0.025

0.851
± 0.027

0.796
± 0.027

0.863
± 0.020

8
0.753
± 0.046

0.761
± 0.065

0.792
± 0.026

0.864
± 0.025

0.790
± 0.026

0.861
± 0.027

0.794
± 0.026

0.864
± 0.026

0.792
± 0.026

0.861
± 0.029

0.798
± 0.021

0.874
± 0.020

9
0.785
± 0.025

0.828
± 0.022

0.791
± 0.028

0.855
± 0.031

0.794
± 0.028

0.861
± 0.030

0.797
± 0.028

0.864
± 0.031

0.796
± 0.026

0.863
± 0.028

0.804
± 0.026

0.871
± 0.027

Table 2: DSC and clDice for each method on Bullitt dataset, depending on the dataset
composition.

consistent between the supervised and semi-supervised methods. Our goal is to
quantify and compare the variability of both models, depending on the choice
of the seed.
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Table 3: Overview of the dataset sizes and the dataset compositions employed in Experiment
1.

Bullitt IXI
Total dataset size 109 316
Training set size 94 311
Test set size 15 5
Labeled data in the training set 19 10

Various dataset compositions

(1, 93) (1, 310)

(num labeled, num unlabeled)

(2, 92) (2, 309)
(3, 91) (3, 308)
(4, 90) (4, 307)
(5, 89) (5, 306)
(7, 87) (6, 305)
(9, 85) (7, 304)
(12, 82) (8, 303)
(15, 79) (9, 302)
(18, 76) –

1 2 3 4 5
nsamples

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

DS
C

Method
U-Net (not semi-supervised)
UA-MT

(a) DSC

1 2 3 4 5
nsamples

0.60

0.65

0.70

0.75

0.80

clD
ice

Method
U-Net (not semi-supervised)
UA-MT

(b) clDice

Figure 8: Boxplots of DSC (a) and clDice (b) calculated on the different training seeds for
Bullitt. Each color represents a different method (UA-MT and U-Net).

3.1.3. Experiment 3

In this experiment, our objective is to study the impact of both type and
degree of label imperfection on the segmentation results. We aim to identify
whether certain imperfections have a lower impact on segmentation outcomes.
If so, the annotation process and review can be tailored to prioritize key factors
that significantly affect results, optimizing both the annotation process and
model performance. Ultimately, our goal is to formulate annotation guidelines
for enhanced efficiency and model performance.

We identified three main categories of annotation imperfections: over-estimated
vessel radius, under-estimated vessel radius, and missing small vessels (or part
of vessels).

We simulated each type of imperfection as follows:

• Under-segmentation: all annotations are eroded with a ball of radius 1
voxel while ensuring that it does not introduce any vessel disconnection.
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Figure 9: Boxplots of DSC (a) and clDice (b) calculated on the different training seeds for
IXI. Each color represents a different method (UA-MT and U-Net).
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Figure 10: Boxplots of DSC (a) and clDice (b) on test set for each experiment, depending on
the dataset composition. Each color correspond to a different experiment. Brackets indicate
when the difference between results is not statistically significant (n.s).

This scenario is referred to as “Erosion”.

• Over-segmentation: all annotations are dilated with a ball of radius 1.
This scenario is referred to as “Dilation”.

• Missing vessels: we manually removed an increasing amount of vessels on
the distal parts of the vascular network to create three levels of missing
vessels. These scenarios are referred to as “Removed 1”, “Removed 2”
and “Removed 3”.

These simulated imperfections were performed on 5 volumes. We then trained
the UA-MT model [30] on these deteriorated datasets for increasing the number
of available labeled samples and we tested it on the original dataset.

3.2. Implementation details

To conduct these experiments, we relied on the official implementation of the
evaluated semi-supervised methods1. We adapted these implementations to our

1https://github.com/yulequan/UA-MT

https://github.com/kleinzcy/SASSnet
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Figure 11: Visual results for two different patient from experiment 3. These segmentations
are produced by the UA-MT model trained on the different damaged dataset (each column)
with five training samples. Red boxes focus on some part of the cerebrovascular network to
show better the differences between experiments.

datasets2. We also changed the VNet [44] backbone architecture by a standard
U-Net to have a fair comparison with the state of the art U-Net [2] supervised
baseline. All methods were trained with the same learning rate (0.01) and
the same final weight λc for the consistency loss (0.01). Additionally, no data
augmentation was performed, except for the Gaussian noise applied to introduce
perturbations in the mean-teacher and uncertainty mean-teacher methods. All
volumes were normalized using z-score. During training, patches were randomly
extracted from the volume at each iteration to form a batch. The patch sizes
were set to 128×128×96 for the IXI dataset and 128×128×128 for the Bullitt
dataset. For the supervised loss on labeled data, we used the combination of
soft Dice loss and cross-entropy whereas for the consistency loss, we used the
soft Dice loss only.

3.3. Results

3.3.1. Experiment 1: Methods comparison and impact of the quantity of anno-
tated data

The results of these experiments are presented in Fig. 6 and Tab. 1 for the
Bullitt dataset and Fig. 7 and Tab. 2 for the IXI dataset. Firstly, we can see that

https://github.com/HiLab-git/DTC

https://github.com/ycwu1997/MC-Net
2https://github.com/PierreRouge
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all semi-supervised methods perform better than the supervised U-Net baseline,
regardless of the number of labeled samples in the training set. However, the
degree of improvement diminishes with the addition of more labeled samples,
as expected. For instance, the improvement in the DSC between UA-MT and
U-Net when using 1 labeled sample is 0.04 but it decreases to 0.009 when using
9 labeled samples on the IXI dataset. Qualitative results confirm these findings
(see Figs. 4 and 5). A statistical analysis reinforces these findings. Specifically,
when examining the DSC values for the Bullitt dataset, all the p-values between
U-Net and each semi-supervised method are lower than 0.001 across experiments
involving one to seven samples. As the number of samples increases, the p-values
rise above 0.05 when 18 samples are used. A similar trend is observed for the
IXI dataset, though it is less pronounced due to fluctuations in U-Net results.
In addition, we can observe that the segmentations generated by the supervised
U-Net exhibit significant noise, as confirmed by the higher standard deviations,
particularly when only one sample is used for training. This noise is typically
attributed to an overfitting problem.

Another noteworthy result is the absence of a significant difference observed
among the semi-supervised methods. Surprisingly, all methods exhibit simi-
lar performances irrespective of the number of labeled samples and for both
datasets. This is supported by a statistical analysis. Indeed, when comparing
the semi-supervised methods to each other, most p-values exceed 0.1, demon-
strating that they yield similar results. This contrasts with findings in the
literature, where more recent methods were reported to perform better on the
LA dataset [45]. We assume that the higher complexity of the cerebrovascu-
lar structures and imperfections in the labeled data may cause these divergent
conclusions. Conducting benchmarks on other types of datasets is guaranted to
draw more comprehensive and generalizable conclusions.

3.3.2. Experiment 2: Dependency to annotated data

The results of this experiment are presented in Fig. 8 and 9. For each data
composition (i.e. number of labeled samples), we illustrated the segmentation
results statistics over 9 trainings with different samples. This experiment con-
firms that the supervised baseline is less robust to the data variability than the
semi-supervised approach, as indicated by the significantly lower standard devi-
ation on both metrics, regardless of the number of labeled samples. This shows
that the unsupervised regularization provided by the semi-supervised methods
is effective to improve the generalization of the model.

Furthermore, while the addition of more labeled data contributes to regular-
ization, intriguingly, the utilization of a substantial amount of unlabeled data
appears to be more effective in this regard. Therefore, semi-supervised methods
can serve to enhance performance to some extent, but their primary value lies
in effectively regularizing the segmentation model.

3.3.3. Experiment 3: Impact of the annotation quality

The results of this experiment are presented in Fig. 10. The results show
that training a model with annotations with a systematic under- or overesti-
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mation of the vessel radius (dilation, removed 1/2/3) yields significantly worse
results than with precise labels (reference). When only one labeled sample is
used during training, the mean DSC on the test set drops from 0.63 (with the
reference labels) to 0.52 and 0.48 with the dilated and eroded labels, respec-
tively. This phenomenon persists regardless of the number of labeled samples in
the training set. Moreover, the drop in DSC slightly increases with the addition
of more labeled samples, indicating that the regularization typically observed
when adding data does not compensate for the error in the labels. This was
expected, as the labels present a systematic error in the experiment. Interest-
ingly, the results obtained with the dilation experiment exhibit a clDice similar
to that of the reference experiment. Indeed, the clDice is not a suitable metric
to assess over-segmentated results, as it compares the overlap of a centerline
versus a segmentation. On the contrary, the results obtained with the erosion
experiment exhibit a larger drop in clDice than in Dice. When removing the
volumic bias of the Dice (i.e. where larger vessels weight more than thinner
vessels), the results are even worse than expected. This indicates that many
vessels are missing in the segmentation, which is confirmed by visual inspection
(see Fig 11).

A compelling result from this experiment is that the segmentations from the
removed 1/2/3 experiments are much better than that of dilation and erosion.
This tends to demonstrates that when labeling vascular datasets, it is more im-
portant to accurately delineating the vessel borders than extensively annotating
all vessels.

Indeed, we can see in Fig. 10 that when just some distal vessels are missed
(experiment removed 1) the results are not significantly degraded. They are
even improved for nsamples = 1, which again highlights the high sensibility
of the results to the specific volume used for training (see experiment 2). In
experiments removed 2 and removed 3, there is a significant degradation of
the results, but much less important than for the other types of degradations.
Moreover, contrary to the dilation and erosion experiments, the DSC increases
regularly with the number of labeled samples. For nsamples = 2, the drop
of DSC compared with the reference experiment is 0.08 and 0.12 for removed
2 and removed 3 respectively, and for nsamples = 5, the drop decreases to
0.05 and 0.09. The same observation can be seen for clDice. This shows a
regularization effect when more labeled samples are added to the training set.
The lack of some vessels in the labels introduces a noise in the annotations
which is partially compensated when adding more partially annotated volumes.
However, a performance gap still subsists because the missing vessels in the
annotations introduce a concept-shift (i.e. small vessels located at the distal
part of the vascular network are labeled “non vessels” in the training set but
are labeled “vessels” in the test set) which is not compensated by the increasing
number of data. This highlights the problem of concept shift that occurs when
different experts have different understanding regarding the vessels to segment.

19



4. Discussion and conclusion

In this study, we explored various semi-supervised methods across differ-
ent data scenarios, aiming to discern the impact of both quantity and quality of
annotations in the context of cerebrovascular segmentation. Our primary objec-
tive was to establish guidelines that optimize the annotation process and assist
the community in making informed choices regarding model training. We ad-
dressed challenges such as annotation scarcity, noisy labels, and concept shift,
particularly focusing on two common concept shift situations encountered in
cerebrovascular segmentation: ambiguity at the vessel borders and uncertainty
about which vessels should be included in the annotations.

Initially, our experiments indicated a significant advantage of using semi-
supervised methods over a supervised model, especially when dealing with a low
number of labeled samples. The extent of the benefit increased as the quantity
of labeled samples decreased. However, we showed that the performance gap be-
tween semi-supervised methods and the supervised baseline diminished rapidly
as the amount of annotated data increased. While this finding may temper ex-
pectations regarding the potential of semi-supervised methods to significantly
enhance model performance, our experiments demonstrated their effectiveness
in model regularization and reduction of overfitting. In the context of data
scarcity, we believe that the most important added value of semi-supervised
methods for cerebrovascular segmentation lies in these properties.

We shed light on the high impact of the concept shift in cerebrovascular seg-
mentation. Such type of imperfection in the labeled data is very frequent in this
application and appear when the annotation guidelines are not precise enough
or when several experts perform the annotations. Contrary to the presence of
noise in the labels that could be regularized by adding more labeled data, a con-
cept shift problem, such as the under- or over-estimation of the vessel border,
drastically decreases the performance of a model.

Based on our experiments, we can formulate several guidelines both regard-
ing the annotation process of cerebrovascular images and the training of seg-
mentation models. Firstly, when training a model using a non-in-house labeled
dataset, it is very important to carefully analyze it to understand the chosen
concept of a vessel during the annotation process. If the model exhibits poor
generalization to a test dataset, the cause may be attributed to the concept shift
between the training and test datasets. Secondly, when creating a new labeled
dataset, it is of the utmost importance to define a precise policy to reduce the
concept shift in the dataset. In particular, the following questions should be
addressed: which vessels should be included in the annotation? When to stop
labeling a vessel? What is the expected degree of precision for the vessel bor-
ders? Finally, the label quality is more important than their quantity. When
there is a given time slot of expert availability, the primary focus should be on
creating precise annotations, rather than annotating more samples with lower
quality. In particular, precision in delineating vessel borders is more important
than labeling extensively all the vessels up to the image resolution limit.
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