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Pythagorean triples, hierarchical classifications,
geometric interpretations and hybrid systems

Daniel Parrochia

University of Lyon (France)

Abstract. In this article, we show that the Pythagorean theorem defined on triples
of ultrametric matrices, and no longer integers, has applications in clustering (or
theory of classifications), in the case of hierarchical classifications (i.e chains of par-
titions of a partition lattice), which are associated with such matrices. But as the
Pythagorean theorem, via these matrices, also applies to surfaces, we show how
Pythagorean ultrametric matrices have correspondences in discrete differential ge-
ometry. Finally, we suggest some new structures that we call "hybrid simple idem-
potent semidioids" and "hybrid simple idempotent quasi-semitrioids".

Key words. Pythagorean triples, clustering, classifications, chains of partitions,
ultrametric matrices, Gondran’s theorem, discrete differential geometry.

1 An extension of Pythagorean triples
As we know, a Pythagorean triple (a, b, c) with a, b, c ∈ N, is a triple satisfying the
Diophantine Pythagorean equation: x2 + y2 = z2, such that we get:

a2 + b2 = c2. (1)

We already wrote a historical and philosophical article on Pythagorean triples (see
[Parrochia 20]), but we are concern here with one of their generalizations. Among the
multiple extensions of equation (1), there is one that caught our attention. It concerns
the case when the elements x, y, z of the triple are no longer numbers a, b, c ∈ N, but
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matrices A,B,C of order n. Then we can get something like:

A2 +B2 = C2, (2)

with A,B,C ∈Mn, the set of matrices of order n.

We just want to see how this generalization can also concern these specific matrices
that are ultrametric matrices, used in particular in classification theory.

2 Some words about the mathematics of classifica-
tions

When we practice clustering or want to construct classifications, we seek to bring
order to a set of empirical data which is generally presented as a cross-tabulation of
individuals and properties or attributes. A rational method is then to evaluate the
proximity or similarity of individuals according to the properties they possess (or
not) – which presupposes the choice of a notion of "distance" (mathematicians now
sometimes prefer to speak of "dissimilarity"). This allows us to constitute classes of
equivalences which, themselves, may give rise to a proximity or similarity assessment
at different levels. At best, we will obtain an indexed hierarchical classification, which
corresponds exactly to the existence of an ultrametric distance between elements of
the set. Here we will start from this notion.

2.1 The notion of ultrametric distance

An ultrametric distance (we often say now ultrametric dissimilarity) or (in short) an
ultrametric on a nonempty finite set E is a real-valued function:

d : E × E → R.

(where R denote the reals), such that for all x, y, z ∈ E:

(1) d(x, y) ≥ 0;

(2) d(x, y) = d(y, x) (symmetry);

(3) d(x, x) = 0;

(4) d(x, z) ≤ Max (d(x, y), d(y, z)) (strong triangle inequality or ultrametric inequal-
ity).
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(E, d) is said to be an ultrametric space.

It follows from these conditions that the distances between pairs of elements of the
set E × E fall into a symmetric matrix with zero diagonal. For example, with
E = {a, b, c}, d ultrametric and all the values of d in N, we will have:

M =

a b c
a 0 x y
b x 0 y
c y y 0

with x, y ∈ {1, 2}. In the following, for short, we will sometimes omit mentioning
the elements (a, b, c, ...) of the set.

2.2 Taxonomy science results and Gondran’s theorem

2.2.1 Partitions, lattices of partitions, chains and classifications

Definition 2.1 (Partition). A partition of a set E is a set of nonempty subsets of
E such that every element x in E is in exactly one of these subsets (i.e., the subsets
are nonempty mutually disjoint sets).

There is a one-to-one correspondence between partitions and equivalence relations.
For any equivalence relation ≡ (reflexive, symmetric, transitive) defined between the
elements of a set E, the set of its equivalence classes is a partition of E. Conversely,
from any partition P of E, we can define an equivalence relation on E by setting
x ≡ y precisely when x and y are in the same part in P . Thus the notions of
equivalence relation and partition are essentially equivalent.

The axiom of choice guarantees for any partition of a set E the existence of a subset
of E containing exactly one element from each part of the partition. This implies
that given an equivalence relation on a set one can select a canonical representative
element from every equivalence class.

Definition 2.2 (Refinement of partitions). A partition P ′ of a set E is a refinement
of a partition P of E – and we say that P ′ is finer than P (or that P is coarser than
P ′) – if every element of P ′ is a subset of some element of P . Informally, this means
that P ′ is a further fragmentation of P . In that case, it is written that P ′ ≤ P .

The inclusions of partitions may be represented by their associated graphs (subsets
of E × E). For example, in Fig.1, we can see that Gr(P ′) ⊂ Gr(P ), so P ′ is clearly
a refinement of P .
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Gr(P)      Gr(P’) 

Figure 1: Partition graphs

This "finer-than" relation on the set of partitions of E is a partial order (so the
notation "≤" is appropriate). Each set of elements has a least upper bound (their
"join") and a greatest lower bound (their "meet"), so that it forms a lattice.

For clarity, let’s reason on a simple example. Let E = {a, b, c} be a nonempty finite
set. Let P(E) = {(a, b, c), (ab, c), (ac, b), (bc, a), (abc)}, the set of partitions of E (see
Fig. 2 (left)) where, as usual, {{a}, {b}} is simplified in (a, b), for short. Then we
can also define the set C(E) of maximal chains of partitions, which includes:

C0 = {(abc), (a, b, c)};

C1 = {(abc), (ab, c), (a, b, c)};

C2 = {(abc), (ac, d), (a, b, c)};

C3 = {(abc), (bc, d), (a, b, c)}.

P(E) is a finite height semi-modular lattice for the "thiner than" relation which,
moreover, verifies the so-called Jordan-Dedekind condition (that is, all the chains
between any two elements have the same length). C(E) is only a semilattice for set
intersection (see Fig. 2 (right)).

Let now di, dj be ultrametric distances between pairs of elements (x, y) of E. There is
obviously a total equivalence between a chain of partitions of the lattice of partitions
P(E), the corresponding indexed hierarchical classification and its associated ultra-
metric matrix of distances (see [Barbut-Monjardet 70]; [Lerman 70]; [Benzecri et al. 73])
(see Fig. 3). Recall that each integer indicates the least level in which two elements
of a pair are in the same partition.
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(abc)

(abc)  (ac, b) (a bc)

  (a, b, c)

Co

C1 C2          C3

Figure 2: Lattice of partitions of a 3-element set and semilattice of chains

2.3 The notion of cover and of minimal cover

A generalization of the notion of partition is the notion of cover.

Definition 2.3. A family F of nonempty subsets of a set E, whose union contains
the given set E (and which contains no duplicated subsets) is called a cover (or a
covering) of E.

A particular kind of covers are the minimal covers:

Definition 2.4. A minimal cover is a cover for which the removal of one member
destroys the covering property. In symbols, a minimal cover R is a family γ ∈ R(E),
the set of all covers, such that for each U ∈ γ,there is an x ∈ U such that x /∈ V for
all V ∈ γ, with V 6= U .

Information about the number of covers (resp. of minimal covers) on a set, as well
as the refinement relationship that can exist on them, such that they, like partitions,
enter into partially ordered hierarchies can be found in ([Parrochia-Neuville 13], 148-
156)1.

Just see that, in the case of minimal covers, the refinement relation can be repre-
sented, as for partitions, by some graphs included in E × E. See, for example, Fig.
4.

1Let us simply note here that, if the set of minimal covers is indeed a lattice, the set of all covers
is only a preorder for the relation of refinement.
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(abc)

          (ab, c)

         (a, b, c)

(abc)

  (ab)              (c)

    (a)      (b)           (c)

    2

    1

    0

   a             b             c

   a       0             1            2       

   b       1             0            2  

   c       2             2            0

Figure 3: Chain of partitions, indexed classification and ultrametric matrix

2.3.1 Gondran’s theorem

In ([Parrochia-Neuville 13], 72), I recall a very clever theorem from Michel Gondran
(see [Gondran 761]; and see also [Gondran 762]), useful to describe the algebra of
hierarchical classifications when these ones are interpreted as chains of partitions of
a partition lattice:

Theorem 2.1 (Gondran). The matrix of ultrametric distances between the elements
of a nonempty finite set E has a structure of semiring over R ∪ {+∞}.

Proof. There exists an associative law ⊕, which may be interpreted as "Min":

di ⊕ dj = Min(di, dj) (3)

The unit element of ⊕ is {+∞}, and we have:

di ⊕+∞ = +∞⊕ di = di. (4)

There exists also an associative law ∗, which is distributive over ⊕. This law ∗ is
interpreted as "Max", and we have:

di ∗ dj = Max(di, dj). (5)
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Figure 4: Graph of the minimal cover: {a, b, c, d}, {d, e, f}, {f, g, h}

Its unit element is 0, since:

0 ∗ di = di ∗ 0 = Max(0, di) = di. (6)

This structure may be extended to Mn, the set of all the matrices of the chains
of C(E), the set of chains defined on P(E), the partition lattice of the nonempty
finite set E2. With this structure, Gondran (see [Gondran 761]) reveals a profound
connection between some notions of order theory (chain, distributive lattice) and
some notions of algebra (semiring). In a more recent book, he shows that a semiring
whose laws ⊕ and ∗ have both a unit element is a "dioid". A dioid with idempotent
laws is a double-idempotent dioid (see [Gondran-Minoux 01]).

Now we know, after Gondran, that the condition for a matrix D to be an ultrametric
matrix associated with a hierarchical classification is that D = D ∗ D = D2 (with
∗ interpreted, of course, as Max) (see [Gondran 762]). We will speak informally, for
short, of the Gondran’s system Minplus.

2The literature on the mathematics of classifications is very vast, especially since the 1970s.
We take stock of it in [Parrochia-Neuville 13] but you will find a summary of the essentials in our
articles, especially the more recent ones (see [Parrochia 18] and [Parrochia 23]).
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3 Ultrametric matrices and Pythagorean theorem
Assume now that the two matrices A and B are ultrametric symmetric matrices
associated to hierarchical classifications, so that A = A2 and B = B2 in the sense of
Gondran, then we obtain a Pythagorean theorem in the domain of classifications, con-
necting two classifications to the same third via their associated ultrametric matrices
(taken squared). If we interpret ⊕ as Min, which is Gondran’s meaning, the theorem
says nothing more than what is already contained in Gondran’s semiring.

For example, suppose d : E × E → N and the following matrices of classifications
defined on a 3-element set E = {a, b, c}:

A = A2 =

∣∣∣∣∣∣
0 1 2
1 0 2
2 2 0

∣∣∣∣∣∣ and B = B2 =

∣∣∣∣∣∣
0 2 2
2 0 1
2 1 0

∣∣∣∣∣∣
which correspond respectively to the classifications (A) and (B) of Fig. 5.

	            {a, b, c}	 	 	 2 

          {a, b}	                  {c}		 	 1


{a}                 {b}	                      {c}       0


	            {a, b, c}	 	 	 2 

          {b, c}	                  {a}		 	 1


{b}                 {c}	                      {a}       0


and

(A) (B)

1

Figure 5: hierarchical classifications

Pose now (extension of Pythagorean theorem defined on symmetric ultrametric ma-
trices with zero diagonal):

A2 ⊕B2 = C2. (7)

C2 (or C) is the following symmetric ultrametric matrix:

C2 = C =

∣∣∣∣∣∣
0 1 2
1 0 1
2 1 0

∣∣∣∣∣∣
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and its associated classification is (C) (see Fig. 6), which is already an overlapping
one since the element b belongs to two different partitions.

	                    {a, b, c}		 	                                     2 

                              


    {a, b}	                                   {b, c}                                   1  


                                                                                                   0                             
	         

 {a}                      {b}                         {c}

Figure 6: Classification with overlapping classes (a)

The structures of (A) and (B) are respected in this third classification (C), as it
was required in the book quoted above (see [Parrochia-Neuville 13], 102), the only
constraint here – but it is an undeniable restriction – being that the classifications
be defined on the same set and have exactly the same number of elements. This
kind of generalized classification is in fact a chaine of covers (in the case of Fig. 6, a
chain of minimal covers). The Pythagorean theorem – but it is not absolutely trivial
– just allows us to construct, from two classical classications, a third one which is an
overlapping classification.

4 Forms of surfaces in differential geometry
We will just recall here a few definitions (see, for example, [Chase 12]):

4.1 Some definitions

Definition 4.1 (Smooth surface in R3). A smooth surface in R3 is a subset X ⊂ R3

such that each point has a neighborhood U ⊂ X and a map r : V → R3 from an
open set V ⊂ R2 such that:

1. r : V → U is a homeomorphism. This means that r is a bijection that continously
maps V into U , and that the inverse function r−1 exists and is continuous.

2. r(u, v) = (x(u, v), y(u, v), z(u, v)) has derivatives of all orders.

9



3. At all points, the first partial derivatives ru = ∂r and rv = ∂r are linearly ∂u∂v
independent.

We must now recall what are the three fundamental forms associated to a surface,
that describe, in differential geometry, some of its main properties.

4.1.1 First fundamental form

The first fundamental form of a surface is the inner product on the tangent space of
this surface in the three-dimensional Euclidean space, which is induced canonically
from the dot product of R3. It permits the calculation of curvature and metric
properties of a surface such as length and area in a manner consistent with the
ambient space. The first fundamental form is denoted by the Roman numeral I. We
have:

I(x, y) = 〈x, y〉.

If X(u, v) is a parametric surface, then the inner product of two tangent vectors
is:

I(aXu + bXv, cXu + dXv)

= ac〈Xu, Xu〉+ (ad+ bc)〈Xu, Xv〉+ bd〈Xv, Xv〉

= Eac+ F (ad+ bc) +Gbd,

where E,F , and G are the coefficients of the first fundamental form.

The first fundamental form may then be represented as a symmetric matrix.

I(x, y) = xT
[
E F
F G

]
y.

When the first fundamental form is written with only one argument, it denotes the
inner product of that vector with itself.

I(v) = 〈v, v〉 = |v|2.

The first fundamental form is often written in the modern notation of the metric
tensor. The coefficients may then be written as gij:

(gij) =

(
g11 g12
g21 g22

)
=

(
E F
F G

)
.
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4.1.2 Second fundamental form

The second fundamental form of a general parametric surface is defined as follows.
Let r = r(u, v) be a regular parametrization of a surface in R3, where r is a smooth
vector-valued function of two variables. It is usual to denote the partial derivatives
of r with respect to u and v by ru and rv. Regularity of the parametrization means
that ru and rv are linearly independent for any (u,v) in the domain of r, and hence
span the tangent plane to S at each point. Equivalently, the cross product ru× rv is
a nonzero vector normal to the surface. The parametrization thus defines a field of
unit normal vectors n:

n =
ru × rv
|ru × rv|

.

The second fundamental form is usually written as

II = Ldu2 + 2M dudv +N dv2 ,

its matrix in the basis ru, rv of the tangent plane is(
L M
M N

)
.

The coefficients L, M, N at a given point in the parametric uv-plane are given by
the projections of the second partial derivatives of r at that point onto the normal
line to S and can be computed with the aid of the dot product as follows:

L = ruu · n , M = ruv · n , N = rvv · n .

More simply, in Euclidean space, the second fundamental form is given by:

II(x, y) = 〈−dν(x), y〉ν.

where ν is the Gauss map, and dν the differential of ν regarded as a vector-valued
differential form, and the brackets denote the metric tensor of Euclidean space.

4.1.3 Third fundamental form

Let S be the shape operator and M be a smooth surface. Also, let up and vp be
elements of the tangent space Tp(M). The third fundamental form is then given
by:

III(up,vp) = S(up) · S(vp) .
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The third fundamental form is expressible entirely in terms of the first fundamental
form and second fundamental form. If we let H be the mean curvature of the surface
and K be the Gaussian curvature of the surface, we have:

III− 2HII +KI = 0 .

As the shape operator is self-adjoint, for u, v ∈ Tp(M), we find

III(u, v) = 〈Su, Sv〉 = 〈u, S2v〉 = 〈S2u, v〉 .

4.2 Pythagorean surfaces

In a very interstesting article, the Iranian mathematician Ali Taghavi (see [Taghavi 24])
pointed out a remarkable connection between Pythagorean triples (PT for short) and
Riemannian geometry. We take the liberty of quoting it in full here:

"There is a beautiful description and generalization of PT in terms of Riemannian
Geometry. Let us generalize the equation x2+y2 = z2 to the matrix form A2+B2 =
C2, where A,B,C are matrix of order n. Let M3(c) be the standard complete
simply connected Riemannian manifold with constant sectional curvature c, where
c ∈ {−1, 0, 1}. Assume that M2 is a two dimensional manifold which is isometrically
immersed in M3(c). So it naturally generates the first, the second and the third
fundamental form of the surface concerned, I, II and III".

Knowing that, one will say that M2 is a Pythagorean surface if the 3 matrices asso-
ciated to the forms mentioned above satisfy the Pythagorean relation:

I2 + II2 = III2 or I2 + II2 − III2 = 0, (8)

a concept that can be generalized to arbitrary dimension.

As [Aydın et al. 22] show, an example of Pythagorean surface is the following: let
c = 0 and S2(r) be the sphere of radius r centered at origin. It is immediate that
I = 〈, 〉, II = (1/r)I and III = 1/r2I (see [Gray 98]). By substituting the value of II
and III into equation (8) we obtain:

I2 +
1

r2
I2 − 1

r4
I2 = 0.

After rearrangement, we get:

I2(
r4 + r2 − 1

r4
) = 0,
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and so, S2(r) is Pythagorean if and only if the algebraic equation of degree 4:

r4 + r2 − 1 = 0 (9)

holds.

If we pose now x = r2, it means that we must have:

x2 + x− 1 = 0. (10)

The solution of this well-known equation is the so-called "golden ratio" φ, with:

φ =
1 +
√
5

2
,

the "conjugate golden ratio" being equal to:

Φ =
−1 +

√
5

2
.

In this setting, as the authors show, every Pythagorean hypersurface in Rn+1 is
isometric to the round sphere of radius Φ where Φ is the conjugate golden number
just above. The Gaussian curvature of this Pythagorean sphere S2(Φ1/2) is G =
φ.3

4.3 Pythagorean triples, classifications and non Euclidean ge-
ometry

Let us return now to taxonomy and clustering. In the case when A,B and C
are ultrametric matrices associated to hierarchical classifications, the preceding ap-
proach makes it possible to establish a correspondence between hierarchical classifica-
tions and Riemannian differential discrete geometry (see [Crane 23], 16; [Romon 13],
17).

Definition 4.2. We call Pythagorean matrices any ultrametric matrices with zero
second diagonal that satisfy the Pythagorean-like relation:

A2 ⊕B2 = C2. (11)
3Ali Taghavi further reports that in [Xaiole et al. 22] a 2-comparison version of Pythagorean

theorem is presented to judge the lower or upper bound of the curvature of Alexandrov spaces,
and he also recalls that Pythagorean submanifolds isometrically immersed in Euclidean spaces are
studied in [Aydın et al. 23].
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The classifications associated to these Pythagorean matrices will be called Pythagorean
classifications.

Remark 1 : We notice that the symmetric matrices associated with the first two
forms of the parametric surfaces – for example, in the above simple case:(

E F
F G

)
and

(
L M
M N

)
,

have identical coefficients on the first diagonal. On the contrary, the ultrametric
matrices associated with the classifications have identical coefficients, and also iden-
tically zero, on the second diagonal. To establish a correspondence with the surfaces,
we propose to consider the transposes of these matrices associated with the classifi-
cations (in the previous example, we will necessarily have F =M = 0).

Remark 2 : Note again that we can perfectly represent a classification by the trans-
pose of its associated matrix. Just make the necessary changes. For example, the
classification associated with the matrix A in Fig. 3:

a b c
a 0 1 2
b 1 0 2
c 2 2 0

may just be represented as TA:

c b a
a 2 1 0
b 2 0 1
c 0 2 2

the classification itself remaining invariant.

Proposition 4.1. If 3 ultrametric matrices with zero second diagonal and coefficient
in N satisfy the Pythagorean-like relation (11), then the transposes of these matri-
ces can be mapped to respectively the first, second and third fundamental form I, II
and III of a Pythagorean discrete surface Mn, isometrically immersed in Mn+1(c),
the discrete complete simply connected Riemannian manifold with constant sectional
curvature c (where c ∈ {−1, 0, 1}).

Proof. This is just a trivial application, in the discrete case, of the theorem proved
by Aydın and Mihai in [Aydın-Mihai 20]. As the fundamental forms of the discrete
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surface are generated by the transposes of the ultrametric matrices, they are also,
by definition, in one-to-one correspondence with the associated classifications.

Proposition 4.2. In the Gondran’s system Minplus, Pythagorean classifications,
via the transposes of their associated ultrametric matrices, generate a Pythagorean
surface isomorphic to a discrete round sphere of radius r = 1.

Proof. In the case of ultrametric matrices transposes within Gondran’s system Min-
plus, equation (8) means:

I2 ⊕ II2 = III2, (12)

and we also have:
I2 = I, II2 = II, III2 = III.

Suppose, as in section 4.2, that we have I = 〈, 〉, II = (1/r)I and III = 1/r2I.

Satisfying II2 = II means 1
r2
I2 = 1

r
I, while satisfying III2 = III means 1

r4
I2 = 1

r2
I2;

This implies that the unique solution for r is r = 1, which also means that the three
forms I, II and III are identical.

In this context, equation (12), which means in fact Min(I, II) = III, is absolutely trivial
since I = II = III.

But what does it mean concretely? If we assume, more generally, that II = aI where
a is a constant (and a 6= 0), we can show that the surface must be (a subset of) a
sphere.

We have the first fundamental form I(x, y) given by:

I(x, y) = 〈x, y〉.

And we also have the second fundamental form II(x, y) given by:

II(x, y) = 〈−dν(x), y〉ν.

But, from our hypothesis, we know that:

II = a(x, y) = 〈ax, y〉.

And since this is valid for any vector y, then it must be that:

−dν(x) = ax.

15



So x is an eigenvector of −dν and a is an eigenvalue. Since this is true for an arbitrary
x in the tangent plane to S then we choose another x′ tangent to the surface and
find that the same thing happens, i.e:

−dν(x) = ax′.

So the two eigenvalues is just a repeated. Which we can use to find that:

H =
2a

2
= a, K = a2,

gives respectively the constant mean and Gaussian curvature on S, and thus, S must
be a sphere. The value a = 1 is just a particular case4.

5 Return to arithmetic meaning of "+" and "×"
Forget now Gondran’s system Minplus. Let + keep its arithmetical classic sense
and introduce further × as an external law of composition. We get the following
theorem:

Theorem 5.1. The set of ultrametric matrices (Mn,+,×), with coefficients in R+,
and + and × interpreted as the classical arithmetic operations, is a semi-vector space
over R+.

Proof. Mn is equipped with the operations + : Mn ×Mn → Mn and × : R+ ×
Mn →Mn which fulfill the following properties, for each λ, µ ∈ R+:

M,N,P ∈Mn,

M + (N + P ) = (M +N) + P,

M +N = N +M.

SoMn is a commutative semigroup5. Moreover, we have:

(λµ)M = λ(µM), 1M =M,λ(M +N) = λM + λN, (λ+ µ)M = λM + µM.

4We can show more directly the same result : suppose x a local parametrization and N the unit
normal vector. Consider now y = x+ 1aN. Since dy = dx+ 1adN = dx+ 1a(−adx) = 0, y = y0 is
a constant vector. This will be the center of the sphere, as ‖ x− y0 ‖= 1/a is constant.

5AsMn does not possess an identity element (the null matrix is not an ultrametric one associed
with a classification), soMn is not a monoid.
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Despite the fact that some authors (see [La Guardia et al. 21]; [Gähler et al. 99])
require that a semi-vector space has a zero vector, here we do not make such a
general assumption, as moreover [Janyška et al. 07] authorize.

5.1 Construction of matrices

Forget now classification problems. The construction of non necessary symmet-
ric (nor ultrametric) n × n matrices satisfying the Pythagorean relation – with
+ and × (as internal laws), interpreted in their arithmetic sense – are given in
[Arnold et al. 19], who prove the following theorem:

Theorem 5.2. For any n× n matrix with rational entries P ∈Mn(Q), there exists
an n2-parametric family of matrices A and C from Mn(Q) such that P = C2 − A2.

As the authors show, the proof of the theorem is based on the following auxiliary re-
sult. Notice that for any square matrices U and V the following identity holds:

(U − V )2 + 2UV + 2V U = (U + V )2.

Thus, if it is possible to represent P as 2(UV + V U), then one could rewrite P as
(U + V )2 − (U − V )2. It turns out that such representation for P is possible.

This construction gives rise to examples, such as the following, which – of course –
do not concern classifications, and where matrices have their coefficient in R∗.∣∣∣∣30 13

3 0

∣∣∣∣2 + ∣∣∣∣ 4 8
12 16

∣∣∣∣2 = ∣∣∣∣−26 −25−15 4

∣∣∣∣2 .
In the case of ultrametric matrices associated with classifications, this theorem is
of no use. There is a good reason for that, which appears in the following proposi-
tion:

Proposition 5.3. The square of an ultrametric symmetric matrix with zero diagonal
does never give a matrix with 0 diagonal, except in the case of the null matrix.

Proof. To prove this proposition, it is enough to perform the product of the ultra-
metric matrix by itself. By hypothesis,

dii = djj = dkk = ... = 0,

dij, dik, dkj, ... 6= 0.
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The law × impose, for the first element a:

a = d211 + d212 + d213 + ...etc.

with d11 = 0, but d212, d213, etc.... 6= 0. So one at least of the elements located on the
diagonal is not zero and the product matrix is not an ultrametric one.

5.2 Hybrid systems

LetMn be the set of ultrametric matrices associated to classifications. Consider now
(Mn, ∗,+), defined on R+. (Mn, ∗) is a monoid with ∗ having the sense of Max, and
(Mn,+) is a semigroup with + as the classic operation of addition. 0 is the unit
element of ∗, but the null matrix is not an ultrametric matrix corresponding to a
classification, and so, cannot be the unit element of + inMn. We call this structure
an hybrid simple idempotent semidioid.

Of course we would be happy to get the symmetric structure: the set (Mn,⊕,×),
defined on R ∪ {∞}, is such that (Mn,⊕) is a monoid where ⊕ is interpreted as
Min, and (Mn,×) is a semigroup where × is the classic operation of multiplication
(the unit matrix is not an ultrametric matrix, and so, there is no unit element for
× in Mn). We have just +∞ as the unit element of ⊕. So we have again, here,
an hybrid simple idempotent semidioid. But we can say a little more. The matrices
multiplication involves also, in fact, ordinary addition, even if this operation has no
unit element. As (Mn,+,×) defines a semi-vector space over R+, then the structure
we end up with is not exactly (Mn,⊕,×) but (Mn,+,⊕,×).We propose to name
this structure a quasi-semitrioid6. It is, more precisely, an hybrid simple idempotent
quasi-semitrioid.

The semidioid (Mn, ∗,+) authorizes classic operations of addition between matrices
whose squares are the product of idempotent operation ∗. So we can define operations
as the following (Pythagorean theorem with + and ∗):

A2 +B2 = C2,

where A,B,C are ultrametric matrices.

This kind of operations has a useful interpretation in theory of classifications. Let
us take, for example, the following matrices A2 and B2. By applying the operation
+ to them, with its ordinary arithmetic meaning, we obtain:

6We have already encountered a quasi-trioid (2 monoids, 1 semi-group) in
([Parrochia-Neuville 13], 124. Here, we have only a "quasi-semitrioid", because we get only
2 semigroups and 1 monoid.
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∣∣∣∣∣∣∣∣
0 1 2 2
1 0 2 2
2 2 0 1
2 2 1 0

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣
0 3 3 3
3 0 1 2
3 1 0 2
3 2 2 0

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
0 4 5 5
4 0 3 4
5 3 0 3
5 4 3 0

∣∣∣∣∣∣∣∣ .
Here, the right-hand matrix C2 corresponds to the following overlapping hierarchical
classification (which integrates the two previous ones while respecting their struc-
tures). And we have, at the level of the classifications themselves, the sequence
(A)u (B)

.
= (C), as shown in Fig. 11.

{abd}

{ab}                {cd}

{a}                 {b}   {c}               {d}  

=

{abcd}

                   { bc}               {cd}

{a}                 {b}                 {c}                {d}  

.
2 

1 
  

0

5 

4 

3 

0

+

{abd}

{a}                  {bcd}

{a}         { bc}                 {d}  

{a}    b}                  {c}                 {d}  

.
3 

2 
  

1 

0

 {bcd} {ab}

Figure 7: Classification with overlapping classes (c)

The quasi-semitrioid (Mn,⊕,+,×) authorizes comparisons and ordering operations
between matrices whose squares are the classical product defined by the ordinary
operation ×. So we can introduce operations as the following (Pythagorean theorem
with ⊕ and ×):

A2 ⊕B2 = C2.

But in this case A,B,C cannot be ultrametric symmetric matrices, and the operation
does not make sense in theory of classifications. What is more, it is not always
possible to find a matrix which is the minimum of two given squared matrices, and
which is itself a square.

Of course, we can always calculate the squares of two matrices and, by comparing
them, construct a new matrix which is the minimum of the previous ones. But this
minimum matrix is not necessarily the square of another one.

Take, for example, the matrices of section 7.1:
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M2
1 =

∣∣∣∣30 13
3 0

∣∣∣∣2 = ∣∣∣∣939 390
90 39

∣∣∣∣ , M2
2 =

∣∣∣∣ 4 8
12 16

∣∣∣∣2 = ∣∣∣∣112 160
240 352

∣∣∣∣ .
We get:

M2
1 ⊕M2

2 =

∣∣∣∣112 160
90 39

∣∣∣∣ .
If we form now the product of a square matrix by itself such that:∣∣∣∣a b

c d

∣∣∣∣× ∣∣∣∣a b
c d

∣∣∣∣ = ∣∣∣∣a2 + bc ab+ bd
ac+ cd bc+ d2

∣∣∣∣ ,
we then have to solve the nonlinear system:

a2 + bc = 112, ab+ bd = 160, ac+ cd = 90, bc+ d2 = 39,

for which there are no solutions in R.

Obviously, if one of the two given matrix is the matrix minimum, there is no prob-
lem: ∣∣∣∣ 7 11

13 17

∣∣∣∣2 ⊕ ∣∣∣∣ 4 8
12 16

∣∣∣∣2 = ∣∣∣∣ 4 8
12 16

∣∣∣∣2
But it also happens that we can find solutions – even if it is more difficult – in the
case where M1 6=M2 6=M3. For example, suppose we have to find a, b, c, d in R such
that:

∣∣∣∣10 2
6 70

∣∣∣∣2 ⊕ ∣∣∣∣104 48
2 16

∣∣∣∣2 = ∣∣∣∣a b
c d

∣∣∣∣2
An elementary computation shows we have 4 possibilities:

(1) a = −4, b = −8, c = −12, d = −16; (13)
(2) a = 4, b = 8, c = 12, d = 16; (14)

(3) a = −12
√

3

11
, b =

−40√
33
, c = −20

√
3

11
, d = −32

√
3

11
; (15)

(4) a = 12

√
3

11
, b =

40√
33
, c = 20

√
3

11
, d = 32

√
3

11
. (16)
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Maybe we could find applications of all that in numerical nonlinear algebra, theoret-
ical computer science or economics.
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