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A B S T R A C T

The accuracy of gauge-based, satellite-based and reanalysis precipitation products for streamflow simulation has
rarely been investigated in data-scarce and meso-scale karst catchments characterized by infra-daily response
time due to the predominance of quick flow processes. This study evaluates and compares the reliability of
gauge- and satellite-based precipitation products (CPC, E-OBS, PERSIANN-CDR, IMERG-LR, SM2RAIN-ASCAT,
CHIRPS) and reanalysis products (SAFRAN, COMEPHORE, ERA5-Land) in simulating the daily flow of the
Baget karst catchment (13.25 km2), located in the Southwestern French Pyrenees. The assessment was conducted
over the 2006–2018 period using the semi-distributed karst hydrogeological model ISPEEKH, integrated with a
PEST framework for model calibration, global sensitivity analysis using the Morris method, and parameter
estimation using an iterative ensemble smoother form of the Gauss-Levenberg-Marquardt algorithm. The
discharge coefficients and emptying exponents of the epikarst-to-conduit and conduit-to-spring quick flows were
the most sensitive model parameters irrespective of the input precipitation, and ISPEEKH successfully repro-
duced the non-linear conduit flow dynamics in the catchment. Yet, simulated streamflow was significantly
underestimated under the ensemble of precipitation products (up to 32–79 % in the calibration period and up to
28–70 % in the validation period), and the reanalysis products outperformed the gauge- and satellite-based
products. Downscaling of the CPC, IMERG-LR, ERA5-Land and E-OBS products, and merging of the CPC and
IMERG-LR datasets at 1-km spatial resolution did not improve the model predictive performance. Finally, the
study showed that watershed-scale precipitation correction can effectively improve the hydrological simulation
performance in the catchment, particularly under the French reanalysis precipitation product COMEPHORE. This
result emphasizes the need to install representative rain gauge stations at different altitudes in studied karst
catchments of similar scale and hydrodynamics characteristics, and apply observation-based correction methods
in order to reduce the errors in regional reanalysis precipitation database and optimize the karst discharge
simulation.

1. Introduction

Karst landscapes, formed by chemical dissolution of soluble car-
bonate rocks by acid water enriched with carbon dioxide, cover nearly
15.2 % of the Earth’s ice-free continental surface (Goldscheider et al.,
2020) and supply groundwater to 9–25 % of the world’s population
(Chen et al., 2017; Stevanović, 2019). Compared to granular aquifers,
the hydrological behavior of karst aquifers is highly complex, non-
linear, and non-stationary (An et al., 2020; Labat et al., 2000a). Karst

aquifers exhibit dual-to-triple porosity with discrete conduit networks
embedded in a larger fissured matrix. They are characterized by dual
recharge and discharge mechanisms, including diffuse infiltration
through the matrix and slow-flow discharge into the spring, primarily in
the low-flow periods, and concentrated infiltration into secondary
porosity features (i.e., fissures, channels, conduits, fractures and sink-
holes), with quick-flow discharge into the spring during the wet periods
or after a significant recharge event (Geyer et al., 2013; Paiva and
Cunha, 2020). A bidirectional matrix-conduit exchange flow can also
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occur due to the head difference between the two domains (Dal Soglio
et al., 2020; Zhao et al., 2021). Moreover, karst aquifers often encom-
pass an uppermost weathered zone of carbonate rocks with high porosity
and permeability, called epikarst, which stores water and controls the
recharge towards the matrix and conduits (Bailly-Comte et al., 2008;
Fidelibus et al., 2017). These hydrogeological characteristics render
karst aquifers flow very sensitive to changes in precipitation patterns
and recharge rates induced by climate change, land-use change, and
other anthropogenic activities impacting groundwater storage (Fiorillo
and Guadagno, 2012; Klaas et al., 2020; Mo et al., 2023; Nerantzaki and
Nikolaidis, 2020; Ruiz et al., 2022; Taheri et al., 2016). Therefore, the
adequate management of water resources in karst watersheds requires a
sufficient understanding of their recharge and discharge dynamics,
coupled with an accurate assessment of their water balance using karst-
specific hydrological modeling tools.

Hydrological models aim to approximate the transfer function be-
tween meteorological forcing (i.e., precipitation, temperature, potential
evapotranspiration) and river streamflow (or spring discharge). One
common approach for hydrological modeling consists of considering
different combinations of the dominant flow components as distinct
conceptual buckets. This approach has been widely developed during
the past decades (Azimi et al., 2023; Bittner et al., 2018; Butscher and
Huggenberger, 2008; Fleury et al., 2007, 2009; Mazzilli et al., 2019;
Sivelle et al., 2023; Tritz et al., 2011) and applied to simulate karst
spring discharge and further assess the impact of groundwater abstrac-
tion (Cousquer and Jourde, 2022; Labat et al., 2022) and climate change
(Hartmann et al., 2012; Sivelle et al., 2021) on karst water resources.
However, by neglecting the spatial variabilities of the meteorological
forcing and landscape characteristics (i.e., topography, karst terrains,
soil and land use), lumped models may lack precision in assessing the
intricate recharge and discharge within karst aquifers, hindering accu-
rate flow prediction and data-driven karst water resources management.
On the other hand, fully-distributed models discretize karst watersheds
into two- or three-dimensional grid units assigned with specific hy-
draulic parameters and simulate flow between these computational
units using differential equations. These models, however, require an
adequate knowledge of the geological settings (lithology, fractures,
faults) and hydraulic properties (porosity, hydraulic conductivity),
which are highly heterogeneous in karst aquifers and can be challenging
or impossible to acquire (Fischer et al., 2018; Ghasemizadeh et al., 2012;
Gill et al., 2021; Jeannin et al., 2021). Thus, semi-distributed hydro-
geological models are proposed as a hybrid approach to overcome the
limitations of the aforementioned two model classes by combining the
spatial variability of the surface flow dominant controls (i.e., climatic
features, landscape properties) with the underlying karst aquifer domi-
nant flow components (Hartmann et al., 2013; Ollivier et al., 2020).

Precipitation is one of the key driving factors in the hydrological
modeling of the watershed water balance fluxes. Numerous studies have
demonstrated the dependence of the predictive capability of hydrolog-
ical models for basin streamflow simulation on the input precipitation
data (Bárdossy et al., 2022; Camici et al., 2018; Maggioni and Massari,
2018), as well as on the spatial discretization of the precipitation field
from lumped to distributed, showing results that vary with the water-
shed physiographic and climatic properties. By assessing the hydrolog-
ical response of an ensemble of basins to the precipitation variability (i.
e., complete precipitation field and sampled precipitation) and rainfall-
runoff modeling approaches (i.e., lumped and distributed), Arnaud et al.
(2011) concluded that the small catchments were mostly sensitive to the
precipitation input uncertainties produced by sampling of precipitation,
while the largest catchments were sensitive to the uncertainties gener-
ated by discarding the spatial variability of precipitation. Lobligeois
et al. (2014) also evaluated streamflow simulation for an ensemble of
catchments using lumped and semi-distributed models driven by 1-km
resolution precipitation, and showed that differences in model perfor-
mance were insignificant between lumped and semi-distributed ap-
proaches but highly variable between catchments due to the spatial

heterogeneity of the precipitation fields. In addition, Emmanuel et al.
(2017) found that higher spatial resolution of precipitation could
improve model performance, while Huang et al. (2019) concluded that
streamflow simulations improved marginally with higher precipitation
spatial resolution and were more sensitive to the temporal resolution of
precipitation. These findings underscore the importance of identifying
the most suitable precipitation estimate for hydrological applications.

The sparse distribution of rain gauges in watersheds poses challenges
for hydroclimatic analysis, prompting the need for alternative precipi-
tation inputs for streamflow simulation. Apart from gauge-based pre-
cipitation, recent developments in Earth observation and atmospheric
reanalysis have provided long-term precipitation datasets with compa-
rable or even broader spatial coverage than in-situ station observations.
In this regard, there are two main categories of satellite precipitation
products: those that infer precipitation from clouds and atmosphere
characteristics (Top-Down approach), such as PERSIANN-CDR (0.25◦
spatial resolution; Ashouri et al., 2015) and IMERG (0.1◦ resolution,
Huffman et al., 2019), and those that infer precipitation from the vari-
ation of soil moisture (Bottom-Up approach), such as SM2RAIN-ASCAT
(0.1◦ resolution, Brocca et al., 2019). Moreover, reanalysis data such as
ERA5 (0.25◦ resolution; Hersbach et al., 2020) and COMEPHORE (1-km
resolution; Tabary et al., 2012) are commonly used. However, these
precipitation products can generate biased streamflow forecasts due to
various error sources (Aryal et al., 2023; Bitew et al., 2012; Dos Reis
et al., 2017; Peinó et al., 2024; Satgé et al., 2019; Zhang et al., 2020),
which hinders their application in assessing the hydrological response of
karst watersheds characterized by fast aquifer recharge and dominant
conduit flow to changing climate conditions.

Currently, there are very few studies that examine the impact of
various precipitation inputs from satellite and reanalysis data products
on streamflow simulation in karstified watersheds (Chang et al., 2024;
Furl et al., 2018; Gan et al., 2020, 2021; Li et al., 2019; Mo et al., 2020,
2022; Wang et al., 2017). Most of these studies were conducted in China,
being one of the largest karst areas in the world, across watersheds
ranging from 103 to 105 km2. Nonetheless, karst watersheds in Europe
are often characterized by smaller recharge areas; for instance, the
largest karst spring in Europe, Fontaine de Vaucluse, has a recharge area
of around 1,160 km2 (Ollivier et al., 2019). Of the studies reported in the
literature, Mo et al. (2020) evaluated the suitability of coarse and cor-
rected IMERG satellite precipitation for daily and monthly streamflow
simulation in the XiaJia River basin (799.2 km2) using the SWAT model.
Results showed that SWAT performance under the original IMERG
rainfall dataset was unsatisfactory due to major streamflow underesti-
mation, while corrected IMERG precipitation significantly improved the
simulations. Mo et al. (2022) simulated streamflow of the Chengbi River
basin (2,087 km2) using SWAT driven by gauge-measured precipitation,
IMERG precipitation, and 1-km resolution precipitation derived by
geographical weighted regression (GWR) fusion of the measured and
IMERG data. The station-measured precipitation data performed best,
followed by the GWR fusion precipitation dataset, while the IMERG
satellite precipitation yielded the worst performance, highlighting the
significance of fusion processing to improve streamflow simulation at
the daily and monthly scales. Thus, there is a notable research gap
associated with assessing the accuracy of gauge-based, satellite-based or
reanalysis precipitation products for the hydrological modeling of meso-
scale karst basins (approximately 10–103 km2; Uhlenbrook et al., 2004),
using distributed or semi-distributed hydrological models. To the best of
our knowledge, this is the first study that aims to evaluate and compare
the reliability of reanalysis, gauge-, and satellite-based precipitation
products, at coarse (tens of kilometer) and 1-km (downscaled) spatial
resolution, for the daily water balance and streamflow simulation in a
meso-scale karst catchment with a short response time to precipitation
and a sparse precipitation monitoring network. The Baget karst catch-
ment (13.25 km2) in the piedmont of the Pyrenees mountains, southwest
of France, serves as the study area. The semi-distributed karst hydro-
geological model ISPEEKH (Al Khoury et al., 2023), a modified version
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of SWAT+ (Bieger et al., 2017) for spring flow-dominated karst water-
sheds, was used to simulate the hydrological response of the Baget
catchment to the different precipitation datasets over the years
2006–2018. ISPEEKH was integrated with a Parameter ESTimation Tool
(PEST) framework in order to perform automated calibration, identify
model parameters that influence the streamflow simulation using the
Morris method for global sensitivity analysis, and estimate the model
parameter values using an iterative ensemble smoother (iES) form of the
Gauss-Levenberg-Marquardt algorithm.

2. Methods and materials

2.1. Study area

The Baget is a karst catchment in the Pyrenees mountains, southwest
of France (station B1 at 42◦57′18.06″N; 1◦1′52.76″E) (Fig. 1). It is part of
the KARST National Observatory Service (SNO KARST, Jourde et al.,
2018) and part of the French network of Critical Zone Observatories
Research and Applications–National Research Infrastructure (OZCAR,
Gaillardet et al., 2018). The Baget catchment has a groundwater
recharge contribution zone of about 13.25 km2 and is characterized by a
rapid infiltration, a fast transit time between recharge and discharge,
and a strong nonlinear rainfall-runoff relationship (Labat et al., 1999,
2000a). The geology within the catchment consists of a mixed litho-
logical terrain: Jurassic and Cretaceous karstified landforms (67% of the
recharge area) and non-karstified rocks (33 % of the recharge area). The
large carbonate part of the catchment includes a crystalline limestone
band and Jurassic dolomites (Debroas, 2009).

The Baget catchment is exposed to an Atlantic oceanic climate with
mountainous influence. The mean daily air temperature is 12 ± 6.3 ◦C
and the mean annual precipitation is 975.5 mm based on the records of
the Saint Girons meteorological station (43◦00′19″N; 01◦06′25″E; 414 m
a.s.l). The catchment’s snowpack is generally low, and snowmelt does
not significantly contribute to discharge (Padilla et al., 1994; Richieri
et al., 2024; Ulloa-Cedamanos et al., 2020).

The catchment’s streamflow is primarily formed by the perennial
karst spring Las Hountas through well-developed conduit networks and

partially by the Lachein stream, which drains the impermeable terrains
in the catchment. The mean catchment discharge measured at the outlet
gauging station B1 was 0.44 ± 0.67 m3.s− 1. Tracer tests (Sivelle and
Labat, 2019) and lumped-parameter hydrological modeling of the Baget
karst system (Sivelle et al., 2019; Shirafkan et al., 2023) show that
nonlinear conduit flow is the main component of the karst spring
discharge.

Fig. 1. The Baget catchment recharge area and lithological composition, with the Las Hountas karst spring, the Lachein stream, and the stream gauging station (B1)
(modified from Al Khoury et al., 2023).

Fig. 2. Schematic representation of the hydrological processes simulated by
ISPEEKH in a spring flow-dominated karst watershed (modified from Al Khoury
et al., 2023).
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2.2. The ISPEEKH model

The Integration of Surface ProcEssEs in Karst Hydrology (ISPEEKH)
is a semi-distributed karst hydrological model (Fig. 2, Al Khoury et al.,
2023) that was developed by modifying the source code of SWAT+
(revision 60.5.4), the restructured version of the Soil and Water
Assessment Tool (SWAT) (Bieger et al., 2017). It was used in the study as
other modified SWAT-based models reported in the literature and
applied in karst hydrology (e.g., Baffaut and Benson, 2009; Geng et al.,
2021; Nerantzaki et al., 2020; Nikolaidis et al., 2013; Nguyen et al.,
2020; Palanisamy and Workman, 2015; Wang and Brubaker, 2014;
Wang et al., 2019;Yactayo, 2009; Zhou et al., 2022) do not collectively
reproduce the flow processes of the epikarst, matrix and conduits,
including the matrix-conduit bidirectional exchange flow rate, using
non-linear storage-discharge relationships (Al Khoury et al., 2023).

ISPEEKH uses input digital elevation model (DEM), land-use map,
and overlapped soil and lithology maps to divide the watershed into
subbasins connected through stream channels and further into hydro-
logical response units (HRUs) of homogeneous land-use, slope, soil, and
karst/non-karst landform properties. It then utilizes spatially-variable
weather input data (i.e., precipitation, minimum and maximum air
temperature, solar radiation, wind speed, and relative humidity) to
simulate the daily vadose zone water balance fluxes at the HRU scale.
The land surface and soil hydrological fluxes, including potential
evapotranspiration (Monteith, 1965), actual evapotranspiration (sum of
canopy evaporation, soil evaporation, and plant transpiration), direct
(surface) runoff method (USDA-SCS, 1972), lateral flow (Sloan and
Moore, 1984), and percolation (Neitsch et al., 2011) are simulated in
ISPEEKH using the original SWAT+ subroutines. SWAT differentiates
between solid and liquid precipitation based on near-surface air tem-
perature. If the snowfall temperature parameter is lower than the mean
daily air temperature, precipitation is classified as snow. When precip-
itation is considered solid, it accumulates at the ground surface until
snowmelt, which is influenced by air and snowpack temperature,
daylight hours, and snow areal coverage. A detailed description of the
vadose zone water balance fluxes and corresponding equations applied
in standard SWAT+ is provided in the SWAT theoretical manual
(Neitsch et al., 2011).

To represent the flow in the saturated zone, the diffusive recharge
equations and linear reservoir model for baseflow simulation in
granular-type aquifers in SWAT+ were modified in ISPEEKH into
diffusive and concentrated recharge equations and a non-linear three-
reservoir model of the epikarst, matrix and conduits water bearing
components of karst aquifers. Thus, ISPEEKH applies three non-linear
reservoirs organized in a two-level structure: the upper reservoir (E)
representing the epikarst zone, and the lower reservoirs (M) and (C) that
represent the low-permeability matrix and highly permeable conduits,
respectively. For karst-dominated catchments characterized by low
surface runoff generation and significant spring flow contribution to the
overall discharge, ISPEEKH considers direct rainfall infiltration without
surface runoff generation over the surface-exposed and well-developed
epikarstic zone, with lateral flow down hillslopes and soil water perco-
lation in areas where the soil covers the epikarst (Equation (1)). Water
percolation from the soil profile in non-karst HRUs recharges the matrix
reservoir diffusively (Equation (2)), while soil lateral flow generated in

non-karst areas and water losses from sinking channels seep directly into
the conduit reservoir (Equation (3)). The simulated groundwater fluxes
include: fast recharge from the epikarst to conduits (QEC) and slow
recharge from the epikarst to the matrix (QEM), which are activated
when the water level of reservoir E exceeds a lower storage threshold
(Emin), the conduit quick-flow (QCS) and matrix slow-flow (QMS) com-
ponents of the karst spring discharge, and the conduit-matrix bidirec-
tional exchange flow rate (QMC) as a function of the difference between
the water levels of the two reservoirs M and C. The water balance of the
reservoirs E, M and C are represented by Equations (4), (5) and (6),
respectively. The model can also account for user input daily ground-
water abstraction (pumping) data from the matrix and / or conduits.
Spring flow from the karst aquifer (QSPRING) is finally added to surface
runoff generated over the non-karst areas (QSURF) to form the total
catchment discharge downstream the karst spring outlet(s) (Equation
(7)).

RECHE,i = RECHE,i− 1 × e
−
1
δE +

⎛

⎜
⎝1 − e−

1
δE

⎞

⎟
⎠

×
∑nhrus− K

j=1

(
QKSURF,i,j+Q

K
LAT,i,j+Q

K
PERC,i,j

)
(1)

RECHM,i = RECHM,i− 1 × e
−
1

δM +

⎛

⎜
⎝1 − e−

1
δM

⎞

⎟
⎠×

∑nhrus− NK

j=1
QNKPERC,i,j (2)

RECHC,i = QTLOSS,i+
∑nhrus− NK

j=1
QNKLAT,i,j (3)

where RECHE,i and RECHE,i− 1 represent the recharge to the epikarst
reservoir on days i and i − 1 (mm.day− 1), respectively, δE is the delay
time for infiltrated water to reach the epikarst (days), QKSURF,i,j, QKLAT,i,j
and QKPERC,i,j are surface runoff, soil lateral flow, and soil percolation on
day i from the karst HRU j (mm.day− 1), respectively, RECHM,i and
RECHM,i− 1 represent recharge by soil water percolation from non-karst
HRUs to the matrix reservoir on days i and i − 1 (mm.day− 1), respec-
tively, δM is the delay time for infiltrated soil water to reach the matrix
(days), nhrus − K is the number of karst HRUs in the recharge area,
QNKPERC,i,j is the soil water percolation on day i from the non-karst HRU j
(mm.day− 1), RECHC,i is the recharge by soil lateral flow in non-karst
HRUs and water losses from channels to the conduit reservoir on day i
(mm.day− 1), QNKLAT,i,j is the soil lateral flow on day i from non-karst HRU j
(mm.day− 1), QTLOSS,i represents water losses from channels on day i
(mm.day− 1), and nhrus − NK is the number of non-karst HRUs in the
recharge area.

Epikarst reservoir
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dE(t)
dt

= RECHE(t) − QEM(t) − QEC(t)

dE(t)
dt

= RECHE(t) − kEM
(
E(t) − Emin

Lref

)αEM
− kEC

(
E(t) − Emin

Lref

)αEC (4)

Matrix reservoir

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dM(t)
dt

= RECHM(t) + QEM(t) − QMC(t) − QMS(t) − QMPUMP(t)

dM(t)
dt

= RECHM(t) + QEM(t) − kMC
(
C(t) − M(t)

Lref

)αMC
− kMS

(
M(t)
Lref

)αMS
− QMPUMP(t)

(5)
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Conduit reservoir

where E, M and C are the daily water levels of the epikarst, matrix and
conduit reservoirs (mm), respectively, QEM and QEC are the discharge
components from reservoir E to reservoir M and reservoir C (mm.day− 1),
respectively, Emin is the minimum water level for the activation of the
epikarst discharge function (mm), Lref is a reference length for normal-
ization of the water level of the reservoirs (mm), QMC is the matrix-
conduit bidirectional exchange flow (mm.day− 1), QMS and QCS are the
matrix and conduit discharge components into the spring (mm.day− 1),
respectively, kEM, kEC, kMC, kMS, and kCS are the specific discharge co-
efficients of the epikarst, matrix and conduit reservoirs (mm.day− 1),
αEM, αEC, αMC, αMS, and αCS are positive exponents (unitless), and QMPUMP
and QCPUMP are the pumping rates from the matrix and conduit reservoirs
(mm.day− 1), respectively.

QSTREAM,i = QSPRING,i +QSURF,i = QMS,i+QCS,i+QSURF,i (7)

where QSTREAM,i is the total discharge downstream the Las Hountas karst
spring, QSPRING,i is the spring flow contribution of the karst aquifer to
streamflow (sum of the matrix outflow QMS,i and conduit outflow QCS,i),
and QSURF,i is the contribution of surface runoff generated in non-karst
areas of the catchment to streamflow on day i (all variables are
expressed in mm.day− 1). The simulated streamflow hydrograph is given
in m3.s− 1.

2.3. The ISPEEKH model input data

2.3.1. Topography, land use, soil and lithology
The DEM of the Baget catchment was obtained from the US

Geological Survey’s Shuttle Radar Topography Mission files at 30–m
spatial resolution (https://earthexplorer.usgs.gov/). The catchment
altitude ranges from 502 to 1404 m a.m.s.l., and slopes vary between 10
to 30 %. A land-use/cover map of the catchment was extracted at
100− m resolution from Corine Land Cover (CLC) database (https://la
nd.copernicus.eu/pan-european/corine-land-cover), available at the
Pan-European level for years 1990, 2000, 2006, 2012 and 2018. The
land-use trajectory approach was applied to examine land-use change in
the catchment over the hydrological simulation period of 2006–2018.
Six land-use categories were identified, with no interannual changes
detected. The catchment is mainly covered by broad-leaved and conif-
erous forests (85 %), followed by pastures (8 %), moors and heathland
(5 %), sparse transitional woodland-shrub (1 %) and agricultural lands
(1 %). A soil map of the catchment was derived from the Food and
Agriculture Organization (FAO) Digital Soil Map of the World at
1:5,000,000 scale (https://www.fao.org/soils-portal/soil-survey/so
il-maps-and-databases/faounesco-soil-map-of-the-world/en/), and
overlaid with a lithology map, to delineate karst and non-karst HRUs
based on the catchment lithology, and to simulate the recharge from the
karst and non-karst landforms to the E, M and C reservoirs following the
karst groundwater module of ISPEEKH. The Baget catchment model was
created using QSWAT+ 2.0.3 in QGIS based on the input DEM, land-use
and soil maps, slope characteristics, and outlet location. A total of 19
subbasins and 225 HRUs were defined, with 116 HRUs being karst and
109 non-karst. The total area of the karst HRUs represented 70 % of the
catchment area while the non-karst HRUs accounted for 30%, and the
HRUs delineation followed the areal distribution of the karst and non-

karst regions in the catchment.

2.3.2. Meteorological variables
The meteorological variables required to conduct the hydrological

simulations with ISPEEKH, using the Penman Monteith approach for
evapotranspiration estimation, are daily precipitation, minimum and
maximum air temperature, relative humidity, wind speed, and solar
radiation. The precipitation datasets used in this study were retrieved
from: (1) Saint Girons weather station (43◦00′19″N; 01◦06′25″E; 414m a.
m.s.l.), located 8.3 km from the Baget catchment outlet, (2) CPC and E-
OBS gauge-based products, (3) SAFRAN, COMEPHORE, and ERA5-Land
reanalysis products, and (4) IMERG-LR, PERSIANN-CDR, CHIRPS, and
SM2RAIN-ASCAT satellite-based products. Additionally, the daily min-
imum and maximum air temperature, relative humidity, wind speed,
and solar radiation data were obtained from SAFRAN. The data points of
the different products used in this study are shown in Fig. S1 of the
Supplementary file.

The CPC precipitation dataset (Chen et al., 2008) is part of the
products suite of the CPC Unified Precipitation Project, underway at the
United States National Oceanic and Atmospheric Administration
(NOAA) Climate Prediction Center (CPC). The dataset is constructed by
interpolating the daily records from more than 30,000 gauge stations
using the optimal interpolation (OI) objective analysis technique (Jiang
et al., 2023), with a spatial coverage of 0.5◦ global land and a daily
temporal resolution from 1979 to the present (Xie et al., 2007). The CPC
data are available for download at https://psl.noaa.gov/data/gridded/d
ata.cpc.globalprecip.html.

E-OBS (European Daily High-Resolution Observational Gridded
Dataset; Haylock et al., 2008) is a land-only gridded daily observational
dataset for precipitation and other atmospheric variables over Europe.
This dataset is based on observations from the meteorological stations
(22,600 stations, September 2022) provided by the National Meteoro-
logical and Hydrological Services (NMHSs) and other data-holding in-
stitutes across Europe (Cornes et al., 2018). The E-OBS dataset is
delivered on regular latitude-longitude grids with spatial resolutions of
0.1◦ and 0.25◦ from 1950 to near present (June 2023), and is accessible
through the European Climate Assessment & Dataset (ECA&D, https
://www.ecad.eu/download/ensembles/download.php). E-OBS version
25.0e − 10 km spatial resolution was adopted in this study.

COMEPHORE (COmbinasion en vue de la Meilleure Estimation de la
Précipitation HOraiRE; Tabary, 2007; Tabary et al., 2012) is an hourly
reanalysis of surface precipitation accumulation over metropolitan
France at 1-km spatial resolution, provided by the French weather
forecasting agency Météo-France for years 1997–2022. The COME-
PHORE precipitation estimates are obtained using the data from the
French network of 24 radars and hourly and daily precipitation rain
gauges (approximately 4200 rain gauges with a daily time step including
approximately 1200 rain gauges with an hourly time step) (Fumière
et al., 2020; Le Roy et al., 2020).

SAFRAN (Système d’Analyse Fournissant des Renseignements
Adaptés à la Nivologie; Quintana-Seguí et al., 2008) is an hourly analysis
system of atmospheric variables (precipitation, 2-meter air temperature
and humidity, 10-meter wind speed, downward solar and infrared ra-
diation, and cloudiness), from 1958 to present, provided by Météo-
France for metropolitan France and Corsica at 8-km spatial resolution.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dC(t)
dt

= RECHC(t) + QEC(t) + QMC(t) − QCS(t) − QCPUMP(t)

dC(t)
dt

= RECHC(t) + QEC(t) + kMC
(
C(t) − M(t)

Lref

)αMC
− kCS

(
C(t)
Lref

)αCS
− QCPUMP(t)

(6)
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Estimates of the surface variables are derived over homogeneous cli-
matic areas, determined based on topography, and refined with respect
to nearby gauge-based observations using the optimal inter-
polation method. The analyses of temperature, humidity, wind speed,
and cloud cover are carried out every 6 hours based on a first guess from
the weather prediction model ARPEGE (Déqué et al., 1994) or the
ECMWF archives. Precipitation is analyzed at daily time step with an
initial guess inferred from climatological fields (Vidal et al., 2010). The
analyzed variables are then interpolated at the hourly time step, where
hourly precipitation distribution is inferred using the diurnal specific
humidity cycle and separated between rainfall and snow using the 0.5 ⁰C
isotherm (Moucha et al., 2021). Solar and infrared radiation are esti-
mated from the vertical profiles of temperature, humidity, and cloudi-
ness, using a radiative transfer model (Ritter and Geleyn, 1992) due to
the lack of observations for these two variables. Finally, all atmospheric
variables are projected to an 8-km regular grid at the elevation of the
grid cells in each homogeneous climatic zone, using the vertical profiles
for each zone.

ERA5-Land (fifth generation European Centre for Medium-Range
Weather Forecasts ECMW Reanalysis on global land surface; Hersbach
et al., 2020; Muñoz-Sabater et al., 2021) is a spatially enhanced global
dataset for the land component of the ERA5 reanalysis product, which is
developed by ECMWF at 0.25◦ spatial resolution and hourly temporal
resolution from 1950 onwards. The ERA5-Land dataset is obtained by
forcing the HTESSEL land surface component (version Cy45r1 of the
Integrated Forecasting System ISF) with low atmospheric meteorolog-
ical fields from ERA5. Precipitation data in ERA5-Land are generated
from ERA5 through a linear interpolation method based on a triangular
mesh (Wu et al., 2023), reducing the spatial resolution to 0.10◦ (Muñoz-
Sabater et al., 2021). The dataset is available from the Copernicus
Climate data store (https://cds.climate.copernicus.eu/cdsapp#!/datas
et/reanalysis-era5-land?tab=overview). In this study, the ERA5-Land
hourly dataset was aggregated to obtain daily values.

IMERG (Integrated Multi-satellitE Retrievals for the Global Precipi-
tation Measurement (GPM) mission; Huffman et al., 2019) is a precipi-
tation product with 30-min temporal resolution, 0.1◦ spatial resolution,
and 60◦ N–60◦ S full coverage. The product combines microwave pre-
cipitation estimates and microwave precipitation-calibrated infrared
fields, including monthly surface precipitation gauge analyses to create
research-level products. The Late-run version of the dataset (IMERG-
LR), characterized by 14 h latency, was adopted in the study, and the
product was accumulated to daily time scale (https://gpm.nasa.gov/da
ta/directory).

PERSIANN-CDR (Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks- Climate Data Record;
Ashouri et al., 2015) is a multi-satellite precipitation dataset that pro-
vides near-global precipitation information (60◦N-60◦S latitude and
0◦–360◦ longitude) at 0.25◦ spatial resolution and daily temporal reso-
lution, from 1983 to near present. The PERSIANN-CDR precipitation
estimate is generated by processing the Gridded Satellite (GridSat-B1)
infrared data using the PERSIANN algorithm, and by artificial neural
network training using the National Center for Environmental Predic-
tion (NCEP) Stage IV hourly precipitation data (Nguyen et al., 2018;
Salmani-Dehaghi and Samani, 2021). The PERSIANN-CDR data are
publicly available through the U.S. NOAA National Centers for Envi-
ronmental Information (NCEI) at https://www.ncdc.noaa.gov/cdr
/atmospheric/precipitation-persiann-cdr and the Centre for Hydrome-
teorology and Remote Sensing (CHRS) Data Portal at http://chrsdata.en
g.uci.edu.

CHIRPS (Climate Hazards center InfraRed Precipitation with Station
data) is a quasi-global precipitation dataset covering 50◦S-50◦N (and all
longitudes). The dataset incorporates 0.05◦ resolution satellite imagery
with in-situ station data in order to create a gridded daily rainfall time
series spanning from 1981 to near present (Funk et al., 2015). The daily/
0.05◦ CHIRPS V2.0 dataset was used in this study (https://data.chc.
ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/).

SM2RAIN-ASCAT (Soil Moisture to Rain—Advanced SCATterometer
V1.5) is a global scale daily rainfall product of 10-km spatial resolution,
obtained by application of the SM2RAIN algorithm (Brocca et al., 2014,
2019) to the Advanced SCATterometer (ASCAT) satellite soil moisture
data (Wagner et al., 2013). In fact, SM2RAIN algorithm allows to invert
the soil water equation to infer rainfall from the variation of soil mois-
ture The SM2RAIN-ASCAT used in this study spans the period of
2007–2022, available at (http://hydrology.irpi.cnr.it/download-area
/sm2rain-data-sets/).

The CPC, E-OBS, ERA5-Land and IMERG-LR coarse precipitation
datasets were downscaled to 1-km resolution by leveraging the statis-
tical information from CHELSA (Climatologies at high resolution for the
earth’s land surface areas; Karger et al., 2017), a high-resolution (30 arc
sec, ~1-km) global downscaled climate product hosted by the Swiss
Federal Institute for Forest, Snow and Landscape Research WSL. It is
based on a mechanistical statistical downscaling of global reanalysis
data or global circulation model output, and includes climate layers for
various time periods and variables. A triple collocation technique was
then applied to merge the downscaled CPC and IMERG-LR datasets
(Filippucci et al., 2024). The resulting high-resolution precipitation
products were applied in the hydrological modeling of the Baget
catchment (Fig. S1 of the Supplementary file). Precipitation data that
have been downscaled are indicated with ’-ds’ appended to each product
name throughout the manuscript.

2.3.3. Streamflow data
Streamflow at gauging station B1 (Fig. 1), located 60 m downstream

of the Las Hountas spring, is calculated from the stream water level
measured at 30 min-interval by a float-type water-level sensor and the
rating curves calibrated for this station by Mangin (1975). The daily
streamflow data from 01/01/2006 to 31/12/2018 at station B1 were
used to calibrate and validate ISPEEKH for each precipitation dataset.
During this period, streamflow was measured continuously, and the
daily discharge varied from 0.04 to 8.95 m3.s− 1, with an average value
of 0.45 m3.s− 1.

2.4. Sensitivity analysis, parameter estimation, and uncertainty
quantification methods for the ISPEEKH model

2.4.1. Parameter ESTimation Tool (PEST) followed by sensitivity analysis
For each precipitation dataset, ISPEEKH was set up to simulate the

Baget catchment daily streamflow from 2006 to 2018, with a 2–year
warm-up period (2006–2007), a 6–year calibration period (2008–2013),
and a 5-year validation period (2014–2018). Themodels were calibrated
with respect to daily streamflow measured at the gauging station B1. A
preliminary manual calibration was first performed to determine the
appropriate range values of the emptying exponents and discharge co-
efficients that not only optimize the simulated streamflow but also
accurately represent the simulated water levels of the epikarst, matrix,
and conduit reservoirs. This calibration process is required as the
ISPEEKH model’s ability to reproduce the dynamic behavior of water
storage in these reservoirs is contingent upon these parameters. In
particular, the model must capture the flow patterns of the conduit and
matrix water storage. For the conduit storage, this includes a rapid rise
in water levels, followed by a swift water transfer to the spring during
the high-flow periods and an attenuated response with a gradual
depletion during the low-recharge periods. In contrast, matrix water
storage should exhibit lower variability with slower water transfer and
reduced discharge to the spring. This manual calibration helps avoid
unrealistic scenarios where certain parameter combinations lead to
continuously increasing water levels in one or more reservoir even when
the streamflow simulation appears satisfactory. Under this application,
it was found that the value of the emptying exponents of the epikarst-to-
conduit flow (αEC) and conduit-to-spring flow (αCS) must not exceed 2.5.
The models were then calibrated automatically using the non-linear,
model-independent parameter estimator PEST (Doherty, 2018). PEST
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implements a local optimization technique that is based on the
Gauss–Marquardt–Levenberg algorithm to minimize the objective
function of the squared sum of weighted residuals between the simu-
lated and observed data.

TheMorris screening method (elementary-effects test) for qualitative
global sensitivity analysis (GSA) (Morris, 1991) was applied to assess the
sensitivity of the ISPEEKHmodel parameters governing streamflow. The
selected parameters, which include those related to evapotranspiration,
surface runoff, soil water fluxes, and karst groundwater fluxes, are listed
in Table 1 with their respective value ranges for sensitivity analysis. The
Morris method evaluates the relative sensitivity of the model parameters
by calculating the change in the model output when a specific model
parameter is altered (i.e., elementary effect), while keeping all other
parameters constant. A single elementary effect for the ith parameter is
computed as follows (Abbas et al., 2024):

EEi =
f
(
x1,⋯, xi + Δi,⋯, xp

)
− f(x)

Δi
(8)

where EEi is the elementary-effect value of the ith model parameter, f
represents the model; x1,⋯, xi is the model parameter value, and Δi is
the change in ith model parameter.

With this method, the mean and standard deviation of all elementary
effects for a given model parameter are used to assess parameter sensi-
tivity and are calculated as follows:

μ*i =
1
n
∑n

j=1
|EEi(j) | (9)

σi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n − 1

∑n

j=1

[

EEi(j) −
1
n
∑n

j=1
EEi(j)

]√
√
√
√ (10)

where μ*i and σi represent the mean and standard deviation of all EEi for
a given parameter i, and n is the number of EEi computations.

The pestpp-sen software tool (White et al., 2020) within the PEST++

environment was implemented to generate parameter values, update

ISPEEKH files, run the model simulations and compute sensitivity
indices for the Morris method.

SWAT+ allows for the calibration of various parameters by applying
a single value within a given parameter range, adding an increment to an
existing value, or applying a relative change of spatial parameters. For
the calibration of ISPEEKH with PEST, template files were created from
the model input files by replacing the original values of the targeted
calibration parameters in their respective input files with placeholders.
Using these template files, the updated values of the calibration pa-
rameters are written to the model input files at each iteration of a PEST
run. The parameters associated with the epikarst, matrix, and conduits
reservoirs in the “karst.data” input file (i.e., initial reservoir water levels,
infiltration delay times, threshold water level for flow activation,
emptying exponents and discharge coefficients) correspond to the karst
aquifer properties and are independent of the spatial variability of the
surface HRUs. The curve numbers, evapotranspiration parameters, and
soil parameters are calibrated at HRU level using template files of the
“cntable.lum”, “hydrology.hyd” and “soil.sol” input files, respectively.

2.4.2. Iterative ensemble smoother (iES) for parameter estimation and
uncertainty quantification

The Iterative Ensemble Smoother (iES) method (Chen and Oliver,
2013), integrated in the pestpp-ies tool (White, 2018) within the
PEST++ environment (Welter et al., 2015), was implemented in this
study to generate prior (uncalibrated results) and posterior uncertainty
estimates of ISPEEKH parameters. The iES method uses the Ensemble
Kalman Filter (EnKF), an algorithm for data assimilation that updates
state variables by incorporating measured data into the model results,
based on correlations between the state variables and measured data
(Evensen, 1994). The EnKF was initially implemented in the ensemble
smoother scheme (ES) (Van Leeuwen and Evensen, 1996). ES was then
modified by Chen and Oliver (2013) to operate iteratively using the
Gauss–Levenberg–Marquardt (GLM) algorithm (the iES method) with a
Jacobian matrix filled with finite-difference approximated derivatives,
and to improve the minimization of the sum-of-squared residuals
objective function for nonlinear problems. Chen and Oliver (2013) later

Table 1
Selected parameters, parameters description, and ranges for sensitivity analysis and calibration of the ISPEEKH model.

Parameter Parameter description Parameter range Input file Hydrological process

cn pastg f(cn a; c n b; cn c;
cn d)

SCS runoff curve numbers for pastures − 20% to+15% (relative) cntable.lum Surface runoff

cn wood f(cn a; c n b; cn c;
cn d)

SCS runoff curve numbers for broad-leaved and coniferous
forests

− 20% to+15% (relative)

esco Soil evaporation compensation factor 0.9–1 hydrology.
hyd

Evapotranspiration
epco Plant uptake compensation factor 0.9–1
perco Percolation coefficient 0–0.5 hydrology.

hyd
Soil water fluxes

awc Available water capacity (mm H2O.mm− 1 soil) of the ith soil
layer

− 60% to+80% (relative) soils.sol

bd Moist bulk density (g.cm− 3 or Mg.m− 3) of the ith soil layer − 20% to+20% (relative) soils.sol
sol k Saturated hydraulic conductivity (mm.h− 1) of the ith soil layer − 20% to+20% (relative) soils.sol
hE,0(he init) Initial water level in the epikarst (mm) 1–25 karst.data Epikarst-matrix-conduit

fluxesEmin(e min) Minimum water level for epikarst flow activation 0.01–1
δE(gwdelay e) Recharge delay to the epikarst (days) 0.5–2
αEC(a ec) Emptying exponent of the epikarst-conduit flow 0.5–2.5
kEC(k ec) Discharge coefficient of the epikarst-conduit flow (mm.day− 1) 0.0001–0.095
αEM(a em) Emptying exponent of the epikarst-matrix flow 0.5–1.5
kEM(k em) Discharge coefficient of the epikarst-matrix flow 0.0001–0.01
hM,0(hm init) Initial water level in the matrix (mm) 1–25
δM(gwdelay m) Recharge delay from the soil to the matrix (days) 1–3
αMC(a mc) Emptying exponent of the matrix-conduit flow 0.5–1.3
kMC(k mc) Discharge coefficient of the matrix-conduit flow (mm.day− 1) 0.0001–0.05
αMS(a ms) Emptying exponent of the matrix-spring flow 0.5–1.5
kMS(k ms) Discharge coefficient of the matrix-spring flow (mm.day− 1) 0.0001–0.01
hC,0(hc init) Initial water level in the conduit (mm) 1–25
αCS(a cs) Emptying exponent of the conduit-spring flow 0.5–2.5
kCS(k cs) Discharge coefficient of the conduit-spring flow (mm.day− 1) 0.0001–0.095
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reformulated the GLM algorithm to derive an approximate Jacobian
matrix empirically from an ensemble of random parameter values,
whereby the model needs to be run once for each member of the
ensemble (i.e. realization) rather than once for each parameter. This
reformulation reduced the computational burden of populating a full
rank Jacobian matrix for models with a large number of parameters
while maintaining the ability to be parallelized and model independent
(non-intrusive).

The iES method starts with a prior ensemble of parameter values. A
Jacobian matrix of parameter sensitivities is derived from the relation-
ships between the model parameters and output, using a range of
parameter values from the prior ensemble. The Jacobian matrix is
applied to update each parameter ensemble iteratively by minimizing
model residuals through the GLM algorithm, resulting in a posterior
ensemble of optimized model parameters. The propagation of the
ensemble of parameter realizations until a satisfactory fit with the
observed data yields an estimate of the posterior parameter distribution,
which can be used to quantify the uncertainty in the forecasts of interest.

2.5. Model predictive performance evaluation

The capacity of the model to predict streamflow under the different
precipitation datasets was evaluated with performance metrics
commonly used in karst hydrology: the Nash-Sutcliff efficiency NSE
(Nash and Sutcliffe, 1970), the coefficient of determination R2, the
percent of bias PBIAS (Gupta et al., 1999) (positive values indicate
model underestimation bias, while negative values indicate model
overestimation bias), and the Kling-Gupta efficiency KGE (Gupta et al.,
2009), adopting the performance quality classes by Moriasi et al. (2015)
and Jeannin et al. (2021). The non-parametric Kling-Gupta efficiency
KGENP (Pool et al., 2018) and the correlation coefficients of Pearson Rp
and Spearman Rs evaluation metrics were also computed so as to ac-
count for additional aspects of the model performance.

A wavelet multiresolution analysis (MRA), which is commonly used
to decompose a signal into a progression of successive approximations
and details in increasing order of resolution, was conducted to project
streamflow on an orthogonal basis of wavelet generated from a filter
band following a dyadic scale. For an orthogonal decomposition, the
sum of all components returns the initial signal. The usual performance
criteria consider the mean errors and do not capture how the model
errors can be structured in time and frequency (Labat et al., 2000b;
Sivelle et al., 2022). Thus, the application of MRA on both observed and
simulated streamflow times series under the uncorrected and corrected
precipitation datasets allows the evaluation of the hydrological model
performance across different temporal scales by calculating the Pearson
correlation coefficient (Rp) on the calibration and validation periods
according to the dyadic scale.

2.6. Correction of the precipitation datasets

The preliminary assessment of the Baget catchment water balance
conducted by Al Khoury et al. (2023) suggests that precipitation is

generally underestimated in the study area, which results in the un-
derestimation of the simulated streamflow. Several approaches are re-
ported in the literature to correct the bias of precipitation products
based on observed precipitation data from representative meteorolog-
ical stations, including the ratio bias and dual-core smoothing correction
methods, and the cokriging, probability matching, Bayesian correction,
and optimal interpolation–probability matching methods, among others
(Ye et al., 2023). In the case of the Baget catchment, the only available
observed precipitation dataset is from the meteorological station of
Saint Girons (414 m m.a.s.l), which is located outside the catchment at
8.3 km from its outlet. Therefore, in the absence of a precipitation
monitoring network that captures the altitude effect within the catch-
ment, the 1-km resolution COMEPHORE, CPC-ds, E-OBS-ds, ERA5-Land-
ds, IMERG-LR-ds and merged CPC-IMERG-LR-ds gridded precipitation
datasets were corrected in order to resolve the water balance discrep-
ancy prior to model calibration by “Doing Hydrology Backward (DHB)
(Kirchner’s methodology). Accordingly, an orographic correction mul-
tiplicative factor (OCFm) was computed for each dataset based on a
rearranged water balance equation (Khan and Koch, 2018):

OCFm,i =
PCPtrue,i
PCPobs,i

=
Qobs + ETa − Δg

Pobs,i
(11)

where OCFm,i is the calculated orographic correction multiplicative
factor for the gridded precipitation dataset i, Qobs is the mean annual
catchment discharge, ETa is the catchment mean annual actual-
evapotranspiration, Δg represents the catchment mean annual change
in glacier storage, Pobs,i is the observed (uncorrected) precipitation
dataset i, and PCPcorrected,i is the true (corrected) precipitation dataset i.
The measured streamflow data at the gauging station B1 and the grid-
based actual evapotranspiration estimates from SAFRAN over the
2006–2018 simulation period were used for the calculation of the OCFm
for each precipitation dataset (Table 2), and the change of glacier ice
volume is null for the catchment.

3. Results and discussion

3.1. ISPEEKH parameters sensitivities under the precipitation products

The sensitivities of the selected parameters were computed under all
precipitation datasets using the Morris screening method for minimizing
streamflow errors. The sensitivity measures (i.e., the mean (μ*) and the
standard deviation (σ)) are based on the elementary effect absolute
values of the model parameters and are not related to the scale and
magnitude of the input or outputs. Thus, they show the relative relation
between parameters (Abbas et al., 2024). The order of magnitude of (μ*)
and (σ) for all parameters and parameter sensitivity ranks remained
consistent across all precipitation datasets, and the average values of
(μ*) and (σ) obtained from the sensitivity analysis run under each pre-
cipitation dataset are illustrated in Fig. 3. The discharge coefficient and
emptying exponent of the conduit-to-spring flow (kCS; αCS) and the
discharge coefficient and emptying exponent of the epikarst-to-conduit
flow (kEC;αEC) ranked consistently as the top four most sensitive pa-
rameters irrespective of the input precipitation data, while the emptying
exponents of the epikarst-to-matrix, matrix-to-spring, and bidirectional
matrix-to-conduit fluxes (αEM;αMS; αMC) were noticeably less sensitive
than their counterparts αEC and αCS. This outcome is compatible with the
discharge characteristics of the Baget catchment, which includes a
shallow epikarst with high connectivity to a network of well-developed
conduits in the saturated zone, resulting in most infiltration water
passing from the epikarst to the conduits and emerging at the spring
outlet , with a low contribution from the matrix to the overall discharge.
The discharge coefficients of the epikarst-to-matrix flow, matrix-to-
conduit bidirectional flow, and matrix-to-spring flow (kEM; kMC; kMS)
also ranked among the most sensitive parameters along with soil pa-
rameters (i.e., percolation coefficient perco, available water capacity

Table 2
The orographic correction multiplicative factors (OCFm)
calculated for the 1-km resolution COMEPHORE, CPC-ds, E-
OBS-ds, ERA5-Land-ds, IMERG-LR-ds and merged CPC-
IMERG-LR-ds gridded precipitation datasets.

Precipitation dataset OCFm value

CPC-ds 2.03
E-OBS-ds 1.85
COMEPHORE 1.42
ERA5-Land-ds 1.23
IMERG-LR-ds 1.48
CPC-IMERG-LR-ds 1.89
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awc, and moist bulk density bd). Overall, the parameters governing karst
groundwater flow and infiltration were the most sensitive while all
surface runoff and evapotranspiration parameters ranked among the
least sensitive. These results are also consistent with the recharge-

discharge characteristics of the Baget catchment, where direct infiltra-
tion of most rainfall over the surface-exposed and well-developed epi-
karst zone feeds the karst aquifer and spring flow, with low surface
runoff generation and contribution to the catchment streamflow.

Fig. 3. Average values of the elementary effects (EE) mean (μ*) and standard deviation (σ), calculated with the Morris global sensitivity analysis for the selected
parameters of ISPEEKH with different precipitation datasets.

Table 3
Mean annual water balance in the Baget catchment (mm.year− 1) for years 2008 − 2018, simulated using ISPEEKH with Saint Girons gauge precipitation, gauge-based
precipitation products (CPC, E-OBS), reanalysis products (SAFRAN, COMEPHORE and ERA5-Land), and satellite precipitation products (PERSIANN-CRD, IMERG-LR,
CHIRPS, SM2RAIN-ASCAT). PCP: precipitation; PET: potential evapotranspiration, ETa: actual evapotranspiration; SURQ: surface runoff; RECH: groundwater
recharge; QSPRING: spring flow; QSTREAM: streamflow.

Precipitation dataset PCP PET ETa QSURF RECH QSPRING QSTREAM

Saint Girons 996.36 851.20 720.63 25.53 233.01 232.65 261.73
CPC 886.67 690.64 581.44 19.89 271.36 271.04 293.93
CPC-ds 892.17 686.97 581.87 26.47 265.76 265.43 295.25
E-OBS 949.78 681.60 574.54 44.54 311.30 311.17 360.01
E-OBS-ds 964.98 687.11 584.63 46.03 313.91 313.81 364.42
SAFRAN 1274.09 690.13 599.31 97.14 540.02 540.16 645.29
COMEPHORE 1287.34 686.84 591.07 132.54 517.80 517.49 660.00
ERA5-Land 1414.97 689.23 620.93 127.48 624.50 624.34 762.96
ERA5-Land-ds 1450.54 685.20 619.58 138.76 651.18 650.99 802.34
PERSIANN-CDR 982.77 692.03 598.29 30.75 341.02 340.66 375.64
IMERG-LR 1202.27 683.79 601.09 75.36 503.45 502.66 585.60
IMERG-LR-ds 1214.14 688.95 607.15 75.39 507.47 506.47 589.30
CPC-IMERG-LR-ds 950.85 687.30 596.73 37.34 296.66 296.36 337.57
CHIRPS 1098.07 695.29 597.00 53.94 441.35 441.45 502.13
SM2RAIN-ASCAT 1180.72 693.38 620.11 66.06 453.84 453.82 526.35

Table 4
Daily streamflow statistical performance for the ISPEEKH model simulations driven by different precipitation datasets.

Calibration Validation

Precipitation dataset NSE R2 PBIAS KGE NSE R2 PBIAS KGE

Saint Girons − 0.162 0.202 81.54 % − 0.226 0.171 0.46 72.17 % 0.016
CPC − 0.149 0.217 79.46 % − 0.223 0.106 0.469 68.53 % − 0.044
CPC-ds − 0.103 0.266 78.2 % − 0.179 0.101 0.474 69.7 % − 0.057
E-OBS 0.021 0.345 72.91 % − 0.064 0.278 0.537 63.67 % 0.109
E-OBS-ds 0.049 0.351 71.36 % − 0.034 0.268 0.525 64.62 % 0.101
SAFRAN 0.478 0.606 44.15 % 0.366 0.557 0.732 43.25 % 0.356
COMEPHORE 0.496 0.63 47.76 % 0.374 0.625 0.682 36.35 % 0.547
ERA5-Land 0.434 0.556 35.09 % 0.338 0.452 0.585 31.6 % 0.334
ERA5-Land-ds 0.459 0.555 32.06 % 0.379 0.477 0.577 27.72 % 0.379
PERSIANN-CDR − 0.127 0.113 67.87 % − 0.221 − 0.102 0.098 66.52 % − 0.25
IMERG-LR − 0.018 0.114 51.36 % − 0.051 0.111 0.201 46.15 % 0.083
IMERG-LR-ds − 0.015 0.126 53.25 % − 0.062 0.094 0.174 43.29 % 0.088
CPC-IMERG-LR-ds − 0.047 0.296 74.8 % − 0.127 0.176 0.481 65.7 % 0.021
CHIRPS 0.058 0.201 53.53 % 0.030 − 0.089 0.064 59.50 % − 0.177
SM2RAIN-ASCAT 0.024 0.255 59.08 % − 0.065 0.001 0.168 48.39 % − 0.105
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3.2. Performance of the coarse and downscaled precipitation datasets for
catchment water balance and streamflow simulation

The assessment of the Baget catchment water balance for the
2008–2018 period revealed that water balance is in deficit under all the
precipitation data series (Table 3). The mean annual precipitation (PCP)
varied between 887 mm under coarse CPC and 1451 mm under ERA5-
Land-ds. The mean annual simulated streamflow (QSTREAM) values
ranged from 262 to 802 mm compared to a mean annual observed
streamflow of 1145 mm in years 2008–2018. The simulated mean
annual recharge (RECH) to the karst aquifer reservoirs was consistently
equal to the simulated spring flow (QSPRING), showing that ISPEEKH
modeled karst groundwater storage and spring flow from the recharge
input successfully by conserving the water balance. The Baget is a
conservative catchment with a groundwater recharge zone of 13.25 km2

(Mangin, 1975), ruling out the possibility of additional water contri-
bution to the spring discharge from a larger recharge area or interbasin
groundwater flow. The QSPRING contribution to QSTREAM varied between
80 and 92 %, while direct surface runoff (QSURF) accounted for the
remaining 18–20 %, which is consistent with the Baget catchment
discharge characteristics where the perennial Las Hountas karst spring is
the primary source of discharge. The simulated mean actual evapo-
transpiration (ETa) values (582–721 mm.year− 1) were comparable to
the SAFRAN-based mean annual ETa (667 mm), indicating that the
uncertainty due to ET estimation is unlikely to generate the water bal-
ance discrepancy. Moreover, historical records also show that stream-
flow magnitude has been in the order of 1000 mm.year− 1 over the
1969–2005 period, indicating that the streamflow measurement un-
certainty does not justify the water balance discrepancy. Thus, precipi-
tation recorded at low altitude at Saint Girons station (414 m. a.m.s.l.),
8.3 km from the catchment outlet, cannot sustain the observed
streamflow, while field observations in the 1973–1999 period report a
mean annual precipitation of 1750 mm 0.5 km from the catchment (658
m a.m.s.l.) (Johannet et al., 2008).

Subsequently, the values of the NSE, R2, and PBIAS metrics (Table 4)
showed unsatisfactory performance for daily streamflow simulation
(NSE≤ 0.5, R2≤ 0.6, PBIAS≥ ± 15% in both calibration and validation
periods (Moriasi et al., 2015). The SAFRAN and COMEPHORE reanalysis
products, with mean annual PCP of 1274 and 1287 mm, respectively,
scored higher NSE and R2 values than all remaining precipitation
products, particularly during validation where NSE and R2 were satis-
factory (0.50 < NSE ≤ 0.70; 0.60 < R2 ≤ 0.75) despite a PBIAS of 40 %.
The coarse and downscaled ERA5-Land datasets yielded the lowest
PBIAS values (28 to 35 %) for streamflow underestimation among all
precipitation products. In contrast, the performance from the gauge-
based and satellite-based precipitation products was unacceptable,
with NSE and KGE values close to or below 0, low R2, and high PBIAS of
50 to 80 %. The reanalysis COMEPHORE, SAFRAN, and ERA5-Land
precipitation products outperformed the gauge- and satellite-based
precipitation products. Moreover, the spatial downscaling of the CPC,
IMERG-LR, and E-OBS data to 1-km resolution and merging of the
downscaled IMERG-LR and CPC data did not improve the predictive
performance compared with the coarse datasets, while downscaling of
ERA5-Land only improved the water balance estimation marginally by
reducing the underestimation bias by 3–4 % across both the calibration
and validation periods. The observed and simulated hydrographs under
the ensemble of precipitation products are provided in Figs. S2–S6 of the
Supplementary file. Overall, considerable discrepancies in the average
annual precipitation estimates, exceeding 500 mm.year− 1, were
revealed between the products. Hence, the reanalysis, gauge- and
satellite-based precipitation products considered in this study do not
represent the precipitation regime of the Baget catchment. Precipitation
is generally underestimated in the Pyrenees region due to precipitation
under catch by the rain gauges and the low-quality radar coverage in the
mountainous regions, which corroborates the poor model predictive
performance with the gauge- and satellite-based precipitation products.

Yet, the French kilometric dataset COMEPHORE benefits from rain
gauge data collected by the French electricity company, which main-
tains various hydroelectric power plants to increase the quality of the
dataset in several regions, such as Normandy and central France. The
combination of radar and rainfall data in COMEPHORE provides a
dataset on the Pyrenees that is of lower quality than the data on the rest
of France but remains of higher quality than other observational pre-
cipitation databases currently available for this mountainous region
(Fumière et al., 2020). This could justify the higher streamflow simu-
lation performance obtained under COMEPHORE precipitation
compared to the gauge- and satellite-based precipitation products. The
results of our study could not be compared to those of previous studies in
karst catchments, particularly those conducted by Mo et al. (2020), Mo
et al. (2022) in the XiaJia (799.2 km2) and Chengbi (2,087 km2) karst
river basins in China, due to the discrepancy in the basins’ sizes relative
to the Baget catchment (13.25 km2) as well as the differences in the
climatic features, landscape properties (i.e., topography, karst terrains,
land use, and soil), and karst recharge and groundwater flow dynamics.
Nonetheless, both studies reported an underestimation of flow under the
raw IMERG satellite precipitation and underlined the need to apply
correction and fusion methods based on gauge-measured precipitation
to improve the model predictive performance.

The optimal values of the emptying exponents (alpha) of the epi-
karst, matrix and conduit fluxes are summarized in Table 5. The values
of the epikarst-to-conduit flow emptying exponent αEC (1.775–2.5;
Mean: 2.309) and conduit-to-spring flow emptying exponent αCS
(1.536–2.5; Mean: 2.126) indicate that ISPEEKH simulated the conduit
fluxes in the Baget catchment as non-linear, which is consistent with the
karst aquifer discharge dynamics. These results indicate that the model
is well adapted to reproduce the hydrodynamic behavior of the study
catchment, despite underestimating streamflow under all precipitation
products. On the other hand, the emptying exponent of the matrix-to-
conduit bidirectional flow rate αMC (0.939–1.3; Mean: 1.081) was
mostly close to 1, suggesting that the exchange flow between the conduit
and the surrounding matrix is primarily determined by the hydraulic
conductivity of the fissured system.

3.3. Performance of the corrected and downscaled precipitation datasets
for catchment water balance and streamflow simulation

Following the correction of the COMEPHORE, CPC-ds, E-OBS-ds,
ERA5-Land-ds, IMERG-LR-ds and merged CPC-IMERG-LR-ds precipita-
tion data, the calibrated ISPEEKH models yielded comparable values of
the water balance components for the 2008–2018 period, with mean
annual PCP of 1781–1824 mm, ETa of 598–620 mm (equivalent to

Table 5
Optimal values of the emptying exponents (alpha) of the epikarst, matrix and
conduit fluxes simulated by ISPEEKH under different precipitation datasets.

Precipitation dataset αEM αEC αMC αMS αCS

Saint Girons 1.000 2.500 1.129 0.519 2.201
CPC 0.863 2.484 1.055 0.512 2.466
CPC-ds 0.738 2.433 1.300 0.543 2.452
E-OBS 0.867 2.468 1.025 0.506 2.467
E-OBS-ds 0.920 2.474 1.085 0.506 2.462
SAFRAN 0.799 2.500 1.176 0.578 1.536
COMEPHORE 0.789 2.430 1.056 0.513 1.885
ERA5-Land 0.721 2.500 1.061 0.575 2.077
ERA5-Land-ds 0.734 2.500 0.939 0.570 1.985
PERSIANN-CDR 0.738 1.929 1.094 0.575 1.737
IMERG-LR 0.757 1.775 1.070 0.593 1.776
IMERG-LR-ds 0.743 1.788 1.032 0.585 1.920
CPC-IMERG-LR-ds 0.923 2.487 1.124 0.519 2.491
CHIRPS 0.764 1.918 1.033 0.584 1.933
SM2RAIN-ASCAT 0.820 2.455 1.033 0.503 2.500
Min 0.721 1.775 0.939 0.503 1.536
Max 1.000 2.500 1.300 0.593 2.500
Mean 0.812 2.309 1.081 0.545 2.126
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33–35 % of PCP), QSURF of 194–237 mm, RECH and QSPRING of 920–963
mm, and QSTREAM of 1160–1194 mm (equivalent to 65–67 % of PCP)
(Table 6). QSPRING represented 78–82 % of QSTREAM and channel flow
amounted to the remaining 18–22 %. The PBIAS (absolute values) were
reduced considerably to less than 5 % in calibration and 10 % in vali-
dation after precipitation correction.

The corrected COMEPHORE precipitation yielded the streamflow
simulation with the highest overall NSE, R2, and KGE values (Table 7),
indicating satisfactory (0.50 < NSE ≤ 0.70; 0.60 < R2 ≤ 0.75) to good
performance (0.70 < NSE ≤ 0.80; 0.75 < KGE ≤ 0.85) based on Moriasi
et al. (2015) and Jeannin et al. (2021). The corrected E-OBS-ds precip-
itation improved the model predictive performance from unacceptable
to satisfactory, both in calibration and validation. The CPC-ds and
merged CPC-IMERG-LR-ds precipitation correction also enhanced the
model performance, particularly in calibration where both NSE and R2

surpassed 0.6 compared to 0.5 in validation, while KGE exceeded 0.7 in
calibration and 0.6 in validation. On the other hand, the NSE and R2

metrics varied only marginally under the corrected ERA5-Land-ds pre-
cipitation, as opposed to KGE increasing from 0.38 to above 0.6 and 0.5
in calibration and validation, respectively. Finally, the corrected
IMERG-LR-ds precipitation consistently performed poorly in streamflow
simulation, with very low NSE, R2, and KGE metrics.

Although precipitation correction ensured water balance closure by
mitigating the streamflow volume underestimation, this approach did
not improve streamflow simulation for every precipitation dataset. The
model driven by the corrected COMEPHORE precipitation best repro-
duced the discharge patterns during the high-flow periods by preserving
the rising and recession of the observed hydrograph, while accurately
estimating most peak flow values (Fig. 4c). In comparison, the models
run with the corrected CPC-ds (Fig. 4a), E-OBS-ds (Fig. 4b) and merged
CPC-IMERG-LR-ds (Fig. 4f) precipitation datasets often underestimated
peaks greater than 3 m3.s− 1. Moreover, the model better estimated flow
during recession under the corrected COMEPHORE precipitation rather
than the CPC-ds, EOBS-ds and merged CPC-IMERG-LR-ds precipitation.
Under the corrected ERA5-Land-ds precipitation, peak flow rates were

generally underestimated, while intermediate and low flows were
overestimated, resulting in simulated falling limbs that are higher than
the falling limbs of the observed hydrograph (Fig. 4d). Moreover, the
simulated and observed hydrographs under the corrected IMERG-LR-ds
precipitation were asynchronous and showed noticeable discrepancies
for the high- and low-flow magnitudes (Fig. 4e). Nonetheless, the NSE,
KGE, KGENP, Rp and Rs metrics, calculated for the mean simulated daily
streamflow hydrographs and plotted in radar charts for the calibration
and validation periods (Fig. 5), showed a globally higher model pre-
dictive performance under the ensemble of corrected precipitation data.
Fig. 6 illustrates the observed and best estimated daily streamflow with
prior and posterior prediction uncertainty bands under the corrected
COMEPHORE precipitation. The plot in Fig. 6a represents the prior
parameter ensembles with wider uncertainty bands, while the plot in
Fig. 6b shows the posterior ensemble that reduced the uncertainty band,
indicating that the ensemble smoother has incorporated the observa-
tional data effectively with higher quality precipitation data.

Fig. 7 shows the Pearson correlation coefficient (Rp) performance
metric as a function of time scale, based on the application of an
orthogonal wavelet decomposition on the observed and simulated
streamflow under the uncorrected and corrected 1-km resolution pre-
cipitation datasets. The uncorrected COMEPHORE and ERA5-Land-ds
reanalysis precipitation products had comparable performances and
outperformed their counterparts for the various scales. Correlations
under COMEPHORE ranged from 0.289 to 0.874 in the calibration
period and 0.228 to 0.906 in the validation period for the 2- to 32-day
scales, while correlations under ERA5-Land-ds varied from 0.098 (2
days) to 0.819 (32 days) in calibration and 0.156 (2 days) to 0.836 (16
days) in validation. The uncorrected CPC-ds and E-OBS-ds gauge-based
precipitation datasets yielded correlations of 0.182–0.564 and
0.245–0.666, respectively, in calibration for the 2- to 32-day scales, and
correlations of 0.262–0.767 and 0.198–0.827, respectively, in valida-
tion. Moreover, the uncorrected CPC-IMERG-LR-ds precipitation scored
correlations in the range of 0.201 (2 days)–0.588 (32 days) during
calibration and 0.401 (2 days)–0.804 (32 days) during validation. The

Table 6
Mean annual water balance fluxes in the Baget catchment (mm.year− 1) for years for 2008 − 2018, simulated using ISPEEKHwith the corrected precipitation datasets of
the 1-km resolution COMEPHORE and downscaled CPC, E-OBS, ERA5-Land, IMERG-LR, and CPC-IMERG-LR products.

Precipitation dataset PCP PET ETa QSURF RECH QSPRING QSTREAM

CPC-ds 1801.51 684.69 608.15 224.41 919.75 919.47 1164.76
E-OBS-ds 1788.33 685.09 602.63 210.29 963.24 962.91 1193.82
COMEPHORE 1823.76 685.15 598.35 236.71 926.39 926.24 1184.05
ERA5-Land-ds 1780.99 684.39 620.16 207.46 933.96 932.08 1159.57
IMERG-LR-ds 1792.90 688.06 619.85 193.71 951.99 949.33 1162.39
CPC-IMERG-LR-ds 1799.23 685.19 617.59 208.93 944.92 944.48 1173.16

Table 7
Daily streamflow statistical performance indices for the ISPEEKH simulations driven by the corrected COMEPHORE and downscaled ERA5-Land, CPC, E-OBS, IMERG-
LR, and merged CPC-IMERG-LR precipitation datasets.

Calibration Validation

Precipitation dataset NSE R2 PBIAS KGE NSE R2 PBIAS KGE

CPC-ds(1) 0.638 0.65 2.58 % 0.787 0.533 0.54 − 6.33 % 0.666
CPC-ds(2) − 0.103 0.266 78.2 % − 0.179 0.101 0.474 69.7 % − 0.057
E-OBS-ds(1) 0.646 0.666 − 2.25 % 0.81 0.67 0.66 − 6.23 % 0.786
E-OBS-ds(2) 0.049 0.351 71.36 % − 0.034 0.268 0.525 64.62 % 0.101
COMEPHORE(1) 0.719 0.736 3.20 % 0.854 0.637 0.732 − 10.65 % 0.772
COMEPHORE(2) 0.496 0.63 47.76 % 0.374 0.625 0.682 36.35 % 0.547
ERA5-Land-ds(1) 0.56 0.564 1 % 0.603 0.523 0.531 − 4% 0.547
ERA5-Land-ds(2) 0.459 0.555 32.06 % 0.379 0.477 0.577 27.72 % 0.379
IMERG-LR-ds(1) 0.016 0.087 3.87 % 0.168 0.014 0.108 − 7.37 % 0.232
IMERG-LR-ds(2) − 0.015 0.126 53.25 % − 0.062 0.094 0.174 43.29 % 0.088
CPC-IMERG-LR-ds(1) 0.623 0.624 2.1 % 0.719 0.499 0.503 − 7.3 % 0.614
CPC-IMERG-LR-ds (2) − 0.047 0.296 74.8 % − 0.127 0.176 0.481 65.7 % 0.021

(1) precipitation dataset after correction.
(2) precipitation dataset before correction.
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Fig. 4. Daily observed and simulated streamflow of the Baget catchment in years 2008–2018, using the ISPEEKH model driven by the corrected (a) downscaled CPC
precipitation, (b) downscaled E-OBS precipitation, (c) COMEPHORE precipitation, (d) downscaled ERA5-Land precipitation, (e) downscaled IMERG-LR precipitation,
and (f) downscaled merged CPC-IMERG-LR precipitation. NSE: Nash–Sutcliffe Efficiency; R2: coefficient of determination; PBIAS: percent bias; KGE:
Kling–Gupta Efficiency.
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model driven by the uncorrected IMERG-LR-ds precipitation showed the
poorest performances: correlations were negative for the 2-day scale,
and varied from 0.132 (4 days) to 0.252 (32 days) in calibration and
0.16 (4 days) to 0.387 (16 days) in validation.

Model performance improved across the various time scales under
the corrected COMEPHORE, E-OBS-ds, and CPC-ds products. The cor-
rected COMEPHORE precipitation exhibited the highest correlations,
which ranged from 0.785 to 0.941 in the calibration period and 0.769 to
0.931 in the validation period for the scales from 4 days to 32 days.
Under the E-OBS-ds precipitation, correlations increased to 0.686 (4
days)–0.932 (32 days) in calibration and to 0.703 (4 days)–0.919 (32
days) in validation. Correlations also improved considerably under the
corrected CPC-ds precipitation, increasing to 0.699–0.862 and
0.656–0.819 for the 4- to 32-day scales. On the other hand, correlations
were higher with the CPC-IMERG-LR-ds precipitation mainly during
calibration, increasing to 0.322 (2 days)–0.846 (32 days). Under the
corrected ERA5-Land-ds precipitation, correlation values increased

slightly (0.652–0.833) in the calibration period for the 4- to 32-day
scales but decreased (0.031–0.741) in the validation period, showing
an overall comparable model performance to the uncorrected ERA5-
Land-ds precipitation. Correlations only increased in the calibration
period for the 16- to 32-day scales but diminished in the validation
period under the corrected IMERG-LR-ds precipitation, indicating a
lower model performance compared to the uncorrected IMERG-LR-ds
precipitation.

Fig. 8 shows the envelopes of monthly average simulated streamflow
values under the various uncorrected and corrected 1-km resolution
precipitation datasets. The envelope formed with the uncorrected pre-
cipitation data reveals significant discrepancies between simulated and
observed discharge, at both monthly and annual scales. This suggests
limitations in the ISPEEKH model’s ability to accurately reproduce the
catchment hydrological processes when driven with uncorrected pre-
cipitation inputs. In contrast, the envelope with corrected precipitation
datasets demonstrates satisfactory predictive performances, with

Fig. 5. Radar chart of the NSE (Nash-Sutcliffe Efficiency), KGE (Kling Gupta Efficiency), KGENP (Kling Gupta Efficiency Non-Parametric), Rp (Pearson correlation
coefficient), and Rs (Spearman correlation coefficient) performance criteria for the (a) calibration and (b) validation periods of the mean daily streamflow ISPEEKH
simulations with the uncorrected and corrected precipitation datasets.

Fig. 6. (a) Prior and (b) posterior prediction uncertainty bands for streamflow simulation in the Baget catchment using ISPEEKH driven by corrected COMEPHORE
precipitation dataset.
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narrower ranges of simulated streamflow values and reduced discrep-
ancies between the simulated and observed discharge patterns, both in
the calibration and validation periods. Thus, the incorporation of cor-
rected precipitation data has enhanced the reliability and predictive
capability of the hydrological model, leading to more robust simulations
of streamflow dynamics.

3.4. Study limitations and future perspectives

This study underscored the importance of accurate precipitation data
quality for the hydrological modeling of mesoscale ungauged karst
catchments characterized by quick-flow processes. It highlighted the
value of applying corrected precipitation datasets at downscaled spatial
resolution in order to enhance the hydrological model’s predictive

capability of streamflow in such catchments as opposed to relying on
globally used gauge-based, satellite-based and reanalysis precipitation
products at coarse spatial resolutions. A catchment-scale precipitation
volume correction was performed to close the water budget before
model calibration by “Doing Hydrology Backward (DHB)” (Kirchner’s
methodology), with orographic correction multiplicative factors calcu-
lated for the 1-km resolution precipitation products. This correction
method, however, did not improve the simulated hydrographs under all
precipitation datasets. The corrected COMEPHORE reanalysis product,
specifically developed by merging radar and rain gauge data for
metropolitan France, delivered the best simulation results, suggesting
that fine-resolution regionally-tailored reanalysis precipitation products
could serve as base data for streamflow simulation in remote meso-scale
karst catchments.

Fig. 7. Pearson correlation coefficient (Rp) performance criteria over the calibration and validation periods, based on an orthogonal wavelet decomposition of the
observed and simulated streamflow times series under the uncorrected and corrected 1-km resolution precipitation datasets.
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This finding underscores a critical limitation: the absence of repre-
sentative precipitation gauges within the study catchment. Raw pre-
cipitation products, whether gauged-based, satellite-based or reanalysis,
cannot fully substitute for direct, localized observations. Moreover, the
bias correction of these products, while necessary, is insufficient to
achieve high accuracy without a robust network of precipitation gauges
within the catchment. The presence of such gauges is indispensable for
capturing the spatial and temporal variability of precipitation, ensuring
the reliability of hydrological models in similar ungauged or sparsely
gauged regions. Thus, for future research, daily and subdaily operating
rain gauges should be installed at different altitudes in the Baget
catchment in order to capture the spatial and temporal distribution
characteristics of the catchment precipitation, then evaluate the spatial
and temporal scale accuracy of regional and global precipitation prod-
ucts with respect to the station-measured precipitation. Subsequently,
different correction methods could be applied to these products, and

watershed hydrological modeling could then be performed with the raw
and corrected precipitation datasets so as to re-evaluate their accuracy
at daily and subdaily time scales, and assess the performance of the
correction methods.

Several approaches are reported in the literature to correct gridded
precipitation products with gauge observations such as ratio bias
correction, dual-core smoothing correction, Bayesian correction, cok-
riging, probability matching, optimal interpolation–probability match-
ing, integrated fusion through inverse error variance weighting (Ye
et al., 2023), artificial neural networks (Ait Dhmane et al., 2023), fre-
quency correction (Li et al., 2023), and distribution mapping (Londhe
et al., 2023). On the other hand, the elevation bands method has been
commonly used in SWAT to consider the orographic effects on precipi-
tation in mountainous regions. The method applies up to ten equally
spaced elevation bands in each subbasin to adjust regional precipitation
by weighting the elevation difference between the rain gauge and the

Fig. 8. Mean observed streamflow and mean minimum and maximum values of the ensemble of ISPEEKH streamflow simulations under the uncorrected and
corrected precipitation datasets considering (a) the calibration period at monthly scale, (b) validation period at monthly scale, and (c) both calibration and validation
periods at annual scale.
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band, and multiplying the elevation difference by a constant input
precipitation lapse rate (Tuo et al., 2016). Several studies have shown
that the elevation bands method in SWAT enhanced the accuracy of the
precipitation estimation and runoff simulations in mountainous regions
(Chiphang et al., 2020; Wu et al., 2019; Zhang et al., 2015), while others
underlined the need to improve it as the increase in precipitation with
altitude should not be constant but rather dependent on the precipita-
tion amount. In their study, Galván et al. (2014) observed that the
elevation band method in SWAT often underestimates intense precipi-
tation and overestimates lower precipitation due to discrepancies be-
tween subbasin altitudes and rain gauge elevations. To address this, they
proposed a modification to the SWAT source code that calculates a ratio
to multiply precipitation at the recording gauge and determine precip-
itation in the elevation band, rather than adding a constant value.
Similarly, Grusson et al. (2015) identified issues with SWAT’s over-
estimation of snow at higher elevations, attributed to the use of uniform
temperature and precipitation lapse rates. They suggested two ap-
proaches to mitigate this limitation: (1) increasing the number of
elevation bands, or (2) using the existing bands more effectively by
setting thinner bands at higher altitudes to cover smaller elevation
ranges. In SWAT+, the precipitation and temperature lapse rates should
adjust precipitation and temperature based on elevation data from
spatial objects and weather files. Although these changes were planned
to be reflected in the SWAT+ source code and documentation, the new
inputs were not operational in the version of SWAT+ used in this study.

Finally, continuous streamflow data from gauge station B1 was used
to calibrate the model. However, since spring flow is a major component
of streamflow in the Baget catchment, the absence of continuous spring
flow measurements for calibration limits the model’s ability to fully
capture groundwater dynamics, introducing uncertainty in simulating
both spring flow and overall streamflow. Therefore, future work should
prioritize the collection of continuous spring flow data at Las Hountas,
along with groundwater level measurements and hydrogeochemical
data, to enable a more comprehensive model calibration. This would
result in a more accurate representation of water fluxes and storage
dynamics within the karst aquifer, ultimately improving streamflow
predictions.

4. Conclusions

This study evaluated the performance of several coarse- and fine-
resolution precipitation products in simulating daily streamflow in the
small-scale Baget karst catchment (13.25 km2), located in a sparsely
monitored region in the Pyrenees mountains, southwest of France, and
characterized by rapid rainwater infiltration. The ensemble of precipi-
tation datasets used in this study included: the gauged-based products
CPC and E-OBS, the reanalysis products SAFRAN, COMEPHORE and
ERA5-Land, and the satellite-based products PERSIANN-CDR, IMERG-
LR, SM2RAIN-ASCAT, and CHIRPS. The CPC, E-OBS, ERA5-Land, and
IMERG-LR precipitation datasets were downscaled to 1-km resolution
and applied together with 1-km resolution merged CPC-IMERG-LR
precipitation in the hydrological analysis. The Baget catchment’s hy-
drological response to the precipitation products was simulated over the
years 2006–2018 using the ISPEEKH model, a modified variant of the
Soil and Water Assessment Tool (SWAT+) for spring flow-dominated
karst watersheds. This model incorporates three non-linear reservoirs
to simulate fluxes of the epikarst, conduit, and matrix water-bearing
components in a karst aquifer. In conclusion:

• The discharge coefficients and emptying exponents governing the
epikarst outflow to the conduits and the conduit outflow to the spring
were the most sensitive model parameters across the precipitation
products used in this study. This result aligns with the discharge
patterns observed in the Baget catchment, where fast recharge and
conduit-dominated flow are prevalent.

• Water balance analysis from 2008 to 2018 revealed a noticeable
deficit under the ensemble of the precipitation datasets. The gauge-
and satellite-based precipitation products yielded the lowest model
prediction performances, with a flow underestimation bias of around
48 to 74 %. The reanalysis products outperformed the gauge- and
satellite-based precipitation products, scoring higher NSE, R2, and
KGE metrics, and an overall 30–44 % flow underestimation bias. The
COMEPHORE precipitation performed best, followed by SAFRAN
and ERA5-Land precipitation.

• The downscaling of the CPC, IMERG-LR, ERA5-Land and E-OBS
precipitation datasets to finer 1-km spatial resolution improved the
model predictive performance insubstantially or only marginally
compared to the coarse datasets.

• The optimal values of the emptying exponents of the epikarst-to-
conduit and conduit-to-spring outflows, simulated under the
ensemble of the precipitation products, were mostly greater than 2,
suggesting that ISPEEKH was adapted to reproduce the non-linear
conduit flow dynamics in the Baget catchment and that the
discrepancy in the model predictive performance is mainly related to
precipitation quality.

• Finally, this study underscored the significance of incorporating
spatially distributed and corrected precipitation from various prod-
ucts in order to enhance the reliability of models in the hydrological
simulation of highly responsive small karst catchments. Based on
catchment-scale precipitation correction, the COMEPHORE rean-
alysis of precipitation covering mainland France generated the best
streamflow simulation, highlighting the need to install in-situ gauges
stations at various altitudes in the catchment to correct the fine
resolution reanalysis precipitation data for further improvement of
the discharge simulations.
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Déqué, M., Dreveton, C., Braun, A., Cariolle, D., 1994. The ARPEGE/IFS atmosphere
model: a contribution to the French community climate modelling. Clim. Dyn. 10,
249–266. https://doi.org/10.1007/BF00208992.

Doherty, J., 2018. PEST Model-Independent Parameter Estimation User Manual, 7th ed.
Watermark Numerical Computing, Brisbane, Queensland, Australia.
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