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Decreasing spherical harmonic functions are widely used to identify and extrapolate the magnetic field produced by various
devices. These functions allows to represent the sources as equivalent multipoles whose order is associated to a specific spatial
decreasing rate. However this representation is not valid inside the Brillouin sphere, the smallest sphere enclosing the device. We
introduce here the use of an alternative model to replace the spherical harmonic functions when the measurements are inside the
Brillouin sphere. This representation corresponds to an harmonic basis of equivalent charges on a surface that reproduces the
multipolar decomposition of the magnetic field outside the Brillouin sphere while being valid inside. We demonstrate here the ability
of this model to identify and extrapolate the field from very close measurements.

Index Terms—Inverse problem, multipolar expansion, near magnetic field computation, single-layer potential, bayesian inference.

I. INTRODUCTION

FOR various applications (including electromagnetic com-
patibility [1], human exposure [2], ship silencing [3]), the

magnetic field produced by a device must be determined all
around it. Interpolation on a measured grid and direct numeri-
cal modelling of the sources are not always possible and other
alternatives must be found. Identification of a compact model
from close magnetic measurements is a common approach.

Classically, the external field is represented by a multipolar
expansion using the decreasing spherical harmonic functions.
Each multipole (e.g., dipole, quadrupole) is associated to a
spatial harmonic which presents a specific spatial decreasing
law (e.g., 1/r3, 1/r4, with r the distance to the multipole).
Nevertheless, this representation is only valid outside the
Brillouin Sphere [4], the smallest sphere that encloses all the
sources, and cannot be used in the close vicinity of the device.

On the other hand, some other equivalent sources exist that
produce the same field at any point all around it. We propose to
study equivalent sources located on a given surface enclosing
the device under investigation, that can be chosen as close as
possible to it, and to compute the generated magnetic field
in the external region without sources. It is thus well known
that by exactly knowing the magnetic potential or the normal
field on this surface, i.e. the limit conditions of the Laplace
problem [5], the field can be determined. Other representations
deal with single or double layer potentials on the surface
[5]. But if the field can be computed anywhere, including
inside the Brillouin sphere, the equivalent sources can not
be separated according to their contribution to the device
equivalent multipoles, i.e. to its equivalent dipole, quadripole,
etc. In previous work [6], we have proposed an harmonic
basis and its inner product, in order to project our single or
double layer potentials on it and thus to determine the surfacic
harmonic distribution whose order is associated to a specific
decreasing spherical harmonic functions for the field. Then,
for a given precision, the truncation of the source harmonic

source allows us to represent the sources both with a lower
degree of freedom and an ordered contribution to the field.
Moreover this original approach, by allowing to put sensors
closer to source, helps to increase the signal to noise ratio.

In this paper, we propose to use our multipolar representa-
tion of equivalent charges to identify the sources from mea-
surement located inside the Brillouin sphere and then to test
the extrapolation of the field. In a first part, the construction of
our multipolar basis for the single layer potential is presented
for illustration. Then, the inverse problem is presented, with
the introduction of a Bayesian prior in order to solve it. Finally,
the approach is validated on an experimental mock-up.

II. MULTIPOLAR MODEL OF EQUIVALENT SOURCES

Any source can be represented on an enclosing surface S
by equivalent charges (or single-layer potential) σ that produce
the same field as the source outside this surface. The surface S
can be chosen as close to the source as desired. The magnetic
field H and the magnetic scalar potential ϕ can then be
computed at any point P outside the surface S [5]:

H(P ) = −∇
∫
M∈S

σ(M)

4π∥PM∥
dS (1)

ϕ(P ) =

∫
M∈S

σ(M)

4π∥PM∥
dS (2)

This single-layer potential can be decomposed into a mul-
tipolar basis {σkm} [6], [7]:

σ =

∞∑
k=1

k∑
m=−k

ckmσkm (3)

with ckm the harmonic coefficients that depend only on the
source and σkm the vectors of the basis {σkm} that depend
only on the choice of the surface S and need to be precom-
puted like defined in [6] (see Fig. 1). In a practical case, the
infinite sum is truncated to a given order K.
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We recall here that the harmonic basis {σkm} is constructed
by orthonormalizing an initial basis of equivalent charge
distributions {σ0

km} with a specific inner-product [6]. The
initial basis is derived from the increasing spherical harmonic
functions, we express the distributions of the initial basis at
any point (r, θ, φ) on the chosen surface:

σ0
km(r, θ, φ) = ∇

(
rkY m

k (θ, φ)
)
· n(r, θ, φ) (4)

with n the outward normal of the surface and rkY m
k (θ, φ) the

increasing spherical harmonic function of order k and degree
m.

The inner-product to orthonormalize the basis or projected
a given charge distribution onto the orthonormalized basis is
expressed:

⟨σ1|σ2⟩ =
∫
M∈S

σ1(M) τ [σ2] (M)dS (5)

with τ [σ2] the distribution of normal dipoles that produced the
same field as the distribution of charges σ2 and that verifies∫
τ [σ2] dS = 0.
The construction of the basis {σkm} (see Fig. 1) ensure the

minimum decreasing rate of 1/rk+2 for the field produced by
vector σkm of order k while keeping the advantage of domain
validity of an equivalent surface representation. Our goal is
now to determine the coefficients ckm from a set of magnetic
measurements.

Fig. 1. Representation of vectors from the basis {σkm} on a cylinder. With
from left to right and top to bottom: k = 1 and m = 1, k = 2 and m = −2,
k = 3 and m = 2, k = 4 and m = −1.

III. INVERSE PROBLEM SOLVING

To identify the source harmonic coefficients ckm, we con-
struct a linear problem Ax = b where x is the vectors
containing unknown source harmonic coefficients, b is the
vector containing the field measurements and A is the matrix
linking the coefficients to the measurements.

Each coefficient aij of this matrix (on row i and column j)
is equal to the field produced by the jth vector of the basis
{σkm} at the point Pi of the ith sensor, projected on the axis
ei of this sensor.

aij = −
[
∇

∫
M∈S

σk(j)m(j)(M)

4π∥PiM∥
dS

]
· ei (6)

The harmonic model of equivalent charges can only rep-
resent the field produced by a contained source. In our
application, the field seen by the sensors is the sum of the field
produced by a localized source and the local field produced
by the earth core. This local field can be considered known
and removed from the measurements, we chose to add it as an

unknown to identify and have modeled it as a uniform field
with 3 parameters that are added as unknown in the vector
x. In this case, we must add three column to the matrix A,
each row of this submatrix is filled with the components of
the directions of the sensors ei.

If there is not enough sensors or if they are not well
distributed around the source, the problem is ill-posed and a
least-square resolution might require regularization to achieve
a satisfying identification.

A. Identification in a Bayesian framework

The Bayesian framework allows to add some prior informa-
tion to help the identification. In this framework we consider
the measurements and the unknown parameters as random
variables whose distributions represent the known information
on those variables. The Bayesian inference consist in starting
from a prior information P (x) on the unknown parameters we
are identifying and update this distribution using the measure-
ments information P (b|x) to obtain the posterior distribution
P (x|b). Maximizing the posterior distribution is looking for a
compromise between the prior and measurement information.

We assume distributions P (x) and P (b|x) as Gaussian,
these distributions can then be characterized by a mean (x0

for P (x) and Ax for P (b|x)) and a covariance matrix (S0

for P (x) and Sm for P (b|x)). In this case, we can compute
the maximum of the posterior distribution xMAP, which is
the state of the unknown parameters x that maximizes the
posterior distribution [8]:

xMAP =
(
AtS−1

m A+ S−1
0

)−1 (
AtS−1

m b+ S−1
0 x0

)
(7)

B. Construction of prior

The choice of prior plays a major role in the case of
Bayesian inverse problem, and this choice is highly dependent
on the studied system. Here we present a method allowing to
transfer the prior on the studied system onto a prior on the
harmonic coefficients, providing we have a numerical model
of the studied system that is able to compute the magnetic
field H or the magnetic scalar potential ϕ.

In this case, for any given set of parameters of the numerical
model, we are able to compute the magnetic field H or scalar
potential ϕ on the enclosing surface chosen to represent the
harmonic basis of charges. Using (1) or (2), we can determine
the equivalent charge distribution by solving a linear system.
This charge distribution is then projected on the harmonic basis
with respect to inner-product (5) to obtained the harmonic
coefficients.

We can then from a prior on the parameters of the numerical
model choose several scenarios and determine the coefficients
associated to them and deduce a prior on the harmonic
coefficients. As the computation of the coefficients from the
parameters can be expensive, we want to limit the number of
scenarios to run. The unscented tranform [9] is a deterministic
method to select the scenarios that needs only a few selected
scenarios, if N is the number of uncertain parameters for
the numerical model, only 2N + 1 scenarios are necessary
to construct the prior on coefficients.
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IV. EXPERIMENTAL VALIDATION

A. The physical mock-up

We consider a magnetized open hollow steel cylinder with
a diameter of 12 cm, a length of 50 cm and a width of 2
mm. It is equipped with two lines of 14 biaxial sensors which
measure the longitudinal and orthoradial components of the
field. Because a sensor has a broken axis, we total 27 axis
measurements located at 8 mm far from the cylinder external
surface, for the identification (Fig. 2). A triaxial sensor B1
(Fig. 2) placed at 8 cm under the cylinder is used to compare
the extrapolation of the field on the Line 3, corresponding to
a span of 3.4 m.

Fig. 2. Above: Hollow cylinder and identification sensors on Line 1 and 2,
below: Line 3 is obtained by moving the cylinder along its longitudinal axis,
above the sensor B1, for validation.

B. The numerical models

We present here the numerical models used to determine the
prior (x0 and S0) for the harmonic coefficients. First of all,
the basis is constructed on a parallelepipede of dimensions (50
cm × 12 cm × 12 cm) that encloses the cylinder and that is
meshed with 2400 quadrangles (see Fig. 3). As the sensors are
very close to the source we identify the harmonic coefficients
ckm up to the 15th order (i.e. K(K +2) = 255 coefficients to
identify).

Then, a numerical model of the cylinder is produced. As
very thin, it is represented by a surface, meshed by 600
rectangular elements (see Fig. 4). Its magnetization state in the
earth field is classically described by the sum of a permanent
magnetization and a reversible magnetization. The reversible
magnetization only depends on the reversible permeability
µr,rev of the cylinder material and the ambiant field H0.
The permanent magnetization results from a magnetizing
permeability µr,pm under a magnetizing field Hpm. The mag-
netization is then a combination of theses two computations.

Fig. 3. Charge distribution constructed with the distributions of the basis
{σkm} and the harmonic coefficients obtained from the inversion

Then, for a given magnetic state, we are able to compute the
magnetic field H or the magnetic scalar potential ϕ [10]. As
the magnetic state is unknown, our prior will focus on the 8
parameters of µr,rev and µr,pm, and the 6 components of H0

and Hpm, which implies only 17 forward simulations with the
use of the unscented transform [9], to compute the prior (x0

and S0).

Fig. 4. Mesh of the cylinder for the numerical model.

C. Results

The measurements on the 2 close lines are used with the
prior on the parameters to identify the ckm coefficients and
the local field H0. The chosen prior correspond to Gaussian
distributions for the 8 parameters (see Table I for means and
standard deviations of the parameters). The obtained covari-
ance matrix S0 strongly links harmonic coefficients together
to fit to plausible magnetic states of the cylinder.

TABLE I
MEANS AND STANDARD DEVIATIONS OF THE PARAMETERS OF THE

NUMERICAL MOCK-UP TO CONSTRUCT THE PRIOR.

parameter mean standard deviation
H0 x 0 µT 15 µT
H0 y 1 µT 15 µT
H0 z 0 µT 15 µT
µr,rev 100 5
Hpm x 0 µT 15 µT
Hpm y 0 µT 15 µT
Hpm z -1 µT 15 µT
µr,pm 2000 500

The variance matrix Sm is chosen to take into account the
measurement noise, here evaluated to a 20 nT standard devia-
tion Gaussian noise, the measurements errors (offsets, position,
alignment), here evaluated to a 500 nT standard deviation
Gaussian noise, and the model errors (due to the truncation and
precision of the basis). This model error is evaluated using the
prior magnetic state of the cylinder, determining the associated
charge distribution and harmonic coefficients, we then take as
the evaluation of the model error the difference of the field on
sensors given by the equivalent distribution and the projected
distribution with a security multiplicative factor of 1.5. Here
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we evaluated it to a 1 µT standard deviation Gaussian noise.
In the model error we did not considered the error due to the
discretisation as it is minor in this particular case.

Fig. 5. Field produced by the cylinder on Line 3, comparison between the
measurements and the model with the identified coefficients ckm (extrapola-
tion)

Once the coefficients ckm and the local field H0 are identi-
fied by (7), we extrapolate the field produced by the cylinder
on Line 3 (see Fig. 5). We achieve an accurate extrapolation
with less than 8.1% difference on every components of the
magnetic anomaly, i.e. the field variation with respect to the
ambient field (see Fig. 6 and Table II) demonstrating the good
performance of this new representation in the case of very
close measurements. The ambient field H0 is also very well
estimated with less than 1.6% relative error (Table II). The
error on the anomaly components is computed with respect to
the maximum anomaly modulus.

TABLE II
ERRORS ON THE LOCAL FIELD AND MAXIMUM ERRORS ON THE ANOMALY

FOR EACH COMPONENT.

component error (%)
H0 x 0.77
H0 y 1.6
H0 z 0.026

max anomaly x 6.4
max anomaly y 8.1
max anomaly z 1.9

V. CONCLUSION

In this paper, the harmonic equivalent charge model we have
proposed in [6] has been successfully tested to identify the
magnetic state of a physical mock-up, by solving an inverse
problem with very close magnetic field measurements and a
Bayesian approach. The extrapolated magnetic anomaly has
been determined with a maximum relative error inferior to
8.1% and the ambient field with less than 1.6% error, which
is very satisfying.

Fig. 6. Relative error of the anomaly of the extrapolated field.

We can note the high model error mainly due at this stage to
the unstable orthonormalization process that causes a loss of
orthogonality of the basis starting around the 5th to 10th order.
Improving the basis should lead to a better identification.

Also the physical mock-up used has a simple geometry for
which the construction of a good prior is easy, next steps
should be about testing this method with a degraded prior
on more complex objects.
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