
HAL Id: hal-04818801
https://hal.science/hal-04818801v1

Submitted on 4 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Formally Verified Hardening of C Programs against
Hardware Fault Injection

Basile Pesin, Sylvain Boulmé, David Monniaux, Marie-Laure Potet

To cite this version:
Basile Pesin, Sylvain Boulmé, David Monniaux, Marie-Laure Potet. Formally Verified Harden-
ing of C Programs against Hardware Fault Injection. 14th ACM SIGPLAN International Con-
ference on Certified Programs and Proofs (CPP’25), Jan 2025, Denver (CO), United States.
�10.1145/3703595.3705880�. �hal-04818801�

https://hal.science/hal-04818801v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Formally Verified Hardening of C Programs
Against Hardware Fault Injection
Basile Pesin

Ecole Nationale de l’Aviation Civile
Toulouse, France

basile.pesin@enac.fr

Sylvain Boulmé
University Grenoble Alpes - CNRS - Grenoble INP -

VERIMAG
Grenoble, France

Sylvain.Boulme@univ-grenoble-alpes.fr

David Monniaux
University Grenoble Alpes - CNRS - Grenoble INP -

VERIMAG
Grenoble, France

David.Monniaux@univ-grenoble-alpes.fr

Marie-Laure Potet
University Grenoble Alpes - CNRS - Grenoble INP -

VERIMAG
Grenoble, France

Marie-Laure.Potet@univ-grenoble-alpes.fr

Abstract
A fault attack is a malicious manipulation of the hardware
(e.g., electromagnetic or laser pulse) that modifies the behav-
ior of the software. Fault attacks typically target sensitive
applications such as cryptography services, authentication,
boot-loaders or firmware updaters. They can be defended
against by adding countermeasures, that is, control flow
checks and redundancies, either in the hardware, or in the
software running on it. In particular, software countermea-
sures may be added automatically during compilation.

In this paper, we describe a formally verified implementa-
tion of this approach in the CompCert verified compiler for
the C language. We implemented two existing countermea-
sures protecting the control flow of the program as program
transformations over a middle-end intermediate representa-
tion of CompCert, RTL. We proved that these countermea-
sures are correct, that is, they do not change the observable
behavior of the program during an execution without fault
injection. We then modeled the effect of a fault on the be-
havior of the program as an extension of the semantic model
of RTL. We used this new model to formally prove the ef-
ficacy of the countermeasure: all attacks are either caught,
or produce no observable effects. In addition to this formal
reasoning, we evaluated the protected program using Lazart,
a tool for symbolic fault injection, and measured the effect
of optimizations on security and performance.

Keywords: Formally Verified Compiler, Software Counter-
Measure, Control Flow Integrity, Coq Proof Assistant.

This is the authors version of the peer-reviewed paper

Basile Pesin, Sylvain Boulmé, David Monniaux, and Marie-
Laure Potet. 2025. Formally Verified Hardening of C Pro-
grams Against Hardware Fault Injection. In Proceedings of
the 14th ACM SIGPLAN International Conference on Certified
Programs and Proofs (CPP’25), January 20–21, 2025, Denver,
CO, USA, https://doi.org/10.1145/3703595.3705880

This authors version is posted here for your personal use.
Not for redistribution. Please, find the definitive version at
the referenced DOI.

1 Motivation
Fault injection techniques allow an attacker to alter the exe-
cution of a program, even in the absence of any vulnerability
(e.g., undefined behavior) in software. These attacks usually
target sensitive embedded systems, and proceed by physical
means such as a precisely timed laser or electromagnetic
pulse, or suitable perturbations to the power supply or clock
signal [6]. Consequences vary with the attack method and
the targeted processor: some instructions may be skipped,
or may have unexpected effects, altering the control flow of
the program. The values in registers or loaded from memory
may also be modified.

Fault injectionsmay allow an attacker to accomplish attack
objectives such as leaking secrets [15] or bypassing authen-
tification [50]. For instance, consider the function presented
in listing 1, which checks a PIN code entered by the user.
This code does not contain any vulnerability, but is written
in a style that is weak against fault injection attacks: the ok
value is set to true by default. This can be exploited by a
single fault injected at the conditional branch instruction
compiled from the loop condition. Indeed, inverting this con-
dition at the first iteration would end the loop immediately
and completely bypass the PIN check.

To protect against these powerful attacks, defensive checks
commonly known as countermeasures may be implemented

1

https://orcid.org/0000-0002-3575-7770
https://orcid.org/0000-0002-9501-9606
https://orcid.org/0000-0001-7671-6126
https://orcid.org/0000-0002-7070-6290
https://doi.org/10.1145/3703595.3705880

Basile Pesin, Sylvain Boulmé, David Monniaux, and Marie-Laure Potet

extern char expected[PIN_LENGTH];

int verify_pin(char entered[PIN_LENGTH]) {

int i, ok = 1;

for(i = 0; i < PIN_LENGTH; i++) {

if(entered[i] != expected[i]) ok = 0;

}

return ok;

}
Listing 1.The verify_pin function

either in hardware or in software. For instance, in listing 1,
adding the test if (i != PIN_LENGTH) exit(1) just before
return ok would detect the attack described above and halt
the program gracefully. Adding a countermeasure to an ex-
isting program is commonly known as hardening it. While
software-based countermeasures specific to an application
may be written directly in the source code, more generic
countermeasures may also be added a posteriori by an au-
tomatic hardening tool [11]. In particular, countermeasures
may be inserted during the compilation process, and thus be
implemented as transformations of the intermediate repre-
sentations of the compiler [24]. Generally, two complemen-
tary properties are expected of a countermeasure:
• correctness: if no fault is injected, the countermeasure
does not change the defined observable behavior of the
program
• robustness (also known as adequacy or efficacy): the coun-
termeasure actually detects injected faults, and corrects or
aborts [45] the execution1

The second property depends on the attacker model, which
specifies the maximum number and types of faults the at-
tacker may inject. Depending on the level it is expressed on
(source language, intermediate representation, assembly, bi-
nary), this model may be more or less abstracted with regard
to the physical attack implementing it.

Significant work has been invested in validating and veri-
fying the robustness property for select attacker models and
countermeasures. Tools have been developed to simulate
fault injection at the binary [23] and source [38] levels, and
evaluate the behavior of the program under attack using sym-
bolic execution. Other approaches rely on formal methods,
such as model checking [27], or formal proofs [18, 32, 40] to
verify the correctness and robustness of a countermeasure.
These approaches focus on validating the robustness of a
complete program with embedded countermeasures.
In this paper, we propose a novel approach to composi-

tional verification of countermeasures introduced automat-
ically by a compiler, using the interactive theorem prover
Coq [19]. Our work is integrated in the end-to-end verified
compiler CompCert, which we briefly introduce in section 2.
We develop the following contributions:

1In some cases, it may also make the execution state unusable to the attacker.
We will not consider this case in our formalization.

• a general methodology for implementing and proving the
compositional correctness and robustness of programhard-
ening passes, presented in section 4
• implementations and proofs for two countermeasures from
the literature [22, 41] based on this methodology, discussed
in sections 3 and 5
• an experimental validation process based on symbolic eval-
uation, described in section 6
• an extension to CompCert’s separate compilation model
for function specialization passes, presented in section 5.3
Our whole Coq source code, including cross-referenced

Coq definitions and proofs, is available from
https://certicompil.gricad-pages.univ-grenoble-alpes.fr/Chamois-Arsene/

2 The CompCert Verified Compiler
CompCert [30] is an optimizing compiler for the C language.
It supports code generation for a variety of instruction sets
(x86, ARM, RISC-V, …). It is formally verified, in the sense
that it is accompanied by a machine-checked proof of seman-
tics preservation: any behavior of the generated code is an
authorized behavior of the source program. This is formally
stated as a backward simulation theorem:

if compile(%) ⇓ � then % ⇓ �
where % is a source program and � a model of its behavior.
CompCert is structured as a series of passes rewriting the
program between intermediate representations, all with de-
terministic semantics except at the very beginning. Each of
these passes comes with a forward simulation theorem:

if % ⇓ � then compile(%) ⇓ �
For deterministic languages, forward and backward sim-

ulations are indeed equivalent, and forward simulation is
usually easier to prove.

The RTL Language. In this paper, we focus on themiddle-
end representation of CompCert, RTL (Register Transfer
Language)2. An RTL program is represented as a Control
Flow Graph (CFG) of instructions. For instance, the RTL
representation of the verify_pin function is presented in
fig. 1. The program contains three types of RTL instruc-
tions. First, application of operations from the instruction
set, (x9 = x2 + x3). Second, loading of data from memory
(x6 = int8u[x9]), which corresponds to array dereferenc-
ing in the source code. Last, conditional branching, stem-
ming from the loop (if (x3 < 4)) and the if-then-else
(if (x6 != x7)). RTL programs manipulate pseudo-regis-
ters, here labeled x1 through x9. This means a program trans-
formation may always add new registers for storing inter-
mediate values, without worrying about register allocation,
which happens later in the compilation chain. This last prop-
erty, along with the simplicity of its CFG representation,
2The RTL representation of CompCert, presumably inspired by the one in
GCC, should not be confused with the Register Transfer Level used for
hardware description.

2

https://certicompil.gricad-pages.univ-grenoble-alpes.fr/Chamois-Arsene/

Formally Verified Hardening Against Fault Injection

verify_pin(x2, x1)

x4 = 1

x3 = 0

if (x3 < 4)

return x4

x9 = x2 + x3

x6 = int8u[x9]

x8 = x1 + x3

x7 = int8u[x8]

if (x6 != x7)

x4 = 0

x3 = x3 + 1

false

true
false

true

Figure 1. RTL representation of the verify_pin function

5 .(pc) = bop(op, ®A, A3 , pc′)c op# ('(®A)) = bEc

% ` S(Σ, 5 , f, pc, ',") n−→S(Σ, 5 , f, pc′, '{A3 ← E}, ")

5 .(pc) = bcond(cond, ®A, pc1, pc2)c cond# ('(®A)) = b1c

% ` S(Σ, 5 , f, pc, ',") n−→S(Σ, 5 , f, 1 ? pc1 : pc2, ',")

Figure 2. RTL semantics of operation and conditional branch

makes RTL well-suited to implement a range of program
transformations, including most of CompCert’s optimiza-
tions. For the same reasons, we also implemented counter-
measures as RTL program transformations.

RTL Semantics. The behavior of an RTL program is mod-
eled as a sequence of small-step transitions. The judgment
% ` st1

C−→ st2 asserts that “in program % , state st1 transitions
to state st2 while producing observable events C”. Observable
events include accesses to volatile variables, calls to external
functions, and special “builtin” functions affecting system
state. This trace must be preserved from source to assembly
code. Steps related by forward simulations must therefore
emit exactly the same events.

We recall two of the rules defining this judgment in fig. 2:
they specify how the state is updated when executing an op-
eration and conditional branching, respectively. In both cases,
the initial state is of the form S(Σ, 5 , f, pc, ',"), where: S de-
notes a state ready to execute an instruction; 5 is the function
being evaluated; and pc is the current Program Counter (PC)
inside it. Together, they identify the instruction to be exe-
cuted: in the rules presented, looking up pc in the CFG of 5
is a partial operation, which must succeed (written with b.c),
and yield an operation (resp. conditional) instruction; these
two rules are syntax-directed. ' maps pseudo-registers to
their content; this map is total, but may map to the special
Vundef value, meaning uninitialized or undefined. Finally,
parameter Σ specifies the current call stack, " the mem-
ory as a finite map of memory address to block, and f the
location of the current stack frame in" .

The first rule applies when the current instruction is an
operation op with operand registers ®A , writing in destina-
tion register A3 , and with successor pc′. The second premise
indicates that applying op to the values associated with ®A
must yield a value E . The specific rules for the evaluation of
an operation are not detailed here. The conclusion indicates
that the execution of the instruction updates the program
counter to pc′, and writes value E into A3 . The execution of
an operation does not produce any observable event, and so
yields the empty trace n .
The second rules applies to a conditional branching in-

struction with condition cond, operands ®A and destinations
pc1 and pc2. The evaluation of the condition must yield a
boolean value 1, which is used in the conclusion of the rule
to determine the next program counter.

The full semantic model [30] contains one more semantic
rule for each other instruction type, plus a few rules ded-
icated to function calling and returning. We do not detail
them, as they are not directly relevant to our contributions.

3 Application to Control-Flow Integrity
Before delving into our generic framework, we present the
first countermeasure we applied our methodology to, as a
guiding example. Control-flow integrity (CFI) seeks to pre-
vent intruders from diverting the program control-flow.

The SWIFT countermeasure was first introduced as a pro-
tection against accidental faults [41] (e.g., due to cosmic rays).
It was later adapted to protect against fault injection attacks,
and implemented in undistributed versions of the LLVM
compiler [22]. This countermeasure protects the control flow
from attacks that may invert or skip conditional branching in-
structions, such as the one described in the introduction. The
countermeasure works as follows. A signature is statically
assigned to each basic-block in the program. Throughout
execution, the General Signature Register (GSR) stores the
signature of the block currently executed. Before a jump,
a composition (e.g., exclusive-or) of the current GSR value
and the signature of the target block is stored as the Run-
Time Signature (RTS). After the jump, it is decomposed by
the reverse operation into GSR. A test then checks that GSR
indeed contains the signature of the current block. If it does
not, it means execution somehow jumped into the wrong
block, which triggers halting the program.
We implemented this version of the countermeasure in

CompCert, as a rewriting pass on RTL. An example of this
transformation is presented in fig. 3, with the source condi-
tional on the left, and the generated code on the right. We
assign one signature for each basic block inferred from the
RTL CFG: here 33 is assigned to the source conditional, 42
for the true branch and 78 for the false branch. The GSR
corresponds to register x1, and initially contains the signa-
ture of the source condition, 33. The RTS is stored in register
x2. The first instruction is a preliminary test of the condition,

3

Basile Pesin, Sylvain Boulmé, David Monniaux, and Marie-Laure Potet

if (x3 < 4)

pc

pc1 pc2

sig = 33

sig = 42 sig = 78

pc

if (x3 < 4)

x2 := 33 ^ 42 x2 := 33 ^ 78

if (x3 < 4)

x1 := x1 ^ x2 x1 := x1 ^ x2

if (x1 != 42) if (x1 != 78)

catch()pc1 pc2

true false

true false

true truefalse false

Figure 3. RTL conditional with our CFI countermeasure

here x3 < 4, and assigns the RTS depending on its value. To
compute the RTS, we use the exclusive-or operation, written
^ in the code, as it is easily reversible. Then, the condition is
tested again. In both branches, GSR and RTS are combined
again by xor into the new value of GSR. Then, a final test
checks that the new GSR is equal to the signature of the cur-
rent block. If it is not, execution jumps to a special catch()
instruction which stops the program immediately. If GSR
contains the expected signature, the execution continues.
It seems easy to convince oneself that the source and

target programs are equivalent: since the xor operator is
involutive, GSR ˆ GSR ˆ sig = sig, and therefore the catch()
instruction should never be reached. Similarly, it seems clear
that testing the condition twice effectively protects from an
attack inverting one conditional. These simple intuitions are
however, not the whole story: in a complex compiler, such
as CompCert, there are many moving parts and technical
details to keep track of; the formal reasoning described in
the next section ensure that none of them are forgotten.

4 Verifying Countermeasures
In this section, we present our methodology for implement-
ing and verifying countermeasures such as the one discussed
above. We first detail a framework for CFG transformations,
designed to reduce technical details. We then show how this
framework helps build the proof of semantic correctness.The
latter part of this section describes our formalization of an
attacker model and the corresponding robustness theorem,
and the proof techniques used to establish this theorem.

4.1 Verifying CFG Transformations
In the previous section, we described our implementation of
the SWIFT countermeasure as a transformation of the CFG
where each conditional instruction is systematically rewrit-
ten into an equivalent sequence of instructions. A large class
of fault injection countermeasures [27, 45] follow this form
(data redundancy, conditional test duplication, instruction
duplication, …). We propose a Coq framework to simplify
the implementation of such transformations. For the sake of

clarity, we have simplified some of the definitions; the full
implementation is available in our artifact.

4.1.1 Monadic CFG Transformations. To understand
the technical issues involved in implementing this type of
transformation, we first recall the encoding of an RTL CFG.
The nodes of the CFG are identified by their PC of type node,
which is encoded in CompCert by positive integers. The cfg
type itself is represented by a finite mapping of each node
to the corresponding instruction, encoded by an efficient
binary tree representation.
A CFG transformation can be specified as a sequence

of two primitive transformations: rewriting an existing in-
struction, and adding a new instruction, associated with a
fresh PC. At first, we mechanized this intuition using a state
monad [52], where the state encodes both the next PC to be
generated and the current shape of the CFG.
To implement a countermeasure, we could then write a

monadic program % that sequentially updates the state to
add new instructions to the CFG. In order to prove semantic
properties of the transformation, we would then need to
specify and prove a relation between the source code and
the transformed program % (code). However, this was not
so easy: % being monadic prevents the easy decomposition
of its effect on the different parts of the graph. Instead, we
would need to reason using complex invariants relating the
pre and post-states of the monadic program. These particu-
larly tedious proofs would need to be repeated for each new
countermeasure. To avoid this issue, we propose a generic
framework which factors out technical difficulties into a
once-and-for-all proof.

In addition to the countermeasures described in this paper,
we also applied our framework to the “canary” countermea-
sure from [34], and we were able to reduce by one third the
lengths of both the implementation and its proof by remov-
ing tedious reasoning on the insertion of code fragments.

4.1.2 Instruction-to-Sequence Rewriting. Our frame-
work is based on two key insights. First, the transformations
we want to implement amount to locally rewriting individual
instructions into sequences of instructions. Second, most of
the complexity in proving a specification for these transfor-
mations comes from the lack of structure of the RTL CFG
representation. Therefore, we propose a generic graph trans-
formation framework, where the user specifies a counter-
measure through functions producing structured sequences
of instructions, which are then used by the framework to
build a CFG.

In listing 2, we propose a type of structured sequences of
instructions, seq. Each sequence has one entry point, and a
set number of continuations, specified by the nat type pa-
rameter. Sequences may contain conditional branching and
join points. The first three constructors mark the end of a se-
quence. Constructor Ei is used when the last expression has
a successor. Its first parameter is not an RTL instruction, but

4

Formally Verified Hardening Against Fault Injection

if c(rs)

pc

pc1 pc2

Definition add_test sig : seq 1 :=

Si (Iop Oxor [gsr;rts] gsr);;

Sm1 (Ccompimm Cne sig , [gsr]) Secatch ;;

Ei Inop.

Definition tr_cond pc c rs pc1 pc2 : seq 2 :=

let sig := get_sig pc in

let sig1 := get_sig pc1 in

let sig2 := get_sig pc2 in

Sm2 (c, rs)

(Ei (Iop (Oconst (sig ^ sig1) [] rts))

(Ei (Iop (Oconst (sig ^ sig2)) [] rts));;

Sc (c, rs) (add_test sig1) (add_test sig2).

tr_cond

Specific

Generic

G G’
tr_codeTF

specTF : code→ Prop

∀�, specTF (tr_codeTF (�))

TF

Figure 4. Using the CFG transformation framework to implement the SWIFT transformation

Inductive seq : nat → Type :=

(* End cases *)

| Ei: (node → instr) → seq 1

| Er: instr → seq 0

| Ecatch: seq 0

(* Sequencing cases *)

| Si: (node → instr) → seq e → seq e

| Sc: cond → seq 1 → seq 1 → seq 2

| Sm1: cond → seq 0 → seq e → seq e

| Sm2: cond → seq 1 → seq 1 → seq e → seq e.

Listing 2. RTL sequence AST

an instruction with its successor PC missing. Indeed, PCs do
not appear explicitly in sequences; they are generated by the
framework, automatically. Constructor Er is typically used
with a return instruction which has no successor. Construc-
tor Ecatch is used for introducing the special instruction
catch(). The next four constructors indicate a composed
sequence. Constructor Si adds an instruction at the head
of a sequence. Constructor Sc represents a sequence that
branches depending on a condition; therefore, it has two con-
tinuations. Constructors Sm1 and Sm2 represent a conditional
branching that then merges back into a single sequence. The
first specifies only one branch with no continuation (return
or catch()), while the second merges its two branches.

Our generic framework for instruction-to-sequence rewrit-
ing implements a kind of visitor pattern: to implement a trans-
formation, the user only provides one rewriting function for
each type of instruction. For instance, Figure 4 shows, in
the top frame, the implementation of the SWIFT transfor-
mation, where a conditional (on the left) is rewritten by the
function tr_cond (on the right). Since the source instruc-
tion is a conditional branching, the target sequence has two
continuations. The ;; notation clarifies the sequencing of
constructors, and corresponds to function application.

4.1.3 CFG Rewriting Framework. Rewriting functions,
forming the visitor specific to the countermeasure, are passed

Definition tr_codeTF code : mon unit :=

mfold (fun pc i ⇒
let (seq , cont) := tr_instrTF pc i in

do cs ← cseq pc seq cont;

add_seq abort cs) code.

Listing 3. Transforming each instruction in the CFG

as a parameter TF to the generic framework schematized
on the left of fig. 4, which provides (i) a function tr_codeTF
transforming the source CFG� into a new CFG G’ (ii) a spec-
ification specTF of the content (nodes) and shape (edges) of
G’ (iii) proofs that G’ respects this specification (theorems 4.1
and 4.2). We now describe these components.
Listing 3 presents the function tr_code, which iterates

through the source CFG using the previously described state
monad, of type transformer mon. Each instruction is passed to
the tr_instr function, which dispatches it to the functions
in TF to return the corresponding sequence seq, as well
as cont, which carries the continuation PCs of the original
sequence. Then, the monadic function cseq concretizes the
sequence by annotating it with fresh PCs. Finally, add_seq
recursively adds the instructions in cs to the CFG.

Two “forward” and “backward” theorems specify the rela-
tion between source and target CFGs. The first, theorem 4.1,
specifies how an instruction 8 appearing in the source CFG
is reflected as a sequence in the target CFG. The conclu-
sion asserts that seq is related to a concretized sequence cs
by the inductive relation concretized, which abstracts the
cseqmonadic function, and that the target CFG respects the
specification generated by function spec for sequence cs.

Theorem 4.1. Forward correctness of CFG rewriting

tr_code)� code st = ((), st ') →
code!pc = Some i →
tr_instr)� pc i = (seq , cont) →
∃ cs , concretized pc seq cont cs

∧ spec NoPred st '.(code) cs

5

Basile Pesin, Sylvain Boulmé, David Monniaux, and Marie-Laure Potet

Fixpoint spec mode code cs : Prop :=

match cs with

| Cseq pc (CSi i (Cseq pc1 cs1)) ⇒
code!pc = Some i

∧ (mode = Pred → uni_pred code pc1 pc)

∧ spec mode code (Cseq pc1 cs1)

| ... end.

Listing 4. Specification generator

An excerpt of spec is presented in listing 4; it recur-
sively generates a conjunction of assertions about nodes
and edges in the CFG. The case presented here is that of the
CSi concretized sequence constructor, which corresponds to
sequence constructor Si, and denotes a sequence starting at
pc with first instruction i and successor sequence cs1 start-
ing at pc1. The specification indicates that the instruction
at pc in the CFG is i. Then, spec generates the specifica-
tion for the successor sequence starting at pc1. The spec
function has an optional Pred “mode”, which triggers the
generation of assertions about the uniqueness of backward
edges (uni_pred) in the CFG.

Theorem 4.2. Backward correctness of CFG rewriting

tr_code)� code st = ((), st ') →
st '.(code)!pc = Some i →
∃ pcf i' seq cont cs ,

code!pcf = Some i'

∧ tr_instr)� pc i' = (seq , cont)

∧ concretized pc seq cont cs

∧ cs!pc = Some i

∧ spec Pred st '.(code) cs

This mode is only used in the theorem above, which, as-
suming the existence of an instruction i in the target CFG,
asserts the existence of an instruction i' in the source CFG
which was translated into the sequence surrounding i.

The proofs of these two generic theorems are established
once and for all. The proof effort is reasonable (around 2300
lines of proof in total). They are then specialized for each
countermeasure, to specify the content of the generated CFG.
The proof of their specialization exploits the general theorem,
and usually proceeds by case analysis on the source instruc-
tion and simplification of the tr_instr and spec functions.

4.2 Correctness Proof
As stated earlier, CompCert is a formally verified compiler,
in the sense that it comes with a proof that the semantics of
the source program are preserved in the generated assembly.
As the compiler is essentially a sequence of passes, this proof
is built by composing the correctness proofs of each pass.
When adding a new pass, such as the one implementing
the CFI transformation described above, we must provide
a corresponding correctness proof of forward simulation.

(1

(2

C

(′1
∼

(′2

C +
∼

if % ` (1
C−→(2 and (1 ∼ (′1

then ∃(′2, compile(%) ` (′1
C−→+ (′2

and (2 ∼ (′2

Figure 5. Forward simulation diagram and obligation

As a first approximation, this means proving that any step
% ` (1

C−→(2 in the source is reflected by an identical step
compile(%) ` (1

C−→(2 in the target. The actual proof is often
more complex, for two reasons. First, the source step may
actually be reflected by more than one steps in the target;
this is particularly true when one instruction is replaced by
a sequence of instructions. Second, the states manipulated
in the source and target programs may not be identical, but
merely similar : for instance, the content of registers or the
memory layout may change without affecting the overall
correctness. To account for this, forward simulation is proven
with regard to a “matching” simulation relation between
source and target states, written (1 ∼ (′1. To prove a pass,
we must first exhibit this relation, and prove the theorem
presented in fig. 5. It states that, if a state (1 may step to (2,
and is simulated by state (′1, then (′1 may do one or more
steps and reach (′2 which simulates (2.

In practice, the most difficult part of any correctness proof
is often to find and define a suitable simulation relation; prov-
ing the simulation theorem is then mostly mechanical. As
an example, we present in fig. 6 an excerpt of the simula-
tion relation used for the proof of correctness of the pass
implementing the CFI transformation. The first rule defines
simulation between standard states (ie from constructor S).
It indicates that state (′ simulates (if the current registers
of (′ simulates that of (in the sense specified by the second
rule: all the registers used in the source function must con-
tain the same values, and the new gsr register must contain
the signature of the instruction to be executed. The second
premise of the first rule imposes this relation recursively to
each call frame in the call stacks. Because the countermea-
sure involves neither the call stack nor the memory, the first
rule imposes them to be identical within (and (′. Finally,
(and (′ must also have the same program counter: each
source instruction and its translation start at the same pc.
This relation is fairly straightforward and similar to that

used for several RTL optimization passes. It is not too difficult
to prove that it is indeed a simulation relation. The proof
exploits the forward rewriting specification (theorem 4.1) to
identify the sequence of instructions involved in the target
multi-step derivation compile(%) ` (′1

C−→+ (′2.

4.3 Attacker and Robustness Models
The methodology described up until now allows us to imple-
ment and verify the semantic correctness of a countermea-
sure. This is only part of our overall objective: we also want

6

Formally Verified Hardening Against Fault Injection

'
regs∼ 5 ,pc '

′ Σ
stk∼ Σ′

S(Σ, 5 , f, pc, ',") ∼ S(Σ′, compile(5), f, pc, '′, ")

∀A ∈ regs(5), '′ (A) = '(A)
'′ (gsr(5)) = Vint(get_sig5 (pc))

'
regs∼ 5 ,pc '

′

n
stk∼ n

'
regs∼ 5 ,pc '

′ Σ
stk∼ Σ′

� (A, 5 , f, pc, ').Σ stk∼ � (A, compile(5), f, pc, '′).Σ′

Figure 6. Simulation relation for CFI

to prove the robustness property, which states that, once pro-
tected by the countermeasure, the program effectively resists
an attack. To state and prove this property, we must first
define and encode the attacker model, which specifies the
classes of disruptions the attacker may inflict to the program.
Since we implement countermeasures as RTL transfor-

mations, the attacker model must also be specified at the
RTL level. This necessarily makes the attacker model an ab-
straction of hardware attacks. This level of abstraction is
acceptable, as long as the high-level attacker model repre-
sents a sound over-approximation of the behaviors that may
be triggered by physical attack. In the following, we dis-
cuss, for each attacker model introduced, the corresponding
concrete attacks and the soundness of the abstraction.
An attacker model specifies the possible behaviors of a

program under an attack. Therefore, it is natural to formal-
ize it as an extension to the standard RTL semantics, which
specifies the nominal behavior of the program. Specifically,
we encode fault attacks as new, “faulty” transitions in the
step-or-fault relation, written % F̀ (1

C−→(2. The basic rules
defining this relation are presented in fig. 7. Any step tran-
sition allowed in the standard model is also allowed in this
extended model. There also is a transition modelling the be-
havior of the catch() instruction: entering the special state
Caught; this abstracts halting the program with an error.
The last rule models a fault injection; specifically, an in-

version of conditional branching, the fault against which
the countermeasure described in the previous section pro-
tects. The inversion is naturally encoded by inverting the
branch destinations pc1 and pc2 in the conclusion of the rule.
This model abstracts attacks that would alter conditional
flags (zero flag, sign flag) in the program status register be-
fore a conditional branch [12]. It also covers an instruction
skip fault occurring during the execution of the conditional
branch [5]. We consider that a fault injection is an observable
event, and record it in the trace as TI (5), which specifies that
a test inversion occurred during the execution of function 5 .
Having faults explicitly appear in the trace allows us to

state hypotheses on the attacker in our robustness theorems:
on the presence of a fault during an execution, and in the case

% ` (1
C−→(2

% F̀ (1
C−→(2

5 .(pc) = bcatchc

% F̀ S(Σ, 5 , f, pc, ',")
n−→Caught

5 .(pc) = bcond(cond, ®A, pc1, pc2)c cond# ('(®A)) = b1c

% F̀ S(Σ, 5 , f, pc, ',")
TI (5)
−−−−→S(Σ, 5 , f, 1 ? pc2 : pc1, ',")

Figure 7. Transitions in faulted model, with test inversion

of attack TI (5), that function 5 is actually protected against
this attack. Let us now introduce our formalization, sketched
in definition 4.3, of the robustness property for single-fault at-
tacks. We say that a program % is robust against a single-fault
attack belonging to model � if, for any execution stepping
from an initial state (0 to state (, with a fault injection oc-
curring at the last position in the trace, then continuing the
execution may only lead to two possible outcomes: (i) either
the fault gets caught, that is, execution reaches a Caught
state, or (ii) the fault did not actually have any observable
side effects—this is modeled by the faulted execution “merg-
ing” back with the standard execution at a future state (′.

Both scenarios respect a very important property: the trace
of the faulted execution does not contain any observable events
that do not appear in the nominal execution, other than the
fault event itself. This ensures that the attacker cannot use
fault injection to leak secrets through new observable events.
The property also guarantees that the steps following the
fault are well-defined. This ensures that the fault can not
lead to undefined behavior, which the attacker could exploit.

Definition 4.3. Robustness to a single-fault attack �

resists� (%) def
=

if initial_state % (0 and % F̀ (0
C1+�−−−→★ (and nofault C1

then % F̀ (
n−→★ Caught

or ∃ (′ C2, nofault C2
and % F̀ (

C2−→★ (′ and % ` (0
C1+C2−−−→★ (′

This characterization of robustness encodes a fundamen-
tal assumption about the attacker model: only functions in
the current compilation unit may be attacked. Indeed, in
CompCert, a call to an external function may emit an event,
constrained by a few hypotheses. We added a new hypoth-
esis stating that this event may never be a fault. This is a
necessary assumption, regardless of the compiler, as we can-
not guarantee the security of any function not compiled with
security features, and would therefore not be able to prove
any robustness result about a program calling vulnerable
external functions. In practice, this hypothesis is reasonable,
as the security-critical components of an application, that
an attacker would target, are generally well-identified by
the developer who would therefore make sure that they are
compiled by CompCert and protected.

7

Basile Pesin, Sylvain Boulmé, David Monniaux, and Marie-Laure Potet

1 induction % F̀ (0
C1+�−−−−→★ (as [|_ IHSTEPS|STEP _].

2 - (* F in empty trace is absurd *) ...

3 - (* F in previous steps *) apply IHSTEPS ...

4 - (* F in current step (ST2) *)

5 inversion (STEP: % F̀ (1
�−→().

6 apply theorem 4.2 in 5 .(pc) = bcond(2, ®arg, pc1, pc2)c.
7 (* 5 .(pc0) = bassert(= sig, gsr, pc21)c
8 5 .(pc21) = bcond(2, ®arg, pcGC , pcG5

)c
9 5 .(pcG5

) = bop(sigˆsig1, [], rts, pc22)c ...

10 5 .(pc22) = bcond(2, ®arg, pcC , pc5)c ...

11 EQPC: pc = pc21 ∨ pc = pc22 ∨ pc = pc2C ∨ pc = pc2 5 *)

12 destruct EQPC.

13 + (* fault in pre -test *) ...

14 + (* fault in test *)

15 repeat inv_previous_step.

16 (* GSR: '(gsr) = sig, RTS: '(rts) = sigˆsig1 *)

17 (* goal: % F̀ (
n−→★ Caught *)

18 repeat econstructor ...

19 + (* fault in true branch check *) ...

20 + (* fault in false branch check *) ...

Listing 5. Robustness proof sketch

4.4 Robustness Proof
Proving that the CFI countermeasure is robust against the
Test-Inversion attack model amounts to proving theorem 4.4,
where the conclusion is a specialization of the above robust-
ness definition. The theorem has only two hypotheses: that
the source program is well-formed statically, and that the
function being attacked was actually marked to be protected.
While establishing the proof of this theorem, we have iden-
tified a general proof structure that should apply for any
countermeasure and attack model fitting our framework; it
is outlined in listing 5.

Theorem 4.4. Robustness of the CFI countermeasure

if well_typed(%)
and CFI ∈ attributes(5)
then resistsTI (5) (compileCFI (%))

The proof proceeds by induction over the multiple-step
semantic derivation (line 1), until it finds the faulted step
(line 4). This part of the proof is generic, and is provided as
a parameterized lemma. Then, the faulted step is analyzed
by inversion (line 5), which exposes the type of instruction
being attacked, since semantic rules are syntax directed. In
this example, we know that the instruction being attacked
must be a conditional branching instruction. The backward
specification (theorem 4.2) is then applied (line 6) to retrieve
the shape of the CFG around the attacked instruction (lines
7-11). In particular, this exposes the immediate predecessors
to the attacked instruction, which were necessarily executed

5 .(pc) = bassert(cond, ®arg, pc1)c
∀8, eval_arg(arg8 , ',", f) = bvs8c cond# (®vs) = btruec

% ` S(Σ, 5 , f, pc, ',") n−→S(Σ, 5 , f, pc1, ',")

Figure 8. Semantic rule for assert

before the fault. Inverting the corresponding steps recov-
ers information about the processor state during the fault,
with in particular the content of registers and memory (lines
16-17). We automated this complex inversion process with
reusable lemmas and tactics (line 15).

Some necessary state information may not be recoverable
from these immediate predecessors, because it depends on
updates occurring earlier in the program. For instance, in the
CFI transformation, we must show that GSR always contains
the signature of the block being executed. This is encoded in
the second rule of the correction invariant presented in fig. 6.
To propagate this knowledge to the robustness proof, we
introduced a new instruction assert to the RTL language,
which semantics are given in fig. 8. An assert does not up-
date the state other than the current PC. However, it imposes
that its condition evaluates to true on the value of its argu-
ments ®arg, which may be either in registers or memory. We
introduce this instruction in the hardened code; for instance,
for the CFI transformation described in fig. 3, we add the
instruction assert (x1 = 33) at the start of the sequence.
In the correctness proof, it is easy prove that this instruction
executes properly thanks to the correction invariant. In the
robustness proof, inverting the local semantic derivation for
the assert instruction recovers the global invariant.
Finally, knowing enough about the current state, we can

reason on the successors of the attacked instruction to build
the continued semantic derivation. To satisfy the robustness
theorem, we prove that these steps lead either to the catch
instruction or back to the nominal state (line 18).

4.5 Informal Extra Robustness Against ROP
The CFI countermeasure described in section 3 is likely to be
useful against attacks other than faults. For instance, Return-
Oriented Programming (ROP) [16] consists in overflowing the
call stack and writing into it a sequence of return addresses
that the processor will use to jump into code fragments (often
called “gadgets”) each ending in a function return instruc-
tion, so that the effectively executed sequence is the compo-
sition of these gadgets. With our countermeasure configured
(through a dedicated command-line option) to insert an addi-
tional GSR check before each return instructions, ROP may
not jump in the middle of protected functions, as the GSR
would then not be properly initialized, which would trigger
the check. However, since it seems difficult to identify an
attacker model (what is and what is not an interesting com-
position of gadgets), formally proving robustness against
such attacks seems elusive within our framework.

8

Formally Verified Hardening Against Fault Injection

5 Application to Inter-procedural CFI
Even if the CFI countermeasure does protect from ROP, it
still has one limitation: it does not prevent an attacker from
jumping to the head of a function and executing it. Indeed,
the countermeasure initializes GSR at function start and
checks that execution has followed permissible control flow
only since function start. SWIFT solves this issue with a
complementary inter-procedural variant [22].

5.1 Inter-Procedural SWIFT
This inter-procedural countermeasure works by adding GSR
as an extra in-out parameter—passed through a pointer—to
functions. Each internal function g is therefore associated to
a protected version, called ipcfc.g, having the extra param-
eters. In the transformed code, while the g function remains
with the original signature, its body is a simple wrapper of
the protected version, initializing the hardened execution.3
Let us explain this idea on the example in fig. 9. It gives

the code generated by this transformation, for source code
containing a function g(x1) returning f(x1*3) and f(x1)
itself returning x1+1. The countermeasure computations are
shown in gray whereas the original computations are rep-
resented in black. The execution starts in function g at top-
left, which first allocates and initializes some space on the
stack for GSR. Then, g calls its specialized, protected version,
ipcfc.g, by passing GSR (in pointer x5), the interprocedural
RTS (in integer x7), which contains the exclusive-or of GSR
and the signature of g, and its source argument. At the start
of ipcfc.g, RTS is checked against the entry signature, 190.
Then, ipcfc.g directly calls ipcfc.f, the protected version
of f, making the same updates to RTS and GSR. At the end of
their execution, the protected functions set the value pointed
by GSR to be the exclusive-or of the caller and callee exit sig-
natures; this is checked after returning to the caller. As with
the intra-procedural SWIFT, this approach catches both im-
mediate attacks, and the delayed effects of a past attack, since
any corruption of GSR gets propagated through the exclusive-
ors to further checks. This transformation is implemented
using the generic framework presented in section 4.1.

5.2 Correctness Proof
The simulation relation used for the correctness proof of
this pass is more complex than that of the intra-procedural
transformation, for two major reasons. First, at any point
in the execution, the stack Σ of the transformed program
may contain more stack frames than that of the source pro-
gram, due to the execution traversing initialization functions.
The shape of the stack is fairly complex, as calls may occur
between initialization, protected, and unprotected functions.
3This approach does not work with variable-length argument lists: the wrap-
per would not know how many arguments are to be copied. We therefore
disable this countermeasure for variadic functions. The main use of such
functions is printf() and variants, which anyway are likely not to be used
in a security-critical system with reduced code memory footprint.

sigs = 188
282

ipcfc.f(x3, x5, x1)

x4 = int32[x3]
x4 = x4 ^ x5
int32[x3] = x4
if (x4 !=s 188)

catch()

x2 = x1 + 1
x5 = x5 ^ x4
x5 = x5 ^ 282
int32[x3] = x5
return x2

sigs = 190
285

ipcfc.g(x5, x7, x1)

x6 = int32[x5]
x6 = x6 ^ x7
int32[x5] = x6
if (x6 !=s 190)

catch()

x4 = x1 * 3
x8 = x6 ^ 188
x2 = ipcfc.f(x5,x8,x4)
x8 = int32[x5]
x8 = x8 ^ 282
if (x8 !=s x6)

int32[x5] = x6
x7 = x7 ^ x6
x7 = x7 ^ 285
int32[x5] = x7
return x2

sigs = 270 g(x1)

x6 = 270
int32[stack(0)] = x6
x5 = stack(0)
x7 = x6 ^ 190
x9 = ipcfc.g(x5,x7,x1)
x7 = int32[x5]
x7 = x7 ^ 285
if (x7 !=s x6)

catch() int32[x5] = x6
return x9

Figure 9. Example of the inter-procedural CFI

Second, the memory layout" of the target program may
be different from that of the source. Indeed, the pass may
change this layout in two respects: (i) introduce new func-
tions, which essentially changes the text segment of the
program, and therefore its initial memory layout (ii) allocate
more memory in initialization stackframes to store the GSR.
To account for this change, we reason modulo a memory
injection, described in [31, §5.4], which specifies where each
source memory block is located in the target layout.

5.3 Function Specialization
As seen in the example, the transformation produces, for each
source function, two functions: one with the original name,
and one with two supplementary parameters and a derived
name.The “initialization” function bearing the original name
needs to be retained in two cases: (i) if its address is taken
and stored in a pointer, because GSR cannot be adjusted
and checked across indirect calls, as the signatures must be
determined statically (ii) if it has external linkage, because it
may be called from other modules; adding an extra parameter
would break the Application Binary Interface (ABI).

Such a transformation is closely related to those of func-
tion specialization, when a compiler emits different versions
of the same function specialized according to the value of
certain parameters, to allow further optimizations in the spe-
cialized versions. This class of optimizations is not present in
CompCert at the moment. We describe below the extensions
to CompCert’s linking mechanisms that we introduced for
our inter-procedural countermeasure. They should be also
useful for other kinds of function specialization.

Hacking CompCert’s Model of Linking. Introducing
new functions in the program is normally not supported by
the linking invariants that CompCert maintains to ensure

9

Basile Pesin, Sylvain Boulmé, David Monniaux, and Marie-Laure Potet

the soundness of separate compilation [28, approach A]. In-
deed, consider a program consisting of two modules A and
B, respectively containing function f, and functions f1 and
g. Imagine the compiler decides to specialize f into f1; then
there would be a name clash between the compiled modules
whereas none was present in the source program.

In order to avoid this issue, we extended the naming sys-
tem of CompCert to support structured, qualified names to
specify which names may or may not appear before a compi-
lation pass. For instance, all the functions introduced by the
interprocedural SWIFT pass have a name prefixed by ipcfc.
Before running, the pass defensively checks that no function
name in the source has the same prefix. From this check, we
can deduce that no name collision can be introduced by the
pass, and complete the proofs of linking preservation.

Pruning Unused and Unprotected Functions. A fur-
ther optimization pass in CompCert discards unused static
(module-local) functions. We have also set up CompCert’s
code generation to allow the linker to remove non-static
unused functions from the final executable.4 However, since
we keep the normal calling conventions for functions out-
side the current module (because we do not know if they
are compiled with CompCert or another compiler, and, if
they are compiled with CompCert, if they use the interpro-
cedural protection), procedure calls between modules will
still be unprotected and thus retain the unprotected version.
CompCert views external calls as events, and its correctness
argument is that it preserves the sequence of events; thus
it is not possible, with current definitions, to replace one
external call by another. Replacing external calls by other
“equivalent” ones would likely entail some notion of refine-
ment of events and perhaps some more refined notions about
separate compilation, which fall outside the scope of this
paper. In the meantime, a workaround for small embedded
code is to put the whole program inside a single C module.

5.4 Robustness Proof
The formalized attacker model for this countermeasure in-
cludes two possible attacks, presented in fig. 10. The first,
CS(5 , id), corresponds to skipping a call to the function
named id in function 5 . Although instruction skips are not
inherently related to function calls, skipping a call may be
particularly interesting to an attacker, as it may allow bypass-
ing a lot of the program in a single fault; this protection is
therefore useful. The second, CW (5 , 5 ′), models calling the
wrong function 5 ′ from function 5 . This model only encodes
jumping to the entrypoint of the function. Protection against
an attacker jumping to the middle of the function is ensured
by the intra-procedural CFI countermeasure, thanks to the
propagation of a corrupted intra-procedural GSR.

4-ffunction-sections -Wl,--gc-sections on Linux
-Wl,-dead_strip on MacOS.

We have proven that the inter-procedural SWIFT coun-
termeasure effectively protects the program from these two
attack models, in the sense of definition 4.3. As expected,
this is true only if all functions involved (caller, expected
callee and fault callee) are protected by the countermeasure.
The proofs for each attack model proceed as described in sec-
tion 4.4. In particular, they exploit an assertion about the
value pointed to by gsr to recover global information from
the local derivation.

6 Evaluation and Practical Concerns
The previous sections introduced a methodology to prove the
resistance of countermeasures against a given attackermodel.
However, these proofs are limited in scope: they are only
established on the code right after the transformation imple-
menting the countermeasure. Semantic-preserving compila-
tion passes occurring later in the compilation chain may still
undo these protections. The main concern is optimization
passes, which may detect that defensive checks are function-
ally redundant, and eliminate them.

Positioning our Countermeasures within CompCert.
Because our countermeasures require extra temporary regis-
ters, they must be applied before register allocation: we thus
implement them within RTL. Moreover, our inter-procedural
CFI cannot be applied to the “tail call” control transfer in-
struction, which destroys the current stack frame and calls
the target function. It thus must be applied before tail call
elimination, which replaces normal function calls in tail po-
sition by this instruction, because this optimization may
still be useful on unprotected functions. And, since this pass
is the first RTL optimization, we introduced our counter-
measures before all RTL optimizations (including constant
propagation, common subexpression elimination, etc).

Experimental Evaluation of Robustness. To check if
RTL optimizations destroy countermeasures, we propose a
methodology to evaluate the robustness of the intermediate,
optimized RTL program. We build our approach on top of
Lazart [14, 38], an established tool for experimenting with
fault attacks in software.5 Lazart operates on the LLVM Inter-
mediate Representation (IR) through concolic execution of a
modified program, using the Klee concolic execution engine.
CompCert outputs assembly code, not LLVM intermediate
code. We thus added a CompCert backend for LLVM. This
backend is not formally verified. It branches off Chamois
CompCert at the level of the BTL representation, a variant
of RTL structured with basic blocks [26]. Since the LLVM
IR uses Single Static Assignment (SSA) form, as opposed to
RTL/BTL, pseudo-registers have to be renamed to prevent
multiple assignment.

5There exist special circuit boards that allow experimenting with actual
power or clock glitches, specialized equipment for laser pulses etc., but such
hardware experiments would be way beyond the scope of this paper.

10

Formally Verified Hardening Against Fault Injection

5 .(pc) = bcall(id, ®A, A3 , pc′)c

% F̀ S(Σ, 5 , f, pc, ',")
CS (5 ,id)
−−−−−−→S(Σ, 5 , f, pc′, ',")

5 .(pc) = bcall(id, ®A, A3 , pc′)c

% F̀ S(Σ, 5 , f, pc, ',")
CW (5 ,5 ′)
−−−−−−−→C(� (A3 , 5 , f, pc′, ').Σ, 5 ′, '(®A), ")

Figure 10. Attacker model for inter-procedural SWIFT

No CM, O0 CM, O0 CM, O1 CM+cpy, O1
Prog. #IP 1F 2F #IP 1F 2F #IP 1F 2F #IP 1F 2F
vp 4 3 3 16 0 5 15 1 4 16 0 5
ark 1 1 0 4 0 2 3 1 0 4 0 2
aes 2 2 3 8 0 4 8 0 4 8 0 4
fu 11 4 13 41 0 5 23 3 1 34 0 3

Table 1.Results of Lazart simulation (O1 is with optimization;
there are no higher optimization levels in CompCert)

Lazart proposes some benchmark programs, each coupled
with an attack objective, modeled by a boolean predicate on
the variable and memory at the end of the execution, and
designed to only be satisfiable during a faulted execution.
We compiled four of these programs using our instrumented
version of CompCert: vp is a more complete version of the
pin verification program described early in this paper; aes
is an implementation of the Advanced Encryption Standard
algorithm; ark is the function implementing key schedul-
ing; fu is a skeleton of a firmware updater program. We ran
Lazart on the LLVM code compiled from these programs,
using the Test Inversion (TI) attack model6. The results of
this analysis are presented in the first 3 columns in table 1.
Each column corresponds to a different configurations of
CompCert. Let us first focus on the first three: with neither
countermeasure nor optimization, with countermeasure but
without optimization, and with both countermeasure and
optimizations. Each column indicates the number of possible
fault injection points in the program (#IP). For the TI at-
tack model, there is one injection point for each conditional
branching instruction. Then comes the analysis results, mea-
sured as the number of traces reaching the attack objective
with either one (1F) or two (2F) faults.

There are two major takeaways. The first is that, when
countermeasures are activated and optimizations are deacti-
vated, all one-fault (1F) traces are neutralized. As expected,
the countermeasures are robust relative to the single-fault
model implemented in Lazart, but not against two-fault at-
tacks. The second is that, when optimizations are also acti-
vated, some one-fault traces subsist for all examples except
aes. This means that, as expected, optimizations do remove
at least part of the countermeasures.

6Lazart does not natively support inter-procedural attack models, and it is
therefore not possible to evaluate our inter-procedural countermeasure.

Protecting Countermeasures Against Optimizations.
We have identified that the Constant Propagation and Com-
mon Subexpression Elimination optimizations are respon-
sible for removing the countermeasures. There is an obvi-
ous way to fix this issue: selectively disable these optimiza-
tions for protected functions. However, this would mean
sub-optimal performances for the generated code. Instead,
we opted for a more elegant solution, based on “opacifica-
tion” of redundant code, as proposed in [51]. The goal is to
prevent optimizations from identifying the redundancy in
the countermeasure logic, and therefore protects counter-
measures from optimizations. In practice, our opacification
mechanism proceeds in two steps.

First, each countermeasures transformation adds observe
instructions: intuitively, observe(G1, ..., G=) should be un-
derstood as a side-effect that both depends on and modifies
the value of registers G1, ..., G= ; therefore, instructions that
write or read these registers should not be moved across
the observe. For instance, in the example of fig. 3, three
observers are added: First observe(x3) before the second
conditional: it ensures that the two conditions cannot be
merged by Common Subexpression Elimination. Second, one
observe(gsr) before each condition checking gsr (i.e. x1
on fig. 3): they protect gsr from Constant Propagation. In
the formal semantic model, observe does not actually have
any effect: this makes its introduction easy and facilitates
the proofs of the countermeasure pass.
Second, the actual opacification is introduced in a dedi-

cated pass which runs after each transformation introducing
observes. It expands each “observe(G1, . . . , G=)” instruc-
tion into a sequence of opaque copies “G1=copy(G1,?21);
. . .; G==copy(G=,?2=)”. Semantically, copy(G,?2) returns
G , but optimization passes ignore that fact.Therefore, because
optimizations consider copy like an uninterpreted function
symbol, they have to remain correct for any interpretation
of the symbol. The second argument of copy is a uniquely
generated number (from identifiers of the CFG) that forces
optimizations to distinguish two calls of copy on the same
first argument. Instructions “G=copy(G,?2);” are simply
eliminated at the end of the backend, when generating the
final assembly code.

From our experiments, the technique seems successful, as
shown by the last column of table 1, where opaque copies are
inserted and all optimizations are active: there is no success-
ful one-fault attack left. However, although countermeasure
opacifications is common in the field [51], we have currently
no formal proof that this approach is sound, in the sense that

11

Basile Pesin, Sylvain Boulmé, David Monniaux, and Marie-Laure Potet

max Q3 median Q1 min avg
CM+O0 347.15 134.05 87.99 52.26 -1.2 98.68
CM+cpy 419.7 79.75 42.68 16.35 -1.43 59.49
Table 2. Running Times Loss of CM+O0 and CM+cpy wrt O1.

it preserves robustness through the compilation process. In
order to establish one, we would need to adapt both the de-
terministic semantics of CompCert backend and its forward
simulation framework (as discussed in Conclusion section).

Other Testing. We also successfully applied the testing
methodology of Chamois CompCert [35] : both nonregres-
sion tests and benchmark evaluation. The purpose of bench-
marking was to measure the loss of performance due to coun-
termeasures, and how the optimizations still improve per-
formance after opacification of countermeasure. Our bench-
marking compares 3 configurations of our CompCert version:
• O1: with optimizations but without countermeasures nor
opacification • CM+O0: with countermeasures but without
opacification nor optimizations • CM+cpy: with opacified
countermeasures and optimizations. For CM+O0 and CM+cpy,
all our countermeasures (including the one against ROP of
section 4.5) are systematically applied to all functions.
We ran their generated code on a RISC-V 64 bits archi-

tecture, on a SiFive in-order dual-issue U740 core (HiFive
Unmatched), over a set of 173 procedures, each compiled
with 3 sets of initial state, using Chamois benchmarking
framework and methodology [35, §6]. For each of these run-
ning times, we compute the running time loss wrt the fastest
config, namely O1. The loss for a configuration � wrt O1 is
computed using the formula: loss(�) = ((� − O1)/O1) × 100.
The summary of the losses are given in table 2 (lower is bet-
ter; Q1 and Q3 are respectively the first and third quartile).
The loss variability is pictured in fig. 11 on a representative
subset of these programs. The loss variability being quite
high, a too small benchmark or with too fast programs would
give insignificant results. Therefore, Lazart benchmark did
not suit performance benchmarking.
These results show that, except on a few pathological

cases, CM+cpy is much faster than CM+O0: optimizations are
still useful despite opacification of countermeasures. The me-
dian loss is two times lower with CM+cpy than with CM+O0.
We also see that applying systematically our limited counter-
measures is already costly: on average, CM+cpy generates a
code 1.6 times slower than O1. This illustrates the importance
of carefully selecting the code parts to harden.

7 Related Works and Discussion
Countermeasures Against Fault Attacks. Reasoning

on compiler-assisted countermeasures against fault injec-
tions [7, 24, 39] requires a fault model. Fault models range
from source level (e.g., branch inversion [38], which inspired
our work) to hardware description level (e.g., bit flips in the

Register Transfer Level [47, 48]). Precise fault models require
a fine analysis of microarchitectural behaviors and thus may
need to expose hardware details [29]. For a compiler-assisted
countermeasure with hardware support against “fetch skip”
attacks, Michelland et al. [33] propose a formal pen-and-
paper model based on such a microarchitectural analysis.
They prove that faulty executions (within the attack model)
are well-detected by the hardened program. We recognize
here a well-known dichotomy: abstract models give more
tractable security proofswhereas precisemodels give stronger
guarantees. Experience with cryptographic protocols indi-
cates that both kinds of models are useful [13].
Given-Wilson and Legay [25] formalize a general notion

of fault injection and countermeasures within the framework
of parallel Turing machines. For the property expected of
countermeasures, they do not consider our conjunction of
correctness and robustness, but a stronger property called
effectiveness, which they define as the functional equivalence
of the composition of the fault and the hardened program with
the source program. They prove interesting results about
this notion (such as the impossibility to have an effective
countermeasure against all fault models). On the one hand,
we think it is a too strong property, because it does not allow
the countermeasure to abort execution in case of attack. On
the other hand, aborting in case of attack, which our notion
of robustness allows, permits denial-of-service attacks.

Formally Verified Countermeasures. Control-flow se-
curity is a well-established topic since the seminal work of
Abadi et al. [1]. Many software countermeasures [17, 43]
aim to protect control-flow against software vulnerability
attacks (exploiting memory corruption errors). The mathe-
matical models of these software attacks, such as initially
introduced in [2] or more recently in [20], generally assumes
that attackers cannot modify the behavior of instructions
(e.g., attackers can modify data but not code). This does not
reflect how hardware attacks can corrupt control flow.
In recent years, the emerging field of secure compilation

achieved formally verify compartmentalization [4, 46]. Com-
pilers—possibly with hardware support—provide protections
against low-level software exploits of undefined behaviors.
The formal guarantee, called robustly safe compilation [3, 37],
ensures that compilation preserves security properties stated
at the source level of safe components even when linked to vul-
nerable ones. This work has been integrated within a branch
of the CompCert formally verified compiler. Compartmen-
talization however does not protect safe components against
hardware attacks.

Official releases of CompCert do not implement any secu-
rity feature. The Chamois branch of CompCert implements
three features available in gcc and clang: branch target iden-
tification, stack canaries and return address authentication,
all three meant to prevent software attacks that divert the

12

Formally Verified Hardening Against Fault Injection

Figure 11. Representative Running Times Loss (in %) of CM+O0 on left bars and CM+cpy on right bars wrt O1 (zero axis).

control flow by altering code pointers, generally using buffer
overflows. Soundness was proved, but not robustness [34].
Stack canaries are memory locations that must be over-

written by a contiguous buffer overflow in the stack before it
touches return addresses; an incorrect canary value at func-
tion return aborts execution. We think that our approach
could be used to prove them robust with respect to a seman-
tics where the program does unauthorized memory accesses,
though the attacker model seems awkward due to contiguity.
Previously, another fork of CompCert [49] inserted con-

trol flow protections based on the hardware support of a
hardened RISC-V core [42]. The countermeasure is expected
to protect against some hardware attacks, such as instruc-
tion skips, but it does not protect against branch inversion.
Moreover, authors only formally verified the correctness of
their protection: their attacker model remains unclear.

Vellvm [54] is a Coq formalization of the semantics of the
LLVM IR, which was illustrated with a formally verified ver-
sion of SoftBound, a code instrumentation pass hardening
program against memory violations [36]. During formal-
ization, they discovered semantic corner cases where the
original SoftBound would fail to detect a memory violation.

Some hardware countermeasures against software vulner-
abilities have also been formally verified in Coq [10]. Their
countermeasure, a shadow stack implemented in a bounded
array, can abort execution due to lack of memory even if
there is no issue in the program. Thus, the formulation of
their correctness theorem is weaker than ours, because they
allow the countermeasure to stop legal executions of the
program (with an error state different from those indicating
an attack). They also prove a form of robustness theorem:
any modification of a return address in the real stack leads
to an error state. They do not consider hardware attacks.

Side-channel attacks (leakage of information through tim-
ing, electromagnetic emissions, etc.) are a concern especially
for cryptographic applications. Naive implementations of
cryptographic primitives (e.g., RSA where a multiplication
is performed or not whether a secret key bit is 1 or 0, AES
where S-boxes are implemented by table lookup…) must
be eschewed in favor of secure implementations operating
in cryptographic constant time, a notion defined by behav-
iors observable directly or indirectly by the attacker. Secure
compilation must preserve cryptographic constant time in
addition to correctness [8, 9]. The semantic approach is dif-
ferent from ours: we consider a nondeterministic semantics
that includes faults from an active attacker, while they have
no attacker but must preserve a more precise semantics.

Inter-Module Program Transformations. In [20], the
authors describe a countermeasure for enforcing control-
flow integrity at both the intra and inter-procedural level.
Their implementation, as a plugin of the LLVM compiler, is
able to protect calls between functions present in different
source files linked into a unique binary, and even between
functions from different binaries.
Our approach cannot, at present, protect such calls, be-

cause CompCert considers that external calls (calls to func-
tions defined in other modules) are observable events, and
no code transformation is allowed to alter the sequence of
observable events. All external calls thus go through the
normal calling convention, not the one with the extra param-
eter implementing the countermeasure. Going beyond this
would involve a more general theory of modules, external
calls, calling conventions, and linking, perhaps that of [53].

Verified CFG Transformations. One major difficulty in
implementing CFG transformations is the lack of structure of

13

Basile Pesin, Sylvain Boulmé, David Monniaux, and Marie-Laure Potet

Implementation Correctness Robustness
Common 736 842 1067
Intra CFI 163 680 427
Inter CFI 309 3262 492

Table 3. Size of the Coq development

RTL. We addressed this issue with our monadic framework
of section 4.1. Such an issue was previously tackled in the
Chamois fork of CompCert by BTL, a variant of RTL with
a general representation of loop-free structured blocks [26].
The expressivity of BTL blocks seems, at first sight, slightly
more general to that of our structured sequences, allowing
for nested conditional branching, merging and exiting. We
did not use the BTL language to implement our transfor-
mations because of some of its limitations. First, it imposes
observable events to only occur at a final instruction of a
block: this is not compatible with our attacker models in
robustness proofs. Second, as function calls also need to be
at such a final instruction, it would not be convenient for
our interprocedural countermeasure, which inserts some
defensive code after each function call.

Our approach is currently limited to transformations that
replace one instruction with several ones; we do not know
yet how to generalize it to sequences-to-sequences transfor-
mations, which would allow for defining a more general class
of countermeasures. One solution would be using a struc-
tured representation like that of BTL; we would therefore
need to remove the BTL limitations discussed above.
Another way would be to implement pattern-matching

on RTL CFGs, as in [44] as part of a partially verified CFG
rewriting engine. It would then still be difficult to prove
forward simulation, which normally matches one source step
to several target steps. Not following this scheme usually
requires more complex simulation invariants.

8 Conclusion and Perspectives
We have successfully implemented and verified countermea-
sures in the CompCert end-to-end formally verified compiler.
On the way, we have developed tools likely to be useful for
other kinds of passes, including optimizations: a monadic
framework to program verified CFG transformations and
an extension to CompCert’s separate compilation model to
support function specialization. Our development and proof
effort is summarized in table 3, in term of lines of code for the
generic framework and both countermeasures. We think our
approach may be valid for any class of attacks expressible by
adding nondeterministic attack transitions, and any counter-
measure that checks that certain invariants are preserved.
Promising applications of our framework could include

duplicating computations or memory loads, or counting in-
structions. In this respect, we envision that the main diffi-
culties will not be in the general design of invariants, but

in “details” such as the value semantics of CompCert (for
instance, due to undefined values, the equality test is not
reflexive). Other countermeasures such as shadow stacks
may prove more difficult to integrate, as they may introduce
new traps in the hardened program (in case of stack over-
flows), which does not fit with the current notion of semantic
correctness. Formalizing countermeasures against transient
attacks (à la Spectre and Meltdown) involves semantic mod-
eling of speculation [21], which is not only nondeterministic
but also has a notion of cancellation of wrongly speculated
behaviors, as well as some modeling of side channels.

One limitation of our work is that our robustness theorem
and proofs only capture single-fault attacks. Considering
attack scenarios with multiple fault being injected would
require extending the theorem, with a definition allowing
for interleaved faulted and non-faulted steps. We also expect
that robustness proofs would becomemore complex, because
of the combinatorial increase in the number of possible paths,
which we do not know yet how to manage efficiently.

Another limitation is the absence of formal theorem that
our opacification mechanism is sufficient to preserve the
robustness property, proved on each hardening pass, by sub-
sequent optimizations. As sketched in section 6, it seems
difficult to establish such a theorem within CompCert, with-
out a big redesign of its whole framework. In particular, it
would be highly desirable to have a single notion of pro-
gram simulation, possibly parametrized by the presence or
absence of attacks, ensuring both correctness and robustness.
For example, we would consider that an opacification opera-
tor such as “observe(G1, ..., G=)” enables “replaying” attacks
within the semantics used in optimization proofs: this in-
struction mimics a kind of potential fault injection within
registers G1, ..., G= . The overall goal would be to ensure that
subsequent optimizations preserve the robustness w.r.t the
attacker model by construction. We do not yet clearly envi-
sion what would be the right simulation relation. It might
need expressive notions of nondeterminism that the forward
simulation framework of CompCert cannot provide.

Acknowledgments
This work is partially supported by the ARSENE project
funded by the “France 2030” government investment plan
managed by the French National Research Agency (ANR),
under the reference ANR-22-PECY-0004 (https://www.pepr-
cybersecurite.fr/projet/arsene/).
We are deeply indebted to Etienne Boespflug for his sup-

port on the Lazart tool, and to Olivier Lebetel for his bench-
marking of our Chamois version. We also thank anonymous
CPP referees and our colleagues of PEPR Arsene for their
useful feedback on this work.

14

https://www.pepr-cyber-arsene.fr/
https://www.pepr-cybersecurite.fr/projet/arsene/
https://www.pepr-cybersecurite.fr/projet/arsene/

Formally Verified Hardening Against Fault Injection

References
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005.

Control-flow integrity. In Proceedings of the 12th ACM Conference on
Computer and Communications Security (Alexandria, VA, USA) (CCS
’05). New York, NY, USA. https://doi.org/10.1145/1102120.1102165

[2] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. A
theory of secure control flow. In Proceedings of the 7th International
Conference on Formal Methods and Software Engineering (Manchester,
UK) (ICFEM’05). Berlin, Heidelberg. https://doi.org/10.1007/11576280_
9

[3] Carmine Abate, Roberto Blanco, Ştefan Ciobâcă, AdrienDurier, Deepak
Garg, Cătălin Hriţcu, Marco Patrignani, Éric Tanter, and Jérémy
Thibault. 2021. An Extended Account of Trace-relating Compiler
Correctness and Secure Compilation. ACM Trans. Program. Lang. Syst.
43, 4, Article 14 (nov 2021). https://doi.org/10.1145/3460860

[4] Carmine Abate, Arthur Azevedo de Amorim, Roberto Blanco,
Ana Nora Evans, Guglielmo Fachini, Catalin Hritcu,Théo Laurent, Ben-
jamin C. Pierce, Marco Stronati, and Andrew Tolmach. 2018. When
Good Components Go Bad: Formally Secure Compilation Despite
Dynamic Compromise. In Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018. https://doi.org/10.1145/3243734.3243745

[5] Ihab Alshaer, Gijs Burghoorn, Brice Colombier, Christophe Deleuze,
Vincent Beroulle, and Paolo Maistri. 2024. Cross-layer analysis of
clock glitch fault injection while fetching variable-length instructions.
Journal of Cryptographic Engineering 14 (04 2024). https://doi.org/10.
1007/s13389-024-00352-6

[6] H. Bar-El, Hamid Choukri, D. Naccache, Michael Tunstall, and C. Whe-
lan. 2006. The Sorcerer’s Apprentice Guide to Fault Attacks. Proc. IEEE
94, 2. https://doi.org/10.1109/JPROC.2005.862424

[7] Thierno Barry, Damien Couroussé, and Bruno Robisson. 2016. Com-
pilation of a Countermeasure Against Instruction-Skip Fault Attacks.
In Proceedings of the Third Workshop on Cryptography and Security in
Computing Systems (Prague, Czech Republic) (CS2 ’16). New York, NY,
USA. https://doi.org/10.1145/2858930.2858931

[8] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent
Laporte, David Pichardie, and Alix Trieu. 2020. Formal verification of
a constant-time preserving C compiler. Proc. ACM Program. Lang. 4,
POPL (2020). https://doi.org/10.1145/3371075

[9] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. 2018. Secure
Compilation of Side-Channel Countermeasures: The Case of Cryp-
tographic ”Constant-Time”. In 31st IEEE Computer Security Founda-
tions Symposium, CSF 2018, Oxford, United Kingdom, July 9-12, 2018.
https://doi.org/10.1109/CSF.2018.00031

[10] Matthieu Baty, Pierre Wilke, Guillaume Hiet, Arnaud Fontaine, and
Alix Trieu. 2023. A generic framework to develop and verify security
mechanisms at the microarchitectural level: application to control-
flow integrity. In CSF 2023 - 36th IEEE Computer Security Foundations
Symposium. Dubrovnik, France. https://inria.hal.science/hal-04118645

[11] Nicolas Belleville, Karine Heydemann, Damien Couroussé, Thierno
Barry, Bruno Robisson, Abderrahmane Seriai, and Henri-Pierre
Charles. 2018. Automatic Application of Software Countermeasures
Against Physical Attacks. Cham. https://doi.org/10.1007/978-3-319-
98935-8_7

[12] Pascal Berthomé, Karine Heydemann, Xavier Kauffmann-
Tourkestansky, and J. Lalande. 2012. High Level Model of
Control Flow Attacks for Smart Card Functional Security. In ARES ’12.
https://doi.org/10.1109/ARES.2012.79

[13] Bruno Blanchet. 2012. Security Protocol Verification: Symbolic and
Computational Models. In Principles of Security and Trust - First In-
ternational Conference, POST 2012, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn,
Estonia, March 24 - April 1, 2012, Proceedings (Lecture Notes in Computer
Science, Vol. 7215). https://doi.org/10.1007/978-3-642-28641-4_2

[14] Etienne Boespflug, Abderrahmane Bouguern, Laurent Mounier, and
Marie-Laure Potet. 2023. A tool assisted methodology to harden pro-
grams against multi-faults injections. In Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC) 23.

[15] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. 1997. On
the Importance of Checking Cryptographic Protocols for Faults. In
Advances in Cryptology — EUROCRYPT ’97. Berlin, Heidelberg.

[16] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage.
2008. When good instructions go bad: generalizing return-oriented
programming to RISC. In Proceedings of the 2008 ACM Conference on
Computer and Communications Security, CCS 2008, Alexandria, Virginia,
USA, October 27-31, 2008. ACM, 27–38. https://doi.org/10.1145/1455770.
1455776

[17] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz,
Stefan Brunthaler, and Mathias Payer. 2017. Control-Flow Integrity:
Precision, Security, and Performance. ACM Comput. Surv. 50, 1 (2017).
https://doi.org/10.1145/3054924

[18] M. Christofi, B. Chetali, L. Goubin, and D. Vigilant. 2013. Formal veri-
fication of a CRT-RSA implementation against fault attacks. Journal
of Cryptographic Engineering 3, 3 (2013).

[19] Coq Development Team. 2020. The Coq proof assistant reference manual.
Inria. https://coq.inria.fr/distrib/current/refman/

[20] Thomas Coudray, Arnaud Fontaine, and Pierre Chifflier. 2015. Picon:
Control Flow Integrity on LLVM IR. In SSTIC. https://www.sstic.org/
2015/presentation/control_flow_integrity_on_llvm_ir/

[21] Lesly-Ann Daniel, Marton Bognar, Job Noorman, Sébastien Bardin,
Tamara Rezk, and Frank Piessens. 2023. ProSpeCT: Provably Se-
cure Speculation for the Constant-Time Policy. In 32nd USENIX Secu-
rity Symposium, USENIX Security 2023, Anaheim, CA, USA, August
9-11, 2023. https://www.usenix.org/conference/usenixsecurity23/
presentation/daniel

[22] François de Ferrière. 2019. A compiler approach to Cyber-Security.
2019 European LLVM developers’ meeting. https://llvm.org/devmtg/
2019-04

[23] Louis Dureuil, Marie-Laure Potet, Philippe de Choudens, Cécile Dumas,
and Jessy Clédière. 2015. From Code Review to Fault Injection Attacks:
Filling the Gap Using Fault Model Inference. In Smart Card Research
and Advanced Applications - 14th International Conference, CARDIS
2015, Bochum, Germany, November 4-6, 2015. Revised Selected Papers
(Lecture Notes in Computer Science, Vol. 9514). https://doi.org/10.1007/
978-3-319-31271-2_7

[24] Johannes Geier, Lukas Auer, Daniel Mueller-Gritschneder, Uzair Sharif,
and Ulf Schlichtmann. 2023. CompaSeC: A Compiler-Assisted Security
Countermeasure to Address Instruction Skip Fault Attacks on RISC-V.
In Proceedings of the 28th Asia and South Pacific Design Automation
Conference (, Tokyo, Japan,) (ASPDAC ’23). New York, NY, USA. https:
//doi.org/10.1145/3566097.3567925

[25] Thomas Given-Wilson and Axel Legay. 2020. Formalising fault in-
jection and countermeasures. In Proceedings of the 15th International
Conference on Availability, Reliability and Security (Virtual Event, Ire-
land) (ARES ’20). New York, NY, USA, Article 22. https://doi.org/10.
1145/3407023.3407049

[26] Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux,
and Alexandre Bérard. 2023. Formally Verifying Optimizations with
Block Simulations. Proceedings of the ACM on Programming Languages
7, OOPSLA2 (Oct. 2023). https://doi.org/10.1145/3622799

[27] Karine Heydemann, Jean-François Lalande, and Pascal Berthomé. 2019.
Formally verified software countermeasures for control-flow integrity
of smart card C code. Computers & Security 85 (2019).

[28] Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, and Vik-
tor Vafeiadis. 2016. Lightweight verification of separate compilation.
In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg, FL,
USA, January 20 - 22, 2016. https://doi.org/10.1145/2837614.2837642

15

https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1007/11576280_9
https://doi.org/10.1007/11576280_9
https://doi.org/10.1145/3460860
https://doi.org/10.1145/3243734.3243745
https://doi.org/10.1007/s13389-024-00352-6
https://doi.org/10.1007/s13389-024-00352-6
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1145/2858930.2858931
https://doi.org/10.1145/3371075
https://doi.org/10.1109/CSF.2018.00031
https://inria.hal.science/hal-04118645
https://doi.org/10.1007/978-3-319-98935-8_7
https://doi.org/10.1007/978-3-319-98935-8_7
https://doi.org/10.1109/ARES.2012.79
https://doi.org/10.1007/978-3-642-28641-4_2
https://doi.org/10.1145/1455770.1455776
https://doi.org/10.1145/1455770.1455776
https://doi.org/10.1145/3054924
https://coq.inria.fr/distrib/current/refman/
https://www.sstic.org/2015/presentation/control_flow_integrity_on_llvm_ir/
https://www.sstic.org/2015/presentation/control_flow_integrity_on_llvm_ir/
https://www.usenix.org/conference/usenixsecurity23/presentation/daniel
https://www.usenix.org/conference/usenixsecurity23/presentation/daniel
https://llvm.org/devmtg/2019-04
https://llvm.org/devmtg/2019-04
https://doi.org/10.1007/978-3-319-31271-2_7
https://doi.org/10.1007/978-3-319-31271-2_7
https://doi.org/10.1145/3566097.3567925
https://doi.org/10.1145/3566097.3567925
https://doi.org/10.1145/3407023.3407049
https://doi.org/10.1145/3407023.3407049
https://doi.org/10.1145/3622799
https://doi.org/10.1145/2837614.2837642

Basile Pesin, Sylvain Boulmé, David Monniaux, and Marie-Laure Potet

[29] Johan Laurent, Vincent Beroulle, Christophe Deleuze, Florian Pebay-
Peyroula, and Athanasios Papadimitriou. 2018. On the Importance of
Analysing Microarchitecture for Accurate Software Fault Models. In
2018 21st Euromicro Conference on Digital System Design (DSD). Prague,
France. https://doi.org/10.1109/DSD.2018.00097

[30] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun.
ACM 52, 7 (2009). HAL:inria-00415861

[31] Xavier Leroy and Sandrine Blazy. 2008. Formal Verification of a C-like
Memory Model and Its Uses for Verifying Program Transformations.
Journal of Automated Reasoning (2008). https://doi.org/10.1007/s10817-
008-9099-0

[32] Thibault Martin, Nikolai Kosmatov, and Virgile Prevosto. 2022. Ver-
ifying Redundant-Check Based Countermeasures: A Case Study. In
Proceedings of the 37th ACM/SIGAPP Symposium on Applied Comput-
ing.

[33] Sébastien Michelland, Christophe Deleuze, and Laure Gonnord. 2024.
From Low-Level Fault Modeling (of a Pipeline Attack) to a Proven
Hardening Scheme. In Proceedings of the 33rd ACM SIGPLAN Interna-
tional Conference on Compiler Construction, CC 2024, Edinburgh, United
Kingdom, March 2-3, 2024. https://doi.org/10.1145/3640537.3641570

[34] David Monniaux. 2024. Memory Simulations, Security and Optimiza-
tion in a Verified Compiler. In Proceedings of the 13th ACM SIGPLAN
International Conference on Certified Programs and Proofs (CPP 2024).
New York, NY, USA. https://doi.org/10.1145/3636501.3636952

[35] David Monniaux, Léo Gourdin, Sylvain Boulmé, and Olivier Lebeltel.
2023. Testing a Formally Verified Compiler. In Tests and Proofs (TAP
2023) (Lecture Notes in Computer Science, Vol. 14066), Virgile Prevosto
and Cristina Seceleanu (Eds.). Springer Nature Switzerland, Leicester,
United Kingdom, 40–48. https://doi.org/10.1007/978-3-031-38828-6_3

[36] Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve
Zdancewic. 2009. SoftBound: highly compatible and complete spatial
memory safety for c. In Proceedings of the 2009 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI
2009, Dublin, Ireland, June 15-21, 2009. https://doi.org/10.1145/1542476.
1542504

[37] Marco Patrignani and Deepak Garg. 2021. Robustly Safe Compilation,
an Efficient Form of Secure Compilation. ACM Trans. Program. Lang.
Syst. 43, 1, Article 1 (feb 2021). https://doi.org/10.1145/3436809

[38] Marie-Laure Potet, Laurent Mounier, Maxime Puys, and Louis Dureuil.
2014. Lazart: A Symbolic Approach for Evaluation the Robustness
of Secured Codes against Control Flow Injections. In Seventh IEEE
International Conference on Software Testing, Verification and Validation,
ICST 2014.

[39] Julien Proy, Karine Heydemann, Alexandre Berzati, and Albert Cohen.
2017. Compiler-Assisted Loop Hardening Against Fault Attacks. ACM
Trans. Archit. Code Optim. 14, 4, Article 36 (dec 2017). https://doi.org/
10.1145/3141234

[40] Pablo Rauzy and Sylvain Guilley. 2014. A Formal Proof of Counter-
measures Against Fault Injection Attacks on CRT-RSA. Journal of
Cryptographic Engineering 4, 3 (2014). https://doi.org/10.1007/s13389-
013-0065-3

[41] G.A. Reis, J. Chang, Neil Vachharajani, Ram Rangan, and David August.
2005. SWIFT: software implemented fault tolerance. In International
Symposium on Code Generation and Optimization. https://doi.org/10.
1109/CGO.2005.34

[42] Olivier Savry, Mustapha El-Majihi, and Thomas Hiscock. 2020. Con-
fidaent: Control Flow protection with Instruction and Data Authen-
ticated Encryption. In 23rd Euromicro Conference on Digital System
Design, DSD 2020, Kranj, Slovenia, August 26-28, 2020. https://doi.org/
10.1109/DSD51259.2020.00048

[43] Sarwar Sayeed, Hector Marco-Gisbert, Ismael Ripoll, andMiriam Birch.
2019. Control-flow integrity: attacks and protections. Applied Sciences
9, 20 (2019).

[44] Zachary Tatlock and Sorin Lerner. 2010. Bringing Extensibility to
Verified Compilers. ACM SIGPLAN Notices 45. https://doi.org/10.1145/
1806596.1806611

[45] Nikolaus Theißing, Dominik Merli, Michael Smola, Frederic Stumpf,
and Georg Sigl. 2013. Comprehensive analysis of software countermea-
sures against fault attacks. In Proceedings of the Conference on Design,
Automation and Test in Europe (Grenoble, France) (DATE ’13). San Jose,
CA, USA.

[46] Jérémy Thibault, Roberto Blanco, Dongjae Lee, Sven Argo,
Arthur Azevedo de Amorim, Aïna Linn Georges, Catalin Hritcu, and
Andrew Tolmach. 2024. SECOMP: Formally Secure Compilation of
Compartmentalized C Programs. https://arxiv.org/abs/2401.16277

[47] Simon Tollec. 2024. Formal Verification of Processor Microarchitecture
to Analyze System Security against Fault Attacks. Ph. D. Dissertation.
Université Paris-Saclay.

[48] Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann,
and Mathieu Jan. 2022. Exploration of Fault Effects on Formal RISC-V
Microarchitecture Models. InWorkshop on Fault Detection and Toler-
ance in Cryptography, FDTC 2022, Virtual Event / Italy, September 16,
2022. https://doi.org/10.1109/FDTC57191.2022.00017

[49] Paolo Torrini and Sylvain Boulmé. 2022. A CompCert Backend with
Symbolic Encryption. In Sixth workshop on Principles of Secure Compila-
tion (PriSC’22), part of the 49th ACM SIGPLAN Symposium on Principles
of Programming Languages (POPL 2022). Philadelphia, Pennsylvania,
United States. https://hal.science/hal-03555551

[50] Aurelien Vasselle, Hugues Thiebeauld, Quentin Maouhoub, Adèle
Morisset, and Sebastien Ermeneux. 2018. Laser-Induced Fault Injection
on Smartphone Bypassing the Secure Boot. IEEE Trans. Comput. PP
(07 2018). https://doi.org/10.1109/TC.2018.2860010

[51] Son Tuan Vu, Karine Heydemann, Arnaud de Grandmaison, and Al-
bert Cohen. 2020. Secure delivery of program properties through
optimizing compilation. In CC ’20: 29th International Conference on
Compiler Construction, San Diego, CA, USA, February 22-23, 2020.
https://doi.org/10.1145/3377555.3377897

[52] Philip Wadler. 1992. Monads for functional programming. In Program
Design Calculi, Proceedings of the NATO Advanced Study Institute on
Program Design Calculi, Marktoberdorf, Germany, July 28 - August
9, 1992 (NATO ASI Series, Vol. 118). https://homepages.inf.ed.ac.uk/
wadler/papers/marktoberdorf/baastad.pdf

[53] Ling Zhang, Yuting Wang, Jinhua Wu, Jérémie Koenig, and Zhong
Shao. 2024. Fully Composable and Adequate Verified Compilation
with Direct Refinements between Open Modules. Proc. ACM Program.
Lang. 8, POPL (2024). https://doi.org/10.1145/3632914

[54] Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve
Zdancewic. 2012. Formalizing the LLVM intermediate representation
for verified program transformations. In Proceedings of the 39th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012. https:
//doi.org/10.1145/2103656.2103709

16

https://doi.org/10.1109/DSD.2018.00097
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1145/3640537.3641570
https://doi.org/10.1145/3636501.3636952
https://doi.org/10.1007/978-3-031-38828-6_3
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/3436809
https://doi.org/10.1145/3141234
https://doi.org/10.1145/3141234
https://doi.org/10.1007/s13389-013-0065-3
https://doi.org/10.1007/s13389-013-0065-3
https://doi.org/10.1109/CGO.2005.34
https://doi.org/10.1109/CGO.2005.34
https://doi.org/10.1109/DSD51259.2020.00048
https://doi.org/10.1109/DSD51259.2020.00048
https://doi.org/10.1145/1806596.1806611
https://doi.org/10.1145/1806596.1806611
https://arxiv.org/abs/2401.16277
https://doi.org/10.1109/FDTC57191.2022.00017
https://hal.science/hal-03555551
https://doi.org/10.1109/TC.2018.2860010
https://doi.org/10.1145/3377555.3377897
https://homepages.inf.ed.ac.uk/wadler/papers/marktoberdorf/baastad.pdf
https://homepages.inf.ed.ac.uk/wadler/papers/marktoberdorf/baastad.pdf
https://doi.org/10.1145/3632914
https://doi.org/10.1145/2103656.2103709
https://doi.org/10.1145/2103656.2103709

	Abstract
	1 Motivation
	2 The CompCert Verified Compiler
	3 Application to Control-Flow Integrity
	4 Verifying Countermeasures
	4.1 Verifying CFG Transformations
	4.2 Correctness Proof
	4.3 Attacker and Robustness Models
	4.4 Robustness Proof
	4.5 Informal Extra Robustness Against ROP

	5 Application to Inter-procedural CFI
	5.1 Inter-Procedural SWIFT
	5.2 Correctness Proof
	5.3 Function Specialization
	5.4 Robustness Proof

	6 Evaluation and Practical Concerns
	7 Related Works and Discussion
	8 Conclusion and Perspectives
	Acknowledgments
	References

