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Numerical study of a 1D model for DDT
at the tip of a flame in narrow channels

Raul Hernandez Sanchez and Bruno Denet

Aix Marseille Université, CNRS, Centraile Marseille, IRPHE UMR7342, Marseille, France

Recent experiments and numerical simulations [1,2] evidence that DDT may occur in laminar flames more amenable to 3
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theoretical analysis.

A novel 1D model for the tip of elongated flames has been proposed that yields results consistent with experimental and COMBUST|ON

numerical observations of DDT [3].

The goal of this study is to investigate the internal flame structure on the basis of this 1D model.
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Elongated flames in narrow channels

1. Gas flow interaction with the walls distorts the flame surface,
which adopts an elongated shape with a quasi-planar front at the tip of the flame [4].
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Double-discontinuity solution

Nonlinear relationship between the flame velocity and the flame elongation

determined for

» a leading shock wave as a discontinuity satisfying the

Rankine-Hugoniot jump conditions

UN, TN — RH(MO)

» a flame as a reactive isobaric discontinuity with a ( E, )
Up x exp

strongly temperature-sensitive velocity
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assuming the flow between the flame and the shock wave to be
» uniform (i.e. 7, = Tn and 4y = un) for constant backflow

p» isentropic for elongating flames.

Results

Numerical integration

» 1D reactive compressible Navier-Stokes equations
» v-th order single-step reaction model
are numerically integrated following a Strang splitting algorithm
+1 _ Q(At/Q)cg(At)gz(At/Q) (un)
» Kurganov-Tadmor [7] solver is applied to the convective subproblem

» Implicit finite difference scheme is applied to the
reaction-diffusion subproblem integrating the reactive terms explicitly

for the set of thermochemical parameters: Pr=0.7,Le=1,y =14, gn/(cpTo) =7, 8=10,v =2 and Upo/apo = 2 X 10~2

parametric study
duy/dt =dS/dt =0
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time-dependent flame elongation
S(t) =So (1 +et/tf) with £ =5x 1072
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Conclusions
TT_T; » There is no steady/quasi-steady solution above a critical
bo = 4o

flame elongation associated with a finite-time singularity [8].

» If the critical elongation is exceeded, the flame undergoes a
limitless acceleration accompanied by flame shrinkage.

» Abrupt flame acceleration occurs well before the CJ condition

can be reached.

This work is supported by the French National Research Agency (ANR) under the project ANR-18-CE05-0030.

Institut de Recherche sur les
Phénomenes Hors Equilibre

irphé ( AixMarseille

Socialement engagée

@ anr’

08 L0 » Under strong flame acceleration and shrinkage, dissipation
mechanisms are expected to form a shock wave triggering the
onset of a detonation.
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