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ABSTRACT 27 

Since 70% of the world's crops depend on pollinators for production and concerns are 28 

growing regarding insect decline, it is essential to implement robust and efficient 29 

monitoring of pollinator activity. However, traditional methods of pollinator monitoring are 30 

generally time-consuming and destructive. With the rise of technology, passive methods 31 

are being developed using computer vision or acoustic recording coupled with machine 32 

learning, and are offering the possibility to increase the temporal and spatial coverage of 33 

biodiversity and ecosystem functions monitoring. Passive acoustic monitoring is a 34 

promising method for tracking pollinators. However, it has rarely been implemented, and 35 

has mostly used relatively old machine learning methods. Deep learning methods, 36 

originally, developed for image analysis are beginning to be used for acoustic monitoring 37 

of various taxa, including flying insects. Here we proposed a method for quantifying 38 

pollinator activity in sunflower fields, based on the automatic identification of sounds 39 

produced by their beating wings. We tested a random forest and a deep learning algorithm 40 

on acoustic recordings using a new open access software dedicated to acoustic biodiversity 41 

monitoring, named TadariDeep. We found a higher performance of deep learning 42 

compared to random forest algorithms for the classification of pollinator flight sounds. The 43 

comparison of the acoustic monitoring of insects with pollinator activity estimated from a 44 

common protocol based on visual observations validates this method. We found that 45 

acoustic monitoring coupled with deep learning sound recognition provides a more 46 

realistic view of pollinator activity than visual observations, thanks to continuous 47 

monitoring. Acoustic monitoring of pollinators using deep learning, therefore, appears as a 48 

reliable method to quantify pollinator activity and might be used to monitor insect 49 

pollination over large spatial and temporal scales. Further improvements are however still 50 

needed for the species identification of pollinators.  51 

Keywords: Convolutional neural networks, Data augmentation, Passive acoustic monitoring, 52 

Pollination services  53 
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Introduction 54 

Animal pollination is an essential ecological function involved in the reproduction of 90% of 55 

flowering plants, often through insects (Ollerton et al., 2011). In agricultural landscapes, 70% of 56 

major global food crops benefit from insect pollination, representing approximately 35% of the 57 

annual global food production (Klein et al., 2007). This makes insect pollination a major 58 

ecosystem service that is, however, being threatened by pollinator decline (Biesmeijer et al., 59 

2006; Potts et al., 2010; Zattara and Aizen, 2021). Because pollinator communities exhibit 60 

significant spatial and temporal variability (Gay et al., 2024; Reverté et al., 2019), pollinator 61 

monitoring is important to quantify pollinator activity over space and time and indirectly assess 62 

pollination services. 63 

Several methods are used to monitor insect pollinators. The most common involve 64 

capturing insects using pan traps or sweep nets along transects (O’Connor et al., 2019; Westphal 65 

et al., 2008). These are often used to make spatial comparisons of the pollinator diversity 66 

according to the landscape features and/or agricultural practices, to identify the interactions 67 

they establish with flowering plants (e.g. Crochard et al., 2022) and to study the contribution of 68 

insect-pollination to crop yield (e.g. Perrot et al., 2019). These methods usually involve the 69 

killing of captured individuals and are highly labor-intensive and time-consuming since they 70 

require a significant amount of time in the field to catch pollinators and in the laboratory to 71 

identify them (Montgomery et al., 2021). This high time cost tends to limit the spatial and 72 

temporal coverage of pollination studies.  73 

  Thanks to technological developments, passive and non-destructive methods of 74 

biodiversity monitoring are being developed (van Klink et al., 2022). In particular, bio-acoustic 75 

methods based on automatic sound classification with machine learning algorithms (Gibb et 76 

al., 2019), are already used to study birds (e.g., Kahl et al., 2021; Metcalf et al., 2022), bats (e.g., 77 

Kerbiriou et al., 2019; Roemer et al., 2021), and marine mammals (e.g., Shiu et al., 2020; Van 78 

Uffelen et al., 2017). Regarding insects, acoustic monitoring has already been developed to 79 

study the impact of anthropogenic pressures on Orthopteran communities (Jeliazkov et al., 80 

2016; Penone et al., 2013) but also for aquatic insects (Desjonquères et al., 2020; Gottesman et 81 

al., 2020). In the case of flying insects such as pollinators, they can be detected through the 82 

sound they make beating their wings in flight (Kawakita and Ichikawa, 2019). Early studies on 83 

pollinator acoustics focused mainly on bumblebees. They studied colony dynamics (Heise et 84 

al., 2020), the link between their characteristic sound frequencies and morphological traits 85 

known to play a role in pollination efficiency (Miller-Struttmann et al., 2017) or the specific 86 

identification of a limited number of bumblebee species (Gradišek et al. 2017) or bee and hornet 87 

species (Kawakita and Ichikawa 2019). Nevertheless, these studies rely on rather potentially 88 

outdated machine learning methods, such as support-vector machine or random forest, to 89 

identify and classify the sounds emitted by pollinators. Since 2016, a machine learning method 90 

relying on convolutional neural networks has become increasingly popular in bioacoustics 91 

(Stowell, 2022). This class of methods achieved breakthroughs in automatic image 92 

classification (Hicks et al., 2021; Mohanty et al., 2016; Weinstein, 2018) and can analyze the 93 

spectrograms of recorded sounds analogously. This method has been widely used because it is 94 

more efficient than classical machine learning methods, making fewer errors in sound 95 

classification, and it can be used for the monitoring of various taxa, such as birds, marine 96 

mammals, bats, fish (Stowell, 2022) and most recently flying insects (Folliot et al., 2022). 97 

https://www.zotero.org/google-docs/?VSkERR
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https://www.zotero.org/google-docs/?4N4P1r
https://www.zotero.org/google-docs/?K7Qj3m
https://www.zotero.org/google-docs/?xN8fmi
https://www.zotero.org/google-docs/?xN8fmi
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In this context, we aimed to develop a convolutional neural network for automatically 98 

recognizing and classifying sounds emitted by pollinators during their flight to quantify 99 

pollinator activity in agricultural fields. Sunflower is the most important oil crop in terms of 100 

cultivated area in Europe (FAOSTAT, 2020), and the yield increase due to insect pollination is 101 

estimated to be between 18% and 100% (i.e. doubling the yield) (Carvalheiro et al., 2011; 102 

Garibaldi et al., 2016; Greenleaf and Kremen, 2006; Perrot et al., 2019). Sunflower is mostly 103 

visited and pollinated by honeybees, which account for between 72 and 97.8% of pollinator 104 

visits (Bartual et al., 2018; Carvalheiro et al., 2011; Greenleaf and Kremen, 2006). This makes it 105 

a good candidate for monitoring the dynamics of pollinator activity, without necessarily 106 

knowing their species identity (Rader et al., 2016). Here, we first compared the performance of 107 

a deep learning method based on convolutional neural networks trained on spectrograms 108 

using the newly developed TadariDeep software (https://github.com/YvesBas/TadariDeep) 109 

with a random forest based method trained on sound events features using the Tadarida 110 

software. Then, to test the reliability of acoustic monitoring, we investigated whether the 111 

estimate of pollinator activity from continuous acoustic monitoring reflects those estimated by 112 

a classical method, i.e. replicated sweep net sampling along transects. We studied the 113 

relationship between the number of buzzes detected and the number of honeybees sampled 114 

along the transects both on the days of transect sampling and throughout the flowering period 115 

of the sunflower fields. 116 

 117 

Material & Methods 118 

A) Site description 119 

In 2020, we selected 30 sunflower fields from the Long-Term Social-Ecological Research site 120 

“Zone Atelier Plaine & Val de Sèvre” in South-West France. This research site is 435 km² and 121 

composed of 87% of cultivated areas (Bretagnolle et al., 2018 a,b), dominated by cereals and 122 

sunflowers, representing roughly 55% and 13% of the cultivated area, respectively. To promote 123 

heterogeneity in pollinator activity among sunflower fields, fields were selected to cover the 124 

landscape gradients of semi-natural habitats, sunflowers, and organic fields. Selected 125 

sunflower fields had an average area of 6 ha (± 4.6 SD). The flowering of these fields ranged from 126 

early July to mid-August, and lasted between 2 and 3 weeks per field. 127 

B) Acoustic records 128 

Recording device and records pretreatment 129 

         We used AudioMoth recorders, which are low-cost, small, and low-energy (Hill et al., 130 

2018) to perform audio recording (see SI.A for the description and parameters). In each field, 131 

approximately 20m from the field edge, we placed an Audiomoth 10 to 20 cm from a randomly 132 

selected sunflower head. A windscreen covered the Audiomoth to reduce the wind sound. We 133 

made continuous audio recordings between 6 am and 10 pm, at 16 kHz sampling rate, to cover 134 

the period between sunrise and sunset at our study site during July and August.  135 

We aimed to compare the performance of random forest and convolutional neural networks 136 

for pollinator buzz detection. This requires a training dataset, but to our knowledge there is no 137 

a database of annotated pollinator buzzes. To build our training dataset we proceeded in two 138 

https://www.zotero.org/google-docs/?BHXITf
https://www.zotero.org/google-docs/?BHXITf
https://www.zotero.org/google-docs/?BHXITf
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https://github.com/YvesBas/TadariDeep
https://www.zotero.org/google-docs/?X2RmHG
https://www.zotero.org/google-docs/?LV0hbr
https://www.zotero.org/google-docs/?LV0hbr
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steps. First, we manually annotated a restricted number of audio records for which we knew 139 

that pollinators were present (see “Step 1: Building the training datasets”). By annotating 60 140 

minutes of records, we obtained 225 pollinator sounds and 1627 other sounds. Second, to 141 

increase the size of our training dataset without spending too much time listening to recordings 142 

to manually annotate pollinator buzzes, we trained a random forest classifier on this initial 143 

training dataset and used it to identify pollinator buzzes in more than 400,000 audio recordings. 144 

Thanks to a stratified sampling of the results that were listened to and manually annotated, we 145 

obtained 12 644 extra pollinator sounds and 9 565 extra other sounds. 146 

These steps were achieved using the Tadarida toolbox (Bas et al., 2017) designed to analyze 147 

the recordings and build classifiers of sound events. To optimize the use of this toolbox, it was 148 

necessary to pre-process our recordings. We cut them into sub-records of 10 seconds thanks to 149 

Kaleidoscope (https://www.wildlifeacoustics.com/products/kaleidoscope-pro) software and 150 

thus obtained 4 014 996 10-second records. Then, Tadarida-L, a component of Tadarida 151 

toolbox, was used to detect sound events on spectrograms of all of these records (Table S1). 152 

Fast Fourrier Transformation window was set to a size of 1024 and an overlap of 75 % so that 153 

the time resolution is 16 ms, and the frequency resolution is 7.8 Hz. To train Tadarida-C 154 

classifiers to recognize flying pollinators from other sound events, we built several training 155 

datasets. For this, we proceeded in several steps. 156 

Step 1: Building the training datasets 157 

- Training dataset A 158 

Machine learning classification methods need a training dataset from which the algorithm 159 

learns to classify sound events into predefined categories. Such training datasets are made of 160 

labeled sound events, the labels corresponding to the classes into which sounds should be 161 

classified a posteriori. To ensure that our training dataset included pollinator sound events, we 162 

randomly selected the recordings from 12 out of 291 5-minute long observation sessions, 163 

representing 375 10-second long recordings, for which we knew that pollinators were present 164 

(see Supporting Information B). Sound events that Tadarida-L detected within these 375 165 

records were listened to and labeled using eight classes still using Tadarida-L. Three of the 166 

classes corresponded to pollinators "Apis mellifera", "Bombus sp.", and "Unidentified 167 

pollinator", which we could differentiate thanks to the visual observations made. Table S2 168 

presents the full list of classes and the number of sound events labeled correspondingly that 169 

constitute the training dataset A, comprising a total of 225 pollinator sound events. Then from 170 

this training dataset, we used Tadarida-C to build the first classifier based on a random forest 171 

algorithm, hereafter named “RF-0” (Fig. 1 and see the "Step 2: Classifier training" section for 172 

details).  173 

- Training dataset B 174 

To ensure that all possible sound conditions were represented in our training dataset, 10% 175 

of all records not coupled to the visual observations were randomly selected. Based on their 176 

acoustic features, we classified all sound events detected in these with our classifier “random 177 

forest-0” and obtained for each recording a confidence score for the "pollinator" class, which 178 

corresponds to the sum of the confidence scores of “Apis mellifera”, “Bombus sp.” and 179 

“Unidentified pollinator” classes. The higher the score, the more likely it is that the record 180 

contains a pollinator sound. We defined six pollinator score groups based on the confidence 181 

https://www.zotero.org/google-docs/?E8jCgn
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score of the “pollinator” class (i.e. 1: 0-0.5; 2: >0.5-0.6; 3: >0.6-0.7; 4: >0.7-0.8; 5: >0.8-0.9; 6: >0.9). 182 

To improve the training dataset, we wanted to increase the number of sound events in the 183 

“pollinator” class and correct the main errors made by the classifier “random forest-0” (not a 184 

pollinator but a high confidence score of the "pollinator" class). For this, we conducted a 185 

sampling of the recordings stratified by sunflower field and “pollinator” confidence score 186 

group, with the number of recordings sampled increasing with confidence score groups. All of 187 

these recordings were listened to and all sound events were labelled with Tadarida-L. We 188 

obtained a training dataset B with 17 classes of sounds and a total of 12 869 sound events 189 

corresponding to pollinators (Fig. 1 and Table S3 to see the list of classes and the number of 190 

sound events we had labeled per class). 191 

- Training datasets C & D 192 

Data augmentation consists of artificially increasing the size of the training dataset by 193 

sampling data to which a small modification is applied (Stowell, 2022). Our preliminary tests 194 

showed that the human voice could be the source of many classification errors. To improve the 195 

performance of our classifier in differentiating between pollinator sounds and human voice, we 196 

increased the class of sounds corresponding to the human voice. To do so, we collected human 197 

voice events from the Common Voice Corpus 9.0 database 198 

(https://commonvoice.mozilla.org/fr/datasets) and mixed these events with the events from 199 

the training dataset B, with an amplitude ratio randomly selected between 1% and 99%. A 200 

training dataset C was then created by adding to the training dataset B, 1700 of these events 201 

mixing human voice and sound events from our recordings in sunflower fields (Fig. 1c). In the 202 

same way, we created training dataset D by adding 3300 sound events mixing human voice 203 

mixing events and sound events from our recordings to the training dataset C (Fig. 1d). In the 204 

following, we only use the training datasets B, C, and D. 205 

Step 2: Classifier training 206 

We compared two different machine learning methods, i.e., random forest and 207 

convolutional neural networks, to classify sound events as pollinator flight sounds versus other 208 

sounds emitted in the same frequency band. To do so we used two softwares: Tadarida-C, a 209 

component of Tadarida toolbox (Bas et al., 2017) and TadariDeep 210 

(https://github.com/YvesBas/TadariDeep). The first allowed us to extract 269 acoustic features 211 

for each labelled sound event and train a classifier using a random forest classification. The 212 

second, based on computer vision, using Tensorflow 2.0.0 framework and transfer learning 213 

(MobileNet architecture), allowed to train a classifier based on convolutional neural networks. 214 

For this last method, we optimized the batch size and the number of iterations (nbepochs). For 215 

both methods, we used the training datasets B, C, and D, previously described, leading to a total 216 

of 15 classifiers (see Fig.1, and Table S4 for the characteristics of each classifier). 217 

It is also important to note that the detection process is the same for both machine learning 218 

methods. Nevertheless, with TadariDeep used for the convolutional neural networks, a filter 219 

was applied to limit short sound events with a small amount of information. Thus, only sound 220 

events with a duration of 90 ms or more were taken into account for this method. 221 

 222 

 223 

https://www.zotero.org/google-docs/?jBEhAv
https://www.zotero.org/google-docs/?E8jCgn
https://github.com/YvesBas/TadariDeep
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 224 

Figure 1: Overview of the building of training datasets and classifiers. The orange boxes 225 

represent the original datasets used to build the different training and test datasets. The 226 

arrows indicate the different operations performed during the building of the datasets. 227 

The green circles represent the random forest classifiers built with Taradida-C. The blue 228 

circles represent the convolutional neural networks classifiers built with TadariDeep. 229 

 230 

Step 3: Classifiers testing 231 

We tested the effectiveness of the random forest and convolutional neural network 232 

classifiers using a test dataset of 100 recordings per pollinator score group (as defined in the 233 

part “Training dataset B”). These recordings were randomly selected from the set of 8709 234 

unlabelled 10-second recordings for which we also had visual observation of the pollinator run 235 

(see section C of Materials and Methods below) after all sound events in these recordings had 236 

been classified with the classifier RF-1 (see Table S4).  237 

Thanks to the test dataset, we assessed the efficiency of our 15 classifiers to identify 238 

pollinators against other sounds with receiver operator characteristics (ROC) curves. These 239 

curves are generated based on the probability (confidence score) that the classifier classifies a 240 

pollinator sound event as a “pollinator” accounting for the specificity (inverse of false positive 241 

rate) and sensitivity (inverse of false negative rate). We made a ROC curve for each classifier we 242 

created. We calculated the area under the curve (AUC) which provides a summary of the 243 

classifier's performance. 244 

 245 

C) Reliability tests of continuous acoustic monitoring compared with a 246 

traditional monitoring method to estimate pollinator activity  247 

Comparing acoustic monitoring with counts of pollinators in field transects  248 

 249 
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 We compared acoustic monitoring with pollinator counts along transects within 250 

sunflower fields. To do so, in each field, we counted the number of visits of honeybees to 251 

sunflowers along transects. The transects were 5-meter wide and 20-meter long, starting 10 252 

meters from the edge of the field and ending 30 meters away, and they were not timed. The 253 

position of the transects was chosen so that they were within a few meters of the sunflower 254 

plant being acoustically monitored. For each field, transects were repeated 4 to 6 times during 255 

a period that encompasses the sunflower bloom, with some counts conducted before, during, 256 

and after the flowering (Supplementary Figure S1).  257 

For this analysis, only fields with little or no failure of the recording equipment during the 258 

flowering period were used, i.e. 20 fields (Fig.S1). Only days with at least 14 hours of recording 259 

out of the theoretical 16 hours were retained. We considered all sounds with a pollinator 260 

confidence score, obtained with convolutional neural networks greater than or equal to 78.1 to 261 

be pollinator sounds. This confidence score maximizes both sensitivity and specificity (see the 262 

red dot in Fig. 2). With this confidence threshold, the average number of pollinator buzzes per 263 

field throughout the season was 4880 (± 2588 SD) and the average number of pollinator buzzes 264 

per day was 197 (± 259 SD). 265 

 We first tested for a relationship between the number of honeybees counted per 266 

transect, and the number of flying insects detected on acoustic recordings on the same day. To 267 

do so, we modeled the number of buzzes detected during the days of transect sampling, with 268 

the number of honeybees counted per transect as explanatory variable. Second, to explore the 269 

same relationship but over the entire flowering period of the sunflower fields, we tested for a 270 

relationship between the average number of flying insects detected per day of acoustic 271 

monitoring and the average number of honeybees counted per transect performed in the same 272 

fields. For both tests, we used generalized mixed linear models with negative binomial 273 

distribution and field identity as a random effect on the intercept. 274 

All statistical analyses were performed using R (R Core Team, 2022). The residuals of all 275 

models were visually inspected with the R package DHarma (Hartig and Lohse, 2022). 276 

 277 

Results 278 

Comparison of convolutional neural networks and random forest classifiers for pollinator 279 

acoustic monitoring  280 

Random forest and Convolutional Neural Network methods involved different sound 281 

detection algorithms. Tadarida-L detected sound events in 99.3% of the records of the test 282 

dataset (596 out of 600 records) while TadariDeep detected them in 95% of the records (570 out 283 

of 600 records). This difference between the two software was explained by the filter applied to 284 

the sound events in TadariDeep (minimum duration 90). In the 600 records, composing the test 285 

dataset, we counted 94 records that contained at least one pollinator sound. Tadarida-L 286 

detected sound events for all of them but for the same reasons as above, TadarariDeep 287 

detected sound events corresponding to pollinator sound for only 91 of these recordings. 288 

As comparison of classifier performance is only possible when considering the same 289 

detection lists, to compare the classification accuracy of the two methods, we considered only 290 

https://www.zotero.org/google-docs/?iaorEL
https://www.zotero.org/google-docs/?aAKZE6
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the recordings for which both methods detected sound events, i.e. 95% of the recordings in the 291 

test dataset. 292 

ROC curves and their AUC showed that, for both the random forest and the convolutional 293 

neural networks method, the best performance was obtained using the training dataset D, the 294 

one composed of the labeled sound events from sunflower fields, augmented with 3300 mixed 295 

human voice sound events. The Area Under the Curve was equal to 0.878 for Random Forests, 296 

and 0.957 for convolutional neural networks, with a batchsize of 16 and 160 iterations (Fig. 2). 297 

Without data augmentation, the area under the curve of the best classifiers was equal to 0.856 298 

for Random Forests and 0.953 for convolutional neural networks (Fig. 2). While both methods 299 

performed better with data augmentation, the benefit was greater for Random Forest method 300 

with an AUC increase of 2.6% while convolutional neural networks only increased by 0.4% (Fig. 301 

2). Whatever the training dataset used, the convolutional neural networks outperformed the 302 

random forest. By calculating the average error rate according to the different selection 303 

thresholds (1-AUC), we were able to determine that the error rate of the convolutional neural 304 

networks method was three times lower than that of the random forest method for the 305 

classification of pollinator flight sounds.  306 

 307 
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 308 

Figure.2: Receiver operating characteristic (ROC) curves between the confidence score of 309 

the false-positive rate (FPR) and the true-positive rate (TPR) for the best classifiers of the 310 

random forest method (grey curves) and the best classifiers of the convolutional neural 311 

network method (black curves). Each point on the ROC curve corresponds to a 312 

confidence score for the "pollinator" class. For each of them, the sensitivity, 313 

corresponding to the frequency that a sound emitted by a pollinator is correctly classified 314 

in the "pollinator" class by the classifier, and 1-Specifity (the false positive rate), 315 

corresponding to the frequency that a sound not emitted by a pollinator is classified in 316 

the "pollinator" class, are calculated. Continuous lines correspond to the best classifiers 317 

trained with data augmentation, based on training dataset D, and dashed lines without 318 

data augmentation, based on training dataset B. The red point corresponds to the 319 

threshold (78.1) selected for the other parts of the study concerning the “pollinator” 320 

confidence. 321 

 322 
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Comparing acoustic monitoring with counts of pollinators in field transects 323 

When acoustic monitoring was restricted to the days of visual counts along transects, we 324 

found a significant positive relationship between the number of buzzes recorded during the day 325 

of an observation session, obtained with the convolutional neural networks method, and the 326 

number of honeybees counted along this transect (Chisq=14.485, p-value < 0.001, Fig.3e). When 327 

acoustic detections and transect counts were averaged per day over the entire flowering 328 

season, we found no relationship between the average number of buzzes detected per day and 329 

the number of honeybees counted per transect averaged over the season (²=1.1577, p-330 

value=0.2819, Fig. 3f).  331 

 332 

Figure 3 – Relationships between the number of buzzes detected by acoustic monitoring 333 

and the number of pollinators counted along transects. a, b, c, d: Number of buzzes 334 

detected per day along the flowering season for four examples from four monitored 335 

fields. The days on which transects were performed in each field are represented by 336 

colored dots and bars. e: Relationship between the number of honeybees counted per 337 

transect and the number of buzzes detected by acoustic monitoring on the same day. 338 

The black line corresponds to the prediction from the generalized linear model with the 339 

associated standard error symbolized as a grey ribbon. f: Relationship between the 340 

number of honeybees per transect averaged per field and the average number of buzzes 341 

per day detected by acoustic monitoring during the entire flowering season. The colored 342 

points in e match the colored bars and points used in a-d. Colored points in f match with 343 

fields presented in a-d. To prevent overlapping points on panel e and f, the coordinates 344 

of points were jitted.  345 

 346 
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Discussion 347 

Convolutional neural networks outperform random forest classifiers for acoustic monitoring 348 

of pollinator activity 349 

Our study shows that monitoring pollinator activity in sunflower fields using acoustic 350 

recordings is feasible and promising. We further demonstrate that convolutional neural 351 

networks are more powerful than random forests for such a task, being three times more 352 

reliable than the random forest method to classify the sounds emitted by flying pollinators from 353 

other sounds in agricultural landscapes. Such better performance of convolutional neural 354 

networks over other machine learning algorithms is not always the rule (Garcia et al., 2020), but 355 

has also been found in singing birds (Knight et al., 2017; Marchal et al., 2022).  356 

During the training of our different classifiers, we noticed that the human voice was often 357 

misclassified as bee buzz, reaching high confidence scores for pollinator sound classes, and this 358 

was despite the data augmentation we carried out (see Fig. 2 and SI. B). This kind of problem 359 

with the human voice has already been noted in bird detection (Stowell et al., 2019). Here, the 360 

human voices recordings are due to the voices of the experimenters who were close to the 361 

sound recorders during the observation sessions in the sunflower fields. The human voice data 362 

that we used for data augmentation came from recordings of people speaking in front of their 363 

computers without background noise. Although we mixed it with field recordings to add some 364 

background noises, we could not get rid of all the false positives and the performance of the 365 

classifiers was only slightly better than that of classifiers without data augmentation. This 366 

suggests that the human voice recordings used for data augmentation were quite different 367 

from the human voice recorded in the sunflower fields, or that the Signal-to-Noise Ratio was 368 

too low. This highlights the importance of using recordings from the study sites for training and 369 

testing machine learning algorithms as well as the need to create large, diversified, and open 370 

annotated reference datasets.   371 

Comparing the number of buzzes detected by acoustic monitoring coupled with 372 

convolutional neural networks with the number of honeybees counted along sunflower field 373 

transects, we found contrasting results depending on the temporal window used. When 374 

restricting acoustic data to the days of transect sampling, we found that these two methods 375 

provided concordant information on pollinator activity. However, when considering acoustic 376 

data from all days during the flowering season, the relationship between the two proxies of 377 

pollinator activity vanished. This stems from the fact that, although replicated 5 or 6 times per 378 

field throughout the flowering season, the transects remain punctual observations that may 379 

not be representative of the entire flowering season, because fieldwork organization 380 

constraints make it very difficult to sample different fields or locations evenly during the peak 381 

of pollinator activity. Indeed, matching days of transect sampling with peaks of pollinator 382 

activity is difficult (Figure 3 and S1) as activity depends on weather, notably the temperature 383 

(Blažytė-Čereškienė et al., 2010; Woyke et al., 2003), and on the phenology of floral resources 384 

available in the landscape (Polatto et al., 2014; Guezen & Forrest, 2021) with pollinators 385 

optimizing their energy consumption (Stabentheiner & Kovac 2014). Albeit issues related the 386 

functioning of the recording device, acoustic monitoring allows monitoring several sampling 387 

sites simultaneously and continuously making the estimation of pollinator activity for the 388 

entire flowering season more representative than the more commonly used transects. Yet, we 389 

https://www.zotero.org/google-docs/?N7cpsX
https://www.zotero.org/google-docs/?Qd8PPP
https://www.zotero.org/google-docs/?T32ZPz
https://www.zotero.org/google-docs/?mo8ABy
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might expect that proxies for pollinator activity at these broad temporal scales should best 390 

reflect pollination services (i.e. fruit production from successive visits throughout the flowering 391 

season), unlike the punctual monitoring traditionally used. 392 

Perspectives and limits to overcome 393 

Passive acoustic monitoring of pollinators method is thus a promising method to estimate 394 

pollination services (van Klink et al., 2022). For crops such as sunflower, where the effect of 395 

pollinators on yield appears to depend mainly on honeybee abundance (Altayeb and Nagi, 396 

2015; Aslan and Yavuksuz, 2010; Perrot et al., 2019), a simple quantification of flying insect 397 

sounds, as we did, could give a good estimate of insect-pollination benefit to yield. However, 398 

some methodological developments for species identification are needed for other crops 399 

visited by a larger diversity of pollinators, such as oilseed rape (Garibaldi et al., 2011; Jauker et 400 

al., 2012; Kremen et al., 2002; Rader et al., 2016), for which the effect of pollinator diversity on 401 

yield has been demonstrated (Bartomeus et al., 2014; Perrot et al., 2018; Zou et al., 2017). Such 402 

pollinator identification from buzz sounds has already been achieved for a limited number of 403 

species: three bee and one hornet species (Kawakita and Ichikawa 2019), and 12 bumblebee 404 

species (Gradišek et al. 2017). We can expect improvements in identifying pollinator species 405 

from the sound of their wings beats as more and more annotated pollinator sounds become 406 

available. Nevertheless, detecting small pollinators that emit lower sound levels than larger 407 

ones, such as honeybees or bumblebees, remains challenging. 408 

Better knowledge of the detection range of the pollinators around the sound recorder is also 409 

needed to assess pollination services within an agricultural field. Compared to other methods 410 

such as transects, which are conducted over a large area, our method measures pollinator 411 

activity at a fixed point in the field and close to a plant. Several recorders per field might be 412 

needed to accurately account for hedge effects, where the activity of pollinators decrease 413 

towards the center of the agricultural fields (Hevia et al., 2016).  414 

 Our results suggest that passive acoustic monitoring is at least as effective as traditional 415 

methods for monitoring pollinator activity, as long as the diversity of pollinators is not of 416 

interest. Continuous monitoring further avoids the biases related to the choice of sampling 417 

dates that occur with most other methods. Assessing methods for species identification from 418 

acoustic pollinator flight sounds as well as relating acoustic activity to pollination success 419 

appear to be the next step to propose pollination services indicators based on passive acoustic 420 

monitoring. 421 
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