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Quantum Minimum Searching Algorithms for
Active User Detection in Wireless IoT Networks
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Member, IEEE

Abstract—The key features of 5G, such as ultra-reliable low
latency (URLLC) and massive machine-type communication
(mMTC), are designed to address the need for low latency and the
ability to connect a large number of devices in the IoT context.
To support these constraints, mobile devices transmit information
without previously establishing a connection with the base station
(BS). This requires the Base Station to detect in real-time the
active users (process known as Active User Detection (AUD)).
With classical processors, one can employ the Maximum Likeli-
hood (ML) method (the optimal detector, but suffers from high
complexity and delay), or suboptimal ones (which are simpler, but
less reliable). Meanwhile, quantum algorithms, particularly Durr
and Høyer (DHA) algorithm, addressing minimum searching
problems, can significantly reduce complexity while keeping
good performances. However, these algorithms were designed for
generic problems, and their initialization and parameterization
are blindly done. Nonetheless, we can have access to prior
information on the system’s behavior. Therefore, in this paper,
we aim to adapt and improve these quantum algorithms by
using prior knowledge on the system for the AUD problem.
We first propose a novel algorithm, the Improved Iterative
Minimum Searching Algorithm (IIMSA) where we define more
efficiently the parameters. Then, further enhancements of IIMSA
are obtained thanks to a better initialization of the algorithms
by exploiting classical preprocessing of the received signals
with classical Conventional Correlation Receiver (CCR) or Zero
Forcing (ZF). The obtained results show that these proposed
algorithms operate more efficiently (i.e., less complexity with
better accuracy).

Index Terms—5G, Active User Detection, Maximum Likeli-
hood, Quantum Algorithm, Grover’s algorithm

I. INTRODUCTION

The roll out of the deployment of the 5G technology has
been ongoing globally for enhanced wireless communication
networks, and more specifically for the deployement of IoT. It
is capable of handling a large number of users, maintaining a
higher capacity than the previous generations, and minimizing
latency limitations. The interesting aspect lies in its ability to
serve a massive number of users, known as a massive machine-
type communication (mMTC), which provides highly scalable
wireless connectivity. This extensive connectivity requirement
can support various devices such as smartphones, tablets, and
Internet of Things (IoT) devices.

The previous generation, Long Term Evolution (LTE), was
unable to fulfill these tasks due to the signaling overhead cost
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introduced by resources orthogonality [1]. To solve this issue,
non-orthogonal multiple access (NOMA) has been proposed
to address the high network density for massive connectivity.
NOMA’s concept allows for devices to access the resource
block simultaneously in a non-orthogonal way, even though it
may result in inter-user interference in the channel. Despite
this interference, this resource access has been proven to
enhance Spectral Efficiency (SE), which is one of the main
objectives in 5G [2].

Meanwhile, Ultra-reliable low-latency communication
(URLCC) aims at achieving a low latency and high reliability
network while mMTC handles a large number of users with
sporadic traffic [3]. To this aim, 3rd Generation Partnership
Project (3GPP) release 16 proposes a grant-free (GF) access
scheme on the uplink communication to eliminate all delays
by encapsulating all-in-one messages in order to avoid the
handshake process [4]. GF uplink transmission allows to
transmit message without grant from the BS [4].

Consequently, the complexity is deferred to the base station
(BS) side. It receives a superposition of signals transmitted by
the devices and has to extract the identity of the active users.
This process is known as Active User Detection (AUD) which
aims to identify and verify the active users in the network. The
optimal AUD method is the well-known Maximum Likelihood
(ML) decoder [5]. While this method is considered as the
most accurate solution, however, it is not pertinent for practi-
cal implementation due to its high computation complexity
(O(2N ) where N is the number of devices). Herein, an
exhaustive search is performed over all the possible user’s
activity combinations. Yet, some suboptimal methods, such
as Parallel Interference Cancellation (PIC) and Successive
Interference Cancellation (SIC), Matching Pursuit (MP) or
Approximate Message Passing (AMP) algorithms have been
proposed, in order to reduce the required computation burden
to detect the active users [6]. However, this is at the cost of
reduced AUD accuracy.

Meanwhile, quantum computing has emerged as a new
computing technology which harnesses the properties of quan-
tum mechanics. It extends classical computing but with a
different approach for solving problems. Indeed, one of the
quantum attributes, superposition, permits to handle both 0
and 1 states simultaneously, enabling parallelizing processing,
i.e. processing data in different dimensions at once.

One of the most famous quantum algorithms is Grover’s
algorithm. It was designed to search for a specific value
in an unsorted database, and extended to function inversion.
The interest of this quantum algorithm is that it significantly
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reduces the complexity. An extension is the quantum minimum
searching algorithm (QMSA) family which searches for the
minimum value of the database, such as proposed by Boyer,
Brassard, Høyer and Tapp (BBHT) and Durr and Høyer (DHA)
[7], [8].

In the AUD context, the ML formulation perfectly matches
with Grover’s algorithm structure. This is thus a promising
approach to reduce the complexity while keeping the optimal
achieved AUD accuracy. Authors in [9] have implemented
BBHT and DHA in the context of multi-user detection (MUD)
with a simple case, where the iterations are upper-bounded
by 22.5

√
K/S, with K the database size, and S the number

of valid solutions. Authors in [10], [11], have compared the
classical and quantum performances for several code families
for the AUD problem with the original Grover’s algorithm
implementation, in a specific case. Nevertheless, these works
consider Grover’s algorithm in a noiseless case. Meanwhile,
the ML approach has to be considered to match the AUD case
in a noisy scenario. This was done in [12], where the authors
have adapted Grover’s algorithm to find the minimum for
power domain NOMA purpose, when the number of solutions
is unknown. Additionally, the authors of [13] have used
an improved Quantum Approximate Optimization Algorithm
(QAOA) for power domain NOMA purposes. These works
were conducted within the power domain NOMA context,
whereas in this paper, we focus on the code domain NOMA.

Based on the author’s knowledge, the proposal of BBHT
and DHA algorithms, which formulate the ML approach,
has not yet been used for AUD purposes for the context
of NOMA. Besides, the BBHT and DHA algorithms still
suffer from high complexity, prompting several researchers
to propose new solutions aiming at leveraging this problem
[14], [15]. Thus, we propose to adapt the DHA algorithm to
find the minimum in the AUD context alongside introducing a
novel algorithm called Improved Iterative Minimum Searching
Algorithm (IIMSA) to reduce the DHA’s complexity. The idea
of IIMSA is to exploit the prior knowledge of the system in
order to allow for a more efficient search.

Accordingly, the contribution of this paper is summarized
as follows:

1) Develop a new adapted algorithm of DHA, IIMSA,
to improve the performances of DHA. The idea here
consists in exploiting the statistical behavior of the
communication system in order to estimate the number
of solutions.

2) Reduce the number of iterations of DHA and IIMSA by
merging and adopting the mixed-principle (classical and
quantum) strategy. Herein, the initialization processes of
the DHA and IIMSA algorithms are performed using
classical methods such as CCR and ZF. This mixed-
principle strategy conducts in reducing the number of
iterations without degrading the final obtained accuracy
in our AUD context.

The paper is organized as follows, section II presents the
wireless system model with several classical signal processing
methods. Section III describes the quantum principle, Grover’s
algorithm and its attributes, Grover’s circuit, and DHA. In
section IV, we present our proposed quantum algorithm and

then, section VI discusses the measurement scenarios and the
obtained results. Finally, section VII concludes this paper.

II. WIRELESS AUD SYSTEM MODEL

A. System Model

Let us consider N devices (or users) connected to a BS
equipped with a single antenna. These devices are assumed
to be in sleep mode by default, and active only when they
send messages. This network relies on Code-Domain Non
Orthogonal Multiple Access (CD-NOMA) approach, where
each user is distinguished by its own code. Each codeword
is made of SF chips, where SF is the spreading factor. The
codewords family thus lies in C ∈ RN×SF .

As we consider a NOMA system, we assume that N ≥
SF users belong to the network. However, only few of them
transmit to the BS simultaneously in one transmission frame.
We model the users activity with the set b ∈ {0, 1}N where
bi = 1 corresponds to user i being active (and bi = 0 to
user i being inactive). We assume a perfect channel realization
(or compensated with a power control loop), by considering
H = 1. In addition, we consider the presence of Additive
White Gaussian Noise (AWGN), with iid realizations on each
code component following N (0, σ2) distribution, denoted by
w ∈ RSF . The received signal is thus given by:

y = b.C+w (1)

The received signal y ∈ RSF thus depends on three
variables, activity user set (b), the codewords messages C, and
the additive noises (w). In order to evaluate the adaptability
of the algorithms, three typical code families are considered
in this paper:

1) Unipolar C ∈ {0, 1}N×SF

2) Bipolar C ∈ {−1, 1}N×SF

3) Random Gaussian Code C/∥C∥ ∈ RSF with each
component of C following a Gaussian distribution

Given the received signal and the set of users code, the
objective of the AUD process is to recover the set of active
users b ∈ {0, 1}N .

B. Conventional Correlation Receiver

The simplest user activity detector is the one that detects
each specific user independently, with a Conventional Correla-
tion Receiver (CCR) [16]. This detector correlates the received
signal y to the corresponding code sequences Ci. The user
is considered active if the correlation exceeds the predefined
threshold T . b̂CCR

i corresponds to the activity status of user
i ∈ {1, · · ·N} as estimated by the CCR.

It takes a value 0 or 1 as defined by the following rule:

b̂CCR
i =

{
1 if

∑
i y.Ci ≥ T

0 otherwise
(2)

Note that, in order to estimate the full user activity set, the
CCR has to be performed N times.
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C. Zero Forcing Receiver
The Zero Forcing receiver (ZF) is also a simple and effective

detector but it considers all users simultaneously [17]. While
the codebook C is known, we evaluate the estimated b̂ZF by
multiplying the inverse code sequences CC with the observed
signal y. However, one may note that C ∈ RN×SF is a
rectangular matrix with a full rank of SF . Thus, to compute
this, we can use pseudo-inverse CC = (CTC)−1CT . The
estimated user activity set is thus given by:

b̂ZF = y.CC (3)

D. Maximum Likelihood
Last but not least, the Maximum Likelihood (ML) receiver

is the well-known optimal detector for AUD [17]. This detector
identifies the most likely active users set b̂ML, given the
received sequence. For an AWGN channel, the ML is obtained
by searching the active user set that minimizes the distance
between its expected contribution and the received signal. With
y and C, the received sequence and the set of user’s signatures
respectively, the ML receiver can be given as follows, in an
AWGN channel, and equiprobable activity:

b̂ML = argmin
{bi}i∈[N]

∥∥∥∥∥y −
N∑
i=1

b.C

∥∥∥∥∥
2

2

(4)

The ML solution suffers from a high computation complex-
ity O(2N ), as it is based on an exhaustive search over all
the existing possibilities. Indeed, the likelihood metric has to
be computed for each potential activity set. Even though this
metric can be reduced to the distance between the expected
received signal and the actual one (as we consider an indepen-
dant, homogeneous activity, and a gaussian channel), finding
the minimum among all distances depends exponentially of
the number of users. Thus, the high complexity of the ML
detector makes it intractable with classical processors when
the number of users increases.

To sum up, with classical receivers, there is a tradeoff
between the performance, and the achievability of the process-
ing. This is why, in the following section, we briefly present
quantum basics, and some suitable algorithms for our problem,
which can permit to alleviate the wireless network from this
compromise.

III. QUANTUM PRINCIPLE

A. Quantum Notation
Introduced by quantum mechanic which describes the phys-

ical properties of atoms and subatomic particles, the quantum
principle relies on a new attribute called superposition, where
processing 0 and 1 simultaneously is possible. The new type
of bit, so-called qubit, is denoted with a dirac notation |.⟩, as
follows:

|ψ⟩ = α|0⟩+ β|1⟩ (5)

where α, β ∈ C are the probability amplitudes that verify
|α|2 + |β|2 = 1. As the amplitude coefficient are complex
numbers, Eq. (5) can also be written as:

|ψ⟩ = cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩ (6)

where 0 ⩽ θ ⩽ π and 0 ⩽ φ ⩽ 2π.
The example above refers to a single qubit with two possible

states (|0⟩ and |1⟩). However, this concept can be expanded
to encompass multiple qubits. Thus for two qubits, there are
four possible states which can be superposed with a different
probability amplitude, and so on. Despite involving numerous
qubits, the sum of the probability amplitudes for those states
always adds up to 1. For example, if we are using 2 qubits to
represent 4 states, we can have:

|ψ⟩ = α1|00⟩+ α2|01⟩+ α3|10⟩+ α4|11⟩ (7)

where α1, α2, α3, α4 ∈ C are probability amplitudes that
verify |α1|2 + |α2|2 + |α3|2 + |α4|2 = 1.

It is important to highlight that we do not have access to the
state amplitudes. The only information that we can have on
the system is provided by a measurement of the state |ψ⟩. The
measure makes a random projection of the state |ψ⟩ on one
of the reference states of the measurement basis (here |0⟩ and
|1⟩). Each state (|0⟩ and |1⟩) might appear accordingly to its
probability amplitude. The following section delves into the
workings of Grover’s algorithm in the context of modifying
these probability amplitudes.

B. Grover’s algorithm

Grover’s algorithm has been designed in order to efficiently
(in terms of the number of needed operations) search a value
in a database. The complexity, defined in this paper as the
required number of iterations to find such value, is O(

√
K)

while classical requires O(K), where K is the database size.
In a nutshell, to do so, Grover’s algorithm relies on two main

functions, as illustrated in Fig.1: 1) Oracle (O), 2) Diffuser
(D). The oracle first marks the states which verify the chosen
constraint while the diffuser amplifies the states previously
marked by the oracle. More precisely, let us assume that we
have a value represented by N qubits. The first step is to
initialize the superposed states, denoted as |ψ⟩. To do so, we
start with all qubits being |0⟩, and we multiply each of them
with Hadamard operator H⊗N :

|ψ⟩ = 1√
K

K∑
x=1

|x⟩ (8)

where |x⟩ ∈ BN corresponds to the index of the qubit [9],
and K = 2N corresponds to the number of basis states.

Then, the operation O marks the targeted states as follows:

O|x⟩ =

{
|x⟩ if f(x) = δ

−|x⟩ otherwise
(9)

The Oracle O is designed with respect to the targeted function
and its targeted outcome, f(x) = δ, where x corresponds to
any of the K values to test. Then, this result is amplified by
D which inverts the probabilities around the mean, thus am-
plifying the probability for the valid solutions, and attenuating
the non-valid ones. This unitary operator can be modeled by:

D = H⊗N (2|0N ⟩⟨0N | − I)H⊗N = 2|ψ⟩⟨ψ| − I (10)
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|x⟩
N qubits H⊗n

O

H⊗n 2|0n⟩⟨0n| H⊗n

H

|ψ⟩ O.|ψ⟩ D.O|ψ⟩

Fig. 1: Grover’s scheme

Algorithm 1: BBHT Algorithm
Input : K, m, λ
Output: xout

1 m← 1, λ← 6
5
(or λ← 4

3
), LBBHT ← 1;

2 while LBBHT < 4.5
√
K do

3 Choose j uniformly in {0, · · · , ⌊m⌋};

4 Initialize the superposition |ψ⟩ = 1√
K

K−1∑
x=0
|x⟩ (Eq. (8);

5 Apply Grover’s algorithm j times |ψout⟩ = Gj |ψ⟩;
6 Update LBBHT ← LBBHT + j;
7 Measure xout from |ψout⟩ ;
8 if U [xout] = δ then
9 The solution is found and exit the while loop;

10 else
11 Set m← min(λm,

√
K);

12 end
13 end

Finally, let us denote Grover’s algorithm as G, where its full
algorithm is written as follows:

G|ψ⟩ = D.O.|x⟩ = H⊗N (2|0N ⟩⟨0N | − I)H⊗N .O.|x⟩ (11)

After one iteration, the desired solutions are more likely to
be measured than the non-desired ones. However, one may
note that the latter can still be obtained.

C. Grover’s optimum iteration: known number of solutions

Grover’s algorithm should be repeated several times, so as
to remove as efficiently as possible the non-desired solutions.
The number of iterations in Grover’s algorithm depends on
the database size K and the number of solutions S.

The optimal number of Grover iterations has been proven
to be Lopt = ⌊π4

√
K/S⌋ where ⌊.⌋ is the floor function [18].

D. Grover’s optimum iteration : unknown number of solutions

Regardless of the search method, the total number of
solutions S is oftenly unknown, which prevents to accurately
evaluate the previous Lopt. As a consequence, there have been
efforts to define an effective technique to search a solution in
the database when S is unknown.

Boyer, Brassard, Høyer and Tapp proposed a method called
BBHT to find a targeted solution when no prior knowledge is
needed [7]. Let us assume that we have a database, denoted
U , with a size of K. Our objective is to locate the value δ
within this database. The BBHT’s full algorithm is written in
algorithm 1.

BBHT’s complexity is bounded by 9
2

√
K as proved by

the authors of this algorithm [7]. This complexity is derived
by taking the average of the success probability on Grover’s
algorithm. The algorithm will be stopped if U [xout] = δ or if
LBBHT has reached this bound.

Algorithm 2: DHA’s algorithm
Input : K, m, λ
Output: xout

1 Set m← 1, λ← 6
5
(or λ← 4

3
) , LDHA ← 1 ;

2 while LDHA < 22.5
√
K do

3 Choose 0 ≤ ix ≤ K − 1 with uniform distribution;
4 Choose number of iterations j uniformly from {0, · · · , ⌊m⌋} ;

5 Initiate the superposition |ψ⟩ = 1√
K

K−1∑
x=0
|x⟩ ;

6 Apply Grover’s operator G with j iterations resulting in
|ψout⟩ = Gj |ψ⟩, marking states such that U [x] < U [ix] ;

7 Measure xout from |ψout⟩ ;
8 Update LBBHT = LBBHT + j;
9 Update LDHA = LDHA + LBBHT ;

10 if U [xout]) < U [ix] then
11 Set ix = xout and exit the while loop ;
12 else
13 Go back to Step 3;
14 end
15 end

IV. AUD DEDICATED QUANTUM ALGORITHMS

In this section, we adapt the DHA algorithm to perform ML
decoding for the active user detection problem, and propose a
new one.

These advanced search algorithms are inspired by the previ-
ous algorithms. Indeed, for Grover’s and BBHT’s algorithms,
the solutions satisfy a trivial condition that can be easily
(i.e. with one classical computation) checked (for example,
f(x) < δ). However, ML does not fall into this category.
So, we now take a step further, by considering non-trivial
conditions, such as the case where we have to find the
minimum, as needed in the ML algorithm.

Besides, as seen in the previous section, we need to consider
different approaches depending on whether the number of
potential solutions within Grover’s search is priorly known.
Thus, we present, in this section, two quantum algorithms
which search for the ML solution of the AUD problem. In
the first case, we consider that we do not have access to the
number of solutions for each iterative step, while in the second
one, we suppose that we do have access to this information.

A. Durr and Høyer Algorithm (DHA)

In this section, we suppose that we have no prior informa-
tion on the data structure. This means that the search has to
be performed in a blind way. Additionally, this algorithm aims
to find the minimum value in an unsorted list.

Finding a minimum in a given list can be achieved by
selecting an initial value, then iteratively searching for a
smaller value than the last one. Once we can not find any
new value, the minimum is considered to be found. To do
so, the quantum algorithm can process iteratively to find the
minimum, by locating the index of a smaller item than the
value set by a predetermined threshold index. This algorithm
is the one proposed by Durr and Høyer [8], namely DHA,
in order to find the minimum of the database. This algorithm
finds the index of the minimum value with a probability at
least 1/2 for a running time O(

√
K) [8].

Algorithm 2 illustrates the full steps of DHA to find a
targeted value and recover its index. Let us assume a database
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U with size K. The initialization index value ix is chosen
randomly following a uniform distribution. The objective of
DHA’s algorithm is to find the minimum value, with the
constraint that the solution after Grover’s iteration, denoted
as U [xout], should be less than U [ix]. The complexity of this
searching procedure is given by 22.5

√
K.

B. Improved Iterative Minimum Searching Algorithm

In the previous section, the number of solutions was sup-
posed to be unknown. However, we can suppose that we
can have access to this information thanks to a prior off-
line study of the system behavior. This knowledge permits
to have a better efficiency while running Grover, by doing the
appropriate number of iterations, and not a random one. The
IIMSA algorithm relying on our system model described in
Eq. (1), can be illustrated as follows:

Algorithm 3: IIMSA Algorithm

Input : C, K, LIIMSA, δ̂
Output: δx, b

1 i← choose (0,K − 1)uniformly ;
2 Choose δ̂(i)← corresponds to i ;
3 Ŝ ← ∥y − b ·C∥22 ≤ δ̂;
4 nbit ← 1;
5 while Ŝ ̸= 0 or nbit ≤ LIIMSA do
6 b← G(Lopt);
7 δx ← ∥y − b ·C∥22;
8 Ŝ ← ∥y − b.C∥22 ≤ δx ;
9 nbit ← nbit + Lopt ;

10 if δx < δ̂ then
11 δ̂ ← δx;
12 end
13 end

Firstly, we randomly select an index i from a uniform range
of values between 0 and K − 1, where K is the size of the
database. Consequently, δ̂ is here initialized by computing
the corresponding distance between the selected set and the
received signal. We then evaluate the number of solution S,
i.e. the number of sets whose distance is lower than the current
δ̂, thanks to the statistical system analysis. If S = 0, the
current δ̂ is the one that corresponds to the minimum distance.
Otherwise, Grover’s algorithm G, searching for x such that
f(x) < δ̂ is run, to search for a lower distance. The Grover’s
output provides a new user activity set, leading to a new δx
and number of solution S. If δx < δ̂ (i.e. if the measurement
returns a valid solution), we iterate by starting once again G
but with δ̂ updated by δx value. We thus have a smaller set of
solutions for the next iteration of G.

This principle is applied until we obtain S = 0. For
each Grover’s call, the algorithm runs the modified oracle for
Lopt = ⌊π4

√
2N

S ⌋ times, to find a lower distance. However, it
is important to note that if the number of solutions is bigger
than the half of the database size, then the unwanted cases are
amplified, pushing the search in the wrong direction. Thus,
and also to be in the same conditions than DHA which has a

Start

Quantization

CCR ZF

OR

IIMSA DHA

OR

End

y = b ·C+w

b̂

Preprocessing

Minimum Searching

Fig. 2: Proposed algorithms principle

limitation on the number of iterations, we bound the number
of unsuccessful trials to LIIMSA.

C. Quantum-Classical Hybrid Solution

Finally, to further ameliorate the previous algorithm, we pro-
pose to exploit the knowledge that can be easily obtained with
classical preprocessing of the received signal. The objective
is to initialize accurately the quantum search algorithm, to
prevent the case where the number of solutions is too high.
Besides, we also expect it to accelerate the search as we might
start closer to the targeted solution δ. To do so, we propose to
evaluate the estimated activity status for each user, by applying
CCR (as proposed in II-B) and ZF (as proposed in II-C) to the
received signal y. The complete algorithms (merging classical
pre-processing and quantum search) are called CCR-DHA, ZF-
DHA, CCR-IIMSA and ZF-IIMSA.

One may note that this approach requires more classical
computations (N CCRs computations and 1 ZFs computation
have to be classically performed), but we expect to signif-
icantly reduce the quantum complexity. CCRs and ZFs are
expected to identify a close solution for the activity set. From
this, we compute the distance of this reference set to the
received signal, which is called δCCR and δZF respectively.

V. SIMULATION SETUP

A. General setup

This subsection presents the system architecture of the
implementation process. As a first step, we start by generating
the received signal y, which will be then quantized to deliver
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|a2⟩
Reference|a1⟩

|a0⟩
|b2⟩ H X X

D Index|b1⟩ H X X

|b0⟩ H X X

|g1⟩
Ancilla|g0⟩

|r⟩ X H Mark

|ψ⟩ O.|ψ⟩ D.O.|ψ⟩

Fig. 3: Grover’s Circuit n = 3 qubits f(x) < δ

Codetype Spreading Factor SF Number of Users N

Unipolar

3 4
4 5
5 7
6 9
7 11

Bipolar

3 3
4 5
5 6
6 8
7 10

Gaussian

3 5
4 6
5 7
6 8
7 9

TABLE I: Parameters SF and N for the used code families

a received sequence. Then, the second step is to propose on
efficiently target an initialization value by performing classical
processing. For example, we chose to exploit CCR and ZF
to assist in enhancing the algorithms (i.e. DHA and IIMSA),
while also comparing with their original versions without
any preprocessing. Overall,we are comparing six possible
detectors: DHA, CCR-DHA, ZF-DHA, IIMSA, CCR-IIMSA,
and ZF-IIMSA. The goal of these algorithms is to find the set
b which minimizes the distance between the received signal
y and b · C. The full system architecture with the various
options is presented on Fig. 2.

As for the system parameters, we consider 3 code families
(unipolar, bipolar and gaussian which will be detailed in the
next section) with various spreading factors (SF), allowing
different numbers of users as shown in Table I. As, for these
circuits, the required number of qubits is higher than 32 qubits,
we simulate Grover’s algorithm in MATLAB. As our goal is to
keep the same performances, while reducing the computation
cost, we evaluate the performance Ps and the complexity nbit
of the different algorithms, as follows:

• IIMSA vs DHA Analysis (section: V-D1)
• DHA, CCR-DHA, and ZF-DHA Analysis (section: V-D2)
• IIMSA, CCR-IIMSA and ZF-IIMSA analysis (section:

V-D3)
• IIMSA vs DHA Analysis w.r.t Lmax (section: V-D4)

B. Implementation Circuit

We present here how we adapted the previous algorithms to
the quantum circuit’s constraints.

First, to build Grover which relies on oracle O and diffuser
D, as illustrated in Fig. 3, we need four registers: 1) Index
register 2) Reference register 3) Ancilla register 4) Mark
register. Index register contains the argument x of the function
f(x) to which we compare the targeted value stored in the
Reference register δ. The Ancilla register permits to store
partial results needed to ensure unitary operators during the
processing. Finally, Mark register provides the negative sign
as stated in (9) in order to mark some of the states.

The whole Grover’s circuit is shown in Fig. 3 where N is
the number of qubits on the Hilbert space (1 qubit per potential
user). In this figure, we use N = 3 qubits, allowing for eight
different computational basis states |000⟩, |001⟩, |010⟩, |011⟩,
|100⟩, |101⟩, |110⟩, and |111⟩. The qubits number for the
value and reference registers are Z qubits, corresponding to the
number of minimum qubits to operate the function of |f(x)⟩,
and related to the targeted precision as detailled on next page.
The last, mark register occupies 1 qubit for the sign |−⟩. For
example, the authors in [10], [11] show a simpler circuit for
|f(x)⟩ = |δ⟩, where the function f was the identity function.

When searching for a minimum value in a list of databases
as proposed by DHA, it is important to redesign the oracle
on Eq. (9) so as to mark the states which verify f(x) < δ.
Hence, the circuit is proposed as illustrated in Fig. 3. The idea
is to evaluate the difference between the values coded by two
states |a⟩ and |b⟩ to compute (a− b). From the results, we can
deduce that a < b when the sign is negative.

Thus, r = MSB(a − b) acts as a carry, with the condition
as follows:

r =

{
1 a > b

0 otherwise
(12)

Hence, r multiplies with |−⟩ in mark register to provide the
negative computation to the oracle. In this paper, the qubit |a⟩
and |b⟩ correspond to |δ⟩ and |f(x)⟩ respectively, to comply
with the oracle theory as proposed in Eq. 9.

Secondly, the received signal y components are real values
y ∈ R+. Nonetheless, in this paper, we consider digital
quantum processing and not analog quantum computation.
Thus, y should be quantized, generating the signal yq that will
be processed. The retained integer part of y is upper bounded
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by 2I − 1, where I , is the number of required qubits for the
integer part to span the whole range for possible values for
|f(x)⟩.

To represent the decimal part, we define the precision range
with the indicator p ∈ N. Indeed, a higher precision p in the
circuit leads to more accurate results. Nevertheless, it requires
a larger memory size. At the end, the size of the registers
is Z = I + p. To sum up, the reference register in Grover’s
algorithm is fed with yq as shown in Fig. 3 defined as:

yq = min

(
max

(
0,

round(y × 2p)

2p

)
, 2I−1

)
(13)

In this paper, we use precision p = 2 for the decimal part.
After obtaining yq, we modified the Grover’s search circuit
as G in Fig.4. The pre-processed values y and δ are put into
the circuit.

The circuit is composed of four main blocks:
• Af : stands for adder function, it computes y − b.C
• Nf : stands for norm function, it computes the norm
∥y − b.C∥22

• Uδ : is the oracle part, identifying the states where the
norm is lower than f(b) < δ

• Mf : marks the previous identified states
These blocks are then repeated in the reverse order for the
uncomputation part, before amplifying the amplitude of the
solution with the diffuser.

C. Code families

This section elaborates the adaptation of quantum algorithm
to several code families. We consider three families in this
paper, Unipolar Code, Bipolar Code, and Random Gaussian
Code.

1) Unipolar Code: This code family lies on C ∈
{0, 1}N×SF . This codeword is randomly chosen while ensur-
ing non-orthogonality with one or several codes within the
family. For example, we can have N = 4 users with SF = 3.
The associated codewords can be c1 = [1, 1, 0], c2 = [0, 1, 1],
c3 = [0, 0, 1] and c4 = [1, 0, 1]. In this case, the expected ideal
signal is (without noise):

f(b1, b2, b3, b4) =

 b1 + b4
b1 + b2

b2 + b3 + b4

 (14)

2) Bipolar Code: A family code of this codetype utilizes
C ∈ {−1, 1}N×SF . The negative computation is done with
an one complement, where the computation is performed by
inverting the bits. Bipolar codes generation is originated by
adding together two unipolar codes, one of which is inverted
[19]. Quantum operations have been adapted to allow the
computation of negative values [11].

3) Random Gaussian Code: A random Gaussian code is
a code whose each component is randomly generated with
a Gaussian distribution, denoted as C. In order to ensure
equal power between users, this code is normalized by its
magnitude. Thus, the used code can be expressed as: C

∥C∥ [20].
To implement this function on quantum circuit, the decimals
are considered in this circuit. Based on decimal representation
in binary with precision p = 2 it helps to identify the
corresponding solution.

D. Performance Analysis

This section discusses the performance comparison between
DHA and IIMSA with the contribution of classical methods
(CCR and ZF).

To do so, we focus on two parameters:

1) The success probability (Ps)
2) The complexity (nbit)

The success is defined as the case where all active users are
detected correctly, and no unactive one is considered active,
thus that b̂ = b . The variable nbit represents the total
number of Grover’s iterations. The nbit involves an accu-
mulation evaluation identical to that of LDHA and LIIMSA.
The optimal performance is achieved when there is a high
success probability (Ps) along with a small number of Grover’s
iterations (nbit). In this paper, we consider small-size code
families so as to be able to simulate the proposed quantum
algorithms with classical processors, as proof of concept.
However, these results can be extended to higher family size.
The used configuration of SF and the corresponding number
of users along with code types is given in Table. I.

1) IIMSA vs DHA Analysis: First, in Fig. 5, we present the
performance Ps and the number of iterations nbit of IIMSA
and DHA as a function of variance σ2 for the 3 code types.
The values of LIIMSA and LDHA are both upper-bounded by
22.5
√
2N .

These figures, Fig. 5a-5c, demonstrate a clear relationship
between the variance σ2 and the success probability Ps. As
the variance increases, the success probability decreases. This
is expected as higher noise contamination adversely affects the
system’s detection performance, leading to errors.

It is important to highlight that each particular SF has a
different level of non-orthogonality, resulting in diverse trends
among all SF types. Notably, SF = 4 exhibits the highest
success probability, followed by SF = 3. This difference can
be attributed to the distinct non-orthogonal components present
in the code type for SF = 4, which results in less non-
orthogonality compared to the other SFs, thereby contributing
to a higher Ps compared to the others. The main focus of
this study, however, is to compare IIMSA and DHA using
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the same non-orthogonal code, as described in the subsequent
subsection.

The performances show that IIMSA and DHA appear to
have comparable and similar performance, especially under
a small variance σ2 regime in all code types. However, in
the case of bipolar and unipolar, when SF is high, there is
a distinct performance between IIMSA and DHA because
the bipolar and unipolar are characterized with their high eu-
clidean distance between each component. The IIMSA proves
to outperform the DHA when the SF is 6 or 7. This denotes
that our proposed algorithm is efficient while handling high
variance σ2 with large number of users N and slots SF.

Let us examine Fig. 5d through Fig. 5f, which depict the
evolution of nbit when varying the variance σ2. The best
efficiency regarding nbit is reached by the smallest values.
These figures clearly show that IIMSA surpasses DHA across
all levels of SFs for various variances σ2, encompassing all
code types. As the SF increases, the contrast in IIMSA’s
superiority becomes more pronounced. It is also important to
note that the value of nbit remains stable across all variance
values σ2; there is only a slight difference among them. This
phenomenon can be attributed to the fact that the number of
iterations nbit characterizes the speed at which convergence
occurs toward the nearest active user set. If the level of
noise increases, there is a higher probability of encountering
an incorrect set, but this only has a minor impact on the
convergence speed. Thus, we see only a slight differences for
the nbit as a function of variance σ2.

Finally, we can also recall that the Unipolar, Bipolar,
and Gaussian schemes present varying distances among their
components. A greater separation between these components
facilitates the detector in distinguishing the group of active
users. This phenomenon is clearly illustrated in Figures 5b to
5c. Notably, Bipolar, characterized by a significant Euclidean
distance between its components, exhibits a distinct level of
Ps compared to other code types. In this context, the worst
success probability (for the considered set of parameters) is
0.96. Conversely, Unipolar and Gaussian schemes exhibit Ps

values of 0.7 and 0.4 respectively. Additionally, we observe
varying levels of nbit, as depicted in Figures 5d through 5f.
Notably, Gaussian is the one where the complexity is the
smallest thanks to its small Euclidean distance. In contrast,
Bipolar, despite its significant distance, converges to a lower
level of nbit. Unipolar attains its highest nbit when the SF is
7.

In conclusion, our proposed algorithm outperforms the
original DHA in terms of both Ps and nbit which confirms
that the IIMSA can converge more efficiently toward the most
likely situation.

2) DHA, CCR-DHA, ZF-DHA Analysis: In this section, we
now consider the performances of the classically-aided DHA
algorithms. We present a comparison between the original
DHA and when mixed with classical algorithm (ZF and CCR),
to evaluate their efficiency in determining the correct value of
b̂.

In this analysis, we consider the same three code types (i.e
Unipolar, Bipolar, and Gaussian). Ps and nbit are evaluated
as a function of SF for the different algorithms, namely DHA,

CCR-DHA, and ZF-DHA. The configuration is established
with an upper-bound for LDHA = 22.5

√
2N with a noise

variance σ2 = 0.02. Results are presented on Fig.6.
First, we can observe that across all codetypes, all algo-

rithms (DHA, CCR-DHA, and ZF-DHA) demonstrate similar
Ps values when SF is small. Interestingly, as the SF value
is higher than 6, ZF-DHA outperforms the other DHA types
(DHA and CCR-DHA). Then, we can notice that the use
of CCR degrades the performances for unipolar code, while
it brings improvement for Bipolar and Gaussian codes. This
can be explained by the fact that the CCR detects the users
activity in a less accurate way for the Unipolar codes, due to
the accumulation of positive interference over all chips, thus
leading oftenly to an ”active” decision. Meanwhile, Bipolar
and Gaussian decoding leads to both positive and negative
interference, which reduces the risk of false alarm.

Secondly, we have also observe that the success probability
(Ps) is lower in the Gaussian part due to the closer proximity
between components, which makes it more susceptible to noise
contamination (σ2). Despite the lower Ps in the Gaussian
part, it exhibits a distinct trend when compared to Unipolar
and Bipolar curves. This difference can be attributed to the
fact that as SF increases, 2 codes are less likely to be
confused. However, as the number of users increases, the
random generation might lead to have 2 close codewords, thus
reducing the performances. The curve shape thus shows the
compromise between these 2 effects.

In addition, Fig. 6d - 6f, focus on the evolution of nbit as
a function of SF. It shows that DHA consistently required a
higher number of iterations compared to other methods for
all code types. We observe that ZF-DHA outruns other DHA
types (i.e DHA, CCR-DHA). This is due to the fact that its
accurate detection permits to stop the search sooner.

Finally, the trend indicates that at low SF values, the number
of iterations (nbit) is quite competitive among all algorithms.
Particularly, when SF is set to 3, the nbit values are very close
to each other. This closeness in values can be attributed to the
fact that with a small SF, the number of Grover’s iterations in
each step is small, resulting in a closely aligned comparison
graph. Moreover, in the Unipolar scenario, CCR-DHA is still
less efficient than DHA when the SF value is high. The reason
behind this can be attributed to the fact that as seen before,
the CCR suffers from high interference in the Unipolar case.

In summary, ZF-DHA exhibits a high success probability
while maintaining simplicity with fewer iterations (nbit). Thus,
it is an interesting way to enhance the performances of the
system.

3) IIMSA, CCR-IIMSA, and ZF-IIMSA Analysis: Similarly
to Section V-D2, this subsection compares the performances
between IIMSA, CCR-IIMSA, and ZF-IIMSA. The main
objective is to address if the the previous conclusions for DHA
also apply for IIMSA.

We evaluate the performances Ps and nbit, for the same
three code types. As done in section V-D2, the upper-bound
of IIMSA is set to LIIMSA = LDHA = 22.5

√
2N . Results

are presented for a noise variance σ2 = 0.02 on Fig.7.
First, we can note that the success probability Ps with

all evaluated performances (i.e IIMSA, CCR-IIMSA and ZF-
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Fig. 7: Success probability Ps and number of Grover’s iterations nbit w.r.t variance σ2 (IIMSA, CCR-IIMSA, and ZF-IIMSA)

IIMSA) are similar. The Unipolar and Bipolar SFs are close
to Ps = 1 among all SFs, while the Gaussian SF exhibits
a wider range across the different SF. This is related to the
random choice of the Gaussian codes.

Meanwhile, when considering the number of iterations nbit,
there is a contrast different among all IIMSA types. We can
observe that ZF-IIMSA outperforms the 2 other IIMSA types
(i.e IIMSA and CCR-IIMSA) for all SF. This signifies that
the classical ZF has a more accurate detection, making the
Grover requires fewer iterations. This performance is followed
by CCR-IIMSA with less accurate detection but still can
outperform the original IIMSA. The CCR-IIMSA however has
a similar performance with IIMSA in unipolar case, but it
does outperform the IIMSA on other cases such as Bipolar
and Gaussian.

In summary, ZF-IIMSA also exhibits an high success proba-
bility while maintaining simplicity with fewer iterations (nbit).
Despite the success probability has a similarity with other
methods, the ZF-IIMSA is still outperforming IIMSA and
CCR-IIMSA the nbit case. This ZF-IIMSA advantage is more
important for the high SF range, which is promising for dense
IoT networks.

4) IIMSA vs DHA as a function of Lmax: This section
finally focuses on examining the influence of the number of
allowed iterations denoted by L ∈ {1, · · · , Lmax}, where
Lmax = 22.5

√
2N . This analysis is conducted for all code

types, and for a noise variance σ = 0.1 and SF = 6. DHA-
based curves are plotted in red, and IIMSA ones in blue, to
keep the same aspect than in Fig.6 and 7.

First of all, we can observe in Fig. 8, that as L increases,
Ps increases, and nbit also increases. This due to the fact that,
as we allow for more trials within the algorithms, it is more
likely to find the solution, but at the cost of more iterations in

average.
Secondly, as seen in Fig. 8a to Fig. 8c, the success prob-

ability (Ps) of IIMSA surpasses the DHA’s one, when they
are both used in the original version, but also when improved
with CCR or ZF. This is due to the fact that IIMSA exploits
the estimation of the number of solutions at each step to be
more efficient in the search. Besides, ZF-IIMSA outperforms
all the other algorithms. This trend can be observed for all
codetypes.

On the other hand, we observe a distinct performance trend
concerning nbit. In 8d - 8f, it can be seen that DHA with
the additional classical algorithm (ZF and CCR) outperforms
IIMSA, especially when L is small. This is due to the fact
that in IIMSA, the algorithm starts with a higher number of
iterations as it is defined by Lopt, while DHA starts with
a random value taken in an interval L ∈ {0, · · · , ⌊m⌋} as
explained in Algo. 2, with m gradually increasing from 1.
As the while loop stops when the number of iterations has
exceeded the level, DHA statiscally exceeds this threshold with
a smaller value than IIMSA. However, this behavior disappears
when L increases. Indeed, in this case, the while loop is more
likely to stop because the minimum has been found. Thus, the
previous small scale behavior is not dominant anymore. This
pattern holds true for all mixed classical algorithms (ZF and
DHA).

In addition, it is worth noting that among all code types,
Bipolar exhibits a higher success probability (Ps) in the
high Lmax regime when compared to the others, reaching a
maximum of Ps = 0.88. In contrast, Gaussian has a lower
success probability, with Ps < 0.5, while Unipolar achieves
a maximum of Ps = 0.7. This difference can be attributed to
the fact that Bipolar code type has larger Euclidean distance
C ∈ {−1, 1}, leading to more accurate detections and lower



11

10 20 30 40 50 60 70
L

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ps

(a) Ps Unipolar

10 20 30 40 50 60 70
L

0.0

0.2

0.4

0.6

0.8

Ps

(b) Ps Bipolar

10 20 30 40 50 60 70
L

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ps

(c) Ps Gaussian

10 20 30 40 50 60 70
L

101

nb
_it

(d) nbit Unipolar

10 20 30 40 50 60 70
L

101

nb
_it

(e) nbit Bipolar

10 20 30 40 50 60 70
L

101

nb
_it

(f) nbit Gaussian

10 20 30 40 50 60 70
L

101

nb
_it

[IIMSA- 2:0.1]
[CCR-IIMSA- 2:0.1]

[ZF-IIMSA- 2:0.1]
[DHA- 2:0.1]

[CCR-DHA- 2:0.1]
[ZF-DHA- 2:0.1]

Fig. 8: Success Probability Ps and number of iterations nbit w.r.t variance Lmax

susceptibility to noise contamination. This also applies to the
required number of Grover’s iterations (nbit), where Bipolar
requires fewer nbit compared to other code types. Indeed,
the maximum nbit reached by Bipolar is 18, while Unipolar
and Gaussian achieve 29 and 25, respectively. This is due
to the fact that, as Bipolar has a higher success probability
compared to the other code types, the cases where Lmax

is reached are less frequent, thus reducing the number of
iterations expectation.

As for the classical receiver contribution to the quantum
algorithms, while CCR seems to struggle to compete with
ZF, it exhibits a higher success probability (Ps) compared to
the original algorithm. This indicates that CCR contributes
positively to the search algorithm initialization, leading to
a smaller number of iterations (nbit) required for accurate
detections. Consequently, CCR performs well and outperforms
the original DHA and IIMSA.

Furthermore, it is important to emphasize the significant
impact of the classical algorithm (ZF and CCR) in these
results. These algorithms notably enhance both the success
probability (Ps) and the number of iterations (nbit). Specif-
ically, for L > 20, the results demonstrate that ZF-IIMSA
exhibits similar performance, but with a smaller nbit compared
to other methods. Following closely is ZF-DHA, which also
demonstrates a considerable impact on nbit. Thus, we can
conclude that ZF serves as an excellent method for providing
accurate initialization set for the quantum minimum searching
algorithms.

To conclude, ZF (and CCR to a lesser extent) is an ef-
fective classical method, which permits, when combined with

quantum algorithms to achieve fewer Grover’s iterations, while
keeping (and even slightly improving) the success probability.

5) IIMSA and DHA with a noisy quantum hardware: In this
section, we discuss the impact of noisy quantum processors on
the performance and the complexity. To evaluate this impact,
we modelize the noise effects with the total depolarizing
channel (TDCh) [21].

In this model, the current state ρ is mapped to a maximally
mixed state (corresponding to a uniform superposition of all
basic states) with probability λ and leaves it unchanged with
probability 1− λ.

To assess the performances, we have considered a system
with σ = 0.1 and SF = 6. We have evaluated the success
probability as a function of the number of the allowed it-
erations L ∈ {1, · · · , Lmax}, where Lmax = 22.5

√
2N . In

addition, we have considered 3 different TDCh coefficients
λ ∈ {0, 0.05, 0.1} for both IIMSA and DHA. One may note
that the case where λ = 0 corresponds to the perfect case as
considered in the previous section for reference.

The results are presented on Fig.9.
First, we can observe, as expected, that the noisy quantum

hardware tends to reduce the performances of the algorithms,
for all types of codes. However, for the DHA, Fig.9a-9f,
one can identify 2 main regions. When L is low, the noisy
hardware has neglectible or no impact on the performances,
meanwhile, high L suffer from higher impact. Contrarily, for
the IIMSA, Fig.9g-9l, the effect can be observed for the whole
range of L values. This can be explained by the fact that
DHA does not rely on any prior information on the number
of solutions within each Grover’s iteration. Thus, it blindly
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Fig. 9: Performances of DHA and IIMSA on noisy quantum hardware
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tests with random chosen values for S. This approach implies
that S is not always adequate and Grover’s algorithm does
not provide a valid solution. This happens quite frequently
and is important compared to missing a valid solution due
to the TDCh noise, especially when L is low and does not
permit to do many trials. On the contrary, IIMSA considers
an appropriate number of solutions, and is thus more efficient
for each Grover’s iteration. Thus, the TDCh errors always have
an impact compared to the noiseless case.

In addition, we can observe that, even with the noisy
hardware consideration, the IIMSA still outperforms DHA.
Similarly, the figures show that initializing the algorithms with
CCR or ZF output is still an efficient strategy. Indeed, the noise
errors does not change the fact that the accurate initialization
and parametrization of Grover’s algorithm permits to effi-
ciently target the search, leading to better success probability
and lower number of iterations. To conclude, this study shows
that, even deployed on a noisy hardware, the ZF-IIMSA is a
very promising algorithm.

VI. CONCLUSION

In this paper, we proposed adaptation and extensions of
Grover’s algorithm for the active user detection problem. Ex-
isting algorithms like DHA can address this kind of problem,
but with still a non-neglectible level of complexity. First,
we proposed a new algorithm, IIMSA, which exploits the
statistical behavior of the system to evaluate the number of
solutions. The IIMSA algorithm demonstrated superior perfor-
mance compared to DHA, particularly in high SF regimes.

Furthermore, to enhance the performance of DHA and
IIMSA, we exploited classical methods such as CCR and ZF to
initialize the quantum search criteria in a more accurate way.
With this improvement, we were able to reduce the number of
iterations required for Grover’s algorithm to start at a smaller
LIIMSA value, without degrading the performances (even
improving them slightly). Besides, we showed that the gain
brought by these light classical computations is increased for
high SF regimes. Thus, this is a promising approach for dense
IoT networks. We obtained these interesting results for perfect
hardware, but we also showed that this gain is maintained for a
noisy quantum hardware deployment. However, one may note
that error mitigation strategies could be implemented on top
of this algorithm. This will be the next step of this work.
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