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A data-driven low-order model of sound source

dynamics in a turbulent jet

N. Kumar 1 and F. Kerhervé 2 and L. Cordier 3

Abstract

Building on previous efforts dedicated to the eduction of flow motions associated

with low-angle sound emission from turbulent jets [25], the current paper pro-

poses a strategy for the reduced-order dynamical modelling of these motions. The

technique is data-driven and comprises (i) a dynamic Ansatz obtained by Galerkin

projection of the Navier-Stokes equations onto a set of POD orthonormal spatial

basis functions coupled with (ii) a dual-Kalman filter which allows long term pre-

diction of the state and correction in line of the model’s parameters. Rather than

directly computing the coefficients of the model equation driving the flow state,

which is only possible when full flow information is available, the coefficients

are first identified thanks to a regularised L2 minimisation procedure. A twenty

degree-of-freedom reduced-order dynamical model (ROM) is then established.

The identification scheme is found to lead to bounded ROMs but with estimated

trajectories drifting from the true ones. A data-driven correction based on a dual-

ensemble Kalman filter is therefore implemented and an empirical non-linear eddy

viscosity model is added to the ROM to solve its inherent lack of stability. This

correction allows the estimated state to be corrected ”on-line” when a measure-

ment of the true state (here point velocity and far-field pressure) is available, as

well as to find the optimal set of parameters associated with the eddy viscosity

term. The described approach, though validated here using partial flow informa-

tion from a numerical simulation, has been designed in the perspective of being

implemented in an experimental context.
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3Institut PPRIME CNRS UPR 3346, Université de Poitiers, ENSMA (France)
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1. Introduction

Description of turbulent flows using stochastic distribution of eddies has long

been served as a paradigm [27]. Further experimental evidences of the role played

by well-coherent large structures in the dynamics have then considerably changed

this point of view [15]. As far as jet flows are concerned, evidences that part of

the noise radiated is essentially driven by these large-scale well-coherent struc-

tures has lead to significant progress in the understanding of noise generation

and new methodologies for noise prediction have been derived. Following the

original works of Michalke [30], Jordan and co-workers [21, 10] have proposed

wavepackets Ansatz as the main source of jet noise. These entities may be seen

as a low-order description of jet flows. More generally, assumption that turbulent

flows can thus be meaningfully reduced to simplified kinematics pushes forward

for low-dimensional modelling of their dynamics. Where noise radiated is con-

cerned, it is however essential that the low-dimensional model also satisfies the

inhomogeneous linear wave equation.

A key objective of low-dimensional modelling is to obtain a dynamical model

with as few degrees of freedom as possible, this being generally motivated also by

the need to perform real-time sensing and control. The number of degrees of free-

dom is dictated by the number of basis functions deemed necessary for accurate

estimation of the dynamics. This raises the question regarding what kind of basis

functions are best suited to a given problem. The empirical eigenfunctions ob-

tained by Proper Orthogonal Decomposition (hereafter POD) are frequently used,

largely on account of the optimality property of this kind of decomposition in the

sense of energy, and will be used here. However, rather than applying it to the full

flow solution, it is here applied to the reduced complexity sound-producing flow

skeleton identified in a previous work [25]. This last work showed that the num-

ber of modes necessary to capture a given percentage of fluctuation energy of the

acoustically-important coherent structures is an order of magnitude less than the

number necessary to capture the same percentage of fluctuation energy of the full

field. The POD modes identified can thus be considered as acoustically-optimised

and are somewhat equivalent to the Most Observable Decomposition modes of

Jordan et al. [22]. While the kinematic features of the sound-producing flow

skeleton identified were fully described in Kerhervé et al. [25], we here sought

for a low-dimensional dynamical system driving the associated motions.The con-

ventional Galerkin projection method is here employed. Projection of the Navier-

Stokes equations on a truncated POD basis results in a Galerkin system which

consists in a low-dimensional system of ordinary differential equations (ODE)
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with a manageable limited rank. In the present case, the corresponding reduced-

order model (POD-ROM) is built with the twenty first POD modes obtained and

whose linear combination was found to reproduce the dynamics of the essential

sound-producing flow motions. The main difficulty resides in the calibration of

the POD-ROM itself. This methodology is effectively known to result, by con-

struction, to unstable models: after a relatively short time horizon, the estimated

state drifts from the true trajectory and corrections are required to guaranty not

only the stability of the POD-ROM but also that the estimated state converges

towards the true value. Keeping only the lower POD modes in the truncation is

equivalent to conserve only the large-scale coherent structures associated with the

production of turbulent kinetic energy while ommiting the small-scales fluctua-

tions responsible with dissipation. The dissipation loss due to the mode truncation

is generally considered as the main origin of the lack of stability of the POD-ROM

which therefore needs to be amended. Common approaches fall into twoclasses of

strategies. The first class is closure model dependent and comes from the pioneer-

ing work of Aubry et al. [1] who proposed to add dissipation terms to the POD-

ROM thanks to an empirical “eddy viscosity”. Strategies of eddy viscosity type

have been since refined by numerous authors considering either linear [36, 18, 38]

or non-linear additional terms [14, 34, 37]. As the Reynolds number increases,

non-linear subscale turbulence models are found mandatory. In such cases, Östh

et al. [34] recently showed that only non-linear modal eddy viscosity can guaran-

tee stabilisation and robustness of the POD-ROM. Spectral eddy viscosity models

inspired from LES models have been also proposed [8, 32, 39]. Energy conser-

vation concept has also been used to derived closure modelling strategies. This

has been initially proposed by Cazemier et al. [11] and do not require the speci-

fication of any free parameter. The second class is closure model free. The most

recent strategies are formulated as constrained optimisation problem resulting in

POD-ROM where part of the small scales are included [2]. In contrast to the first

class, this type of strategy has the benefit to guaranty the power balance in the

low-dimensional space and do not require a subgrid-turbulence model.

The lesson from these various studies is that while stability of the estimated

POD-ROM can be maintained, accurate tracking over long time horizons is gener-

ally not achievable despite large efforts in the calibration procedure. In the present

case, the calibration technique of Perret et al. [35] combined with a Tikhonov

regularisation [19] such as proposed by Cordier et al. [13] is considered to ob-

tain in a first step a stable dynamical system. To improve the predictability of the

POD-ROM over long time horizons, different strategies are then presented, among

which a sequential data-assimilation technique known as dual Ensemble Kalman
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Filter (DualEnKF). Thanks to nowadays computational capabilities, Kalman fil-

ters have regain new interest in the fluid mechanics community and have been

used to develop data-driven simulation [24, 41] or again to solve data-driven esti-

mation [26] problems. Kalman filters have the ability to improve the state estimate

by assimilating available informations. Since in the present paper the interest is

essentially focused on low-angle sound emission, the acoustic pressure being ra-

diated downstream will be considered as observation.

The paper is organised as follows. In §2, the flow configuration and the main

elements of the database are described. Elaboration of a bounded reduced-order

dynamical model is then presented in §3 and its limitation to short-term prediction

only is discussed in §4. Strategies for long-term prediction are presented in details

in §5. Main characteristics of the reconstructed spatio-temporal flow field dynam-

ics associated with low angle radiation over long a time horizon is addressed in

§6. Conclusions and perspectives finally closes the paper in §7.

2. Flow configuration & previous work

The flow investigated is a Mach 0.9 single-stream jet with Reynolds number,

based on jet diameter D and exit velocity U , of 4×105, obtained from Large Eddy

Simulation (LES) by Bogey and Bailly [6]. Details of the simulation as well as

validation of the flow and sound properties can be found in Bogey et al. [7] and

Bogey and Bailly [5, 6]. As mentioned in the introduction, we here focus on the

flow dynamics responsible for noise being radiated downstream. In the work of

Kerhervé et al. [25], a methodology has been developed in order to educe from the

overall flow field the sound-producing events. The core idea is to use the radiated

pressure field to filter out flow mechanisms not involved in noise production. Lin-

ear Stochastic Estimation (hereafter LSE) was used to reconstruct a time-resolved

conditional space-time flow field associated with the low-angle sound emission

extracted from the overall radiated pressure field thanks to an angle-dependent

wavenumber-frequency filter. Figure 1(a) shows the LES solution, while figure

1(b) shows, for the same time step: in zone ΩA, the low-angle component of the

sound field, and, in zone ΩF , the associated conditional pressure field (a condi-

tional velocity field, not shown, is also computed).
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Figure 1: (a) Snapshot of vorticity and pressure fields of the LES solution. (b) Zone ΩA: snapshot

of the low-angle component of the LES sound field (obtained using a frequency-wavenumber

filter); zone ΩF : snapshot of pressure field associated with the sound-producing flow skeleton

(this is a conditional field, computed by LSE from the information in ΩA). (c) POD eigenspectrum

(open symbols) and its convergence (solid symbols) of LES velocity fields corresponding to the

sub-region Ωrot
F of ΩF (see (a) and the zoom given in figure 2). (d) POD eigenspectrum (open

symbols) and its convergence (solid symbols) of the conditional field presented in (b).
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Figure 2: Zoom of regionΩF , which is furtherbroken down into rotational and irrotational regions,

respectively Ωrot
F and Ωirot

F .

3. Elaboration of the dynamical system

3.1. Model equation

A reduced-order model describing the time evolution of the conditional field q̂,

which can be here considered as the high-fidelity system, is sought. The Petrov-

Galerking projection method is implemented with POD modes as the basis of

projection and the Navier-Stokes equations as the high-fidelity model equation.

This results in a system of ordinary differential equations (ODE) with, in contrast

to the Navier-Stokes equations, finite dimension. Unfortunately, these models are

known to be intrinsically unstable mainly due to mode truncation. For this reason,

the calibration method described by [13] is here implemented and is described in

the following sections.

3.1.1. Proper Orthogonal Decomposition

Let {u(x, tk)}k=1,··· ,Ns
be a set of Ns velocity snaphots equally spaced over

a time interval Ts with x ∈ Ωrot
F . The velocity field can be decomposed onto

an orthonormal basis including spatial basis functions and temporal coefficients

{Φp
i (x), a

p
i (t)}i=1,··· ,Ns

such that the normalised mean-square projection of the

basis functions on the velocity field is maximised [29] and is given by,

u(x, t) =

Ns
∑

i=1

ap
i (t)Φ

p
i (x) (1)
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When the ”POD snapshot” method [40] is implemented, the maximisation prob-

lem leads to an eigenvalue problem which reads as,

Cap
i = λia

P
i (2)

where superscript p relates with temporal POD coefficients obtained from the

high-fidelity system (given here by the Ns velocity snapshots) and where C ∈
R

Ns×Ns is a correlation matrix averaged over the spatial direction whose elements

can be expressed as,

Cij =
1

Ns

〈u(x, ti), u(x, tj)〉Ωrot
F

=
nc
∑

k=1

∫∫

Ωrot
F

uk(x, ti)uk(x, tj)dx, (3)

with nc the number of velocity components considered (here nc = 2). In prac-

tice, when solving the eigenvalue problem (eq. 2), the temporal POD coefficients

obtained are normalized so that the variance of each is equal to unity. Formally,

these coefficients should be properly rescaled so that their variance be equal to the

corresponding eigenvalue. However, for what follows, this fully suits the numeri-

cal constraints of linear regression problem.

In the following, the objective is to build a reduced-order model allowing long-

term prediction. The overall database includes a total number of NT = 19000
snapshots sampled at a Strouhal number based on the jet diameter of StD = 3.9

(corresponding to a total duration of tU/D = 4900). The snapshot POD method re-

called previously is here applied for a number of Ns = 4096 snapshots randomly

sampled overall the database. Solving Eq. (2) results in Ns temporal POD modes,

randomly sampled over time, which, when projected onto the initial snapshots

randomly selected lead to Ns spatial eigenfunctions Φi(x). In order to build a

ROM and to compare the estimated temporal POD modes overall the duration of

the database, the eigenfunctions are reprojected into u(x, t) to obtain a set of Ns

temporal POD functions sampled at the same rate than the velocity snapshots.

The POD eigenspectra obtained, respectively, for the LES field and that of the

conditional acoustically-filtered velocity field are reported in Figure 1(c) & (d).

While 20 modes suffice to recover 80 % of the fluctuation energy for the condi-

tional field, over 200 are required to retain the same amount of energy for the LES

field. As discussed in details in Kerhervé et al. [25], the acoustically-filtered field

is found to comprise considerably lower degrees of freedom and suggest that a

low-rank model can be found to properly estimate its dynamics.
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3.1.2. POD reduced-order model based on Galerkin projection

A Galerkin projection of the Navier-Stokes equations onto the POD basis de-

fined previously is then effected. After manipulations, this leads to a set of ordi-

nary differential equations (ODEs) which reads as [20, 4, 13],

ȧP
i (t) = Di +

Ngal
∑

j=1

Lija
P
j (t) +

Ngal
∑

j=1

Ngal
∑

k=1

Qijka
P
j (t)a

P
k (t) + Ri(t) i = 1, · · · , Ngal,

(4)

where yi =
(

Di, Li1, · · · , LiNgal
, Qi11, · · · , QiNgalNgal

)⊤
∈ R

Nyi denotes an un-

known vector of real coefficients, q̇ denotes the time derivative of q and Ri the

residual term which should be read as,

Ri(t) =

Ns
∑

j=Ngal+1

Lija
P
j (t) +

Ns
∑

j=1

Ns
∑

k=1

max(j,k)>Ngal+1

Qijka
P
j (t)a

P
k (t) (5)

As first approximation, we here consider the case where Ri = 0 which is equiv-

alent to neglect convective and viscous terms associated with unresolved modes

i > Ngal. The POD-reduced order model can consequently be written as,

ȧR
i (t) = Di +

Ngal
∑

j=1

Lija
R
j (t) +

Ngal
∑

j=1

Ngal
∑

k=j

Qijka
R
j (t)a

R
k (t) i = 1, · · · , Ngal, (6)

where aR
i (t) denotes the estimated i-th temporal coefficient.

The coefficients Di, Lij and Qijk can be computed directly if full flow infor-

mation is available, for instance from a sufficiently resolved numerical simulation.

However, in situations where only incomplete flow information is available, such

as typically in an experiment and in the case of incomplete numerical data, the

coefficients must be determined by alternative means. This is discussed in §3.2.

Introducing,

aR(t) =
(

aR
1 (t), · · · , a

R
Ngal

(t)
)⊤

Eq (4) can be rewritten as,

ȧR
i (t) = fi(a

R(t), yi) (7)

where fi is the model equation for the i-th mode. The dynamical system (7) may

be written in the more compact form,

ȧR(t) = f
(

aR(t), y
)

(8)
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with f =
(

f1, · · · , fNgal

)⊤
∈ R

Ngal and y = (y1, · · · , yNgal
)⊤ ∈ R

Ny the overall

set of unknwon coefficients where Ny = NgalNyi
.

In the following sections, this compact form is conserved to discuss the iden-

tification procedure for the coefficients vector yi.

3.2. Model identification

A number of studies have been performed with regards to identification of the

model coefficients. These methods differentiate on the definition of the error to

minimise. An intuitive choice is the error on the time derivative of the temporal

coefficients since the objective of the reduced model is to predict as accurately as

possible the dynamics of the system. This has been initially proposed by Perret

et al. [35] and revisited by Cordier et al. [13] or more recently by Suzuki [42].

Here, the flow calibration method of Cordier et al. [13] is presented.

Let e(y, t) be the error function defined by,

e(y, t) = ȧP (t)− f(aP(t), y), (9)

The flow calibration procedure consists in mimimising the cost functional I(y) =
〈||e(y, t)||22〉Ts

, where || ·||2 denotes theL2 norm, and 〈·〉Ts
a time-average operator

defined as

< q(t) >Ts=
1

N

N
∑

k=1

q(tk) (10)

where q(ti) denote N discrete values of q equally distributed over time period

[0, Ts].

Equivalently, the functional I can then be written as,

I(y) =
1

N

N
∑

k=1

Ngal
∑

i=1

[

ȧP
i (tk)− fi(a

P
i (tk), y)

]2
. (11)

Minimisation of I leads to the following linear system [13],

Ay = b with A ∈ R
Ny×Ny and b ∈ R

Ny , (12)

where,

A =
〈

E⊤(t)E(t)
〉

Ts
and b = −

〈

E⊤(t)e(0, t)
〉

Ts
. (13)
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The time-dependent array, E(t) ∈ R
Ngal×Ny , is defined as

E(t)y = −f(aP (t), y). (14)

The minimisation procedure is therefore equivalent to solving the linear sys-

tem given in Eq. (12), where the unknown vector contains the coefficients of the

dynamical system. Note that this procedure is similar to that proposed by Perret

et al. [35] except that here the coefficients of the entire ODE system are calibrated

in a one-shot procedure and is computationally more efficient.

3.3. Regularisation of the solution

The linear system Eq.(12) is generally ill-conditioned. It can be easily under-

stood since the right-side term of the equation, b, may be contaminated through

e(0, t) = ȧP (t) by approximation errors related to the numerical evaluation of

the time-derivatives of the temporal POD coefficients. Here, a 2nd-order centered

finite-difference scheme is used for estimating these time derivatives.

To remedy to this potential ill-conditioness, a regularisation procedure is there-

fore necessary. In this work, a Tikhonov regularisation of zero-th order is imple-

mented [19] . The basic idea of Tikhonov regularisation is to find a solution yρ of

the linear system Eq.(12) that minimizes the residual ||Ayρ − b||2 without penal-

izing too much the value of ||yρ||2. This is equivalent to minimise the following

functional,

φρ(y) = ||Ay− b||2+ ρ||y||22, (15)

where ρ is a regularisation parameter to be determined.

To understand the influence of the ill-conditioness of Eq.(12) on the solution

of the linear system, the concept of filter factors is now introduced. To do so, the

singular value decomposition of A is considered, and can be read as,

A = UΣV⊤ =

Ny
∑

i=1

uiσiv
⊤

i , (16)

where U and V are orthogonal matrices containing left,ui, and right, vi, singular

vectors, and where σi are the singular values of A arranged in decreasing order.

The solution for y can thus be written

y =

Ny
∑

i=1

hi
1

σi
u⊤

i bvi with hi = 1 for i = 1, · · · , Ny. (17)
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In this expression, some additional factors, hi, have been artificially introduced.

When these factors are fixed to unity, |u⊤

i b| may not decrease sufficiently fast

compared to |u⊤

i b/σi| when σi becomes small. This can result in a solution with a

large Euclidean norm [19, 13]. To minimise the contribution of modes i associated

with small σi to the summation defined in Eq.(17), these components are ”low-

pass filtered” by modifying the value of hi. Given a value of ρ, the solution of the

linear system can be expressed by Eq.(17) with filter factors equal to,

hi =
σ2
i

σ2
i + ρ2

. (18)

Different strategies may be used to determine the parameter ρ. In the present

case, the L-curve method described in Hansen [19] is used. This consists in an

iterative procedure to identify yρ = arg miny φρ which balances values of the two

residuals ||Ayρ − b||22 and ||yρ||22.

4. Bounded reduced-order model

4.1. Minimisation of cost functional I

As discussed previously, identification of the dynamical model given by Eq.(8)

is equivalent to solve the linear system Eq.(12). The matrix A and vector b are

evaluated according to Eq. (13). Performance of the minimisation procedure is

evaluated in figure 3 where time derivative ȧP
i of the POD temporal coefficients

compared to that obtained by the identified dynamical model f(aP (t), y) for the

first and fourth POD modes are reported. Identification of f is in good agreement

with the original data and, as expected, very similar results are observed without

and with application of the Tikhonov regularisation. However, as we will see in

the next section, the very small differences that do exist between the two estimates

have important consequences when the dynamical system is integrated in time.

4.2. Short-term prediction

Once the coefficients Di ,Lij and Qijk have been determined, temporal integra-

tion of the dynamical system Eq. (4) is performed using a 4-th order Runge-Kutta

scheme. The initial condition at t = 0 corresponds to the initial sample of the data

sequence considered for the POD analysis. The time step used for the integration

is equal to the time resolution of the data described in §3.

Two solutions are obtained: one where the coefficients of the model are cal-

ibrated using Tikhonov regularisation, and a second where no regularisation is

11
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Figure 3: Visual evaluation of error function e(y, t): comparison between (line with dots) time

derivative of POD temporal coefficient ȧPi (t) and (blue line) identified model fi(a
P (t),y) for

(top) mode 1 and (bottom) mode 4. (a) Without and (b) with Tikhonov regularisation.
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Figure 4: Time histories of the first POD temporal coefficients obtained directly from POD (line

with dots) and predicted by the dynamical model (blue line) without (a,c) and with (b,d) Tikhonov

regularisation. (top) Time histories over 100 time units and (bottom) zoom over the first 7 time

units.

used. Time histories of the corresponding first temporal POD modes are shown

in figure 4 for both solutions. The dynamical system obtained without regular-

isation is unstable and diverges after 20 time units, whereas the other is stable.

Both systems nonetheless provide good predictions beyond a short time horizon.

The stable system begins to drift from the trajectory described by the original data

after about six convective time units as illustrated in figures 4(c & d). This result

is not surprising as discussed in the introduction and as reported by many others.

In the following sections, different strategies for long-term predictions will thus

be considered.

5. Strategies for long-term predictions

5.1. Dependence of the initial condition and intrinsic stabilisation

It is of practical interest to establish if the identified dynamical system can give

correct predictions when the time integration is started in different points on the
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POD attractor. As illustrated in Figure 5 where estimated temporal coefficients

a1(t) is illustrated when starting the time integration at different time steps with,

as initial condition the true value, the dynamical model performs equally well.

Furthermore, when an initial condition which was not contained in the data set

for the identification procedure is used, as it is the case for figure 5(d), the model

continues to provide correct prediction over the short time horizon. This is of

considerable importance because it means that the model coefficients identified

from a given set of realisations (learning sequence) can be reemployed to predict

another sequence of realisations. Note that this remains valid only if the matrices

A and b remains statistically well representatives of the new realisations. In the

present case, the results obtained are an indication that these two matrices are

sufficiently well estimated and that a longer learning data sequence would not

have been necessary.

Since a correct prediction can be obtained on a short term duration by assim-

ilating a new initial condition, a basic procedure for long-term prediction is now

evaluated. This procedure consists in injecting new initial conditions every 6 time

units. This procedure is somewhat similar to the intrinsic stabilisation scheme

proposed by Kalb and Deane [23]. The results are shown in figure 6 for the first

POD temporal coefficient (similar results are obtained for the higher modes). The

long-term prediction is found as expected to be satisfactory. This procedure is

however of limited practical interest. It requires temporal POD coefficients to be

estimated when a new initial condition is necessary. This can be obtained only if

velocity snapshots at the corresponding instants are available from measurements.

In addition, measurement noise or again incoming perturbation may deteriorate

the prediction since the model is not designed to take into account such deviations

from the original trajectory. In the next section, we thus introduce additional cor-

rection to the model in perspective of long-term prediction to take into account for

such deviations.

5.2. Long-term prediction with data assimilation

Despite efforts in the calibration procedure, low-order dynamical systems in-

herently drift from the true trajectory when integrated in time if no correction

is applied. The model equation do not perfectly drives the real flow system ex-

amined as already mentioned. Injecting periodically a new initial condition as

performed previously is the zero-th step of more advanced data assimilation tech-

nique. Suzuki [42] recently proposed a data-driven approach where a proportional

feedback term is added to the model equation. When the gain of the feedback

term is properly selected –typically of the order of the larger coefficient of the
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Figure 5: Time histories of the first POD temporal coefficients (line with dots) and its prediction

(blue line) obtained from different initial conditions.
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Figure 6: Time histories of the first POD temporal coefficients (line with dots) and its prediction

(blue line) obtained by intrinsic stabilisation. Vertical oriented arrows indicate the time steps where

the initial condition is updated by observing the original POD coefficient.

parameter vector– the estimates is found well robust. This approach and the one

previously proposed, have disadvantage to require perfect knowledge of the real

trajectory of the state vector. In practice, it may not be possible to access easily
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on-line to this quantity. In contrast, the user may instantaneously access to “ob-

servable” quantities such as radiated pressure or again velocity at given locations.

Among the range of sequential data assimilation techniques used for example in

meteorology for long-term weather prediction, we here introduce the Ensemble

Kalman filter (EnKF) detailed in Appendix A. The later is an extended version of

the more conventional Kalman Filter (KF) and is appropriate for system described

by non-linear model equation. Unlike the KF, the EnKF may be interpreted as the

statistically suboptimal estimate of the underlying system state providing given

noisy and/or inaccurate observations. The EnKF generates an analysis ensemble,

that is, an ensemble of model states that reflects both an estimate of the true state

(through its mean) and the uncertainty of this estimate (through its spread). This

probabilistic approach allows to deal with non-linear model equations and the fi-

nal estimated state vector may be seen as a higher order linearisation of the true

state. Like the KF, a recursive resolution is employed. At each time step, a model

equation is first used to generate an a priori (or forecast) background ensemble of

estimated states and then the available observations are assimilated to build the a

posteriori (or analysis) ensemble thanks to an optimal filter. Extensive details on

the EnKF can be find in the literature (see Evensen [17] for a thorough review). Its

implementation thus requires a model equation of the system state, here provided

by the reduced-order model of Eq. (8), and an observation equation relating the

state vector and the measurements available. For the observation equation, we pro-

pose to start here with a fictive velocity sensor located at x/D = 3 & y/D = 0.5
and a fictive pressure sensor in Ωrot

F located at x/D = 7 & y/D = 2.5 for lo-

cal surveys of the velocity and the radiated pressure (hereafter referred to u(t)
and p(t) respectively). This choice is motivated by the perspective of a practical

implementation. The observation equation can thus be read, in a discrete form, as,

z(tk) = HaR(tk) with z(tk) =

[

u(tk)
p(tk)

]

∈ R
2 (19)

MatrixH ∈ R
2×Ngal maps the estimated state vector aR(t) to the available obser-

vation vector z(t). Its first row contains the values of the spatial eigenfunctions,

calculated a priori, at the sensor location. For the mapping between the estimated

temporal POD coefficients and the pressure in the radiated field, we here propose

to use a linear stochastic estimate of the pressure field and which can be written

as,

p̃(t + τac) =

Ngal
∑

i=1

αia
R
i (t) (20)
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where {αi}i=1,Ngal
defines a set of coefficients which minimises ||p(t)− p̃(t)||22 in

the L2 norm sense. The time-delay τac introduced in the last expression takes into

account for acoustic propagation time. This quantity needs to be optimised but

we will not discuss this point here. The second row of the observation matrix H
contains the values of the coefficients αi. Finally, the non-linear discrete system

considered for application of the EnKF may thus be read as,
{

aR(tk) = F
(

aR(tk−1), y
)

+ uk

z(tk) = HaR(tk) + vk
(21)

where uk & vk are white zero-mean uncorrelated process and observation noises

respectively with known covariance matrices. These noise components are im-

plemented to take into account for errors in the model equations and errors in the

measurements. These can also be interpreted as levels of trust in both the model

and the available observations. The time-discrete form of the model equation

used in the implementation of the EnKF is here obtained thanks to a 4-th order

Runge-Kutta scheme applied to Eq. (8). The white gaussian noises are initialised

identically as N (0, 0.01INgal
) and a number of 500 members is chosen for the state

ensemble.

Results of the procedure are illustrated in figure 7 for the first temporal POD

mode. The top part of the figure shows the predictive variable z(t) obtained with

the observation equation of Eq. (21) allowing for measurement noise, while the

bottom part shows the time history of the estimated first POD coefficient. In

contrast with intrinsic stabilization or feedback procedures discussed above, it is

here important to point out that values of the true temporal POD coefficients are

not used. Only the observations are assimilated. When comparing the results of

figure 5 obtained without assimilation, the time history of the temporal POD co-

efficient is now well recovered over a long time duration while the assimilation

procedure is maintained. The error of the reconstruction is found to slightly in-

crease with the mode number. In order to increase the level of accuracy of the pre-

diction, additional fictive sensors can be used for observation. Figure 8 shows the

results of the assimilation procedure for the first four temporal POD coefficients

when adding velocity sensors distributed along the mixing layer axis (y/D = 0.5)

between x/D = 2 and x/D = 6.5 by step of 0.5D. The estimates obtained with-

out assimilation are also reported for comparison. As illustrated, time histories

of the temporal coefficients are well reproduced with very small discrepancies.

While the trajectory estimated without assimilation rapidly drifts from the correct

one, that estimated with the EnKF fits well with the original data thanks only to a

limited number of observations and a stable model equation.
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Figure 7: (Bottom part) Time histories of the first POD temporal coefficient (line with dots) and

its prediction using the EnKF (blue line). (Top part) Time histories of the observations and their

estimates through 19 used for assimilation.

5.3. Dual parameters & state estimation

As mentioned in the introduction, the drift of POD-ROMs typically observed

is believed to be due to the omission of the residual term Ri in Eq. 4. Empirical

subscale linear and non-linear models have been proposed in the literature[34].

The modal linear eddy viscosity model proposed by Östh et al. [34] is here con-

sidered, mainly to demonstrate the potential of the assimilation scheme detailed

below. The residual term in Eq. (4) is hence written as,

Ri(t) = νt
i

Ngal
∑

j=1

LijaR
j (t) (22)

Traditionally, νt
i can be obtained by solution matching [14] or again thanks to a

modal power balance [33]. In this study, θ = (νt
1, · · · , ν

t
Ngal

)⊤ is considered as an

unknown parameter vector, independent of time, that we want to estimate simul-

taneously with the state of the system.

While the ensemble Kalman filter presented previously offers the potential to

correct online the state estimate, it does not allow for an improvement of the model
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Figure 8: Time histories of the first four POD temporal coefficients (line with dots) and that of

their estimates without (red dashed line) and with (blue line) data assimilation using the Ensemble

Kalman Filter of Eq. (21). The observation vector includes far-field pressure sensor and longitu-

dinal velocity sensors along the shear layer axis.
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itself through, for example, the parameters vector θ. We therefore here introduce

a dual state-parameter prediction technique based on EnKF, known as dual-EnKF

and initially proposed by Moradkhani et al. [31]. The dual-EnKF requires sepa-

rate state-space representation for the state and parameters through two parallel

filters. The equation of evolution for the parameter vector is set up artificially as-

suming a random walk with a zero-mean white gaussian noises, hereafter w. At

each time step, the usual EnKF as described in Appendix A is applied twice: first

to update the parameter vector and secondly to update the state vector using the

analysis parameter vector. This dual approach is generally found to overperform

joint Kalman filters where state and parameters are updated at the same time step,

by overcoming two limitations [3]. The first one is that in a joint approach, the

number of parameters that can be estimated is restricted to the number of measure-

ments available. The second is that if the sensitivity matrix of the state-to-output

equations is ill-conditioned, the joint estimation results in deteriorated accuracy

for parameter estimation. Finally, the non-linear discrete system considered can

be read as,






θk = θk−1 + wk

aR(θk; tk) = F
(

aR(θk , tk−1), y
)

+ uk

z(tk) = HaR(θk ; tk) + vk

(23)

Demonstration of the dual-EnKF applied on the standard Lorenz model equation

to recover the coefficients of the model equation is discussed in Appendix A.

For the present purpose, the white gaussian noises are initialised as u0 = v0 =
N (0, 0.01INgal

) and w0 = N (0, INgal
). A number of 500 members for the en-

semble is chosen and was found to give satisfactory results. Note that the same

observation vector than that used in §5.2 is considered. The parameter vector θ

is initialised with null values. The entire time sequence is divided into a learning

sequence of duration 265 time units during which the observations are assimilated

at each time step, followed with a validation sequence during which observations

are considered available every 50 time steps only (corresponding to time intervals

of ∆tzU/D ≈ 13).

The value of νt
1 over the learning window is reported in figure 9. The shaded

area corresponds to the variance in the ensemble members (or confidence interval)

while the black line represents the mean ensemble, i.e. the estimated parameter

value. The variance of the ensemble is arbitrarily initialised as large. The pa-

rameter value is found to converge smoothly in a given region of the parameter

space towards a solution with negligible variance or, in other words, uncertainty.

Similar results are observed for the other parameters as reported in figure 10(a-c).
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Time evolution of the temporal coefficient a1(t) during the learning window is re-

ported in figure 11(a). The error between the reference and estimated trajectories

can be quantified with the normalised root-mean-square error (hereafter NRMSE)

defined as the quadratic error between the state estimate and the state reference

given by,

NRMSE(t) =

√

√

√

√

∑Ngal

i=1 [a
P
i (t)− aR

i (t)]
2

∑Ngal

i=1 [a
P
i (t)]

2
(24)

As shown in figure 11(b), the NRMSE remains low during the learning window.

At the end of the learning window, as mentioned previously, the observations are

then assimilated every 13 time units only. Time evolution of the estimated coeffi-

cient a1(t) after the end of the learning window and of the NRMSE is reported in

figure 12(a&b). The NRMSE only slightly increases and the reference trajectory

for a1(t) is well recovered. Similar results are obtained for the other modes as il-

lustrated in figure 13 where estimated trajectories for a2(t), a4(t), a6(t) & a10(t)
are shown. While not shown here also, the NRMSE is found to slightly increase

with the mode number but the estimation remains satisfactory. While not shown

here, if the assimilation of new observations is stopped, the estimated trajectories

remain bounded but the reference dynamics is lost as observed initially in §4.1.

At this stage, this raises the question of the reliability of POD-ROMs to be used

for long-term prediction without correction of the estimate thanks, for example,

to assimilation of new observations.

6. Reconstruction of the spatio-temporal flow field dynamics associated with

low-frequency sound emission

In this last part, we test the degree to which the corrected ROM can reproduce

the dynamics of the reference spatio-temporal flow field associated with sound-

producing mechanisms.

Unrolled phase portrait over a long time horizon using the two first POD

temporal coefficients estimated is first reported in figure 14. The phase por-

trait is found to be well bounded thanks to stabilization of the dynamical sys-

tem, and to properly follow the original trajectory. Using the distance defined

by d(t) =
√

a1(t)2 + a2(t)2 to identify the location of a point along the phase

portrait with coordinates (a1(t), a2(t)) at any time, the trajectory described by the

portrait may be seen as an orbit with center close to coordinate (0,0) essentially

bounded. However, the trajectory is found to jumps intermittently to another or-

bit characterised by a larger diameter. The phase portrait shown in figure 14 is
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Figure 14: Unrolled phase portrait of POD mode 1 versus POD mode 2. When the trajectory of

the portrait is found to follow an orbit by a larger distance from the centerline, the line is colored

in red.

coloured in red when the diameter of the trajectory is above a given threshold

to highlight these intermittent jumps. These jumps are connected to the sound

producing intermittent events discussed by Cavalieri et al. [9] and highlighted in

Kerhervé et al. [25] for the present data.

The full space-time velocity flow field can be obtained by combining the spa-

tial POD eigenfunction extracted from the original LSE data with the temporal

POD coefficients estimated. A quantitative evaluation of the error committed in

the flow estimate is provided by comparing the centerline velocity spectra at two

different stations from the exit nozzle for the original and estimated reduced-order

flows as illustrated in figure 15 using the temporal coefficients estimated with the

Dual-EnKF discussed previously. The overall frequency content below StD ∼ 1

of the reference data is well reproduced. Above StD ∼ 1, the discrepancies with

the reference data are due, first, to the POD truncation and, secondly, to the higher

discrepancies observed in the higher modes between the reference and estimated

temporal coefficients (see figure 13). Spurious frequency peaks are observed for

the estimated field. These peaks are harmonics of the low frequency peak around

StD ≈ 0.08 which is exactly the frequency associated with the time interval of

the assimilation of new observations (∆tzU/D = 13). Another estimation was

effected with assimilation at time intervals ∆tzU/D = 4. The same frequency

spectra for the obtained field are also plotted in figure 15. The spurious frequency

peaks have almost disappeared, with one reminiscent close to StD ≈ 0.25, i.e.

again the frequency associated to the time interval of the assimilation. In conclu-

sion, the energy content of the dominated coherent structures of interest is well

reproduced by the low-order modelling introduced.
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the jet centerline at (a) x/D = 2 and (b) x/D = 8 for the LES and modelled fields using the

long-term prediction procedure.

7. Conclusion

A data-driven strategy for the elaboration of POD reduced-order models able

to predict the flow states over a long-time horizon is proposed. The method-

ology combines (i) a regularised least-square identification of the coefficients

of the POD-ROM, (ii) a modal linear eddy viscosity model to mimic the high-

order modes and parametrised with an unknown parameters vector, and (iii) a

sequential data assimilation technique known as the Dual Ensemble Kalman Fil-

ter (DualEnKF). The later is used to propagate and update sequentially the esti-

mated state and to discover, simultaneously, the parameters vector of the residual

term by assimilating observations at a regular time steps. A Mach 0.9 turbulent

jet, simulated by Large Eddy Simulation by Bogey and Bailly [6], is considered

as a test case. The present work follows that of Kerhervé et al. [25] who pro-

posed a methodology to educe the flow motions associated with sound-producing

events and responsible for low-angle sound radiation. The data-driven strategy is

here applied with the objective to build a low-order dynamical system of these

specific motions. A twenty-mode POD-ROM is therefore identified and used in

combination with the DualEnKF to recover the dynamics of the sound-producing

flow motions over long term horizon based on a limited number of observations.
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The later have been chosen to replicate what can be done in experiments such as,

for instance, velocity point and far-field pressure measurements.The regularised

identification procedure allows to obtain a bounded dynamical system but whose

trajectory drifts from the true one after some time steps. When combined with the

DualEnKF, the trajectory is found to be corrected and to replicate, with small er-

rors, that of the true state. Further works in the selection of the observation vector,

in the estimation of the model and error covariances or again in the identification

of reduced-order models which are non-linear in the coefficients are some of the

ways forwards which may improve the proposed strategy.
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Appendix A. Ensemble and dual-Ensemble Kalman filters

Appendix A.1. Ensemble Kalman filter

The main elements for the implementation of the Dual-Ensemble Kalman Fil-

ter for state and parameters estimation are here detailed and follows the original

formulation of Evensen [16] and Moradkhani et al. [31]. In the following, the

dimension of the state space is n while the true state of the system at discrete time

tk is denoted by xk ∈ R
n. Note that for practical implementation, the time is

discretised, which justifies the subscript notation.Let the dynamics of the system

be described by a non-linear operator M(xk, θ) where θ forms a vector of time-

invariant parameters of dimention nb. In addition, the dimension of the observa-

tion space is no while the observation vector at time tk is denoted by yk ∈ R
no.

We here consider the case where the observation and the state vectors are related

through yk = H(xk) where h can stand for a linear or non-linear operator. Kalman

filtering is a two steps procedure alternating forecast and analysis of the system

state. In the following, the forecast and analysis of the state at time tk are denoted

by x
f
k and xa

k respectively. In the sequential procedure, the dynamical model f is

first used to evolve the state estimate forward in time to form the forecast estimate

x
f
k . When an observation is available, a correction of x

f
k is effected to generate

the analysis estimate xa
k such that the mean-square error between the prediction

H(xf
k) and the observation yk is minimised.

When the dynamics of the state is described by a linear model, the linear

Kalman filter (KF) offers the statistically optimal estimate of the underlying sys-

tem state providing given noisy observations and model. The generalization to

non-linear system is known as the Extended Kalman filter (EKF) which requires

the Jacobian of the dynamics matrix. This filter mimics the classical Kalman filter

by propagating a matrix (the surrogate covariance) that is analogous to the error

covariance in the linear case. Another approach which belongs to the category of

particle filters and widely used in weather forecasting where the models are high

order and nonlinear, the initial states are uncertain, is known as the Ensemble
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Kalman filter (EnKF). While the KF uses a single state estimate, the EnKF uses a

statistical sample of state estimates, called an ensemble. It is a suboptimal estima-

tor based upon Monte Carlo or ensemble generations where the approximation of

the forecast state error covariance matrix is made by propagating an ensemble of

model states using the updated states (ensemble members) from the previous time

step. In contrast to the standard Kalman filter, propagation of covariance matrices

is not necessary. This results in a gain of computational time which is however

compensated by an additional cost since one need to maintain the ensemble mem-

bers throughout the time marching.

Let the discrete-time non-linear system be expressed as,














xk = M(xk−1 , θ) + ηk−1

yk = H(xk) + ǫk
ηk ∼ N (0, ΣM

k )
ǫk ∼ N (0, ΣH

k )

(A.1)

where ηk ∈ R
n and ǫk ∈ R

no are white, zero-mean, uncorrelated process and ob-

servation noises respectively with known covariance matrices Σ
M
k and Σ

y
k . The

EnKF propagates ensembles of state vectors in parallel such that each state vector

represents one realisation of generated model replicates. In the following, ensem-

bles at a given time step are denoted as Xk with superscripts f or a for forecast and

analysis respectively. These ensemble are formed with a number of nq replicates

x
(i)
k of the state vector,

Xk = (x(1)
k , · · · , x

(nq)

k )

For a given ensemble, the state estimate, hereafter xk , must be interpreted as the

most expected value of the ensemble:

xk =
1

nq

nq
∑

i=1

x
(i)
k (A.2)

The EnKF uses the standard Kalman filter equations to propagate the members of

the ensembles. The forecast ensemble members are first obtained by propagating

the analysis ensemble through the nonlinear dynamics,

x
f ,(i)
k = M(xa,(i)

k−1 , θ) + η(i)
k with η(i)

k = N (0, ΣM

k ) (A.3)

A linear correction is then used according to standard Kalman filter to update the

members of the forecast ensemble as

x
a,(i)
k = x̂

f ,(i)
k +Kk

(

y
(i)
k − ŷ

(i)
k

)

(A.4)
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where ŷ
(i)
k stands for the predicted variable given by,

ŷ
(i)
k = H(xf ,(i)

k ) (A.5)

and y
(i)
k for the replicate members of the observation vector yk generated by,

y
(i)

k = yk + ǫ
(i)

k with ǫ
(i)

k = N (0, ΣH

k ) (A.6)

The Kalman gain Kk is computed as,

Kk = Σ
xy,f
k

[

Σ
yy
k + Σ

H

k

]−1

where Σ
yy
k stands for the forecast error covariance matrix of the prediction ensem-

ble and given by,

Σ
yy
k =

1

nq − 1

nq
∑

i=1

ŷ(i)
k

(

ŷ(i)
k

)⊤

and Σ
xy,f
k for the forecast cross-covariance matrix between the forecast ensemble

x
f ,(i)
k and prediction ŷ

(i)
k and given by,

Σ
yy
k =

1

nq − 1

nq
∑

i=1

xf ,(i)
k

(

ŷ(i)
k

)⊤

In contrast to Kalman filter, propagation of the covariance matrices is not neces-

sary, resulting in a gain in computational cost. A key of the EnKF however resides

in the perturbation of the forcing and observation data by adding noise. The noise

variances must be representatives of the uncertainty in these data.

Appendix A.2. Dual Ensemble Kalman filter

When there is no guarantee that the model parameters does not change with

time or when the values chosen for these parameters represent only an initial

guess, simultaneous state-parameter estimation may be necessary. An extension

of the EnKF to state-parameter estimation has been proposed by Moradkhani et al.

[31] and is known as dual-EnKF. The parameters are treated similarly to the state

variables except that their time evolution is assumed to followa random walk such

that,

θf ,(i)k+1 = θa,(i)k + τ i
k (A.7)

Let θk denotes the ensemble of parameter members θ(i)k at time k, with subscript

a or f for analysis and forecast estimates respectively, with associated covariance

33



Σ
θ
k . This artificial evolution is however known to result in an over-dispersion of

parameter members leading to a loss of continuity between two consecutive time

steps [12]. This flaw can be corrected thanks to kernel smoothing with location

shrinkage [43, 28] where the individual ensemble members are drawn from a trun-

cated multivariate normal distribution (TMVN),

θ
f ,(i)
k = TMVN(aθ

a,(i)
k−1 + (1 − a)θ

a

k, h
2
Σ

θ,a
k ) (A.8)

where h2 = 1 − a2, a = (3δ − 1)/2δ and δ ∈ R is the smoothing parameter,

typically between 0.95 and 0.99 [28] . In the dual-EnKF, the standard EnKF

equations are first applied to update the parameters ensemble and to obtain the

analysis parameter estimate accordingly:































θ
f ,(i)

k = TMVN(aθ
a,(i)

k−1 + (1 − a)θ
a

k, h
2
Σ

θ,f
k )

x
f ,(i)
k = M(x

a,(i)
k−1 , θ

f,(i)
k )

ŷ
(i)
k = H(xf ,(i)

k )

θ
a,(i)
k = θ

f ,(i)
k + Kθ

k

(

y
(i)
k − ŷ

(i)
k

)

Kθ
k = Σ

θy−
k

[

Σ
yy
k + Σ

H
k

]

(A.9)

For the same time step, the EnKF equations are then applied to update the state

variables taking into account for the update parameters ensemble according to,























x
f ,(i)

k = M(x
a,(i)

k−1 , θ
a,(i)

k )

ŷ
(i)
k = H(x

f ,(i)
k )

x
a,(i)
k = x

f ,(i)
k +Kx

k

(

y
(i)
k − ŷ

(i)
k

)

Kx
k = Σ

xy,f
k

[

Σ
yy
k + Σ

H

k

]

(A.10)

It is noteworthy that, theoretically, the two previous sequences can be reversed.

To illustrate the capability of the Dual-EnKF technique to recover both the state

variable and the model’s parameter vector, we applied here it to the Lorenz-63

model,






ẋ1 = σ(x2 − x1)
ẋ2 = x1(ρ − x3)− x2

ẋ3 = x1x2 − βx3

(A.11)

where x = (x1, x2, x3)⊤ denotes the three-dimensional state vector and θ =
(σ, β, ρ)⊤ the parameter vector. This model equation a non-linear dynamical sys-

tem. For θ = (10, 8/3, 28), the system is known to converge towards a chaotic
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solution known as strange attractor. The initial condition considered in the present

case is x(t = 0) = x0 = (5, 5, 5)⊤. The model of Eq. (A.11) can easily be rewrit-

ten in the general form given in Eq. (A.1). In the present case, the operator H
is defined as the identity matrix. The parameter vector θ is initialised with in-

correct values such that θ0 = (8/3, 28, 10)⊤, and random noise is introduced in

the initial condition x0. Observations are assimilated until t∗ = 30. During this

learning sequence, the parameter vector is updated. At the end of the sequence,

the last value obtained for the parameter vector is conserved and time integration

is maintained for the state variable up to t∗ = 40. To test the procedure with re-

gards to observation noise, two cases are considered: (case A) Σ y = 0.01I3 and

(case B) Σ y = I3. Results of the estimation procedure for the state and parameter

vectors are reported in figure A.16. Due to incorrect initial parameter vector and

initial condition, discrepancies between the true and estimated trajectories of the

state variables are observed for the two cases in the first time steps. The estimated

state trajectory and the parameter vector are then rapidly corrected and fast con-

vergence towards the true system is observed. Even with large noisy observations

–figure A.16(b)– the system’s trajectory is well recovered while observations are

assimilated thanks to the dual-EnKF. When assimilation is stoped, the estimated

state’s trajectory remains well estimated over duration which decreases as the ob-

servation noise level increases due to small errors in the parameter vector but

continue to exhibit similar dynamics.

35



 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

-20
-15
-10
-5
 0
 5

 10
 15
 20

 0  5  10  15  20  25  30  35  40

-25
-20
-15
-10
-5
 0
 5

 10
 15
 20
 25
 30

 0  5  10  15  20  25  30  35  40

x2

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

 0  5  10  15  20  25  30  35  40

x3

σ(t) ρ(t) β(t)

θ(
t)

x
1
(t
)

t (s)

t (s)

t (s)

t (s)

(a) Case A: Σ y = 0.01I3
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(b) Case B: Σ y = I3

Figure A.16: Results of the dual state-parameter ensemble Kalman filter applied to the Lorenz’63

model equation with observation noise covariance (a)Σ y = 0.01I3 and (b)Σ y = I3. Left column:

Time history of (black) true and (red) estimated state variables. Right column: Time history of the

estimated parameters through the learning sequence. The learning sequence stops at t = 30.
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