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A B S T R A C T

Meta-modelling and Bayesian inversion technique are proposed for fast and accurate in-situ
estimation of the total thermal resistance (𝑅Tot) of walls using non-intrusive wall instrumenta-
tion. Various sources of uncertainties are taken into account to provide an enhanced credible
interval for the thermal resistance estimate. In the considered protocol, a small zone of the
internal surface of the wall is excited by a prototype to get faster in situ estimation and to
limit the influence of external weather conditions. To be independent of the heat transfer
coefficients and of the misknown layer thicknesses, which are difficult to estimate, we use
herein the measurements of internal and external surface temperatures as boundary conditions
in a thermal direct problem reformulated. A meta-model of the thermal model is created based
on a statistical multi-fidelity approach with two levels of fidelity, Resistance-Capacitance (RC)
and 1D models, to achieve the Bayesian estimation of the total thermal resistance in a reasonable
computation time. The 𝑅Tot estimation method is applied to realistic internal insulated walls
(IIW), from poorly to highly insulated, under different weather conditions. Several numerical
tests are carried out and credible intervals are provided to study the importance of the
wall initial condition, the excitation time and the instrumentation. Finally, an experimental
application is conducted using real measurements on an internal insulated wall (IIW) in Nancy
(France). The obtained experimental results show that, in a short excitation time (10h) with a
reduced instrumentation, the proposed method accurately estimates the minimum wall thermal
resistance. For a standard wall of about 4 m2 K/W, a relevant estimate of 𝑅Tot with a relative
deviation less than 10% can be achieved by using a polynomial initial temperature profile
proposed in this study, sufficient measurements and an excitation time of 3 days. This study
thus offers prospects for improved energy assessment of buildings before and after renovation.

1. Introduction

The building sector accounts for more than one third of the global energy consumption and it is expected to increase in the
coming years [1,2]. In the European Union, this sector accounts for around 40% of the total energy consumption [3], and the
implementation of good thermal insulation in buildings is considered as one of the main sources of energy savings. In France,
a significant proportion of existing buildings (apartment blocks, houses, etc.) are particularly affected by energy losses and are
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therefore in need of renovation. To speed up this renovation process, the French thermal regulation RT2005 [4] imposed in 2005
an energy consumption target that resulted in a minimum resistance of 3 m2 K ∕W for an opaque building wall. This value was
evalued upwards in 2012 (RT2012) [5] to a minimum resistance of 4 m2 K ∕W for new or renovated buildings. In 2020 [6], as a
omplement to RT2012, a switch from thermal to environmental regulations is applied, with the aim of reducing the carbon impact

of buildings, further improving their energy performance and ensuring thermal comfort in scorching summers. In order to control
these various stages of construction and renovation, an approach is needed to determine in situ the thermal resistance of a wall with
associated credible interval.

In the literature, several existing studies propose approaches to identify the thermal properties of opaque walls. For example,
in [7,8], the authors compare three approaches (deterministic and probabilistic) to identify the total resistance of walls using
an active solicitation of the internal wall face. It is assumed that the thicknesses of each layer and the exchange coefficients
are considered known. Authors take into account only the uncertainties of the measurements while other uncertainties may be
present. They show that all three methods under controlled boundary conditions succeed numerically, in identifying the thermal
resistance on an internal insulated wall for a total wall thicknesses less than 0.45 m, with 20% accuracy. Based on experiments
carried out on a real wall in the laboratory, the authors explain that in a short time of measurement (10 h), only the first layers
of the wall can be characterised in the proposed identification process. Another comparison of three methods (heat transfer matrix,
analytical method and the finite element method) for determining wall thermal properties (conductivity and heat capacity) has
been proposed by Sassine et al. [9]. These methods are based on five days of data in the random boundary conditions case and
two days of data in the controlled case. The authors show that the results vary according to the method used and the boundary
conditions, but remain satisfactory for the determination of the thermal properties studied. ISO 9869-1 [10] provides a simple
method for determining thermal resistance from in situ measurements. However, due to its steady-state assumptions, this method
can require long measurement periods and may be seasonally limited. Rasooli and Itard [11] have improved this method by adding
nstrumentation to reduce the measurement time and improve the accuracy of the results. Several methods [12–15] have been

derived from ISO 8990 [16] (available only under laboratory conditions) and ISO 9869-1 [10] (dedicated to in situ measurements
nder specific environmental conditions), with ISO 9869-2 [17] extension, which involves long measurement times. A comparative

study of five methods for determining thermal resistance was carried out by Deconinck and Roels [18]. The authors conclude that
the reliability of methods for estimating thermal properties varies according to weather conditions. These properties are calculated
according to the methods of EN ISO 13786 [19], used by Ricciu et al. [20] to determine the thermal properties of the layers
of an experimental wall using a climatic chamber and harmonic loading. Similarly, Petojević et al. [21] used harmonic loading
o determine the thermal properties of a multi-layer wall using thermal pulse response functions and a least squares estimator
ased on in situ experimental data. Although harmonic stresses give accurate results, they are mainly used in the laboratory. In
he study [22], the authors propose a comparison between two modelling approaches, one based on a ‘‘white-box’’ model derived

from the physical heat equation and the other on a ‘‘black-box’’ autoregressive exogeneous (ARX) model. The optimal parameter
s estimated using the Levenberg–Marquardt algorithm [23,24], taking into account only the uncertainties of the measurement of

the interior surface flux. They demonstrate that when the external temperature remains constant, both approaches provide accurate
and similar estimates of the total thermal resistance. However, in other cases, only the ‘‘white-box’’ model-based approach manages
to provide accurate estimates of the total thermal resistance. The study [25] proposes a deterministic identification of the thermal
properties of wall bricks by individual characterisation of the materials. It provides reliable estimation results. A complement to
this study is proposed in [26], it presents a laboratory identification of the thermophysical properties (thermal conductivity (𝜆)
and capacity (ρC)) in masonry walls of building using the interior and exterior temperatures and fluxes of the wall. Assuming
omogeneous material properties in the wall, the authors show that the identification of 𝜆 is done with good accuracy (error less
han 15%) when considering a measurement time of more than 20 h. However, in the case of ρC the relative deviation exceeds
5% even for measurement time of up to 50 h. There are also several recent reviews on textitin-situ thermal evaluation methods.
or example, Teni et al. [27] reviewed recent non-destructive in-situ methods for evaluating the thermal transmittance (U-value) of

walls. Bienvenido-Huertas et al. [28] reviewed recent publications on wall U-value evaluation, but active evaluation methods and
ome basic theoretical models are lacking. Yang et al. [29] reviewed recent developments including steady-state methods, transient

methods and other non-destructive evaluation methods. Fundamental theories as well as instrumentation and systems were analysed.
The vast majority of these methods can be described as deterministic, in the sense that most of the effort is focused on constructing

 single deterministic estimator that is as accurate as possible. Many alternative studies take a Bayesian approach, which attempts to
ssociate uncertainties and credible interval with these estimates. Among these methods, Biddulph et al. [30] developed a Bayesian
stimation method to simultaneously estimate thermal resistance and effective thermal mass by comparing two simple wall models:

a single thermal resistance model without thermal mass (NTM) and a two thermal resistance model with single thermal mass
(STM). They showed that the STM model significantly reduces the time needed to thermally characterise the wall. This method was
urther improved by Gori et al. [31]. Another study [32] proposed a Bayesian approach to determine the thermal performance of

a wall and the associated uncertainties. This approach was tested both on a virtual wall with known thermal properties and initial
emperature, and on real data corresponding to 8 days of measurements. These different dynamic methods allowed the U-value
o be determined, but still required several days of measurements. Based on a 1D model and assuming known layer thicknesses,
n indirect determination of the thermal resistance was also applied in [33] on a IIW in climatic chamber (laboratory), while

only taking into account temperature and flux measurement uncertainties in a Bayesian framework. The authors pointed out that
the effect of uncertainties remains relatively small and cannot be fully interpreted in terms of bias with respect to a reference
value, due to experimental limitations in quantifying this effect on the estimated thermal parameters. Another Bayesian approach
based on experimental data collected over one year was proposed in [34] to estimate the thermal conductivity and time-varying
2 
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Fig. 1. Geometry of a 4-layer IIW considered in the study.

internal convective heat transfer coefficient of three layers of a wall. Despite its high computational cost (about 105 direct model
computations), this method provides parameter estimates with low standard deviation.

Most of previous works has focused on the estimation of wall thermal resistance under laboratory conditions or using
deterministic approaches or considering simplified assumptions in Bayesian formalism. The aim of this study is to better take into
account the various sources of uncertainty and to provide a fast in-situ identification of the thermal resistance of walls with its
associated credibility interval using Bayesian framework. The consideration of the various sources of uncertainty makes it easier
to interpret the estimation results, and in particular the main causes of the uncertainties obtained (thus facilitating the path to
potential improvements). In this work, the estimation of the thermal resistance of a wall is formulated as an inverse problem. The
proposed method allows not only the determination of the total thermal resistance of the wall, but also the resistances of each
individual layer. Using a meta-model constructed from physical thermal numerical models and a multi-fidelity statistical approach,
we therefore search the most likely thermal properties of the wall to lead to such thermal measured responses. The specificity of
this work is to develop a method which is at the same time operational, robust, and explainable. By operational, we mean a method
that is fast, not very intrusive from an experimental point of view and easily deployable on building walls. It requires only very
partial information on the wall to be studied (only the number of layers of the wall will be required), while being relatively cheap
numerically. By robust, we mean that the method is capable of estimating with good accuracy the insulation properties of a large
number of walls with very different properties (from poorly to highly insulated walls), while being relatively independent of the
climatic conditions prevailing during the experiment.

The articulation of this paper is thus divided into three main parts. Section 2 first presents the thermal direct numerical model on
which the inversion problem will be based. The multi-fidelity predictors and Bayesian approach proposed for estimating the thermal
properties of the wall are then the subject of Section 3. Section 4 finally presents the efficiency of the proposed method to estimate
the thermal properties of very different walls, when confronted to very different weather conditions. These applications will first
be carried out on simulated data, in order to be able to more easily highlight the strengths and limits of the proposed approach in
a perfectly controlled framework, then in a second step on experimental data on a real internal insulated wall in natural weather
conditions.

2. Problem statement and thermal direct modelling

In this section, the direct model that will be used to estimate the thermal properties of a wall is presented. Firstly, we introduce
the structure of internal insulated wall (IIW) and the notations that will be used throughout the article. IIW is widespread in new
building construction in France. In renovation actions, the advantage of IIW is that it is often less expensive than external insulation
and has no impact on the external appearance of the building, which can be regulated by urban planning. Let us note that the
proposed methodology can also be adapted and applied to many other wall types. In particular, we will discuss the influence of the
heat transfer coefficients and how the thermal problem can be rewritten to get rid of this influence, as well as the influence of the
initial condition.

2.1. Wall structures, properties and introduction to the identification problem

In this work, we mainly focus on IIW as presented in Fig. 1. Such a wall is composed of four layers, with different physical
properties. Let 𝑡 be the time. For each layer 𝑖 ∈ {1, 2, 3, 4}, we note 𝜆𝑖 (W/(m K)) the thermal conductivity, 𝜌𝐶𝑖 (J K−1∕m3) the
volumetric heat capacity, 𝑒𝑖 (𝑚) the thickness, and 𝑅𝑖 = 𝑒𝑖∕𝜆𝑖 (m2 K ∕W) the associated thermal resistance (see Fig. 1 for a graphic
visualisation of these quantities).

All these quantities are supposed unknown. Only relatively large value ranges derived from expert knowledge are available. To
verify that the wall complies with the thermal insulation performance specified in building regulations such as in [6], our main goal
in this article is to identify in-situ, the total thermal resistance of the wall,
𝑅Tot = 𝑅1 + 𝑅2 + 𝑅3 + 𝑅4.

3 
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As it was proposed in [7], an active thermal solicitation is considered, which consists in heating a zone on the inner surface of the wall
ith a Heaviside-type excitation as presented in red in Fig. 1. As the objective is not to qualify thermal bridges, the thermal excitation

must not be placed near windows, doors or corners of the room. Moreover, for easy installation by an operator, the heating device
must not be cumbersome and must be placed on the interior surface of the wall. For more details on the experimental prototype
developed, see [7,8]. Compared to standardised methods [10], this controlled excitation allows a faster identification of 𝑅Tot (in
particular 𝑅2, which is the main contributor to the total resistance), while overcoming the limitations associated with sensitivities
to external conditions [22]. Once the excitation starts, the heat flux excitation on the internal wall surface, denoted 𝛷exc, increases
o reach a maximum of approximately 400 W∕m2. The inside and outside temperatures of the air are respectively denoted by 𝑇int
nd 𝑇ext. In natural weather conditions, the external surface of the wall is moreover exposed to a solar flux, which is noted 𝛷sun
nd which varies over time, and we denote by ℎint (respectively ℎext) the interior (respectively exterior) coefficient of heat transfer.
or operational purposes, the measurement in existing buildings must be done in non-intrusive and non-destructive ways. Hence, a
urface temperature sensor and a thermal flux sensor are placed at the centre of the heating zone on the inner surface of the wall.
wo sensors can be added to the outer surface of the wall to measure the outer surface temperature and outer thermal flux. The
urface temperatures (resp. the thermal fluxes) are denoted 𝑇Si and 𝑇Se (resp. 𝜑Si and 𝜑Se ). The subscript Si refers to the interior
urface, while S𝑒 refers to the exterior surface of the wall. At last, we note 𝑇W0

the temperature at any position of the wall at the
nitial time of the experiment.

Among all these quantities, it is important to make a distinction between the quantities that :

• We assume to know from measurements : 𝑇ext , 𝑇int , 𝑇Si , 𝑇Se , 𝜑Si , 𝜑Se ,
• It is possible to know by installing a more or less sophisticated measuring device : 𝛷sun, 𝛷exc,
• We assume unknown : 𝑒𝑖, 𝜌𝐶𝑖, 𝑅𝑖, 𝑇W0

, ℎint , ℎext .

2.2. Influence of the global exchange coefficients

It is well known that the internal (ℎint) and external (ℎext) heat transfer coefficients have a strong impact on 𝑇Si , 𝑇Se , 𝜑Si and
𝜑Se [35]. As these measured quantities are used to estimate the thermal properties of the wall, it seems essential to be able to identify
the internal and external heat exchange coefficients ℎint , ℎext or to limit the influence of these coefficients. On the one hand, optical
measurements or infrared temperature mapping methods can be used to estimate ℎint and ℎext . But they generally require expensive
equipment that do not fulfil the objective of our work [36–38]. On the other hand, they can be estimated, at the same time as the
other properties of the wall. However, as these quantities vary according to the weather conditions (air flow, temperature, etc.), it
greatly complicates the estimation problem.

Therefore, to avoid estimating these coefficients (which is not the aim of the study), a reformulation of the thermal problem
independent of ℎint and ℎext is proposed in Section 2.3, which consists in imposing 𝑇Si and 𝑇Se as boundary conditions (see Eq. (4)),
nd make the inversion problem rely on 𝜑Si and 𝜑Se only. Note that in this case, the estimation problem does not need the

measurement of 𝛷sun and 𝛷exc. The measurement of 𝑇int and 𝑇ext is also not required.

2.3. One-dimensional reformulated thermal model

The 3D thermal model appears to be too expensive numerically to be directly used in a Bayesian formalism for the estimation
f the total thermal resistance of a wall. We therefore propose to consider a simple 1D model in the inversion process. Since the
hicknesses of each layer is not known, we propose to scale the thermal equations so that they no longer depend on 𝑒𝑖 by making a
hange of variable. If 𝑥 ∈ [0, 𝑒1 + 𝑒2 + 𝑒3 + 𝑒4] characterises the position in the wall, we note 𝑥𝑖 ∈ [0, 1] the normalised depth in layer
, such that : 𝑥1 = 𝑥∕𝑒1 f or 𝑥 ∈ [0, 𝑒1], 𝑥𝑖 = (𝑥 −

∑𝑖−1
𝑗=1 𝑒𝑗 )∕𝑒𝑖 f or 𝑥 ∈

[

∑𝑖−1
𝑗=1 𝑒𝑗 ,

∑𝑖
𝑗=1 𝑒𝑗

]

. As a consequence, the 1D model only depends
n the thermal resistances 𝑅𝑖 and the product of the thicknesses and volumetric heat capacities 𝑒𝑖 × 𝜌𝐶𝑖 in each layer 𝑖, that will
e designated in the following as layer capacitance, and will be grouped in a single parameter noted 𝑒𝜌𝐶𝑖 to reduce the number of
nknowns. But we also prevent ourselves from precisely identifying the 𝜌𝐶𝑖 of the wall (we will only know them up to the thickness
f the wall). For all 1 ≤ 𝑖 ≤ 4, let 𝑇𝑖(𝑥𝑖, 𝑡) be the temperature in layer 𝑖 at depth 𝑥𝑖 ∈ [0, 1] and time 𝑡 ∈ [𝑡0, 𝑡𝑓 ]. The constants 𝑡0 and
𝑓 therefore correspond to the initial and final times of the experiment. The scaled partial differential equation that 𝑇𝑖 must satisfy
t all 𝑥𝑖 and all 𝑡 is therefore given by

𝑒𝜌𝐶𝑖
𝜕 𝑇𝑖
𝜕 𝑡 − 1

𝑅𝑖

𝜕2𝑇𝑖
𝜕 𝑥𝑖2

= 0, 1 ≤ 𝑖 ≤ 4. (1)

The following continuity conditions (of temperature and flux) at the different layer interfaces and at any time 𝑡 ∈ [𝑡0, 𝑡𝑓 ] must
lso be ensured:

𝑇𝑖(𝑥𝑖 = 1, 𝑡) = 𝑇𝑖+1(𝑥𝑖+1 = 0, 𝑡), 1 ≤ 𝑖 ≤ 3, (2)

1 𝜕 𝑇𝑖 (𝑥𝑖 = 1, 𝑡) = 1 𝜕 𝑇𝑖+1 (𝑥𝑖+1 = 0, 𝑡), 1 ≤ 𝑖 ≤ 3. (3)

𝑅𝑖 𝜕 𝑥𝑖 𝑅𝑖+1 𝜕 𝑥𝑖+1
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At last, we define boundary conditions (at the inner and outer surfaces of the wall, i.e. at 𝑥1 = 0 and 𝑥4 = 1) and initial condition:

𝑇1(𝑥1 = 0, 𝑡) = 𝑇Si (𝑡), 𝑇4(𝑥4 = 1, 𝑡) = 𝑇Se (𝑡), (4)

𝑇𝑖(𝑥𝑖, 𝑡 = 𝑡0) = 𝑇W0
(𝑥𝑖), 𝑥𝑖 ∈ [0, 1], 1 ≤ 𝑖 ≤ 4, (5)

Let us notice that 𝑇Si , 𝑇Se , 𝜑Si , and 𝜑Se , can now be written:

𝑇Si =
{

𝑇1(𝑥1 = 0, 𝑡), 𝑡 ∈ [𝑡0, 𝑡𝑓 ]
}

, 𝑇Se =
{

𝑇4(𝑥4 = 1, 𝑡), 𝑡 ∈ [𝑡0, 𝑡𝑓 ]
}

, (6)

𝜑Si =
{

− 1
𝑅1

𝜕 𝑇1
𝜕 𝑥1

(𝑥1 = 0, 𝑡), 𝑡 ∈ [𝑡0, 𝑡𝑓 ]
}

, 𝜑Se =
{

− 1
𝑅4

𝜕 𝑇4
𝜕 𝑥4

(𝑥4 = 1, 𝑡), 𝑡 ∈ [𝑡0, 𝑡𝑓 ]
}

. (7)

2.4. Influence of the initial condition (IC)

In general, it is not straightforward to know the initial temperature in the wall (𝑇W0
). In the literature, many studies conducted

n laboratories generally assume that the initial temperature in the wall (or the layers) is known at 𝑡 = 𝑡0, as it is done in [22,34,35].
For experiments that are conducted in situ under not necessarily controlled conditions, the initial temperature in the wall is most of
he time calculated based on stationary assumption, as it is done in [7]. However, as it will be illustrated in the application section,
his assumption of stationary is often invalid, and can strongly degrade the quality of the estimation of the thermal proprieties of
he wall studied. To reduce the influence of the initial condition on the identification of 𝑅Tot , two ways of improvement are thus
roposed herein. When possible, before the estimation procedure, we recommend using a stabilisation period during which the
eat flux excitation on indoor wall face 𝛷exc is fixed at 0 W∕m2. The longer this stabilisation period, the less important the initial
emperature in the wall will be. From the analysis of a large number of numerical tests and in agreement with [39], we noticed

that imposing a stabilisation period of 3 days made it possible to almost overcome this lack of knowledge about the wall initial
temperature. If it is not possible to achieve this long stabilisation period, we propose to replace the stationary hypothesis by an
hypothesis of piece-wise polynomial evolution of the temperature in the wall, and to estimate the coefficients of these polynomials
from the measurements of the temperatures and the surface fluxes on wall faces at 𝑡 = 𝑡0 only. The proposed temperature profiles are
therefore chosen as first-order polynomials for the temperatures in layers 1 and 2 (internal coating and insulation), and second-order
polynomials for the temperatures in layers 3 and 4 (support wall and external coating):

{

𝑇𝑖0 (𝑥𝑖, 𝑡 = 𝑡0) = 𝑎𝑖𝑥𝑖 + 𝑏𝑖, 𝑖 ∈ {1, 2} ,
𝑇𝑖0 (𝑥𝑖, 𝑡 = 𝑡0) = 𝑎𝑖𝑥2𝑖 + 𝑏𝑖𝑥𝑖 + 𝑐𝑖, 𝑖 ∈ {3, 4} .

(8)

We denote by 𝑇 Poly
W this polynomial approximation of the true initial temperature 𝑇W0

in the wall at the initial time. This choice
is on the one hand motivated by the fact that there is more variation on the exterior side (temperature and solar flux), and on the
ther hand by the fact that the conditions of continuity in temperature and flux and the measured temperatures and heat fluxes
n indoor and outdoor wall faces only allow us to estimate 10 coefficients for these profiles (two equations for each of the five
nterfaces for a 4-layer wall). After testing the proposed profiles on IIW and comparing with other possible configuration profiles,
t appear to be a very interesting choice in our application.

For the sake of concision, the details of the estimation of these coefficients are presented in Appendix A.

2.5. Thermal direct model and set parameters

As mentioned above, the aim of this study is to identify the unknown thermal properties of the walls under investigation, in
particular the total thermal resistance. Fig. 2 illustrates the two main phases of the test: the stabilisation phase (between 𝑡𝑆0 and 𝑡0)
nd the excitation phase (between 𝑡0 and 𝑡𝑓 ). Only the measurements taken during the excitation phase are used in the identification
rocedure. The surface temperature measurements (𝑇Si and 𝑇Se ) and the temperature 𝑇W0

in the wall at 𝑡 = 𝑡0 are used as boundary
onditions and initial condition respectively in the thermal model. The heat flux measurements 𝜑Si and 𝜑Se are used in the inverse
roblem to estimate the thermal resistances (𝑅𝑖) and the capacitance (𝑒𝜌𝐶𝑖) of the four layers. To facilitate the reading, all the
arameters to be estimated are grouped together in the vector

𝒛 = (𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑒𝜌𝐶1, 𝑒𝜌𝐶2, 𝑒𝜌𝐶3, 𝑒𝜌𝐶4). (9)

Thanks to this formulation, it can be noted that the thermal model is no longer dependent of the indoor and outdoor temperatures
𝑇int , 𝑇ext), of the exchange coefficients (ℎint , ℎext), nor of the solar and excitation fluxes (𝛷sun, 𝛷exc). In this way, the model only
epends on measurable or controllable quantities, to make it as easy as possible to estimate the parameters related to the wall’s
esistance and thermal capacitance.

3. Bayesian estimation of the total thermal resistance of internal insulated walls

In this section, the proposed method to identify the thermal resistance of a multi-layer wall is presented. The Bayesian formulation
is presented in Section 3.1. In order to reduce the numerical costs associated with the estimation, we then explain in Section 3.2.3
how to couple this previous formulation to statistical learning methods. Finally, an analysis of the sources of uncertainty is presented
in Section 3.2.
5 
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Fig. 2. Graphical representation of the direct model used for the parameter estimation.

3.1. Bayesian formalism

The objective of this work is to estimate the vector 𝒛 that characterises the thermal properties of a four-layers wall. To incorporate
the various sources of uncertainty in the problem, a Bayesian approach is adopted in this work [40]. This approach models the
unknown quantities as random variables: the vector 𝒛 to be estimated and the different errors that may affect the measurements
and/or the model response are therefore modelled by random vectors. In this context, estimating 𝒛 no longer means searching for a
single deterministic value, but requires characterising its a posteriori probability distribution, conditioned by the various measured
quantities of the problem. The information provided by such a Bayesian inversion approach is therefore richer, in the sense that the
a posteriori distribution quantifies the accuracy of the estimate in a natural way: the wider the domain over which this a posteriori
law is spread, the less relevant the estimate, and vice versa. We denote by 𝜋(𝒛) the a priori probability density function (PDF) of 𝒛,
which we will consider to be uniform over a well-chosen domain of definition 𝛺 ⊂ R8 using expert knowledge (see [41] for more
details about expert elicitation). The choice of the a priori knowledge is a central step in the proposed Bayesian approach. It must
be chosen so that the reference value to be estimated lies within the interval of the a priori distribution. In other words, if the a
priori interval is too small and does not contain the reference, the method will not be able to find the correct value, but will return
the value in the interval in question that are most compatible with the measurements available. The a posteriori distribution, noted
𝜋(𝒛|𝒚mes), can then be written from the Bayes’ formula under the form

𝜋(𝒛|𝒚mes) = 𝜋(𝒛) × 𝜋(𝒚mes
|𝒛)

∫𝒛′ 𝜋(𝒛′) × 𝜋(𝒚mes
|𝒛′)𝑑𝒛′

, 𝒛 ∈ 𝛺 , (10)

where the symbol | is for statistical conditioning, 𝜋(𝒚mes
|𝒛) is the likelihood function, and 𝒚mes gathers the measured values of 𝜑Si

and 𝜑Se at 𝑁𝑡 different times between 𝑡0 and 𝑡𝑓 , which we propose to note 𝑡1,… , 𝑡Nt
. We note 𝑁max

𝑡 the dimension of 𝑦𝑚𝑒𝑠, which is
equal to 2𝑁𝑡 when the measurements of 𝜑Si and 𝜑Se are available, and to 𝑁𝑡 if only the measurements of 𝜑Si are available.

The estimation of 𝒛 therefore requires the introduction of the likelihood function 𝒛 ↦ 𝜋(𝒚mes
|𝒛), which is supposed to link the

thermal characteristics of the wall to the measurements collected. In order to construct this likelihood function, we introduce several
notations associated to the heat fluxes 𝜑Si and 𝜑Se . We first note 𝒚 the vector gathering the true (but unknown) values of 𝜑Si and
𝜑Se at the different discretisation times, such that

𝒚mes = 𝒚 + 𝜀mes
𝜑 , (11)

where 𝜀mes
𝜑 is the measurement error (whose properties depend on the sensors used). We then assume that 𝒚 can be approximated

with accuracy by a 3D thermal model of the wall, when considering the true boundary condition temperatures on the interior and
exterior surfaces (𝑇Si and 𝑇Se ) and the true initial temperature in the wall at the initial time 𝑡0 (𝑇W0

).
As explained in Section 2.3, the time required to solve such 3D models being significant, we propose to limit ourselves to the

use of a 1D thermal model for the estimation step. We thus denote by 𝒖1D(𝒛; 𝑇Si , 𝑇Se , 𝑇W0
) the approximation of 𝒚 using the 1D

thermal model introduced in Section 2.3. The three true temperature fields 𝑇Si , 𝑇Se , 𝑇W0
are however unknown. Concerning 𝑇Si

and 𝑇Se , we only have access to noisy measurements of these temperatures. Two additional approximations are then introduced to
approximate this link between the vector of measurements 𝒚mes and the outputs of the 1D code. We first propose to replace 𝑇Si
and 𝑇Se by smoothed versions noted 𝑇 Smoot h

Si
and 𝑇 Smoot h

Se
(see Section 3.2.2 for more details). Then, we propose to replace the true

initial temperature in the wall 𝑇W0
by the initial temperature 𝑇 Poly

w that is derived from a polynomial approximation as explained
in Section 2.4. Finally, to reduce the numerical cost of the 1D model in the Bayesian inversion procedure, we propose to replace
the function 𝒛 ↦ 𝒖1D(𝒛; 𝑇 Smoot h

Si
, 𝑇 Smoot h

Se
, 𝑇 Poly

w ) by a multi-fidelity meta-model 𝒛 ↦ 𝒖Met a(𝒛; 𝑇 Smoot h
Si

, 𝑇 Smoot h
Se

, 𝑇 Poly
w ), that is to say a

cheap-to-evaluate mathematical approximation of this function (the details of this last approximation are provided in Section 3.2.3).
Naturally, replacing the 3D model with a 1D meta-model, and replacing the temperatures 𝑇Si , 𝑇Se and 𝑇W0

with approximate versions,
is likely to introduce new errors into the problem. The link between 𝒚mes and 𝒖Met a(𝒛; 𝑇 Smoot h

Si
, 𝑇 Smoot h

Se
, 𝑇 Poly

w ) is thus written in the
new form:

𝒚 = 𝒖Met a(𝒛; 𝑇 Smoot h
Si

, 𝑇 Smoot h
Se

, 𝑇 Poly
w ) + 𝜀mes

𝜑 + 𝜀mes
T + 𝜀Met a + 𝜀Res, (12)

where 𝜀mes
𝑇 is associated with the replacement of (𝑇Si , 𝑇Se ) by (𝑇 Smoot h

Si
, 𝑇 Smoot h

Se
), 𝜀Met a corresponds to the error due to the approxima-

tion of the 1D model by a meta-model, and 𝜀Res takes into account the modelling error associated with the replacement of the 3D
6 
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model with a 1D model, as well as any other residual errors that may be present (these potential residual errors will be explained
later in Section 3.2.4).

Even if this complicates the expressions, decomposing the difference between 𝒚mes and 𝒖Met a(𝒛; 𝑇 Smoot h
Si

, 𝑇 Smoot h
Se

, 𝑇 Poly
w ) into four

error terms is motivated by a concern for physical interpretability of the results, to which we will return in Section 3.2. These
different errors are indeed associated with different phenomena, on which it could be possible to work independently (by changing
the measuring device, or by considering more sophisticated physical models for example). For the sake of simplicity, the prediction
provided by the meta-model, 𝒖Met a(𝒛; 𝑇 Smoot h

Si
, 𝑇 Smoot h

Se
, 𝑇 Poly

w ), will be written 𝒖Met a(𝒛) in the following, and we model the four errors
in the form of Gaussian vectors that are centred and independent of each other. Let 𝜮𝜑, 𝜮𝑇 , 𝜮met a(𝒛) and 𝜮r es be the covariance
matrices of 𝜀mes

𝜑 , 𝜀mes
𝑇 , 𝜀Met a, and 𝜀Res respectively, whose definition will be detailed in Section 3.2. By denoting 𝑾 (𝒛) the sum of

hese four covariance matrices (𝑾 (𝒛) = 𝜮𝜑 +𝜮𝑇 +𝜮met a(𝒛) +𝜮r es), the likelihood function is finally written

𝜋(𝒚mes
|𝒛) =

exp
(

− 1
2

(

𝒚mes − 𝒖Met a(𝒛))𝑇 𝑾 (𝒛)−1
(

𝒚mes − 𝒖Met a(𝒛))
)

√

(2𝜋)𝑁
max
𝑡 det (𝑾 (𝒛))

, 𝒛 ∈ 𝛺 . (13)

where (.)−1 (respectively det) the inverse (respectively the determinant) of the matrix.
Since the denominator in Eq. (10) is unknown, we use a Markov Chain Monte Carlo (MCMC) approach [42,43] to generate a

sequence of 𝑁𝑠 values of 𝒛, denoted {𝒛1,… , 𝒛𝑁𝑠}, which can be considered as independent realisations of a random vector of PDF
𝜋(𝒛|𝒚mes). To explore the posterior distribution, we focus in this work on the Metropolis–Hastings (MH) algorithm [44,45], whose
principle is summarised in Appendix B. Finally, it is possible to post-process these 𝑁𝑠 values of 𝒛, in order to deduce the most likely
value of 𝒛, which we denote by 𝒛MAP, and which is defined by:

𝒛MAP ∈ ar g max
1≤𝑖≤𝑁𝑠

𝜋(𝒛𝑖) × 𝜋(𝒚mes
|𝒛𝑖), (14)

but also credible intervals of level 𝛼 ∈ (0, 1) for each component 𝑧𝑖 of 𝒛, noted 𝐶 𝐼𝑖(𝛼) and defined as the interval of minimum length
such that

∫𝐶 𝐼𝑖(𝛼)
𝜋(𝑧𝑖|𝒚mes)𝑑 𝑧𝑖 = 𝛼 , (15)

where 𝜋(𝑧𝑖|𝒚mes) is the PDF of 𝑧𝑖 conditioned by the observations gathered in 𝒚mes, which can be approximated from {𝒛1,… , 𝒛𝑁𝑠}
using kernel methods for instance (see [46] for more details about this sample-based PDF reconstruction).

3.2. Description of errors and quantification of uncertainties

According to Eq. (12), the measure 𝒚mes is expressed as the sum of a meta-model-based prediction and four error terms, which
e propose to explore in more detail in this section.

3.2.1. Measurement error associated with the measured fluxes
The first error term, 𝜀mes

𝜑 , is the measurement error of the fluxes on the interior and exterior wall surfaces (𝜑Si and 𝜑Se ). This
measurement error is considered proportional to the flux value, and it is often assumed that two successive measurement errors are
statistically independent. In the same manner as in the study [8], this uncertainty on the heat flux will be equal to 𝜎𝜑 = 3% in the
application section, and the statistical law of 𝜀mes

𝜑 can be written as follows:

𝜀mes
𝜑 ∼ 

⎛

⎜

⎜

⎜

⎜

⎝

𝟎, 𝜎2𝜑

⎡

⎢

⎢

⎢

⎢

⎣

(𝑦mes
1 )2 0 ⋯ 0
0 (𝑦mes

2 )2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 (𝑦mes

Nmaxt )
2

⎤

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎠

. (16)

where we recall that Nmaxt = 2Nt if we have access to measurements of 𝜑Si and 𝜑Se , and Nmaxt = Nt when only the measurements
of 𝜑Si are available.

3.2.2. Measurement error associated with the imposed temperatures
The second error term, 𝜀mes

𝑇 , is associated with the temperature error measurements on the interior and exterior surfaces.
ndeed, in the proposed formalism, 𝑇Si and 𝑇Se are imposed to ensure the independence of the thermal equations to the heat

transfer coefficients. However, these temperatures are not exactly known, but measured by sensors. According to the study [8],
the uncertainty on this measured value of the temperature is close to 𝜎𝑇 =0.5 ◦C. These measurement errors can again be considered
Gaussian, so if we denote 𝑻mes

Si
and 𝑻mes

Se
as the measured values of 𝑇Si and 𝑇Se at the 𝑁𝑡 discretisation times, then we can write

𝑻mes
Si

∼ 
⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

𝑇Si (𝑡1)
⋮

𝑇Si (𝑡Nt
)

⎞

⎟

⎟

⎠

, 𝜎2𝑇 𝑰Nt

⎞

⎟

⎟

⎠

, 𝑻mes
Se

∼ 
⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

𝑇Se (𝑡1)
⋮

𝑇Se (𝑡Nt
)

⎞

⎟

⎟

⎠

, 𝜎2𝑇 𝑰Nt

⎞

⎟

⎟

⎠

, (17)

where 𝑰Nt
is the (𝑁𝑡 × 𝑁𝑡)-dimensional identity matrix. However, thermal dynamic simulation shows that the direct replacement

f 𝑇Si and 𝑇Se by their noisy measured values in 𝒖1D results in amplified noise on simulated heat flux values. In order to limit
his phenomenon, we propose a two-stage approach: first, we smooth the measured values of 𝑇 and 𝑇 , using the information
Si Se
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on measurement noise (see Appendix C for the details of the proposed smoothing technique). The smoothing procedure under
consideration then provides a mean value for the smoothed values of 𝑇Si and 𝑇Se , which are denoted by 𝑇 Smoot h

Si
and 𝑇 Smoot h

Se
. But

it can also provide independent evolution of 𝑇Si and 𝑇Se that are consistent with the available measurements of 𝑇Si and 𝑇Se , which
can then be used to quantify the error committed by replacing 𝑇Si and 𝑇Se with 𝑇 Smoot h

Si
and 𝑇 Smoot h

Se
, so that:

𝒖1D(𝒛; 𝑇Si , 𝑇Se , 𝑇
Poly
w ) = 𝒖1D(𝒛; 𝑇 Smoot h

Si
, 𝑇 Smoot h

Se
, 𝑇 Poly

w ) + 𝜀mes
𝑇 , (18)

𝜀mes
𝑇 ∼ 

(

𝟎, 𝜮𝑇
)

, 𝜮𝑇 = 1
𝑄

𝑄
∑

𝑞=1
𝑫𝜑,𝑞𝑫𝑇

𝜑,𝑞 , (19)

𝑫𝜑,𝑞 = 𝒖1D(𝒛; 𝑇 Smoot h
Si

, 𝑇 Smoot h
Se

, 𝑇 Poly
w ) − 𝒖1D(𝒛; 𝑇 Smoot h

𝑆𝑖 ,𝑞
, 𝑇 Smoot h

𝑆𝑒 ,𝑞
, 𝑇 Poly

w ), (20)

where
{

𝑇 Smoot h
𝑆𝑖 ,𝑞

, 𝑇 Smoot h
𝑆𝑒 ,𝑞

}𝑄

𝑞=1
gathers 𝑄 likely evolutions of 𝑇Si and 𝑇Se , as explained in Appendix C.

3.2.3. Construction of the multi-fidelity meta-model and the uncertainty associated
As explained in Section 3.1, the estimation of 𝒛 by a MH algorithm requires a very large number of calls to the thermal direct

model. In order to obtain an estimate of 𝜋(𝒛|𝒚mes) in a reasonable time, we proposed replacing 𝒖1D with a meta-model. This
eplacement is responsible for the third error term 𝜀Met a in Eq. (12). To construct this meta-model, we assume a Gaussian prior

distribution for the vector-valued function 𝒛 ↦ 𝒖1D(𝒛; 𝑇 Smoot h
Si

, 𝑇 Smoot h
Se

, 𝑇 Poly
w ). This means that the vector 𝒖1D(𝒛; 𝑇 Smoot h

Si
, 𝑇 Smoot h

Se
, 𝑇 Poly

w )
(discretised at the 𝑁𝑡 measurement instants) is seen as a particular realisation of a Gaussian Process (GP) 𝒀 with values in R𝑁max

𝑡 ,

𝒀 ∼ GP (𝝁,𝑪) , (21)

where 𝒛 ↦ 𝝁(𝒛) and (𝒛, 𝒛′) ↦ 𝑪(𝒛, 𝒛′) are respectively the mean function and the covariance function of 𝒀 . We then update this prior
distribution by forcing 𝒀 to pass through 𝑀 evaluations of the 1D thermal model in well-distributed values of 𝒛 in 𝛺 (see [47] for
more details on how to build space-filling designs of experiments). Let

𝑀 =
{

(𝒛𝑚, 𝒖1D(𝒛𝑚; 𝑇 Smoot h
Si

, 𝑇 Smoot h
Se

, 𝑇 Poly
w )), 1 ≤ 𝑚 ≤ 𝑀

}

be the set gathering these 𝑀 code evaluations. For these different evaluations, it is important to note that only the values of 𝒛
change (the values of 𝑇 Smoot h

Si
, 𝑇 Smoot h

Se
, 𝑇 Poly

w remain the same). The conditional GP is thus defined by

𝒀 ∣ 𝑀 ∼ GP (𝝁𝑐 ,𝑪𝑐
)

, (22)

where the expressions of the posterior mean function, 𝝁𝑐 , and of the posterior covariance function, 𝑪𝑐 can explicitly be derived
(see [48,49] for more details). Noting 𝒖met a(𝒛) = 𝝁𝑐 (𝒛) the constructed meta-model and 𝜮met a(𝒛) = 𝑪𝑐 (𝒛, 𝒛), we recover the notations
nvolved in the Bayesian formalism expressions of Section 3.1.

The relevance of a multi-fidelity meta-model strongly depends on the choice of 𝝁 and 𝑪. In this work, we first choose for the
mean function

𝝁(𝒛) = 𝛼 × 𝒖RC(𝒛; 𝑇 Smoot h
Si

, 𝑇 Smoot h
Se

, 𝑇 Poly
w ), (23)

where 𝛼 is a parameter to be adjusted corresponding to the coefficient of correlation between the high fidelity model (1D model)
nd the low fidelity model (RC model), and 𝒖RC corresponds to the discretisation of the output of the RC model with 5 resistances
nd 4 capacitance presented in Fig. 3 (see Appendix D for the detailed description of the RC model and the relation between the

different characteristics of the RC model, the input vector 𝒛 and the output vector 𝒖RC). The use of RC models is standard practice
in the world of building engineering. We thus obtain simplified models that are very fast to calculate and which clearly reflect the
main physical phenomena involved. By adding the estimated 𝛼, we give ourselves the possibility of making the meta-model more
or less based on this RC model: if the RC model turns out to be very close to the 1D model, then we can take a value of 𝛼 close to
1, and if this is ultimately not the case, the value of 𝛼 can be chosen close to 0.

Concerning the choice of the covariance matrix, as explained in [50,51], it can be very practical to separate the dependence in
ime and in 𝒛 in the modelling of the function 𝑪, so that for all 𝒛, 𝒛′ ∈ 𝛺,

𝑪(𝒛, 𝒛′) = 𝑹𝑡 × 𝐶𝑧(𝒛, 𝒛′), (24)

where 𝑹𝑡 is a (𝑁max
𝑡 ×𝑁max

𝑡 )-dimensional positive definite matrix, and 𝐶𝑧 is any real-valued covariance function. In this work, we
will limit ourselves to the Matérn-5/2 class of covariance functions (see [49] for alternative choices),

𝐶𝑧(𝒛, 𝒛′) =
(

1 +
√

5ℎ(𝒛, 𝒛′) + 5
3
ℎ(𝒛, 𝒛′)2

)

exp
(

−
√

5ℎ(𝒛, 𝒛′)
)

, (25)

ℎ(𝒛, 𝒛′) ∶= ‖diag(𝓵)−1(𝒛 − 𝒛′)‖, diag(𝓵) =
⎡

⎢

⎢

⎢

⎢

𝓁1 0 ⋯ 0
0 𝓁2 ⋱ ⋮
⋮ ⋱ ⋱ 0

⎤

⎥

⎥

⎥

⎥

, (26)
⎣

0 ⋯ 0 𝓁𝑑𝑧 ⎦
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Fig. 3. Low fidelity model corresponding to a model with 5 resistances and 4 capacitance (R5C4).

where ‖.‖ is the classical Euclidean norm, and the vector 𝓵 = (𝓁1,… ,𝓁𝑑𝑧 ) is a 𝑑𝑧-dimensional vector that also needs to be adjusted
to the data with 𝓁𝑑𝑧 = 8 corresponding to the number of parameters to identify. The construction of the meta-model is ultimately
based on the estimation of 𝛼, 𝑹𝑡 and 𝓵 from the 𝑀 evaluations of the 1D code. In this work, all these quantities are estimated by
maximising the likelihood, as explained in detail in [51]. To limit the problems of generalisation, it is important to notice that the
meta-model is created as a function of the measured and imposed boundary condition temperatures and the initial temperature of
the wall (see Section 3.1). This means that a meta-model needs to be created (with associated values of the hyperparameters 𝛼,
𝑹𝑡 and 𝓵) for each test performed, i.e. for each wall and each specific weather conditions. The fact that the hyperparameters of
this meta-model may not be perfectly well estimated will also be taken into account by adding a model error term, which will be
described in the next section.

3.2.4. Model error
The fourth and final error term 𝜀Res in Eq. (12) is called residual error, in the sense that it models the difference that may

remain between 𝒚 and 𝒖Met a(𝒛; 𝑇 Smoot h
Si

, 𝑇 Smoot h
Se

, 𝑇 Poly
w ) once the three previous errors have been removed. Characterising this error

is not easy, because it symbolises everything that we do not know or do not control. In this work, we then propose to decompose
this model error into two Gaussian terms for each measured output 𝜑Si and 𝜑Se : two classic additive errors of variance 𝜃2a,i and
𝜃2a,e, plus two multiplicative errors of variance 𝜃2m,i and 𝜃2m,e. In the case when we have access to the measurements of 𝜑Si and 𝜑Se
(i.e. 𝑁𝑚𝑎𝑥

𝑡 = 2𝑁𝑡), we then write 𝜀Res = (𝜀Res𝜑𝑆𝑖
, 𝜀Res𝜑𝑆𝑒

),

𝜀Res𝜑𝑆𝑖
∼ 

⎛

⎜

⎜

⎜

⎜

⎝

𝟎, 𝜃2a,i𝑰Nt
+ 𝜃2m,i

⎡

⎢

⎢

⎢

⎢

⎣

(𝑦mes
1 )2 0 ⋯ 0
0 (𝑦mes

2 )2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 (𝑦mes

Nt
)2

⎤

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎠

, (27)

𝜀Res𝜑𝑆𝑒
∼ 

⎛

⎜

⎜

⎜

⎜

⎝

𝟎, 𝜃2a,e𝑰Nt
+ 𝜃2m,e

⎡

⎢

⎢

⎢
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(𝑦mes
1 +𝑁𝑡)2 0 ⋯ 0

0 (𝑦mes
2 +𝑁𝑡)2 ⋱ ⋮
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0 ⋯ 0 (𝑦mes

2Nt
)2

⎤

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎠

. (28)

Four new parameters (𝜃a,i, 𝜃a,e, 𝜃m,i and 𝜃m,e) are thus introduced to model the link between measurements and outputs of
the meta-model. The matrix 𝑾 (𝒛) introduced in Eq. (13) now depends on these four parameters, and consequently the likelihood
function 𝜋(𝒚mes

|𝒛) also depends on them. Once the matrix 𝜮𝜑 has been constructed, once the smoothing of 𝑇Si and 𝑇Se have been
carried out and the error propagated for the construction of 𝜮𝑇 , and once the parameters (𝛼 ,𝑹𝑡,𝓵) of the meta-model have been
estimated from 𝑀 dedicated evaluations of the 1D model, we finally propose, once again, to estimate 𝜃a,i, 𝜃a,e, 𝜃m,i and 𝜃m,e by their
likelihood maximisation estimators 𝜃MLE

a,i , 𝜃MLE
a,e , 𝜃MLE

m,i and 𝜃MLE
m,e , so that

(𝜃MLE
a,i , 𝜃MLE

a,e , 𝜃MLE
m,i , 𝜃MLE

m,e , 𝒛MLE) ∈ ar g max
(𝜃1 ,𝜃2 ,𝒛)∈(0,∞)×(0,∞)×R+

𝜋(𝒚mes
|𝒛). (29)

By fixing the four parameters that characterise the model error to their maximum likelihood estimators, we neglect the
uncertainty associated with their estimation. This strongly accelerates the convergence of the MCMC algorithm that is used to
infer the posterior distribution of the thermal properties, but this may be done at the price of a little over or under estimation of
the obtained credible intervals.

3.2.5. Summary of the proposed Bayesian method
The Bayesian approach proposed for estimating the thermal properties of an IIW involves several models and approximations,

which we propose to summarise in this section. In accordance with Fig. 4, this approach can be decomposed into several steps.

• Step 1 : A stabilisation phase (before excitation) is first considered from 𝑡𝑆0 to 𝑡0 to reduce the influence of the unknown initial
temperature in the considered wall. The excitation phase at the interior surface then starts at 𝑡0 and ends at 𝑡𝑓 . We extract from
these two phases the inside and outside measurements of the surface temperatures and thermal fluxes. From the measurements
at 𝑡𝑆 , the temperature in the wall is approximated by a piece-wise polynomial function 𝑇 Poly.
0 𝑤
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Fig. 4. General scheme for processing simulated and measured data to identify the thermal properties of the wall.

Table 1
Ranges of possible values for IIW for the parameters of the 1D model corresponding to : the thickness (𝑒𝑖 in m),
the thermal resistance (𝑅𝑖 in m2 K ∕W) and the thermal capacitance (𝑒𝜌𝐶𝑖 in k J∕K m2).

Layer - #𝑖 𝑒𝑖 𝑅𝑖 𝑒𝜌𝐶𝑖

#1 Internal coating 0.01 ≤ 𝑒1 ≤ 0.03 0.0125 ≤ 𝑅1 ≤ 0.15 6 ≤ 𝑒𝜌𝐶1 ≤ 45
#2 Insulation 0.04 ≤ 𝑒2 ≤ 0.2 0.66 ≤ 𝑅2 ≤ 10 1.08 ≤ 𝑒𝜌𝐶2 ≤ 42
#3 Support wall 0.15 ≤ 𝑒3 ≤ 0.3 0.065 ≤ 𝑅3 ≤ 3 97.5 ≤ 𝑒𝜌𝐶3 ≤ 750
#4 External coating 0.01 ≤ 𝑒4 ≤ 0.03 0.0055 ≤ 𝑅4 ≤ 0.3 5 ≤ 𝑒𝜌𝐶4 ≤ 60

• Step 2 : These measurements are noisy. For this reason, we propose to smooth the measured temperatures of the inner surface
(𝑇 Smoot h

Si
) and the outer surface (𝑇 Smoot h

Se
) before using them in the thermal direct model. The uncertainties coming from this

smoothing are also quantified at this step.
• Step 3 : The 1D thermal problem is then rewritten to take the smoothed surface temperatures as boundary conditions, and the

temperature field 𝑇 Poly
𝑤 as initial condition. In order to be executed, this direct model requires the definition of the vector 𝒛

that gathers the quantities to be estimated, and returns the heat fluxes on the interior and exterior wall faces.
• Step 4 : Finally, we construct the multi-fidelity meta-model from 𝑀 calls to the RC and 1D models. It is this meta-model which

will finally be used to make the link between measurements and predictions based on 𝒛.

4. Applications

Numerical and experimental applications of the method proposed in Section 3 are presented. In Section 4.1, a few representative
walls in different weather conditions and different configurations are numerically studied. The ranges of possible values for the
physical properties of IIW to be identified are provided by the study [7] and presented in Table 1. These ranges have been established
for building materials commonly used in these types of wall components. Lastly in order to validate the proposed identification
method, an application on experimental data is presented in Section 4.2.

To identify the wall thermal resistance in a reasonable time (less than 24 h) using the Bayesian inverse modelling technique
presented in Section 3, we consider: (i) a controlled excitation of 400 W∕m2 over a diameter of 60 cm on the inner wall surface, (ii)
a data acquisition rate of 2 min and (iii) common computational resources, e.g. a laptop. In general, the estimation results will be
reported in tables gathering the most likely estimate and credible intervals at the 95% level in square brackets. We insist on the fact
that these credible intervals are themselves approximations, as they simply correspond to the 2.5% and 97.5% empirical quantiles
estimated on all the values returned by the MCMC algorithm. As such, they indicate a zone with a high probability (here around
95%) of containing the true value to be estimated.

4.1. Study on simulated wall data

4.1.1. Presentation of the studied configurations
The method is numerically tested for two winter weather conditions:

- 𝑀1 denotes a typical southern French climate in Carpentras over a 6-day period from September 28th to October 4th, which
is taken from the 2012 French thermal regulations [5]. A south-facing orientation is considered;

- 𝑀2 denotes a typical northeastern French climate in Nancy over a 6-day period from November 28th to December 4th taken
from the 2012 French thermal regulations [5]. A north-facing orientation is considered.
10 
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Table 2
Thermal properties of the walls studied (𝑒𝑖 in 𝑚, 𝑅𝑖 in m2 K ∕W and 𝑒𝜌𝐶𝑖 in k J∕(K m2)).

Walls 𝑒1 𝑒2 𝑒3 𝑒4 𝑅1 𝑅2 𝑅3 𝑅4 𝑒𝜌𝐶1 𝑒𝜌𝐶2 𝑒𝜌𝐶3 𝑒𝜌𝐶4

𝑊1 0.01 0.04 0.15 0.01 0.01 0.83 0.06 0.01 10 2 360 9
𝑊2 0.01 0.14 0.20 0.01 0.05 4.37 0.28 0.02 9.7 5.7 160 15
𝑊3 0.01 0.20 0.22 0.02 0.05 8.00 0.55 0.02 9.7 6 220 18
𝑊4 0.03 0.20 0.30 0.03 0.04 3.33 0.13 0.02 45 42 750 60

Table 3
Configurations tested using different stabilisation times (in h), excitation times (in h) and available
measurements.

Configuration Stabilisation time (h) Excitation time (h) Available measurements

𝑪𝟏 𝟕𝟐 𝟕𝟐 𝝋𝐒𝐢 ,𝝋𝐒𝐞
𝐶2 72 72 𝜑Si
𝐶3 0 72 𝜑Si , 𝜑Se
𝐶4 0 72 𝜑Si
𝐶5 0 10 𝜑Si , 𝜑Se
𝐶6 0 10 𝜑Si

In Fig. 5, the time evolution of the outdoor temperatures 𝑇ext and solar fluxes 𝛷sun for the 3 last days (excitation phase) are presented
or the two weather conditions (Nancy and Carpentras). As expected, 𝑇ext and 𝛷sun are significantly higher in the case of Carpentras
hroughout the entire study period.

The proposed method is applied to estimate the thermal properties of four reference internal insulated walls (IIW) with given
thermal properties and total thickness (𝑒Tot = 𝑒1 + 𝑒2 + 𝑒3 + 𝑒4) and submitted to the two considered weather conditions. These walls
are noted 𝑊𝑗 , with 𝑗 ∈ [[1; 4]], and are chosen so that

1. 𝑊1 is poorly insulated (𝑅Tot = 0.91 m2 K ∕W) and has a low total thickness (𝑒Tot = 0.21 m),
2. 𝑊2 has a better insulation (𝑅Tot = 4.72 m2 K ∕W) and a common total thickness (𝑒Tot = 0.36 m),
3. 𝑊3 is highly insulated (𝑅Tot = 8.62 m2 K ∕W) while having a large total thickness (𝑒Tot = 0.45 m),
4. 𝑊4 is of medium insulation (𝑅Tot = 3.51 m2 K ∕W) and has a large total thickness (𝑒Tot = 0.56 m).

Here, the measurements are simulated using a 3D thermal model, and noise is added to the measured outputs 𝑇Si , 𝑇Se , 𝜑Si and
𝜑Se . The measurement error is of the order of 0.5 W∕m2 for 𝜑Si (respectively 1.4 W∕m2 for 𝜑Se ) in the case of Carpentras and of the
order of 0.5 W∕m2 for 𝜑Si (respectively 0.3 W∕m2 for 𝜑Se ) in the case of Nancy. The measurement error of the temperatures (𝑇Si , 𝑇Se )
is close to 0.5 ◦C (see Section 3.2.2). The reference values of the eight parameters characterising the thermal properties of these
four reference walls are presented in Table 2.

According to Sections 2.2 and 2.3, the measured surface temperatures (𝑇Si and 𝑇Se ) are imposed as boundary conditions in
the wall thermal models to achieve independence from the exchange coefficients in the inversion process. However, since the
measurements are noisy, imposing them directly in the 1D and RC simulations results in significant fluctuations in the surface
thermal fluxes (𝜑Si and 𝜑Se ). To avoid such a pathological phenomenon and as explained in Section 3.2.2, a smoothing is applied
to the measurements before imposing them as boundary conditions (for more details see Appendix E).

A comparison of the thermal responses of the 3D (considered as the measurement in the following), 1D and RC models for the
same wall properties is shown in Fig. 6. We note that the difference between the 3D (in black) and 1D (in red) models is relatively
small in the case of 𝑊2. Moreover, we observe a strong correlation between the 1D and RC models in the cases of 𝜑Si and 𝜑Se ,
which justifies the choice of constructing the predictor of the 1D model as a linear combination of the RC model plus a discrepancy
term modelled by a centred Gaussian process (see Section 3.2.3).

To investigate the robustness of the proposed method to

• the stabilisation phase,
• the initial temperature in the wall,
• the duration of the excitation,
• and the fact that only partial instrumentation are available,

we now consider six different configurations, whose characteristics are presented in Table 3. We note 𝑀𝑘𝐶𝓁𝑊𝑗 the numerical test
associated with the wall 𝑊𝑗 with 𝑗 ∈ [[1; 4]] (see Table 2), the weather ‘‘𝑘’’ (𝑘 = 1 for Carpentras and 𝑘 = 2 for Nancy), and the
configuration ‘‘𝓁’’ (𝓁 ∈ [[1; 6]]). For example, the test 𝑀1𝐶1𝑊2 corresponds to wall 𝑊2, for Carpentras weather, when considering the
first configuration, that is to say a stabilisation time of 72 h, an excitation time of 72 h, and (𝜑Si , 𝜑Se ) as available measurements.

For each wall tested, a meta-model is created (see Section 4.1.2) based on the multi-fidelity approach described in Section 3.2.3.
It should be noted that the model generating the measurements (3D thermal model) is not the same as those used for the inversion
1D and RC models), which justifies the inclusion of the corrective modelling error term 𝜀Res presented in Section 3.2. Based on the

created meta-model, the method described in Section 3.1 is used for estimating the total thermal resistance (𝑅Tot) and quantifying
its precision (see Section 4.1.5).
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Fig. 5. Weather data (Nancy and Carpentras) over time (3 last days): (a) Solar flux, (b) Outdoor temperature.

Fig. 6. Comparison of generated outputs with different models in the case of Carpentras, wall 2: (a) 𝜑Si , (b) 𝜑Se .

Table 4
Study of the prediction quality of 𝜑Si and 𝜑Se based on the indicators: RMSE, MAE, for the four walls studied
in weather 𝑀1 and configuration 𝐶1.

Indicator 𝑀1𝐶1𝑊1 𝑀1𝐶1𝑊2 𝑀1𝐶1𝑊3 𝑀1𝐶1𝑊4

𝜑Si 𝜑Se 𝜑Si 𝜑Se 𝜑Si 𝜑Se 𝜑Si 𝜑Se

RMSE 0.10 0.13 0.14 0.24 0.13 0.25 0.09 0.18
MAE 0.05 0.06 0.06 0.12 0.06 0.12 0.03 0.08

4.1.2. Construction of the meta-model
Meta-models are proposed to fastly compute the quantities of interest 𝜑Si and 𝜑Se that are used in the estimation of total

resistance.
Based on conventional sensitivity analyses, such as Sobol-type variance decomposition analyses [52], it turns out that certain

model parameters of the vector 𝒛 to be estimated have a low influence on internal and external heat fluxes. Therefore, these model
parameters can be fixed at nominal values to simplify the construction of the meta-model.

More precisely, the 𝜑Si predictor is created using only 5 of the 8 components of 𝒛: the parameters of layers 1 and 2 (𝑅1, 𝑅2,
𝑒𝜌𝐶1 and 𝑒𝜌𝐶2) and the resistance of the third layer (𝑅3). And the predictor of 𝜑Se is also created using only 5 components of 𝒛, but
not the same: the resistance of the second layer (𝑅2), and the parameters of the third and fourth layers (𝑅3, 𝑅4, 𝑒𝜌𝐶3 and 𝑒𝜌𝐶4).

The performance indicators RMSE∗, the root mean square of the average over time of the error, and MAE∗, the mean absolute
value of the average over time of the error have been calculated to quantify the quality of the constructed meta-models. Note that
the meta-models are built using 4000 1D and RC thermal dynamic simulations, then tested on a different test set of size 𝑛 = 1000.

Table 4 shows the values of the performance indicators for the prediction of 𝜑Si and 𝜑Se in the first configuration 𝐶1 for
the weather condition 𝑀 and for each wall tested (similar results were obtained for the other tested configuration and weather
1
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Fig. 7. Comparison of initial wall temperatures (presented in the normalised coordinate 𝑋 ∈ [0, 4] in the wall) calculated with a 3-days unsteady calculation
(taken as reference), polynomial and stationary in both cases: without (a) and with (b) a stabilisation phase in the case of 𝑊2, weather Carpentras M1.

condition). Let us recall that the configurations, the weather conditions and the studied walls are defined in Section 4.1.1. We note
a very accurate prediction quality for the wide variety of walls tested with thicknesses varying from 0.21 m to 0.56 m and with
thermal resistances from 0.91 m2 K ∕W to 8.62 m2 K ∕W. In addition, we see that the uncertainty associated with the meta-model is
smaller than the measurement error (see Section 4.1.6). It allows the computation time of the 1D direct model (≈ 21 seconds per
simulation using a standard computer with Intel(R) Core (TM) i7-1185G7 @ 3.00 GHz) to be divided by more than 50.

4.1.3. Influence of the temperature initial conditions and the stabilisation phase
As explained in Section 2.4, the initial temperature in the wall is unknown, and it is expected that incorrect initialisation of the

wall temperature in the thermal calculations could alter the estimates of the thermal properties of the walls studied. Consequently,
we propose to use a stabilisation period of 3 days before starting the active sollicitation on the internal wall surface. As in operational
purposes the 3-day stabilisation period may be not possible, we also propose an enhanced approximate of the temperature profile
in the initial state by a piecewise polynomial function (see Section 2.4 and Appendix A). To illustrate the benefits of the polynomial
initialisation and the proposed stabilisation phase, Fig. 7 compares the wall temperatures obtained : (i) when the model is initialised
with the ‘‘true’’ wall temperature (in black, which serves as a reference) obtained by an unsteady computation, (ii) when the model is
initialised with the commonly used assumption of stationarity of the flux in the wall (in green), or (iii) when the proposed polynomial
profile is used (in red), both with and without stabilisation in the case of Carpentras and for the wall 𝑊2. We first note in this figure
that using polynomial profiles leads to temperatures in the wall that are relatively close to the reference. This is not the case when
using an initial temperature from a steady-state calculation. Nevertheless, we see in Fig. 7-(b) that these differences almost disappear
when considering the stabilisation phase of 3 days. This last conclusion is in agreement with the work achieved in [39], which also
showed that a 3-day stabilisation was able to cancel the influence of the initial wall temperature on the identification results.

4.1.4. Identification results for wall 2
In this section we apply the proposed method to the 𝑀1𝐶1𝑊2 test. The wall W2 was chosen because it corresponds to a

standard wall of average thickness and resistance (see Table 2). We first consider the recommended configuration test 𝐶1 (3 days
of stabilisation + 3 days of excitation, using measurements of 𝜑Si and 𝜑Se ) in the case of Carpentras weather, which is a climate
with more outdoor temperature and solar irradiance variations. All the other tests are presented in Section 4.1.5. The identification
of the 8 parameters (the thermal resistances and capacitance of each layer) is presented in Table 5 and Fig. 8. It can be seen that
the resistances of the first two layers (𝑅1, 𝑅2) are estimated with great accuracy (small uncertainty), which is very satisfying as the
insulation resistance 𝑅2 is the parameter of most interest. On the other hand, the resistances of layers 3 and 4 (𝑅3, 𝑅4) are estimated
with more uncertainty (but still acceptable, i.e. the gap between the reference and the estimated values is less than 0.2 m2 K ∕W).
The identification of the total thermal resistance of 𝑊2 (which is the objective of this study) is very relevant with low uncertainties.
For thermal comfort purposes, we also notice that the total heat capacity (𝑒𝜌𝐶Tot) of 𝑊2 is estimated in a satisfactory manner, with
an acceptable credible interval. This means that for this particular case 𝑀1𝐶1𝑊2, the proposed method is able to estimate not only
𝑅Tot , but also to provide a good estimation of the wall thermal capacitance.

As a complement, Fig. 9 shows correlations between pairs of model parameters, which can highlight potential compensation
phenomena during the estimation phase. For instance, we first see that there is a negative correlation between the thermal
resistances, especially 𝑅2 and 𝑅3, which can increase the uncertainty of parameter estimates. The thermal resistances and the
thermal capacitance of the third (𝑅3, 𝑒𝜌𝐶3) and fourth (𝑅4, 𝑒𝜌𝐶4) layers are strongly positively correlated. This suggests that the
uncertainties in the estimates of 𝑅3 and 𝑅4 may be responsible for the large uncertainties in the estimates of 𝑒𝜌𝐶3 and 𝑒𝜌𝐶4. From
a thermal comfort point of view, the thermal capacitance of the support wall is the most important to determine (as it is the major
contributor). For this reason, a large uncertainty in the estimate of 𝑒𝜌𝐶3 is the main source of a large credible interval for the
estimate of 𝑒𝜌𝐶 .
Tot
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Table 5
Identification of the thermal resistance (in m2 K.W−1) and the thermal capacitance (in k J K−1 m−2) of each layer
in the case of test 𝑀1𝐶1𝑊2. The values in square brackets define the 95% credible intervals, while the estimated
values correspond to the values maximising the a posteriori PDF, i.e. the most likely values given the available
measurements.

Layer 𝑅Ref 𝑅Est 𝑒𝜌𝐶Ref 𝑒𝜌𝐶Est

#1 - Internal coating 0.05 0.06[0.05; 0.07] 9.7 9.22[8.82; 9.64]
#𝟐 - Insulation 𝟒.𝟑𝟕 𝟒.𝟐𝟎[𝟒.𝟎𝟓; 𝟒.𝟑𝟔] 5.7 4.98[3.67; 7.18]
#3 - Wall support 0.28 0.24[0.16; 0.32] 𝟏𝟔𝟎 𝟏𝟐𝟎[𝟏𝟎𝟎; 𝟏𝟔𝟔]
#4 - External coating 0.008 0.04[0.01; 0.07] 15 39.1[15.5; 57.3]
Total Wall 𝟒.𝟕𝟐 𝟒.𝟓𝟑[𝟒.𝟒𝟏; 𝟒.𝟕𝟎] 𝟏𝟗𝟎 𝟏𝟕𝟏[𝟏𝟓𝟏; 𝟐𝟏𝟏]

Fig. 8. Identification results in the case 𝑀1𝐶1𝑊2 for the thermal resistance (𝑅𝑖 in m2 K ∕W) and the thermal capacity (𝑒𝜌𝐶𝑖 in m J/(K m3)). These results are
presented in the form of histograms of a representative set of 5000 likely values of the parameters to be estimated using an MCMC approach. The graphs 𝑎1 and
𝑏1 are associated with the internal coating; 𝑎2 and 𝑏2 correspond to the insulation, 𝑎3 and 𝑏3 refer to the support wall, 𝑎4 and 𝑏4 characterise the external coating,
and 𝑎5 and 𝑏5 correspond to the total wall. The approximation of the a posteriori distribution is shown in brown solid line, the red vertical line corresponds to
the value that maximises the likelihood, the green vertical line is the reference value, while the blue vertical lines show the credible intervals with level 95%.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Correlation matrix for the estimated parameters in the case of test 𝑀1𝐶1𝑊2. The closer these values are to 1, the more positively correlated two quantities
are, and conversely, the closer these values are to −1, the more negatively correlated two quantities are.

4.1.5. Study of different weather conditions and configurations
In this section, we aim to demonstrate the robustness of the proposed method for estimating the thermal properties of a variety

of walls, potentially subject to very different conditions. Hence, we present estimation results for the 4 walls previously introduced,
in the 6 considered configurations, and for the 2 weather conditions.

Application in the configuration 𝐶1 for different weather conditions on walls with different thermal properties. To begin, Table 6
shows the estimated values of 𝑅Tot and 𝑒𝜌𝐶Tot in the configuration 𝐶1 for the weather conditions 𝑀1 and 𝑀2. Remember that
𝐶 is the configuration we particularly recommend, as it is based on the maximum number of observations (𝜑 and 𝜑 ) on a
1 𝑆𝑖 𝑆𝑒
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Table 6
Identification of the total thermal resistances (𝑅Tot in m2 K ∕W) and the total thermal capacitance (𝑒𝜌𝐶Tot in
k J∕(K m2)) of the walls studied, in the configuration 𝐶1 for the two weather conditions considered. The results
are presented in the form MAP[IC95%] where MAP is the value which maximises the a posteriori distribution and
[IC95%] is the credible interval at 95%.

Wall 𝑊1 𝑊2 𝑊3 𝑊4

𝑅Ref 0.91 4.72 8.62 3.51
𝑒𝜌𝐶Ref 380 190 250 890

𝑀1

𝑅Est 1.13[1.08; 1.20] 4.53[4.41; 4.70] 8.00[7.26; 8.93] 2.97[2.73; 3.31]
𝑒𝜌𝐶Est 361[348; 373] 171[151; 211] 766[430; 791] 860[807; 891]
𝑀2

𝑅Est 0.80[0.77; 0.82] 4.82[4.34; 5.08] 8.25[8.02; 8.52] 3.18[2.63; 4.05]
𝑒𝜌𝐶Est 353[151; 464] 195[158; 796] 762[632; 813] 647[464; 844]

large time interval and a sufficiently long stabilisation phase. The results provided by this table are quite satisfactory for poorly to
highly internal insulated walls. The total thermal resistance 𝑅Tot is estimated with a high accuracy for walls with total thicknesses
varying between 0.21 m and 0.56 m and total thermal resistances varying between 0.91 m2 K ∕W and 8.62 m2 K ∕W regardless of the
considered weather conditions (𝑀1 or 𝑀2).

In parallel, the estimated values of 𝑒𝜌𝐶Tot for the walls 𝑊1, 𝑊2 and 𝑊4 are rather close to the reference values. The results are
ote precise for 𝑊3 walls, resulting in very large credible intervals. As already explained in the case of 𝑊2 (see Section 4.1.4), the

main source of these large uncertainties in the estimate of 𝑒𝜌𝐶Tot comes from the difficulty of the proposed approach (which consists
in heating the wall from the inside surface) to precisely estimate the parameters associated with the third layer (support wall), that
is behind the insulation layer. In fact, the identification of 𝑒𝜌𝐶3 is particularly difficult for the wall 𝑊3 which has a very high level
of insulation (𝑅2 = 8 m2 K ∕W). In conclusion, the approach proposed in this study makes it possible not only to identify the total
thermal resistance of walls with different thermal properties when submitted to different weather conditions, but can also provide
interesting information on the thermal capacitance of the wall with 𝑅Tot < 5 m2 K ∕W even if this was not the original aim.

Application in different configurations. The effectiveness of the proposed method in the configuration 𝐶1 has been demonstrated
or walls with different thermal properties and under different weather conditions 𝑀1 and 𝑀2. The aim of this section is now
o quantify the relevance of the proposed method when used in more or less deteriorated conditions (reduced measurement time
nd fewer instruments used). To this end, Table 7 shows the results of the estimation of 𝑅Tot and 𝑒𝜌𝐶Tot for the wall 𝑊2 when

considering the configurations listed in Table 3. First of all, we note that the use of a polynomial initial wall temperature, without
aking into account a stabilisation phase (configurations 𝐶3 and 𝐶4), allows to obtain results for 𝑅Tot close to the ones obtained with

a stabilisation phase of 3 days (configurations 𝐶1 and 𝐶2), with slightly higher uncertainties. In other words, the use of a polynomial
IC is a way to reduce the measurement time (from 6 days of measurements to 3 days without the stabilisation phase) without too
much impact on the results. Furthermore, if the excitation time is long enough (in particular to ensure that the heating phase from
the inside reaches the outside layers so that measurements are affected by the thermal properties of the outer layers), we obtain
interesting estimations of 𝑅Tot when only 𝜑Si is recorded (configurations 𝐶2, 𝐶4 to be compared to configurations 𝐶1, 𝐶3). Thus, due
o the instrumentation chosen (namely an imposed excitation of 400 W m−2 on the internal surface), we verify once again that it is
ndeed 𝜑Si , more than 𝜑Se , that largely enables the estimation of 𝑅Tot in the case of an IIW. Finally, the further we deviate from
he recommended configuration 𝐶1, by reducing instrumentation or shortening measurement time, the greater the uncertainties on
he estimated value of 𝑅Tot . In the configuration where we have the least data (𝐶6), we are able to obtain information about the

minimum resistance of the wall. Nevertheless, it should be noted that the true value of 𝑅Tot is always close to the 95% credible
intervals, hence it shows the interest of the proposed Bayesian approach for the different configurations tested (in particular to
specify lower bounds on the total thermal resistance).

The conclusions drawn here in the case of 𝑊2 are similar to those for the other walls tested, with slight exceptions in the case of
the thickest wall 𝑊4 where, in certain configurations, 𝑅Ref is not within the credible interval obtained, but very close to its limits.

he analysis of uncertainty quantification presented in the next section will provide physical explanations on the larger credible
nterval obtained for the wall 𝑊4.

4.1.6. Uncertainty quantification
The Sections 4.1.4 and 4.1.5 present the identifications of 𝑅Tot and 𝑒𝜌𝐶Tot as well as the credible intervals of the estimated

parameters corresponding to the uncertainties considered. As already mentioned, one of the specific features of this study is that an
uncertainty quantification is carried out to take into account the different sources of error that may affect the identification results.
To this end, in this section we will compare the quantified uncertainties for different walls. Fig. 10 shows the evolution of the
variance of the different considered errors as a function of time in the case of 𝑀1𝐶2𝑊2 (a) and 𝑀1𝐶2𝑊4 (b). In both cases (𝑊2 and
𝑊4) the variance error associated with the propagation of the uncertainty of the measured temperatures (𝑇Si and 𝑇Se ) on the fluxes
(𝜀mes) is the smallest (even negligible), which implies that the applied smoothing is particularly effective in obtaining a very good
𝑇
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Table 7
Identification of the total thermal resistances (𝑅Tot in m2 K ∕W) and the total thermal capacity (𝑒𝜌𝐶Tot in k J∕(K m2))
of 𝑊2, in the different configurations tested for the two weather conditions 𝑀1 and 𝑀2. The results are presented
in the form MAP[IC95%] where MAP is the value which maximises the a posteriori distribution and [IC95%] is the
credible interval at 95%.

Estimated 𝑅Est 𝑒𝜌𝐶Est

parameters (𝑅Ref = 4.72 m2 K ∕W) (𝑒𝜌𝐶Ref = 190 k J∕(K m2))

Weather 𝑀1 𝑀2 𝑀1 𝑀2

𝐶1 𝟒.𝟓𝟑[𝟒.𝟒𝟏; 𝟒.𝟕𝟎] 𝟒.𝟖𝟐[𝟒.𝟑𝟒; 𝟓.𝟎𝟖] 𝟏𝟕𝟏[𝟏𝟓𝟏; 𝟐𝟏𝟏] 𝟏𝟗𝟓[𝟏𝟓𝟖; 𝟕𝟗𝟔]
𝐶2 4.50[4.42; 4.59] 4.42[4.18; 4.77] 181[143; 383] 210[159; 765]
𝐶3 4.42[4.30; 4.54] 4.88[4.75; 5.04] 173[147; 205] 721[468; 816]
𝐶4 4.41[4.19; 4.76] 4.49[4.30; 4.75] 188[137; 749] 286[149; 667]
𝐶5 5.23[4.73; 5.70] 5.53[4.63; 6.78] 189[163; 772] 673[229; 826]
𝐶6 5.10[4.92; 7.14] 6.37[4.46; 11.97] 199[138; 769] 288[199; 816]

Fig. 10. Time evolution of the error variance of each uncertainty quantified (see Section 3) in the case of weather 𝑀1 and configuration 𝐶2 for the walls 𝑊2
(a) and 𝑊4 (b).

approximation of the imposed temperatures.1 In addition, the variance error associated with the replacement of the 1D model by
its meta-model (𝜀Met a) is much smaller than the error of the flux measurements, which is constant during the whole measurement.
Finally, we see that in the case of 𝑊2, the largest (by far) contributor to the global error is the residual error during the first 10 h
of the study. This error becomes of the same order as the flux measurement error (𝜀mes

𝜑 ) after 10 h. These conclusions are different
when focusing on wall 𝑊4. In this case 𝜀Res is large compared to the other error terms during the whole experiment. This can be
attributed to the higher modelling error between the 3D and the 1D model when 𝑒𝑇 𝑜𝑡 increases [7]. So, in the case of very thick
walls under localised active solicitation, it is preferable exploring the meta-modelling of the 3D model instead of the 1D one.

To better quantify the amplitude of each error term, Table 8 also provides the variances of these errors averaged over the
measurement time for configuration 𝐶2. It confirms that the residual error (𝜀Res) is the greatest for the two considered weathers and
the four walls tested. As already mentioned in Section 4.1.2, a reduction in the number of parameters based on a sensitivity analysis
is applied when creating the meta-model. In the case of 𝑊1 where the total thickness of the wall is very small (𝑒Tot = 0.21 m) the
parameters of outside layers 3 and 4 can have an influence on 𝜑Si . However, in order to construct the predictors in a similar way
for the different walls, only 5 parameters are used to create the 𝜑Si predictor for 𝑊1, which introduces a source of uncertainty that
makes the 𝜀Res large. On the other hand, we observe that during the first 10 h of excitation, the residual error is very large, which
may be related to time discretisation error due to the sharp variation of 𝜑Si resulting from the excitation on the inner surface (see
Fig. 6). After reaching a stable form of 𝜑Si , the residual error stabilises and becomes larger in the case of 𝑊4 (compared to the
cases of 𝑊2 and 𝑊3). This phenomenon could be due to the difference between the 3D model and the simplified 1D model used
(modelling error), which increases with greater thicknesses.

1 It should be emphasised that this error term does not directly reflect the influence of measurement uncertainties on the imposed temperatures, but rather
the influence of the error residual potentially still present after smoothing.
16 



H. Nasser et al. Journal of Building Engineering 98 (2024) 111027 
Table 8
Mean on time of the error variance of each uncertainty quantified (see Section 3) in W m−2 : 𝜀mes

𝜑 as 𝑉 mes
𝜑 , 𝜀mes

T as 𝑉 mes
T , 𝜀Met a

as 𝑉 Met a , 𝜀Res during the first 10 h of excitation as 𝑉1
Res , 𝜀Res after the first 10 h of excitation as 𝑉2

Res. They are calculated in
the case of weathers 𝑀1 and 𝑀2 and configuration 𝐶2 (𝜑Si only) for the walls studied.

Weather 𝑀1 𝑀2

Error 𝑉 mes
𝜑 𝑉 mes

T 𝑉 Met a 𝑉1
Res 𝑉2

Res 𝑉 mes
𝜑 𝑉 mes

T 𝑉 Met a 𝑉1
Res 𝑉2

Res

𝑊1 0.22 0.001 0.08 209 19.6 0.22 0.0006 0.32 103 7.28
𝑊2 0.25 0.002 0.004 79.0 0.16 0.25 0.0006 0.11 22.6 0.04
𝑊3 0.25 0.004 0.06 6.58 0.60 0.25 0.004 0.002 1.07 0.001
𝑊4 1.18 0.005 0.04 44.0 3.37 1.17 0.004 0.09 827 2.43

Table 9
Description of the real internal insulation wall: geometry and measured ther-
mophysical properties of materials - Total wall thermal resistance deduced from
measured material properties 𝑅𝑡ℎ

Tot = 4.02 m2 K ∕W.

Layer Material 𝑒 (m) 𝜆 (W∕(m K ))
1 Plasterboard 0.013 0.25
2 Expanded polystyrene 0.12 0.032
3 Building block 0.15 0.74
4 External coating 0.015 0.94

Fig. 11. Tested internal insulation wall — construction phase: mounting of building blocks (a), adding insulation and plasterboard (b) and identification test
phase at Cerema Nancy: view of the outside wall face, with a sun cover, exposed to natural conditions (c).

4.2. On measured data for IIW

The identification method presented in Section 3 is now applied to a real wall in natural weather conditions [8]. It corresponds
to an internal insulation wall (IIW) of total thickness 𝑒Tot = 0.298 m with 4 layers. The description of the wall and the measured
material thermal properties by means of guarded hot plate or hot disk are summarised in Table 9. The theoretical wall resistance
𝑅t h
Tot calculated from material thermal properties corresponds to 4.02 m2 K ∕W. This IIW of dimension 2 × 2 m2, represented in Fig. 11,

was specifically built in the research project RESBATI to be transportable to different sites to conduct different types of tests. Indeed,
a reference total thermal resistance of the wall of 3.5 ± 0.8 m2 K ∕W was first determined in laboratory using guarded hot box at
CSTB, France. Then, the real IIW, denoted ‘‘W5’’ in the following, was moved to the Cerema at Nancy (France) and was tested
using a developed lamp box prototype under natural weather conditions for in-situ wall thermal resistance determination [8]. Its
external surface was exposed to the sun and external temperature variations. During the test, sensors were placed on the inner and
outer surfaces of the wall to measure 𝑇Si , 𝑇Se and variations in 𝜑Si . To evaluate the identification method in an operational context,
there was no measurements of the heat flux on exterior wall face and no stabilisation phase. The measurement and excitation of the
inner wall surface, by imposing a 𝛷exc of approximately 240 W∕m2, were conducted on a reduced time of 10 h. This test is denoted
𝑀2𝑏𝑖𝑠𝐶6𝑊5. The weather 𝑀2𝑏𝑖𝑠 is associated with the measured climatic conditions at Nancy (France) in August 2020 where outdoor
temperatures ranged from 16◦C to 30◦C and solar irradiance from 0 W∕m2 to 622 W∕m2 respectively during the considered 10 h
test period.

Before presenting the results of the identification of the thermal resistance using real data (see Section 4.2.2), a numerical study
is carried out in the next section on this wall 𝑊5, considering 𝑀2 weather, to get a better understanding of expected identification
results using a reduced instrumentation and short measurement time.

4.2.1. Numerical test
To mimic the experimental case corresponding to the available measurements, numerical tests for different configurations on

𝑊5, with 𝑀2 weather and a controlled excitation 𝛷exc of 240 W∕m2on the inside wall face, are tested and presented in Table 10. It
can be seen that in the tests 𝑀2𝐶1𝑊5 and 𝑀2𝐶2𝑊5, 𝑅Tot is identified with very high accuracy and low uncertainty. In the case of
test 𝑀 𝐶 𝑊 with a reduced 10 h excitation time, the identification of 𝑅 is proper but with a higher uncertainty, which is still
2 5 5 Tot
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Table 10
Numerical identification of the resistance of each layer (𝑅𝑖) and 𝑅Tot (in m2 K ∕W) of the wall 𝑊5 in the case of
the 𝑀2 weather, in the configurations 𝐶1, 𝐶2, 𝐶5 and 𝐶6. The results of the estimation of the thermal resistance
are presented in the form MAP[IC95%] where MAP is the value which maximises the a posteriori distribution and
[IC95%] is the confidence interval at 95%.

Test 𝑅Ref 𝑀2𝐶1𝑊5 𝑀2𝐶2𝑊5 𝑀2𝐶5𝑊5 𝑀2𝐶6𝑊5

𝑅1 0.05 0.04[0.02; 0.08] 0.04[0.04; 0.05] 0.05[0.04; 0.06] 0.05[0.04; 0.05]
𝑅2 3.87 3.31[3.14; 3.43] 3.62[3.33; 3.89] 3.11[2.76; 3.61] 3.02[2.75; 3.48]
𝑅3 0.20 0.72[0.61; 0.87] 0.14[0.07; 0.60] 1.44[0.74; 2.18] 2.50[0.30; 2.93]
𝑅4 0.01 0.03[0.01; 0.05] 0.04[0.01; 0.29] 0.03[0.009; 0.28] 0.02[0.009; 0.29]
𝑹𝐓𝐨𝐭 𝟒.𝟏𝟑 𝟒.𝟏𝟐[𝟒.𝟎𝟎; 𝟒.𝟐𝟐] 𝟒.𝟎𝟔[𝟑.𝟗𝟓; 𝟒.𝟐𝟎] 𝟒.𝟕𝟎[𝟒.𝟐𝟕; 𝟓.𝟑𝟒] 𝟓.𝟔𝟏[𝟑.𝟕𝟑; 𝟔.𝟐𝟓]

Table 11
Experimental identification on in-situ interior insulation wall at Cerema Nancy exposed to natural summer
conditions. The results of the estimation of the thermal resistance (𝑅Est ) are presented in the form MAP[IC95%]
where MAP is the value which maximises the a posteriori distribution and [IC95%] is the credible interval at
95%. 𝑅t h correspond to the theoretical values deduced from measured material properties and considered as the
reference values.

𝑅1 𝑅2 𝑅3 𝑅4 𝑹𝐓𝐨𝐭

𝑅t h 0.05 3.75 0.20 0.01 𝟒.𝟎𝟐
𝑅Est 0.14[0.09; 0.14] 3.65[3.39; 4.02] 2.61[0.17; 2.93] 0.04[0.01; 0.29] 𝟔.𝟒𝟐[𝟒.𝟐𝟒; 𝟔.𝟖𝟔]

acceptable. In the case of the last test performed 𝑀2𝐶6𝑊5 whose configuration corresponds to the available experimental data (see
ection 4.2.2), 𝑅Tot is identified with larger uncertainty, while retaining the information that the wall has a resistance greater than
.58 m2 K ∕W (𝑅Tot ≥ 3.73 m2 K ∕W). We note that the measurement of the 𝜑Se improves the identification of 𝑅Tot in the case of
n IIW wall with a reduced excitation time (10 h) and an imposed 𝛷exc of 240 W∕m2. We conclude that, for this wall 𝑊5 with the
hermal properties given in Table 9, a 10-hour excitation of 240 W∕m2 for the inner surface, using temperature and flux sensors of the

inner and outer surfaces, allows to identify the total thermal resistance of the wall with accuracy and with acceptable uncertainties.
f the information on the minimum total resistance of the wall and the resistance of the insulation is sufficient, it is thus enough to
xcite the inner surface for 10 h and to measure only 𝑇Si , 𝑇Se and 𝜑Si .

4.2.2. Experimental test
After the numerical study of the different tests presented in Table 10, in this section we present the experimental application

on a real IIW with real sensor outputs. As explained before, the IIW was placed and tested at Cerema in Nancy (France) during the
summer 2020. The inside wall face (resp. outside wall face) was in contact with a controlled indoor environment at a 20◦C fixed
temperature (resp. the external natural environment, which enables solar radiation). To estimate the overall wall thermal resistance
in a short measurement time (10 h) while limiting the influence of outside weather conditions: (i) an active solicitation of about
240 W∕m2 on a 60 cm × 60 cm area of the inside wall face was ensured by a developed prototype [8] equipped with halogen spots,
ii) a (60 cm × 60 cm) solar protection was placed on the measurement zone of the outside wall surface to reduce the impact of solar
adiation. During the test, the outdoor temperature was between 16◦C and 30◦C and the solar irradiance was between 0 W∕m2 and
622 W∕m2. For operational purposes, we recall that temperature sensors were placed on both wall sides (𝑇Si and 𝑇Se ) whereas a
heat flux sensor was only placed on the inside surface (𝜑Si ). The considered test, denoted ‘‘Test 21’’ in [8], was conducted in August
2020 during the daytime. The values of measurement uncertainties used in the Bayesian identification process are similar to those
defined in the numerical study in Section 4.1, and are in agreement with the instrumentation deployed. The data available presented
n Fig. 12 correspond to measurements with only 10 h of excitation of the inner surface by imposing a 𝛷exc of approximately 240
W∕m2 and without a stabilisation phase. It shows a comparison between the variation of the 𝑇𝑆𝑖

and 𝑇𝑆𝑒
and their smoothed versions

a) and the variation of the 𝜑𝑆𝑖
(b).

Given the data available (see Fig. 12), we are in the case 𝑀2bis𝐶6𝑊5. As shown in Table 11, given the short duration of the
xcitation (10 h) and the fact that limited instrumentation was used (no sensors to measure the heat flux on the external surface),
e do not have enough information to identify the resistances of layers 3 (building block) and 4 (external coating). Fig. 13 shows

the total thermal resistance deduced from measured material properties (𝑅t h
Tot = 4.02 m2 K ∕W), the a posteriori distribution of the

stimated 𝑅Tot (in brown), the value that maximises the likelihood (in red, MAP = 6.42 m2 K ∕W), and the credible interval of level
5% (in blue, 𝐶 𝐼95% = [4.24; 6.86]). We obtained a perfect estimate of the thermal resistance of the insulation (𝑅2) with a high
egree of accuracy and we succeeded in estimating the minimum thermal resistance of the entire wall 𝑊5 (𝑅Tot) correctly, but with
ignificant uncertainties (wide credible intervals), as shown in the Table 11.

As demonstrated previously in the numerical case 𝑀2𝐶6𝑊5 (see Table 10), the limited instrumentation and the short mea-
surement time (10 h) leads to large uncertainties. We also note the difficult nature of this real experimental test, conducted in the
summer, which does not facilitate the identification of the wall thermal resistance. It leads to higher uncertainties than the numerical
cases but we identify properly the 𝑅 minima of each layer, especially 𝑅 and 𝑅 .
𝑖 2 Tot
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Fig. 12. Comparison of noisy and smoothed surfaces temperatures variation 𝛥𝑇𝑆 (a) and the variation of the interior surface flux 𝛥𝜑𝑆𝑖
(b).

Fig. 13. A posteriori distribution of the estimated resistance (in brown), the value that maximises the likelihood (in red), the total thermal resistance value
(𝑹𝐭 𝐡

𝐓𝐨𝐭 ) deduced from materials thermal characterisation (in green) and considered as the reference value, and the credible interval at 95% (in blue) for real IIW.
The graph 𝑎1 is associated with the internal coating; 𝑎2 correspond to the insulation, 𝑎3 refer to the support wall, 𝑎4 characterise the external coating, and 𝑎5
correspond to the total wall. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

5. Conclusion and perspectives

This study presents an in-situ identification method for determining the total thermal resistance (𝑅Tot) for poorly insulated walls
(𝑅Tot ≤ 1 m2 K ∕W) as well as for highly insulated walls (𝑅Tot ≥ 8 m2 K ∕W) with very different thicknesses (0.2 < 𝑒Tot (m) < 0.6). It
is applied in a Bayesian framework with the aim of providing a credible interval for the estimated parameters by quantifying the
different sources of uncertainty. The parameter estimation is based on the Metropolis–Hastings algorithm, which requires a large
number of calls to a 1D thermal model. To achieve this estimation in a reasonable computational time, a meta-model is created
based on a statistical multi-fidelity approach. To reduce the influence of the initial wall temperature and the misknown heat transfer
coefficients on the identification results, polynomial initial temperature profiles in the wall layers are proposed and the measured
internal (𝑇Si ) and external (𝑇Se ) surface temperatures are imposed as boundary conditions in the thermal model. In addition, to limit
the influence of external weather conditions, an active thermal solicitation on the inner surface of the wall with a Heaviside type
excitation (𝛷exc) is considered.

The proposed method is first applied to various numerical tests in two different weather conditions to study the impact of the
excitation times and instrumentation on the estimation results, and thus to determine operational conditions needed for acceptable
identification quality. An uncertainty analysis is performed by quantifying the different sources of error. This makes it possible
to (1) control the error of the meta-model and check that it is less than the measurement error, (2) show that the reduction of
model parameters in the meta-model is correct for thick walls and (3) identify the walls that require an enriched (3D) model in the
multi-fidelity approach based on the residual uncertainty. The results of the numerical tests show that when the internal surface
of an IIW is excited with a fixed and controlled 𝛷 , the use of the measurement of the external surface flux allows to reduce the
exc
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uncertainties related to the estimation of 𝑅Tot , especially when the internal surface is excited during only 10 h. However, a relevant
stimate of the total thermal resistance can also be obtained by using only the internal surface flux when considering a longer
xcitation time of 3 days. It should also be noted that for some cases tested, an accurate estimation of the wall thermal capacitance
s provided (which is not the main objective of this study). In addition, an in-situ experimental application is carried out on a real
IW in natural weather conditions, using available data from 10 h of excitation with 𝛷exc = 240 W∕m2. It shows that a relevant
stimation of the thermal resistance of the insulation (±0.3 m2 K ∕W) and a proper estimate of the minimum thermal resistance of
he wall are provided using a reduced instrumentation and a short excitation time. Finally, we note that the method proposed in
his study is not limited to the case of internally insulated walls, but can be applied to other types of wall (for example single-layer
alls) and for different weather conditions.

In perspectives, a meta-model of the 3D model could be created for thick walls by adding a third level of fidelity which will reduce
odel errors and consequently provide more accurate estimates of 𝑅Tot with less uncertainty. This improvement can be valuable

or a part of internal insulated walls and also for single-walls. The proposed method and experimental protocol can also be adapted
o external insulated walls, notably by applying the active thermal excitation on the exterior wall surface. Lastly, experimental
pplications on hygroscopic walls (i.e. bio-based and geo-sourced walls) will be conducted with the aim of identifying not only
hermal but also hygrothermal properties.
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Appendix A. Details of polynomial initial condition temperature profile

A 𝑡 = 𝑡0, to determine the polynomial initial temperature profile, we use the temperature and heat flux measured on indoor and
outdoor wall faces and also the continuity conditions at the wall layer interfaces. It gives 10 equations:

∙ Measurements (4 equations):
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑇1(𝑥1 = 0) = 𝑇Si ,
𝑇4(𝑥4 = 1) = 𝑇Se ,
𝜑1(𝑥1 = 0) = 𝜑Si ,
𝜑4(𝑥4 = 1) = 𝜑Se .

(A.1)

∙ Continuity conditions (6 equations) :
{

𝑇𝑖(𝑥𝑖 = 1) = 𝑇𝑖+1(𝑥𝑖+1 = 0) f or 𝑖 ∈ [1, 3],
𝜑𝑖(𝑥𝑖 = 1) = 𝜑𝑖+1(𝑥𝑖+1 = 0) f or 𝑖 ∈ [1, 3]. (A.2)

The 10 polynomial coefficients involved in the proposed initial temperature profile (see Eq. (8)) are determined by solving the
system:
20 



H. Nasser et al.

o
b

(

i
i

Journal of Building Engineering 98 (2024) 111027 
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑇1(𝑥1 = 0) = 𝑇Si ⟹ 𝑏1 = 𝑇Si
𝑞1(𝑥1 = 0) = 𝑞Si ⟹ 𝑎1 = −𝑅1𝑞Si
𝑇4(𝑥4 = 1) = 𝑇Se ⟹ 𝑎4 + 𝑏4 + 𝑐4 = 𝑇Se
𝑞4(𝑥4 = 1) = 𝑞Se ⟹ − 2𝑎4+𝑏4

𝑅4
= 𝑞Se

𝑇1(𝑥1 = 1) = 𝑇2(𝑥2 = 0) ⟹ 𝑎1 + 𝑏1 = 𝑏2
𝑇2(𝑥2 = 1) = 𝑇3(𝑥3 = 0) ⟹ 𝑎2 + 𝑏2 = 𝑐3
𝑇3(𝑥3 = 1) = 𝑇4(𝑥4 = 0) ⟹ 𝑎3 + 𝑏3 + 𝑐3 = 𝑐4
𝑞1(𝑥1 = 1) = 𝑞2(𝑥2 = 0) ⟹ − 𝑎1

𝑅1
+ 𝑎2

𝑅2
= 0

𝑞2(𝑥2 = 1) = 𝑞3(𝑥3 = 0) ⟹ − 𝑎2
𝑅2

+ 𝑏3
𝑅3

= 0
𝑞3(𝑥3 = 1) = 𝑞4(𝑥4 = 0) ⟹

𝑏4
𝑅4

− 2𝑎3+𝑏3
𝑅3

= 0

(A.3)

We can show that the solution of the system is:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑎1 = −𝑅1𝑞Si
𝑎2 = −𝑅2𝑞Si
𝑎3 =

𝑅3
2(𝑅3+𝑅4)

(2(𝑅1 + 𝑅2 + 𝑅3)𝑞Si + 𝑅4(𝑞Si + 𝑞Se ) + 2(𝑇Se − 𝑇Si ))

𝑎4 = − 𝑅4
2(𝑅3+𝑅4)

(2(𝑅1 + 𝑅2)𝑞Si + 𝑅3(𝑞Si + 𝑞Se ) + 2𝑅4𝑞Se + 2(𝑇Se − 𝑇Si ))

𝑏1 = 𝑇Si
𝑏2 = −𝑅1𝑞Si + 𝑇Si
𝑏3 = −𝑅3𝑞Si
𝑏4 =

𝑅4
𝑅3+𝑅4

(2(𝑅1 + 𝑅2)𝑞Si + 𝑅3𝑞Si + 𝑅4𝑞Se + 2(𝑇Se − 𝑇Si ))

𝑐3 = −(𝑅1 + 𝑅2)𝑞Si + 𝑇Si
𝑐4 = − 1

2(𝑅3+𝑅4)
(2𝑅4(𝑅1 + 𝑅2)𝑞Si + 𝑅3𝑅4(𝑞Si − 𝑞Se ) − 2𝑅3𝑇Se − 2𝑅4𝑇Si )

(A.4)

Appendix B. Metropolis–Hastings algorithm

This section briefly presents the basics of the Metropolis Hastings (MH) algorithm used for the MCMC step. In this section, we
use the same notation as in Section 3.1, but we assume that the components of 𝒛 have been normalised with respect to their a priori
distribution, in the sense that all the components of 𝒛 now have zero means and variances of 1.

To begin, the HM algorithm specify a starting point 𝒛0 (which can be done randomly) and a proposal probability distribution 𝑞.
In this work, we limit ourselves to the following Gaussian proposal parameterised by a unique scale parameter 𝜔 (if the components
f 𝒛 were not normalised, this proposal distribution would have to take account of potential differences in the order of magnitude
etween the components of 𝒛, potentially by depending on a larger number of hyper-parameters) :

𝑞(𝒛1|𝒛2) = 1
𝜔8(2𝜋)4

exp

⎛

⎜

⎜

⎜

⎝

−
‖

‖

‖

𝒛1 − 𝒛2‖‖
‖

2

2𝜔2

⎞

⎟

⎟

⎟

⎠

, 𝒛1, 𝒛2 ∈ R8. (B.1)

The MH algorithm then sequentially adds new samples to the chain in two steps: a new sample 𝒛∗ is proposed at iteration 𝑛
based on the previous sample 𝒛𝑛−1, and this proposed sample is either added to the chain (in this case 𝒛𝑛 = 𝒛∗) or rejected with
some probability (in that case, 𝒛𝑛 = 𝒛𝑛−1). The probability of acceptance is generally chosen equal to

𝛽 = min
[

1,
𝜋(𝐳∗|𝐲mes) × 𝑞(𝐳𝑛−1|𝐳∗)
𝜋(𝐳𝑛−1|𝐲mes) × 𝑞(𝐳∗|𝐳𝑛−1)

]

. (B.2)

After 𝑁𝑠 iterations, we obtain a sequence {𝐳1,… , 𝐳𝑁𝑠} that can be used to approximate the posterior distribution 𝜋(𝒛|𝒚mes).

The choice of 𝜔 is central to such an algorithm. See [53] for more details on this choice of 𝜔 and its potential adaptation as a
function of 𝑛.

Appendix C. Gaussian smoothing

We are interested here in the approximation of a function 𝑡 ↦ 𝑦(𝑡) that is observed in 𝑁 points 𝑡1,… , 𝑡𝑁 . Let 𝒚mes =
𝑦mes(𝑡1),… , 𝑦mes(𝑡𝑁 )) be the vector gathering these 𝑁 observations. It is assumed that these 𝑁 measurements are all affected by the

same Gaussian noise, and that these noises are mutually independent. Let 𝜎2 be the variance of this noise. Assume now that 𝑡 ↦ 𝑦(𝑡)
s a particular realisation of a Gaussian process 𝑡 ↦ 𝑌 (𝑡) with mean function 𝑡 ↦ 𝑚(𝑡) and covariance function (𝑡, 𝑡′) ↦ 𝑘(𝑡, 𝑡′), which
s assumed independent of the noise. For all 𝑡, we deduce that:
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Algorithm 1: MCMC Algorithm
Define the starting point 𝒛0, the proposal distribution 𝑞, and the scale parameter 𝜔 ;
Set state indicator 𝑛 = 1 ;
Compute 𝜋(z𝑛−1|ymes) ;
while 𝑛 < 𝑁𝑠 do

Sample at random a candidate point 𝒛∗ according to PDF 𝑞(⋅|𝒛𝑛−1) ;
Compute 𝜋(z∗|ymes) and acceptance factor 𝛽 with Eq. (B.2) ;
Draw at random and uniformly between 0 and 1 the value 𝑈 ;
if 𝑈 ≤ 𝛽 then

𝒛𝑛 = 𝒛∗ ;
else

𝒛𝑛 = 𝒛𝑛−1 ;
𝑛 = 𝑛 + 1 ;

(

𝑌 (𝑡)
𝒚mes

)

∼ 
((

𝑚(𝑡)
𝒎

)

,
[

𝑘(𝑡, 𝑡) 𝒓𝑇 (𝑡)
𝒓(𝑡) 𝜎2𝑰𝑁 +𝑲

])

, (C.1)

𝒎 =
⎛

⎜

⎜

⎝

𝑚(𝑡1)
⋮

𝑚(𝑡𝑁 )

⎞

⎟

⎟

⎠

, 𝑲 =
⎡

⎢

⎢

⎣

𝑘(𝑡1, 𝑡1) ⋯ 𝑘(𝑡1, 𝑡𝑁 )
⋮ ⋱ ⋮

𝑘(𝑡𝑁 , 𝑡1) ⋯ 𝑘(𝑡𝑁 , 𝑡𝑁 )

⎤

⎥

⎥

⎦

, (C.2)

By stability of the Gaussian distribution through conditioning [49], it comes:

𝑌 (𝑡) ∣ 𝒚mes ∼ GP
⎛

⎜

⎜

⎝

𝑡 ↦ 𝑚(𝑡) + 𝒓𝑇 (𝑡)
(

𝜎2𝑰𝑁 +𝑲
)−1 (𝒚mes −𝒎

)

,

(𝑡, 𝑡′) ↦ 𝑘(𝑡, 𝑡′) − 𝒓𝑇 (𝑡)
(

𝜎2𝑰𝑁 +𝑲
)−1 𝒓(𝑡′)

⎞

⎟

⎟

⎠

. (C.3)

Considering a smooth mean function and a smooth covariance function for 𝑌 (take, for example, the square exponential kernel
(𝑡, 𝑡′) = exp(−(𝑡−𝑡′)2∕𝓁2) with 𝓁 a scaling parameter to be adjusted to the data), the function 𝑡 ↦ 𝑚(𝑡) +𝒓𝑇 (𝑡)

(

𝜎2𝑰𝑁 +𝑲
)−1 (𝒚mes −𝒎)

rovides a smoothed approximation of 𝑡 ↦ 𝑦(𝑡). By generating independent realisations of 𝑡 ↦ 𝑌 (𝑡) ∣ 𝒚mes, we also generate smooth
pproximations of 𝑦 which are themselves fully consistent with the available data contained in 𝒚mes.

In absolute terms, we can take 𝑚(𝑡) = 0 for all 𝑡. However, if we consider stationary covariance functions for 𝑌 (as it is almost
always the case), it is worth looking for mean functions 𝑚 that make the function 𝑡 ↦ 𝑌 (𝑡) − 𝑚(𝑡) as stationary as possible.

Appendix D. R5C4 thermal model and relations between RC and 1D model parameters

The considered RC model is defined by 5 resistances and 4 capacitance. It is denoted as R5C4. To determine the 4 wall nodal
temperatures (𝑇𝑚1

, 𝑇𝑚2
, 𝑇𝑚3

, 𝑇𝑚4
), we need to solve the system defined below for 𝑡 ∈ [𝑡0, 𝑡𝑓 ] where the surface temperatures (𝑇Si , 𝑇Se )

are used as boundary conditions (see Section 2.2):

𝐶
𝜕 𝑇𝑅𝐶
𝜕 𝑡 +𝐾 𝑇𝑅𝐶 = 𝐹 , (D.1)

where

𝑇𝑅𝐶 = (𝑇𝑚1
, 𝑇𝑚2

, 𝑇𝑚3
, 𝑇𝑚4

), 𝐹 =
( 𝑇Si
𝑅A

, 0, 0,
𝑇Se
𝑅E

)

, (D.2)

𝐾 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
𝑅A

+ 1
𝑅B

− 1
𝑅B

0 0

− 1
𝑅B

1
𝑅B

+ 1
𝑅C

− 1
𝑅C

0

0 − 1
𝑅C

1
𝑅C

+ 1
𝑅D

− 1
𝑅D

0 0 − 1
𝑅D

1
𝑅D

+ 1
𝑅E

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, 𝐶 =

⎛

⎜

⎜

⎜

⎜

⎝

𝐶1 0 0 0
0 𝐶2 0 0
0 0 𝐶3 0
0 0 0 𝐶4

⎞

⎟

⎟

⎟

⎟

⎠

. (D.3)

According to Eq. (23), the mean function of the meta-model created is chosen as an estimated constant 𝛼 multiplied by the
umerical solution of the RC model. Since the input parameters of the meta-model correspond to the parameters of the 1D model
epresented by the vector 𝒛 (see Section 2.5), the relations between the RC and 1D model parameters are:

{

𝑅𝐴 = 𝑅1
2 , 𝑅𝐵 = 𝑅1

2 + 𝑅2
2 , 𝑅𝐶 = 𝑅2

2 + 𝑅3
2 , 𝑅𝐷 = 𝑅3

2 + 𝑅4
2 , 𝑅𝐸 = 𝑅4

2 ,
𝐶𝑖 = 𝑒𝜌𝐶𝑖 for 𝑖 ∈ [1, 4]. (D.4)
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Fig. E.14. Comparison of noisy and smoothed temperatures in the case of Carpentras, wall 2: (a) 𝑇Si , (b) 𝑇Se .

Appendix E. Smoothing of measured temperatures

In Fig. E.14, a comparison between the noisy measurements (in grey) and their smoothed versions (in black) is shown for 𝑇Si
and 𝑇Se in the case of Carpentras, for wall ‘‘𝑊2’’. Given the particular form of 𝑇Si , a parametric mean function 𝑚 (see Appendix C
for more details) is chosen for the rise of 𝑇𝑆𝑖

so that

𝑚(𝑡) = 𝑇Si (𝑡 = 𝑡0) + 𝐵1

(

1 − exp
(

−𝐵2(𝑡 − 𝑡0)
𝑡𝑓 − 𝑡0

))

, 𝑡 ∈ [𝑡0, 𝑡𝑓 ], (E.1)

where 𝐵1, 𝐵2 are estimated using a least-squares procedure.

Data availability

Data will be made available on request.
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