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ABSTRACT

Context. The theory of jet emitting disks (JEDs) provides a mathematical framework for a self-consistent treatment of steady-state
accretion and ejection. A large-scale vertical magnetic field threads the accretion disk where magnetic turbulence occurs in a strongly
magnetized plasma. A fraction of mass leaves the disk and feeds the two laminar super-Alfvénic jets. In previous treatments of JEDs,
the disk turbulence has been considered to provide only anomalous transport coefficients, namely magnetic diffusivities and viscosity.
However, 3D numerical experiments show that turbulent magnetic pressure also sets in.
Aims. We analyze how this turbulent magnetic pressure modifies the classical picture of JEDs and their parameter space.
Methods. We included this additional pressure term using a prescription that is consistent with the latest 3D global (and local) sim-
ulations. We then solved the complete system of self-similar magnetohydrodynamic (MHD) equations, accounting for all dynamical
terms. The magnetic surfaces are assumed to be isothermal, limiting the validity of our results to cold outflows. We explored the
effects of the disk thickness and the level of magnetic diffusivities on the JED response to turbulent magnetic pressure.
Results. The disk becomes puffier and less electrically conductive, causing radial and toroidal electric currents to flow at the disk
surface. Field lines within the disk become straighter, with their bending and shearing occurring mainly at the surface. Accretion
remains supersonic, but becomes faster at the disk surface. Large values of both turbulent pressure and magnetic diffusivities allow
powerful jets to be driven, and their combined effects have a constructive influence. Nevertheless, cold outflows do not seem to be
able to reproduce mass-loss rates as large as those observed in numerical simulations.
Conclusions. Our results are a major upgrade of the JED theory, allowing a direct comparison with full 3D global numerical sim-
ulations. We argue that JEDs provide a state-of-the-art mathematical description of the disk configurations observed in numerical
simulations, commonly referred to as magnetically arrested disks (MADs). However, further efforts from both theoretical and numer-
ical perspectives are needed to firmly establish this point.
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1. Introduction
Accretion disks are found in a wide variety of astrophysical
objects: around supermassive black holes (BHs) at the center
of active galaxies (AGNs) and quasars (Blandford et al. 2019;
Lu et al. 2023), around every low-mass young stellar object
(YSO) where planet formation occurs (Agra-Amboage et al.
2014; de Valon et al. 2020), around interacting binary systems
hosting either a white dwarf (cataclysmic variables), a neutron
star or a BH (X-ray binaries) (Ponti et al. 2016; Tudor et al.
2017), or even some post-AGB stars (Gorlova et al. 2015;
Bollen et al. 2017). For many years, accretion was believed to
be mainly driven by turbulence, which would allow an out-
ward radial transport of the disk angular momentum, while
mass would accrete onto the central object (Shakura & Sunyaev
1973). The quest for the instability that would allow nearly
Keplerian accretion flows to become turbulent led to the conclu-
sion that accretion disks must be magnetized (Balbus & Hawley
1991). The magneto-rotational instability (MRI) is indeed a very
robust and fast (growing on dynamical timescales) instability
that leads to fully developed 3D turbulence (Balbus 2003). It
has thus become clear that accretion disks must be described as
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magnetized plasmas, namely within the framework of magneto-
hydrodynamics (MHD).

Simultaneously, highly collimated bipolar supersonic jets
have also been discovered emerging from the same astrophys-
ical objects. Mostly detected in the radio band around compact
objects or in radio to optical emission lines in YSOs, they share
the property of being emitted from the innermost regions close
to the central object. Moreover, both compact sources and YSOs
show a tight correlation between accretion and ejection signa-
tures (Corbel et al. 2013; Nisini et al. 2018). These properties
appear to be universal, as they do not depend on the nature of
the central object (BH or stellar object), thus favoring the sce-
nario where jets are emitted from the accretion disks. Since,
in all resolved sources, jet collimation appears to be effective
already very close to the source, jet acceleration and collimation
must work hand in hand. This can occur naturally if a large-
scale vertical magnetic field defines a magnetic channel along
which the ejected plasma flows. Such a solution was first pro-
posed by Lovelace (1976) and Blandford (1976), and the cou-
pled acceleration and collimation dynamics of jets emitted from
the surface of a Keplerian accretion disk was later demonstrated
by Blandford & Payne (1982).

There have been many attempts to analytically link accretion
disks to magnetized outflows, and it is beyond the scope of this
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introduction to cite them all. Most models either rely on strong
approximations (e.g., neglected forces, negligible wind mass
loss, and simplified wind equations, Wardle & Koenigl 1993;
Narayan & Yi 1995; Li 1995; Ogilvie & Livio 1998; Bai et al.
2016 to cite only a few) or use a self-similar variable separation
approach that allows all dynamical terms to be included in the
equations (Ferreira & Pelletier 1993, 1995).

Only the anomalous turbulent coefficients need to be spec-
ified to close the system of equations describing the accretion-
ejection theory. The turbulent transport coefficients resulting
from MRI turbulence can be derived from measurements con-
ducted in 3D shearing box simulations (Hawley et al. 1995;
Salvesen et al. 2016) or 3D global simulations (Zhu & Stone
2018; Jacquemin-Ide et al. 2021). The Shakura & Sunyaev
(1973) angular momentum transport coefficient has indeed
been computed numerous times, and it is a well-constrained
function of the local magnetic field strength (Salvesen et al.
2016). In contrast, turbulence resistivity has been measured
sparingly, and no clear dependency on the field strength
has been identified (Lesur & Longaretti 2009; Guan & Gammie
2009; Fromang & Stone 2009). The situation becomes even
more obtuse when pertaining to the complete resistivity tensor
(Gressel & Pessah 2015).

Magnetized accretion-ejection structures describe both the
(turbulent) viscous and resistive MHD disk and its two (laminar)
ideal MHD jets as a single, mathematically connected, system.
The smooth crossing of the Alfvén point determines the position
of this critical point as well as the strength of the toroidal field at
the disk surface. This, in turn, fixes not only the torque allowing
accretion but also the vertical magnetic compression acting on
the disk, and hence the disk magnetization µ that is consistent
with the disk ejection efficiency ξ and the smooth crossing of the
slow-magnetosonic critical point (see Ferreira 1997 for details).

The goal of the theory is then to provide the relation ξ(µ),
where the disk ejection efficiency is defined as Ṁa(r) ∝ rξ and
Ṁa(r) is the disk accretion rate measured at a given radius. The
theory aims to directly link the properties of the disk to the
outflow. This is crucial for understanding the long-term evolu-
tion of an accretion disk and connecting observed outflow prop-
erties to the disk itself. Models of disk evolution, considering
mass loss through outflows, must directly prescribe the ejec-
tion efficiency, which would otherwise remain unconstrained
without an accretion-ejection theory (Tabone et al. 2022). Ejec-
tion efficiency is also vital for comparing theories of magne-
tized outflows to observations of disk winds in low-mass X-ray
binaries (LMXRBs), leading to constraints on disk properties
(Chakravorty et al. 2016, 2023; Ranjan Datta et al. 2024). More-
over, the mass ejection index significantly influences the history
of X-ray binaries (XRBs) by altering mass and angular momen-
tum loss, thus affecting the secular evolution of orbital separation
(Gallegos-Garcia et al. 2024).

The first self-consistent accretion-ejection solutions were
found for isothermal (Ferreira 1997, hereafter F97) or adia-
batic (Casse & Ferreira 2000a) cold outflows. The disk mag-
netization µ was found to lie in a very narrow range, between
0.1 and 0.8, with a typical disk ejection efficiency ξ ∼ 0.01,
leading to very fast and tenuous collimated jets. The accre-
tion disk associated with these solutions has thus been termed
jet emitting disk (JED, Ferreira et al. 2006). In a JED, accre-
tion is supersonic and the disk is much less radiative than any
other usual accretion disk solution (due to energy transfer to
jets), with important implications for instance in X-ray binary
cycles (Ferreira et al. 2006; Marcel et al. 2018, 2022 and refer-
ences therein). We note that the presence of supersonic accretion

was subsequently found in 3D global simulations of highly mag-
netized disks (Jacquemin-Ide et al. 2021; Scepi et al. 2024).

Until recently, the minimum value of the disk magnetization
was constrained to order equipartition within the JED theory.
At µ < 10−2, MRI sets in despite the presence of anoma-
lous diffusivities, and solutions display spatial (vertical) oscil-
lations. Such oscillations are actually nonlinear channel modes
due to the MRI (Jacquemin-Ide et al. 2019). Despite a smaller
magnetic field, these oscillations help to drive the outflow by
building up a stronger toroidal field at the disk surface. Since
the vertical pinching of the disk is smaller, these solutions
allow for denser isothermal (cold) outflows with a typical ejec-
tion efficiency ξ ∼ 0.1. In this case, the denser outflow is
also much slower, so the accretion disk associated with these
weakly magnetized solutions has been termed wind emitting
disk (WED). In a WED, accretion is always subsonic and the
magnetic configuration is reminiscent of the so-called magnetic
towers (Lynden-Bell 2003). As discussed in Jacquemin-Ide et al.
(2019), it is doubtful that oscillations would survive within the
disk, since secondary instabilities (such as Kelvin-Helmholtz
or Rayleigh-Taylor) would most likely be triggered, leading to
enhanced anomalous transport within the turbulent region. This
is therefore a good incentive to look at global 3D numerical solu-
tions where MHD turbulence is fully resolved. Another reason to
look at global simulations is that local shearing box simulations
are subject to several biases when simulating stratified disks with
vertical magnetic fields, which could skew the vertical profiles of
the anomalous transport coefficients (Lesur et al. 2013).

Nowadays, general relativistic magnetohydrodynamic
(GRMHD) simulations are commonly categorized using
the magnetically arrested disk (MAD) and the standard
and normal evolution (SANE) terminology (e.g., Event
Horizon Telescope Collaboration 2021). A MAD is defined
by the magnetic flux at the horizon of the BH1. Specifically, it
is considered that the system enters the MAD state when the
flux normalized by the accretion rate reaches its maximal value
(see e.g., Tchekhovskoy et al. 2011; Narayan et al. 2022 and
references therein). On the contrary, whenever the magnetic flux
on the BH is less than that specific value, the numerical outcome
has been termed SANE. However, the numerical convergence
to one state or another depends mostly on two things: (1) the
initial conditions (how much initial magnetic flux is available
in the computational domain) and (2) how long the simulation
runs (since the flux appears to be advected inward, leading
to a growth of the magnetization of the inner regions). The
reason why the definitions of the MAD and SANE state rely on
the dynamics of the inner BH and not on the disk structure is
twofold: (1) for most BH spin, the Blandford & Znajek (1977)
jet energetically outshines any contribution from the disk;
and (2) due to numerical limitations, only the inner regions,
r < 20 rg, would have achieved a complete steady state, making
a study of the large-scale turbulent disk dynamics out of reach.
There is no explanation yet of the physical state reached by the
accretion disk in each case. It is nevertheless tempting to asso-
ciate numerical MADs and SANEs with their semi-analytical
counterparts, JEDs and WEDs, due to them being associated
with different field strengths.

1 This terminology goes back to the work of Narayan et al. (2003) and
Igumenshchev et al. (2003), who argued that if the magnetic field was
too large, the disk would not rotate anymore and would therefore be
arrested. But it turned out that MADs are actually rotating, turbulent,
and launching MHD outflows; facts that put into question the chosen
terminology (McKinney et al. 2012; Begelman et al. 2022).
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It is only recently that the turbulent structure of a
disk threaded by a large-scale vertical field has started to
be thoroughly analyzed (Scepi et al. 2024; Manikantan et al.
2024), following similar efforts in nonrelativistic simulations
(Zhu & Stone 2018; Jacquemin-Ide et al. 2021). Those global
numerical investigations on the turbulent structure have shown
that the role played by the turbulent magnetic pressure is of
paramount importance in shaping the disk vertical balance
(Jacquemin-Ide et al. 2021; Scepi et al. 2024). This is a major
effect that has not yet been studied in semi-analytical approaches
of magnetized accretion-ejection structures.

The aim of this paper is precisely to investigate the influ-
ence of turbulent magnetic pressure in highly magnetized accre-
tion disks, namely in JEDs. Section 2 recalls the assumptions,
equations, and parameters needed to fully describe JEDs. In par-
ticular, we discuss how MHD turbulence is taken into account
in our self-similar steady-state mean-field approach. Section 3
focuses on analyzing the impact of this additional pressure term
on the disk structure, by considering only the slow magnetosonic
constraint. The full parameter space, including the additional
Alfvénic constraint, is analyzed in Section 4. While Sections 3
and 4 focus on a fiducial set of parameters, in Section 5 we
vary the disk thickness and the level of the magnetic diffusiv-
ities in order to explore their effects on the JED response to a
turbulent magnetic pressure. Section 6 summarizes our results
and discusses their implications, in particular providing compar-
isons with some published results of 3D numerical simulations.
Finally, we conclude in Section 7.

2. Accretion-ejection theory

2.1. Magnetohydrodynamic equations

The accretion-ejection theory assumes axisymmetry and station-
arity. In this framework, a disk of plasma orbits in near-Keplerian
motion around a central object of mass M. The disk self-gravity
is neglected and the gravitational potential of the central object is
Newtonian. The disk is assumed to be threaded by a large-scale
vertical magnetic field. The whole system is assumed to have a
plane symmetry so that z = 0 describes the disk midplane and
the bipolar jets are symmetric. Using the cylindrical coordinates
(r, φ, z) the plasma velocity and magnetic field are decomposed
into poloidal and toroidal components, namely u = up + Ωreφ
and B = Bp + Bφeφ, where Ω is the plasma angular velocity. The
poloidal magnetic field writes

Bp =
∇a
r
× eφ, (1)

where a(r, z) is the magnetic flux function (a(r, z) = ao describes
a magnetic surface of constant poloidal magnetic flux). Hence,
a jet can be seen as magnetic surfaces anchored over a radial
extent of the accretion disk and nested around each other.

The set of partial differential equations describing a steady-
state magnetized accretion-ejection structure writes

∇ ·
(
ρup

)
= 0 (2)

ρ (u · ∇) u = −∇ (P + Pturb) + ρ∇ΦG + J × B + ∇ · T (3)
ηmJφeφ = up × Bp (4)

∇ ·

(
ν′m
r2 ∇

[
rBφ

])
= ∇ ·

(
1
r

[
Bφup −ΩrBp

])
(5)

P = ρC2
s , (6)

and accounts for, respectively, mass and momentum conser-
vation, Ohm’s law, toroidal magnetic field induction and the
equation of state (Ferreira & Pelletier 1995; Casse & Ferreira
2000a). In these equations, ρ is the plasma density, P the total
(gas + radiation) pressure, ΦG = −GM/

√
r2 + z2 the gravita-

tional potential of the central object, J = ∇ × B/µ0 the elec-
tric current density and Cs the sound speed. In this paper, radi-
ation pressure is neglected and the plasma is assumed to be
thermalized (identical electronic and ionic temperatures) so that
C2

s = 2ρkT/mp, where mp is the proton mass. An energy equa-
tion should then be provided to compute the plasma temperature
T . However, we will only focus on isothermal structures where
T remains constant along magnetic field lines but is allowed to
vary radially.

The disk is expected to be fully turbulent (Balbus 2003),
so the above equations must be understood as a mean-field
approach only. Such turbulence is further assumed to give rise
to enhanced (anomalous) transport coefficients such as a viscos-
ity νv, magnetic diffusivity in the poloidal plane νm (and resis-
tivity ηm = µoνm, where µo is the vacuum permeability) and in
the toroidal direction ν′m. The presence of an anomalous viscos-
ity implies the existence of a viscous stress tensor T (see next
section for its expression). The novelty of this study is the inclu-
sion of a turbulent magnetic pressure Pturb in Eq. (3). As we will
show, this term indeed plays a major role and brings about sig-
nificant changes in the overall accretion-ejection picture.

Magnetohydrodynamic turbulence is expected to decline
vertically as the ejected plasma moves away from the disk.
By definition, the flow transits from resistive MHD to ideal
MHD at the disk surface, allowing for a smooth connexion
to a super-magnetosonic (hereafter super-SM) and, further out,
super-Alfvénic (hereafter super-A) outflow. Once in ideal MHD,
the above equations lead to (F97)

up =
η(a)
µoρ

Bp (7)

Ω∗(a) = Ω − η
Bφ
µ0ρr

=
Ω

(1 − g)
, with g =

m2

m2 − 1

1 − r2
A

r2

 (8)

L(a) = Ω∗r2
A = Ωr2 −

rBφ
η

(9)

E =
u2

2
+ H + ΦG −Ω∗

rBφ
η

+ Eturb, (10)

where η(a) is the mass flux to magnetic flux ratio, Ω∗(a) the rota-
tion rate of the magnetic surface, L(a) the total specific angu-
lar momentum carried along that surface, m = up/VAp is the
poloidal Alfvénic Mach number, rA the cylindrical radius where
the poloidal flow speed meets the poloidal Alfvén speed (A crit-
ical point, m = 1). These 3 quantities are MHD invariants along
any magnetic surface anchored on a radius ro at the disk mid-
plane of constant magnetic flux a (along with the plasma tem-
perature in our isothermal case).

The last quantity is the total specific energy E and is also
an MHD invariant (Bernoulli integral) along the flow when-
ever energy is neither gained nor lost (see e.g., Casse & Ferreira
2000b when additional heating is added). It states that jet accel-
eration is a conversion of the (initially dominant) magnetic
energy and enthalpy reservoir H into jet kinetic energy. In this
paper, since turbulent pressure has been added, there is an extra
energy reservoir

Eturb = −

∫ s

s+

∂Pturb

∂s
ds
ρ
, (11)
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where the integration starts from the disk surface (taken as the
transition s+ between the resistive and the ideal MHD regime)
and is done with the curvilinear coordinate s along a given mag-
netic surface. Since the turbulence is assumed to decrease verti-
cally, Eturb > 0. However, it turns out to be always negligible in
all the cases studied here so that it can be safely discarded, and
using E(a) as an invariant is not too bad an approximation.

2.2. MHD turbulence prescriptions

In the standard accretion disk theory, turbulence leads to an
anomalous viscosity νv = αvCsh, where αv is a free parame-
ter of the model (Shakura & Sunyaev 1973). Building upon this
idea and anticipating that turbulence should be of MHD origin,
Ferreira & Pelletier (1993) proposed that the anomalous poloidal
magnetic diffusivity in the disk midplane should be written as

νm = αmVAh. (12)

Such a scaling allows to link the two transport coefficients by
introducing the (effective) magnetic Prandtl number

Pm =
νv
νm

=
αv
αm

µ−1/2. (13)

It turns out that MRI-driven MHD turbulence (1) can indeed be
safely described by a viscous stress tensor T with a dominant
component Trφ = ρνvr ∂Ω

∂r (Balbus 2003 and references therein)
and (2) that the Shakura-Sunyaev parameter follows the scaling

αv ' 8µ1/2, (14)

at least in shearing box simulations (Hawley et al. 1995;
Salvesen et al. 2016). The prescriptions used in the theory are
therefore consistent with MRI-driven turbulence and lead to
αmPm ∼ 8, namely a true constant independent of the field
strength. Note however that its value seems to depend on sim-
ulation details such as disk aspect ratio or local (shearing box)
versus global simulations. We will therefore assume that a prod-
uct αmPm around unity is acceptable.

Measuring the magnetic diffusivity in 3D simulations
is a very difficult task and has been only rarely done.
But both local (Lesur & Longaretti 2009; Guan & Gammie
2009; Fromang & Stone 2009) and global (Zhu & Stone 2018;
Jacquemin Ide 2021; Jacquemin-Ide et al. 2021) simulations
tend to show that Pm ∼ 1−3. For the rest of the paper, and for
the sake of simplicity, we will use Pm = 1 and allow αm to vary
(F97; Jacquemin-Ide et al. 2019).

However, it is still unclear whether MHD turbulence in
accretion disks leads to a fully isotropic resistivity tensor,
that is, if the turbulent diffusion is the same in all directions
(see however Lesur & Longaretti 2009; Gressel & Pessah 2015).
Ferreira & Pelletier (1995) showed that some slight anisotropy
is needed in order to provide the best conditions for cold jets to
be launched. This translates into a diffusivity ν′m in the toroidal
direction possibly larger than νm, with the introduction of an
anisotropy parameter

χm =
νm

ν′m
(15)

(see e.g., the parametric studies in Casse & Ferreira 2000a;
Jacquemin-Ide et al. 2019). Nevertheless, and again for the sake
of simplicity, we will keep χm = 1 in our study.

The existence of a turbulent magnetic pressure in disks is a
natural outcome of MRI. Its magnitude (as measured at the disk

midplane) depends of course on the initial (vertical) magnetic
field. Following Salvesen et al. (2016), who provided analytical
fits from local simulations, we will use the scaling

Pturb =
〈δB2〉

2µo
= ρδV2

A = αP
√
µP, (16)

at the disk midplane, where 〈δB2〉 is some local average. The
fits made in Salvesen et al. (2016) provided a value αP ∼ 26
which is quite high and shows how important this component is
in local (shearing box) simulations. This scaling has been val-
idated in both global MHD and GRMHD simulations at low
magnetization values (Jacquemin-Ide et al. 2021; Mishra et al.
2020), and has been observed in a global MHD simulation at
higher magnetization values (Jacquemin Ide 2021). The values
of αP derived from these simulations usually tend to be smaller
and may also depend on h/r (e.g., αP ∼ 4; Jacquemin Ide 2021).
We will therefore use αP as a free parameter. Note that in our
axisymmetric approach, this turbulent pressure only plays a role
in the radial and the vertical momentum equations. In agreement
with numerical simulations, we expect the dominant contribu-
tion to this pressure to arise from the toroidal magnetic field.
This allows therefore to use the same term in both equations.

Since this turbulent pressure adds up with the kinetic pres-
sure, we expect an easier vertical balance against gravity and
laminar magnetic compression or, alternatively, some enhanced
mass-loss rate from the disk. In the radial direction, the turbu-
lent pressure should also provide some support against grav-
ity. Both situations actually correspond to a modification of the
local sound speed. Indeed, since the prescription amounts to
Pturb ∝ P ∝ ρ, the modified sound speed writes

C̃2
s =

(
1 + αPµ

1/2
)
C2

s = C2
s + δV2

A. (17)

This modified sound speed can actually be interpreted as some
fast magnetosonic speed. While in weakly magnetized WEDs
compressible turbulence does not cause a significant deviation of
the sound speed, this is no longer the case in strongly magnetized
JEDs. As a consequence, taking this turbulence into account
shifts to higher altitudes the (modified) sonic critical point that
is encountered in resistive MHD (Ferreira & Pelletier 1995).

As the matter leaves the disk and enters the ideal MHD
regime, the turbulence is assumed to fade away, leading to negli-
gible anomalous transport coefficients. In practice, the resistive-
ideal MHD transition occurs only when the LHS resistive terms
in Eqs. (4) and (5) as well as the viscous torque in Eq. (3) become
smaller than 1% of the others. But there is no physical reason to
neglect the turbulent magnetic pressure, at least at the base of the
ideal region. We therefore keep the turbulent term in the ideal
MHD equations and this is the reason why the Bernoulli inte-
gral (Eq. 10) has a turbulent contribution. This also introduces a
modification of the SM and FM critical speeds defined in ideal
MHD regime, which can be written as

V2
SM,FM =

1
2

C̃2
s + V2

A ±

√(
C̃2

s + V2
A

)2
− 4C̃2

s V2
An


V2

A = V2
Ap + V2

Aφ

V2
An =

(
Bp · n

)2

µ0ρ
,

(18)

where the SM (resp. FM) speed is defined with the minus
(resp. plus) sign, VA is the total Alfvén speed and VAn is the
projection of the Alfvén speed in the self-similar direction n
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(see Ferreira & Pelletier 1995 and references therein for more
details). Thus, the turbulent magnetic pressure could potentially
play an important role at the base of the jet where the flow must
become super-SM if it introduces a significant modification of
the critical phase speed VSM. In any case, due to a prescribed
decaying vertical profile of the turbulence (see below), such an
effect remains quite negligible in the study done in this paper.

2.3. Self-similar ansatz

The set of MHD equations (2)–(6) forms a system of nonlinear
partial differential equations. Solving such a system while keep-
ing all dynamical terms in the equations can be done by a vari-
able separation method (Ferreira & Pelletier 1993, 1995). Since
gravity is indeed the dominant contribution, a steady-state solu-
tion over a large radial extension can only be obtained if each
term follows the same scaling with the cylindrical variables (r, z).
Therefore, each physical quantity A(r, z) is assumed to follow the
self-similar form

A(r, z) = Ao

(
r
ro

)ζA

fA(x), (19)

namely a power law of the radius with exponent ζA times a func-
tion fA(x) of the self-similar variable x = z/h(r), with a disk
aspect ratio ε = h/r a constant of the radius. Actually, keep-
ing all the dynamical terms in the equations leads to the mathe-
matical constraint that all dimensionless quantities must remain
constants of the radius. But this is the price to pay for obtaining
exact MHD solutions. The subscript “o” stands for a quantity
evaluated at the disk mid-plane x = 0. For instance, the mag-
netic flux function writes a(r, z) = ao(r/ro)βΨ(x) so the shape
of a magnetic surface with constant magnetic flux a(r, z) = ao is
given by r = roΨ−1/β, where ro is the anchoring radius at the disk
midplane.

The self-similar ansatz replaces the system (2)–(6) with a
system of algebraic equations on the radial exponents ζA and a
system of nonlinear ordinary differential equations (ODEs) on
the functions fA(x). All the exponents ζA are then expressed as a
function of the disk ejection index ξ, namely

Ṁa ∝ rξ a ∝ r
3
4 +

ξ
2 ui ∝ r−1/2

ρ ∝ rξ−3/2 Bi ∝ r
−5
4 +

ξ
2 T ∝ r−1,

(20)

where the subscript “i” stands for the three components (r, φ, z).
These exponents are important because they tell us that the mag-
netic field radial distribution must be consistent with the den-
sity distribution, which of course must be closely related to the
disk mass-loss rate. Any discrepancy between these exponents
unavoidably leads to a time-dependent evolution of the system.
This has to be kept in mind when comparing them to the outcome
of numerical simulations for instance.

According to the self-similar approach, vertical profiles must
also be assumed for all turbulent quantities. This is proba-
bly the least controlled prescription, as they have been very
seldom provided in the literature. Moreover, the local MHD
turbulence and its associated vertical profiles are most cer-
tainly self-adapting to the global accretion-ejection interrela-
tions, while in our approach they must be prescribed ab initio
without any feedback from the laminar solution. Deeper inves-
tigations using vertical profiles derived from global 3D simula-
tions will be done in future work. Here, we limit ourselves to
a simple Gaussian profile m(x) = e−x2/2x2

t of scale xt as done
previously (Ferreira & Pelletier 1993, 1995; Casse & Ferreira

2000a; Jacquemin-Ide et al. 2019). This leads to a decrease of all
turbulence-related terms on a scale xt ∼ 1. More precisely, the
self-similar profiles of the magnetic diffusivities, viscous torque
and turbulent magnetic pressure follow

νm ∝ ν
′
m ∝ m(x)

1
r2

∂

∂r

(
r2Trφ

)
∝ m(x) fρ(x)

Pturb ∝ m(x) fP(x).

(21)

However, such simplified profiles are roughly consistent with
simulations of strongly magnetized accretion disks, namely
JEDs with µ ∼ 1 (Jacquemin-Ide et al. 2021; Scepi et al. 2024).
On the contrary, the vertical profiles seen in weakly magnetized
accretion disks, WEDs with µ ∼ 10−3 or less, are clearly differ-
ent from simple Gaussians (Zhu & Stone 2018; Jacquemin Ide
2021). This is consistent with the finding that decaying Gaussian
profiles lead to vertical oscillations of all quantities in WEDs,
as discussed in Jacquemin-Ide et al. (2019). For this reason, this
paper will focus only on JEDs, that is, solutions without vertical
oscillations.

2.4. Summary of parameters and methodology

We numerically solve the system of ODEs on the functions fA
using a predictor-corrector integrator for stiff equations. Starting
from the disk midplane, the integration propagates upward using
first the resistive MHD equations. When the conditions for ideal
MHD are satisfied (resistive and viscous torque negligible wrt
the other terms), we switch to the ideal MHD equations. No sig-
nificant jumps are seen in this transition. Once in ideal MHD,
the plasma poloidal velocity is parallel to the poloidal magnetic
field and the flow must cross the SM critical point. The regularity
condition that allows a smooth transition to the super-SM regime
fixes a quantity defined at the disk midplane. We choose to adjust
the disk magnetization µ since it finely controls the disk vertical
balance for a given ejection efficiency ξ (see Ferreira & Pelletier
1995 for more details).

As the super-SM flow is further accelerated (mostly by mag-
netic means, since our isothermal outflows have a negligible
enthalpy), it must become super-A. Again, this is done by fine-
tuning another physical quantity defined at the disk midplane.
We choose to adjust the curvature of the poloidal field lines
(parameter p associated with the toroidal electric current density
Jφo), which is loosely related to the magnetic field bending at the
disk surface. Once a new value of p has been chosen, the whole
procedure of finding the new µ allowing for trans-SM solutions
must be repeated (see F97 for more details). An example of a
typical JED super-Alfvénic solution is illustrated in Fig. 1.

We are not looking for super-FM outflows. Not only is
this last critical point deeply biased by the self-similar ansatz
(unlike the first two, see discussions in Blandford & Payne 1982;
Ferreira & Pelletier 1995; Bogovalov 1997; Vlahakis et al.
2000), but the regularity condition can be satisfied by adjust-
ing the jet adiabatic index beyond the Alfvén point and thus
does not provide a strong constraint on the disk physics (see
Ferreira & Casse 2004). In any case, all super-A solutions
become super-FM in the conventional sense, that is, the poloidal
kinetic energy always becomes larger than the total magnetic
energy (F97).

In summary, a magnetized accretion-ejection solution lead-
ing to super-A isothermal (γ = 1) outflows is described by the
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Fig. 1. 3D view of a typical super-A JED solution. The blue lines show the magnetic field lines and the white lines show the streamlines along the
same magnetic surfaces, anchored at r0 = 1.0 and r0 = 5.0.

set of six parameters

ξ =
dln(Ṁa)
dln(r)

ε =
h
r

αm =
νm

VAh

χm =
νm

ν′m
Pm =

νv
νm

αP =
Pturb
√
µP

(22)

defined at the disk midplane. Four of them (αm,Pm, χm, αP)
describe the MHD turbulence and are therefore unavoidable,
unless future work on MHD turbulence provides their scaling
as a function of, for instance, the disk aspect ratio ε and the disk
magnetization µ. The disk aspect ratio ε is a real free parameter
since no proper energy equation is solved. This is a drawback of
the theory, but it guarantees the use of self-similarity and allows
us to gain valuable insight into the effect of disk thickness on jet
launching.

The physical ingredient that allows both accretion and super-
A ejection is the vertical laminar magnetic field, whose strength
is measured at the disk midplane by the disk magnetization
parameter

µ =
V2

A

C2
s

=
B2

zo

µoPo
· (23)

The theory thus provides the disk ejection efficiency ξ(µ) for a set
of prescribed values (ε, αm,Pm, χm, αP). In practice, all possible
values for ξ between 10−4 and 1 are scanned (F97), looking for
the value µ (and curvature p) that leads to super-A outflows.

The aim of this work is to study the effect of turbulent mag-
netic pressure on isothermal JED solutions. This is done in two
steps. First (Sect. 3), we look at how both the JED vertical and
radial balance respond to an increasingly large αP. Since strict
stationarity requires satisfying two constraints (SM and A), it
is important to assess how each of them responds to the pres-
ence of turbulent pressure in the disk. Moreover, the crossing of
the A point may be strongly affected by heat deposition or pres-
sure effects above the disk (Ferreira & Casse 2004), both effects
being neglected in our isothermal approach. In a second step

(Sect. 4) we consider both SM and A constraints, thus provid-
ing the final parameter space and its modification with αP.

The analyzes carried out in Sections 3 and 4 are performed
for our fiducial set (ε = 0.1, αm = Pm = χm = 1), while αP
is freely varied. Section 5 explores the effect of αP for different
disk thicknesses ε = 0.01, 0.1, 0.2 and for different turbulence
levels αm = 0.5, 1, 3.

3. Impact on the disk structure: super-SM
parameter space

In this section, we investigate the effect of the turbulent magnetic
pressure on the JED internal structure for our fiducial parameter
set defined by (ε = 0.1, αm = Pm = χm = 1). As a first approach,
we impose a value of the ejection index ξ and vary the turbu-
lence parameter αP to understand the difference introduced by
the turbulent pressure. As a second step, we explore the whole
parameter set for ξ and analyze how the turbulent pressure mod-
ifies the super-SM JED parameter space.

3.1. Comparative analysis

Figure 2 shows two super-SM solutions with the same ejection
efficiency ξ = 3 × 10−3, one obtained without turbulent pressure
(αP = 0, top panel) and corresponding to previously published
solutions, and the other with turbulent pressure (αP = 2, bot-
tom panel). At first glance, the main visible effect is to make
the disk puffier, which makes perfect sense since turbulence pro-
vides additional support against vertical compression (due to
both gravity and laminar magnetic field compression). However,
αP = 0 requires µ = 0.6 to get a trans-SM outflow, whereas
αP = 2 requires µ = 3.9. This is easily understood from the
disk vertical balance: the stronger the laminar field (larger µ),
the stronger the vertical compression. Thus, imposing the same
ξ while introducing an extra, outwardly directed vertical force,
leads to the natural increase of µ. However, the impact of the
turbulent pressure is more complex and affects all quantities.
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Fig. 2. Poloidal cross-section of two super-SM JED solutions with the
same ξ = 3 × 10−3, obtained with ε = 0.1, αm = Pm = χm = 1,
without (αP = 0, top panel) and with (αP = 2, bottom panel) a turbulent
magnetic pressure. The background color represents the logarithm of
the density normalized to its midplane value and the white lines show
the magnetic surfaces. See text for more details.

Figure 3 shows the vertical profiles along x = z/h(r) of var-
ious disk quantities. The left panels display the classical JED
solution with αP = 0, while the right panels are for αP = 2.
In both cases, the light gray area corresponds to the resistive
MHD region, the white one to the ideal MHD regime where the
flow reaches the super-SM speed. Clearly, introducing a turbu-
lent pressure leads to a thicker disk, although the thermal scale
height (ε = h/r) remains the same: all disk quantities follow the
turbulent pressure. We can understand this new disk structure
from simple analytical considerations.

The fact that the disk becomes puffier can be seen directly
on the vertical profile of the gas pressure P (which is the same
as the density profile, Fig. 3a). There is almost an inversion of
the profile, which can be obtained directly by making a Taylor
expansion of the vertical equilibrium Eq. (3) near the disk mid-
plane:

∂ ln P
∂x

' −
1 − αP

√
µx−2

t + µ(p2 + q2)
1 + αP

√
µ

x = −Ax, (24)

where Jro = qBzo/(µoh) and Jφo = pBzo/(µoh) are respectively
the radial and toroidal electric current densities flowing at the
disk midplane. For αP = 0, only the thermal and laminar mag-
netic horizontal pressure gradients (the terms 1 + µ(p2 + q2))
play a role in the vertical equilibrium, so that the thermal pres-
sure P always decreases (A > 0). In that case, the isothermal
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Fig. 3. Vertical profiles along x = z/h of the two super-SM solutions
shown in Fig. 2, without (left) and with (right) turbulent magnetic pres-
sure. From top to bottom: gas P, laminar horizontal Plam = (B2

r +B2
φ)/2µo

and turbulent Pturb magnetic pressures; velocity components ui (normal-
ized to Keplerian speed ΩK0 r0); electric current densities Ji (normalized
to Bzo/µoh); laminar magnetic field components Bi (normalized to Bzo).
The light gray area corresponds to the resistive MHD region and the ver-
tical line corresponds to the position of the SM point. Note that αP = 0
requires µ = 0.6, while αP = 2 requires µ = 3.9. See text for more
details.

disk scale height h(r), defined as Po = ρoΩ2
Kh2, is indeed a

good proxy for the actual disk vertical magnetostatic scale height
(Ferreira & Pelletier 1995). This is no longer the case with turbu-
lent pressure. For αP = 2, the turbulent magnetic pressure gradi-
ent −αp

√
µx−2

t balances the other two pressure gradients, so that
the thermal pressure P increases near the disk midplane (A < 0).
The disk material is thus pushed toward the disk surface, making
it thicker and more massive, as illustrated in Fig. 2.

Another direct consequence of this extra pressure can be seen
in the disk rotation rate at the midplane (Fig. 4). The deviation
from the Keplerian rotation rate at the disk midplane is provided
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Fig. 4. Influence of αP on the super-SM JED parameter space: disk mag-
netization µ, deviation to Keplerian rotation δ, disk ejection efficiency ξ,
thickness expansion hd = zid/h, accretion sonic Mach number ms, and
laminar (jets) to turbulent (viscous) torque ratio Λ. Colored areas cor-
respond to regions accessible by super-SM solutions. The curves repre-
sent the average solution for a given αP. See text for more details.

by the radial force balance

δ =
Ωo

ΩKo
'

√
1 −

(
1 + αP

√
µ
) (5

2
− ξ

)
ε2 − pµε −

m2
s

2
ε2, (25)

where ms = −uro/Cso = −uro/(ΩKoh) is the accretion sonic
Mach number. In the RHS of this equation, the forces leading
to a deviation are (going from left to right), the radial (thermal
and turbulent) pressure gradient, the laminar magnetic tension
and the radial acceleration. At near equipartition field, the tur-
bulent radial pressure gradient becomes relevant and the disk is
significantly sub-Keplerian (δ ∼ 0.6 here).

Cold jets are only possible if magnetic field lines at the disk
surface are bent enough, namely if Br/Bz is greater than or on
the order of unity (Blandford & Payne 1982, see Figs. 2 and 3d).
Since Br ' µo

∫ z
0 Jφdz, the field line inclination at the disk sur-

face is roughly Br/Bz ' −
∫

(ur/νm)dz ∼ p
∫

( fur/m)dx. As the
disk inflates due to turbulence, the integral becomes larger, so p
must decrease. In other words, field lines become straighter at
the midplane (Jφo decreases), and Jφ is enhanced at higher alti-
tudes. Although only moderate for the solution shown in Fig. 3c,
this trend can be significantly more pronounced for other solu-
tions.

Correspondingly, the midplane accretion speed (ms)
decreases, which implies that the total torque acting on the disk
must also decrease despite an increase in the disk magnetization
µ to maintain the same ejection rate ξ. Accretion occurs due to
the presence of a laminar (jets) torque and a turbulent (viscous)
torque, namely

ms =
2qµ
δ

+ αvε. (26)

The ratio of the jet torques to the viscous torque scales as Λ ∼
2/(εαmPm) (Eq. 35 in Jacquemin-Ide et al. 2019) and the viscous
torque is therefore always negligible within our fiducial parame-
ter set. In order for the midplane accretion speed to decrease, the
jet torque −JroBzo must decrease despite an increase in Bzo. This
dramatic decrease in Jro (straighter field lines) is clearly seen in
Fig. 3c for αP = 2.

The evolution of the radial electric current density Jr
(Eq. (5)) writes

η′mJr ' η
′
moJro + r

∫ z

0
Br
∂Ω

∂r
dz. (27)

The first term on the RHS of this equation results from the e.m.f.
induced by the rotation of a conductive disk (of finite resistiv-
ity) amidst a large-scale vertical field (Barlow’s wheel effect).
The second term is the disk feedback, always present whenever
there is a velocity shear. Magneto-centrifugally driven jets are
only possible if the laminar (jet) torque accelerates the ejected
material, namely if Fφ ' −JrBz becomes positive at the disk sur-
face (Ferreira & Pelletier 1995). This occurs only if Jr decreases
vertically on the same scale, a situation achieved whenever the
shear-induced term in Eq. (27) balances the Barlow term within
the disk.

In a classical JED with αP = 0, the vertical decrease of Jr on
a scale height (which goes along a vertical decrease of Ω), leads
to an almost linear growth of the toroidal field that achieves a
value B+

φ = −µo
∫

Jrdz ∼ −µoJroh at the disk surface, namely
q ∼ 1. Therefore all three magnetic field components are compa-
rable at the disk surface (Fig. 3d, left). But when turbulent pres-
sure is present, rotation becomes smaller, the poloidal field lines
are straighter and Br remains smaller inside the disk, two effects
that heavily reduce the shear-induced term. This pushes further
up the point in the disk where acceleration takes place (Fφ > 0)
and may even lead also to some profile inversion (barely visible
in the right panel of Fig. 3d, but representative of these turbulent
solutions). Indeed, since η′mJr ∼ η′moJro, a decreasing magnetic
diffusivity leads to an increase of the radial current density at
higher altitudes. The general solution, which is self-consistent
with the disk vertical equilibrium, is therefore to reduce the mid-
plane current density Jro, with a tendency to shift the path of the
radial electric current to both disk surfaces. This reduction has
far-reaching consequences because it inhibits the generation of
the toroidal magnetic field Bφ, which is essential since it directly
contributes to the accretion (torque) and ejection power (MHD
Poynting flux).

3.2. SM-parameter space

We now study how the turbulent magnetic pressure modifies the
super-SM parameter space of JEDs with our fiducial parameter
set (ε = 0.1, αm = Pm = χm = 1). For each value of αP varying
from 0 to 10, we explore all possible values of ξ and derive the
value µ that allows the outflowing plasma to become super-SM.

It is important to note that no Alfvénic constraint has been
used yet so that the field line bending (parameter p) is freely
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imposed. In practice, we also explore all possible values of p for
each ξ. As a consequence, the number of solutions found for each
ξ is variable for each αP. This allows us to compute an “average”
Super-SM solution for each αP, which simply shows the aver-
age value for that quantity (based on the number of solutions
found). The influence of αP on the resulting parameter space is
shown in Fig. 4. The shaded zones for each quantity correspond
to regions that are accessible to super-SM solutions, regardless
of their number. The mean solution is then represented by a point
which, as αP increases, gives an indication of how the JED struc-
ture adapts to αP.

The actual size of the accretion disk can be very precisely
defined as the altitude where the radial velocity is zero, namely
the transition from inward (accretion) to outward (ejection)
motion. Such a transition occurs in the resistive MHD region,
and only further out does the flow transit to ideal MHD and
becomes super-SM. The central right panel therefore shows the
dependence of the actual disk size hd = zid/h as a function of
αP: clearly, the disk becomes puffier with increasing turbulent
magnetic pressure, by almost a factor 2 when αP = 10. The rea-
son for this has been discussed previously and is related to the
fact that this turbulent pressure provides additional vertical sup-
port against gravity and magnetic (laminar) compression. Note
that the range where super-SM solutions are found becomes very
narrow beyond αP ∼ 7. This is an indication that finding super-A
solutions at large turbulent pressures will hardly be feasible (see
next section).

An unsuspected consequence of the disk becoming thicker
with αP is the fact that super-SM outflows also require increas-
ingly large disk magnetizations µ (Fig. 4). This is actually an
implication of our methodology which focuses only on non-
oscillating solutions within the disk. To forbid spatial oscilla-
tions, one must require that the MRI wavelength be comparable
to the disk vertical height, which translates into having compara-
ble Alfvén and sound speeds. But our prescription of compress-
ible MHD turbulence leads to a modification of the sound speed
or, in other words, to an increase of the actual size (hd > 1) of
the disk. Thus, to recover a non-oscillating solution one needs to
balance VA ∼ C̃s and to redefine an MRI-related magnetization
parameter

µMRI =
V2

A

C̃2
s

=
µ

1 + αp
√
µ
· (28)

Thus, requiring to deal only with non-oscillating solutions,
namely keeping µMRI constant while increasing αP, will neces-
sarily lead to also increase µ as well.

However, this trend reaches a limit around αP ∼ 4, where
µ levels off. This is because when µ becomes too large, not
only the vertical balance is compromised (overwhelming lami-
nar magnetic compression), but also the radial one (see Eq. (25)).
The top right panel in Fig. 4 shows indeed that the deviation
δ = Ωo/ΩK from the Keplerian rotation decreases dramatically
reaching almost δ ∼ 0.5. Since gravity does not change, lowering
the plasma rotation rate is clearly not convenient for launching
cold outflows. This value αP ∼ 4 marks therefore the point where
the super-SM region starts to shrink.

The effect of turbulent magnetic pressure on the disk ejec-
tion efficiency ξ is not obvious. At first sight, one would hope
to enhance ξ thanks to this extra outward push. This effect can
indeed be seen in the central left panel in Fig. 4: the minimum
value for ξ does indeed increase with αP. Close to 10−4 for
αP = 0, it cannot be less than a few 10−2 for αP = 10. However,
the maximum value of ξ that allows for super-SM outflows also

decreases: this is because the disk is rotating slower and the mag-
netic laminar compression becomes too strong (it scales as µ,
while turbulence scales as µ1/2). Overall, the average super-SM
JED solution (solid line) does not seem to see its ejection effi-
ciency deviating significantly from the classical (αP = 0) value,
namely ξ ∼ 10−2 for isothermal flows.

Another counterintuitive effect of the turbulent magnetic
pressure is to reduce the midplane accretion velocity, despite
the increase in disk magnetization µ. The bottom left panel in
Fig. 4 indeed shows a decreasing sonic Mach number ms with
increasing αP (although it remains larger than, or on the order of,
unity). This is due to the decreasing influence of the jet torque
wrt the turbulent (viscous) torque. The bottom right panel clearly
shows a steady decrease in the ratio Λ of these two torques with
αP. This is a direct consequence of the turbulent JED becoming
unable to generate a strong toroidal magnetic field at the disk
surface. As discussed previously, not only is the radial electric
current density Jro (parameter q in Eq. (26)) flowing in the mid-
plane to be lowered in the presence of turbulent pressure, but
the vertically decreasing magnetic diffusivity does not allow for
a large toroidal field at the disk surface. As a consequence, jets
play a less and less dominant role in accretion.

To conclude, our analysis of the inclusion of a turbulent mag-
netic pressure in JEDs shows that the disk becomes puffier, more
sub-Keplerian, and less conductive, with field lines more ver-
tical inside the disk. The generation of magnetic bending (Br)
and shear (Bφ) occurs mostly at the (more elevated) disk surface,
with no significant change in the disk ejection efficiency. Over-
all, a magnetic turbulent pressure reduces the impact of the jets
on the accretion.

4. Impact on the disk+jets: Super-A solutions

4.1. Comparative analysis

Figure 5 shows a 3D view of the two JED solutions discussed
previously, obtained with our fiducial parameter set (ε = 0.1,
αm = Pm = χm = 1). Our goal is to assess how the presence
of a turbulent magnetic pressure impacts the dynamics of the
outflowing super-A jet and, in turn, affects the underlying disk.
Since both solutions have the same ejection efficiency (ξ = 3 ×
10−3), they should have roughly the same Alfvén radius rA, since
it depends mostly on ξ (F97, see also below). But a simple look
at the figure reveals that the turbulent JED launches much less
open (i.e., more collimated) jets with an Alfvén point located
at a higher altitude zA. Also, in agreement with the super-SM
analysis, the magnetic field lines appear much less twisted, a sign
that the jets may eventually become exhausted of any poloidal
electric current, leading to a vanishing Bφ.

Figure 6 shows the profiles of several quantities along a mag-
netic surface (constant a) for the two previous super-A solutions.
The top row displays the various characteristic velocities nor-
malized to the Keplerian speed at the anchoring radius ro: the
flow speed in the self-similar direction V = up · n, the modi-
fied sound speed and the modified A, SM, and FM phase speeds
defined by Eq. (18) (see also Ferreira & Pelletier 1995). Due to
the Gaussian decrease of the turbulence, the influence of the
turbulent pressure on the sound speed rapidly decreases as the
plasma is lifted out of the disk. Thus, once in ideal MHD, only
the real thermal energy remains (C̃s = Cs) and the sound speed
remains constant along the field lines, in agreement with our
assumption. This can also be seen in the Bernoulli integral (bot-
tom panels, Fig. 6): the turbulent energy content Eturb remains
completely negligible. In the isothermal case, the enthalpy is also
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Fig. 5. 3D view of the JED solutions shown in Fig. 2 with the same
ejection index (ξ = 3 × 10−3), obtained with our fiducial set (ε = 0.1,
αm = Pm = χm = 1), without (αP = 0, µ = 0.6) and with (αP = 2,
µ = 3.9) turbulent magnetic pressure. The color represents the logarithm
of the density normalized to its midplane value, the white lines show the
magnetic field lines and the blue lines show the streamlines along the
same magnetic surfaces, anchored at ro = 2 and ro = 3. The white
dotted lines show the position of the Alfvén point on these surfaces.

always negligible and the jets are therefore cold, the dominant
energy being initially stored in the magnetic field Emag and pro-
gressively transferred to the kinetic energy Ekin of the plasma.

4.2. A-parameter space

The top left panel in Fig. 7 shows how the usual JED parameter
space ξ(µ) evolves with αP. For each value of αP, we recover
the characteristic almost vertical behavior, namely the ability to
achieve a wide range of ejection efficiencies ξ in a very narrow
interval of µ. Three important features emerge immediately as
αP increases: (1) µ must be increasingly large, (2) ξ decreases
drastically, (3) until no super-A solution can be found beyond
αP = 4. The fact that µ must increase with αP is a consequence
of keeping the MRI wavelength of nearly the same size as the
puffed disk (as described by Eq. (28)). It is therefore a conse-
quence of the disk vertical equilibrium, dealt with the SM crit-
ical point. However, it is interesting to note the existence of a
“sweet spot” for αP = 1, associated with the largest interval in
ξ. But, globally, the super-A parameter space, which is a sub-
set of the previous SM parameter space, shrinks with αP, with a
global decrease of the maximum ejection efficiency ξmax. Such a
decrease in ξmax was already present in the SM parameter space
(see Fig. 4), but it is greatly amplified by the Alfvénic constraint.
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This can be understood by the fact that the disk rotation rate
δ decreases with αP, resulting in a global decrease in the rotation
rate

ω =
Ω∗(a)
ΩKo

(29)

of the magnetic surfaces (bottom left panel in Fig. 7). Since the
magneto-centrifugal acceleration is the only means for launch-
ing our isothermal (cold) outflows, less and less disk material
can be accelerated to super-A speeds as αP increases. This inter-
pretation is validated by the neat correlation b(ω) for all αP,
where b = 2Pjet/Pacc is the ratio of the total power (kinetic, ther-
mal, potential, and magnetic) carried away by the two jets to
the released accretion power. The reason is simply that the main
energy content is magnetic and that it scales directly with Ω∗,
namely Pjet =

∫
ρupE ·dS '

∫
SMHD ·dS, where the MHD Poynt-

ing flux is SMHD = −Ω∗rBφBp/µ0. As guessed from the study of
the SM parameter space, magnetic turbulence quite significantly
reduces the amount of laminar magnetic energy feeding the two
jets.

The total specific angular momentum L(a) carried along
a magnetic surface (Eq. (9)), normalized by the Keple-
rian angular momentum at the anchoring radius ro, provides
the so-called magnetic lever arm parameter λ introduced by
Blandford & Payne (1982). This important jet quantity is actu-
ally related to the disk parameters

λ =
L(a)

ΩKor2
o
' ω +

1
2ξ

Λ

1 + Λ
, (30)

which is a generalization of the classical relation λ ' 1 + 1/2ξ
(F97). Note that most JED solutions have Λ � 1. The top right

A99, page 10 of 18



Zimniak, N., et al.: A&A, 692, A99 (2024)

100 101
10 4

10 3

10 2

10 1

100

101

P = 0.0
P = 1.0
P = 2.0
P = 3.0
P = 4.0

10 4 10 3 10 2 10 1

101

102

103

0.6 0.7 0.8

0.2

0.3

0.4

0.5

b

101 102 103
100

101

102

103

104

105

r t
/r 0

Fig. 7. Influence of the magnetic turbulent pressure αP on super-A solu-
tions obtained with our fiducial set. Top left: JED parameter space ξ(µ).
Top right: magnetic lever arm λ as function of ξ. The dotted lines cor-
respond to λ = a[1 + 1/(2ξ)] with a = 0.9 and a = 0.5. Bottom left:
fraction b of the released accretion power transferred to the two jets
as function of the magnetic surface rotation ω anchored at a radius ro.
Bottom right: maximum cylindrical radius rt/ro reached before recolli-
mation, as function of λ. The dotted line is a fit rt/ro = 1.08λ0.526.

panel in Fig. 7 shows how the dependency λ(ξ) evolves with αP.
The two bracketing dotted lines are the curves λ = a(1 + 1/2ξ),
with a = 0.5 and a = 0.9. They show that the analytical link
is not broken and that any measure of λ can give a fair estimate
of ξ. The main difficulty, however, is the decrease of the disk
rotation rate (hence ω) as αP increases, leading to a decrease in
λ at constant ξ.

Nevertheless, turbulent magnetic pressure in the disk leads
to a dramatic difference in the jet collimation properties, as illus-
trated in the bottom right panel in Fig. 7. This plot displays the jet
widening, namely the ratio rt/ro where rt is the maximum cylin-
drical radius reached by a magnetic surface anchored at ro before
recollimating toward the axis (F97), as a function of the mag-
netic lever arm λ and for different values of the turbulent mag-
netic pressure parameter αP. The gray dotted line is a numerical
fit rt/ro = 1.08λ0.526, namely rt ' rA. Here we recover the exis-
tence of the sweet spot at αP = 1, which allows us to obtain the
widest types of behavior, namely from solutions no larger than rA
to solutions opening up to 105ro. But it can be readily seen that
as αP increases, there are fewer and fewer solutions that propa-
gate much further than the Alfven point. At αP = 4, all solutions
found merely become super-A before undergoing recollimation.
Such solutions, termed “current-free” in F97, become super-A
at the expense of almost all the available electric current flowing
out of the disk.

Figure 8 shows the evolution of several jet parameters as a
function of the turbulent magnetic pressure intensity αP. The
colored areas correspond to regions accessible by super-A solu-
tions, while the curves represent the evolution of the mean solu-
tion obtained by averaging the values of all the solutions found
for a given αP. These figures allow us to better understand the

Fig. 8. Influence of αP on the super-A JED parameter space: jet mass
load κ, rotation rate δ of the magnetic surface, magnetic lever arm λ,
total specific energy e carried along the magnetic surface, altitude zA/ro
of the Alfvén point, and the electric current gA still available at that
point. Colored areas correspond to regions accessible by super-A solu-
tions. The curves represent the average solution for a given αP. See text
for more details.

influence of the disk turbulent pressure on the jet parameters and
dynamics.

The jet mass load, defined as (Blandford & Payne 1982)

κ = η(a)
ΩKoro

Bzo
'
ξms

µ
= ξαm pµ−1/2, (31)

is an MHD invariant that can be related to the disk quantities
using ξ. The value of p, which is a measure of the toroidal elec-
tric current density flowing at the disk midplane and loosely
related to the field lines bending at the disk surface, is determined
by the smooth crossing of the Alfvén critical point. The larger κ
the more kinetically dominated the outflow is. It turns out that
for JED (namely strongly magnetized) solutions κ ∼ ξ (F97;
Casse & Ferreira 2000a), so we show below only ξ. The top left
panel in Fig. 8 proves that only very tenuous, magnetically dom-
inated cold outflows can become super-A. This is amplified by
both the increase in µ and the corresponding decrease of ξ as αP
increases.

As shown above, this is mostly due to the dramatic decrease
in the rotation of the magnetic surface ω with αP. Indeed, as µ
increases, the midplane plasma rotation δ decreases and, despite
the MHD acceleration starting at higher altitudes, the plasma
hardly becomes super-Keplerian (Ferreira & Pelletier 1995). As
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Fig. 9. Influence of αP on the laminar magnetic field components at
the SM critical point for super-A solutions obtained with our fiducial
parameter set. Left: ratio Br/Bz showing the bending. Right: ratio Bφ/Bz
showing the magnetic shear. Colored areas correspond to regions acces-
sible by super-A solutions. The curves represent the mean solution for
a given αP.

a consequence, the centrifugal term appearing in the radial
momentum equation does not overcome gravity and only the
radial component of the laminar magnetic force Fr = JφBz−JzBφ
must become capable of driving an outwardly directed flow.
While super-SM outflows are possible at αP = 10 with δ ' 0.55,
no super-A solution is found with αP > 4 (for our fiducial param-
eter set), the lowest value being ω ' 0.63 (corresponding to
δ ' 0.63 as well).

For cold outflows, and neglecting any additional energy Eturb
associated with the turbulent magnetic pressure, Eq. (10) leads
to a dimensionless Bernoulli invariant

e =
2E(a)
Ω2

Kor2
o
' ωλ − 2 +

ω2

2
· (32)

The exact value e(a) is shown at the central right panel in Fig. 8.
Not surprisingly for cold outflows, it fulfills the above equation
and closely follows the evolution of λ, which is itself directly
related to the ejection efficiency ξ. Our outflows from turbulent
disks are not only gravitationally unbound (e > 0), but they are
also highly magnetized (e � 1). The ratio of the (laminar) MHD
Poynting flux to the matter-energy flux at the SM point writes

σSM =
−Ω∗rBφBp(

u2

2 + H
)
µ0ρup

∣∣∣∣∣∣∣∣
SM

' 2ω(λ − 1) (33)

for cold outflows (Jacquemin-Ide et al. 2019), and is therefore
much larger than unity. One might naively expect such highly
magnetized jets to propagate far from the disk. However, this
is clearly not the case, as they do not extend much beyond the
Alfvén point, as shown in the bottom left panel of Fig. 8.

This can be understood by looking at how the altitude zA/ro
of the Alfvén point evolves with αP (Fig. 8). As the turbulent
magnetic pressure increases, the disk becomes puffier, and its
magnetization µ increases. This implies a larger Alfvén veloc-
ity and thus would require a longer acceleration length to allow
the jet poloidal speed to reach the Alfvén velocity. But a look at
the SM parameter space (hence the disk vertical balance, Fig. 4)
shows that the ejection efficiency tends to remain nearly the same
so that the cylindrical Alfven radius rA/ro does not change much.
As a consequence, increasing the acceleration distance can only
be done by increasing zA/ro. Clearly, the interplay between the
disk vertical balance (SM point) and the jet acceleration (A
point) requires playing on both sides, namely increasing both rA
(thus decreasing ξ) and zA. For a given ξ, this ends up in a more

collimated outflow emitted from a turbulent JED than from a
nonturbulent JED, as illustrated in Fig. 5.

As the Alfvén point is pushed further away from the disk
with increasing αP, the field lines at the disk surface become
more and more straight (Fig. 9, left panel). This appears to be
a geometrical consequence, but it is due to the fact that in the
sub-A region, the plasma is dominated by the magnetic field
and in particular by the poloidal component. This magnetic
tension always tends to close the magnetic surface, thus pre-
venting plasma acceleration. For our fiducial parameter set, at
αP > 4 the magnetic bending is such that the energetic crite-
rion for cold outflows (requiring Br/Bz > 1 at the disk surface,
Blandford & Payne 1982) is no longer satisfied and no super-A
solution can be found.

This decrease in the magnetic field bending at the disk
surface goes along with a decrease in the toroidal magnetic
field component (Fig. 9). This is consistent with the decrease
in the total energy feeding the jets (fraction b, Fig. 7). Note
that this behavior is due to the fact that we only consider JED
structures with µ larger than unity. Indeed, for weakly mag-
netized accretion-ejection structures (WEDs) with µ � 1, a
large toroidal (laminar) magnetic field could be generated (see
Jacquemin-Ide et al. 2019), but these solutions are beyond the
scope of the present paper.

This tremendous decrease in magnetic shear at the disk sur-
face goes along with a much lower acceleration efficiency, con-
sistent with the increasing distance zA from the Alfvén point. As
a proxy for this efficiency, one can use the function g = 1 − Ω

Ω∗
,

which measures the angular velocity drift between the plasma
and the magnetic surface (Pelletier & Pudritz 1992). It increases
monotonically from g � 1 at the disk surface, while its value at
the Alfvén point,

gA '
rABφ,A

rSMBφ,SM
(34)

determines the fate of the jet (F97). Indeed, gA is the ratio of
the electric poloidal current I = rBφ (enclosed in the magnetic
surface) still flowing at the Alfvén point to the one provided at
the disk surface (taken here as the SM point). Solutions with
gA > 1/2 are current-carrying outflows where the acceleration to
super-A speeds has been done with not much expense of the ini-
tial magnetic energy: at the Alfvén point, the magnetic field still
has a large reservoir of angular momentum (and energy) to trans-
fer back to the plasma. On the contrary, solutions with gA < 1/2
have exhausted all the available magnetic energy just to reach
super-A speeds.

While current-carrying jets open wide and propagate much
farther out than the Alfvén point, current-free jets with low gA
tend to recollimate immediately upon reaching this point. This
is mostly due to the dominant effect of the poloidal magnetic
tension (F97). Figure 8 shows that as αP increases, gA decreases
down to ∼0.2, leading therefore mostly to current-free solutions
at larger αP for our fiducial parameter set.

5. Parameter study

5.1. Effect of the disk geometrical thickness

The results described in the previous sections were obtained
for a fiducial set (ε = 0.1, αm = Pm = χm = 1). In this
section, we analyze the effect of the magnetic turbulent pres-
sure on isothermal JED solutions by exploring two other values
of the disk aspect ratio: ε = 0.01, characteristic of an optically
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Fig. 10. Influence of αP on the super-SM JED parameter space for var-
ious disk aspect ratios ε = h/r obtained with (αm = Pm = χm = 1): disk
magnetization µ, deviation to Keplerian rotation δ, disk ejection effi-
ciency ξ, thickness expansion hd = zid/h, accretion sonic Mach number
ms, and laminar (jets) to turbulent (viscous) torque ratio Λ. Colored
areas correspond to regions accessible by super-SM solutions with dif-
ferent aspect ratios: ε = 0.01 (blue), ε = 0.1 (yellow), ε = 0.2 (red).
The corresponding curves represent the average solution for a given αP.

thick, geometrically thin disk and ε = 0.2, characteristic of a
slim/optically thick or geometrically thick, optically thin disk
(see e.g., Marcel et al. 2018). The other parameters are kept con-
stant, namely (αm = Pm = χm = 1). As before, we discuss
first the impact of the turbulent magnetic pressure on the disk
structure (SM constraint only) and then the constraint imposed
to obtain outflows with super-A speeds (both SM and A con-
straints).

Figure 10 shows the evolution of several disk quantities as a
function of the turbulent magnetic pressure intensity αP for dif-
ferent disk geometrical thicknesses ε. Colored areas correspond
to regions accessible by super-SM solutions. The curves repre-
sent the evolution of the average solution obtained by averaging
the values of all solutions found for a given αP.

As expected the magnetization µ first increases and then sat-
urates in the same way regardless of the geometrical thickness
ε. This is because, as the disk inflates (i.e., hd = zid/h) due to
the increasing importance of the magnetic turbulent pressure, the
condition for the absence of MRI channel modes (spatial oscil-
lations) remains fulfilled (Eq. (28)).

This increase in the laminar magnetic field has tremen-
dous consequences on the midplane disk rotation rate. In JEDs

(strongly magnetized accretion disks), the dominant contribution
to the deviation from the Keplerian rotation law is the laminar
magnetic radial tension, which is proportional to µε (Eq. (25)).
But the radial gradient of the turbulent magnetic pressure pro-
vides a contribution that scales as αPµ

1/2ε2, so it also becomes
non-negligible at large µ and high αP. It is therefore not sur-
prising that the deviation remains tiny in thin accretion disks,
namely δ = Ωo/ΩKo ∼ 1 at ε = 0.01 (blue, Fig. 10). But as the
disk thickens, the disk becomes more and more sub-Keplerian
as αP increases. For a thick disk with ε = 0.2 (red, Fig. 10),
δ ∼ 0.2 at αP = 4 and no super-SM solution can be found beyond
this turbulence level. For even thicker disks (ε > 0.2) no super-
SM (isothermal) solution can be found, even with αP = 0 (F97;
Casse & Ferreira 2000a). The reason is quite simple: for cold
jets, only magnetic driving allows acceleration so that whenever
the plasma rotation becomes too low, the gravitational attraction
always wins.

For the values of ε explored here, there is no significant effect
on the values of the average disk ejection efficiency ξ around
∼10−2 (central left panel of Fig. 10). However, the range of
allowed ξ for super-SM outflows changes significantly with ε
and with αP. It is noteworthy to see how much larger the SM
parameter space is for the thin disk, even with values ξ > 1 pos-
sible. We will come back to this point in Sect. 6.2.

The midplane accretion sonic Mach number ms = −uro/Cs =
αm pµ1/2 remains always larger than unity (supersonic accre-
tion) for all values of the disk thickness. However, the depen-
dency with the turbulent magnetic pressure is different for thin
(ε = 0.01) and for slim or thick disks (ε = 0.1 and 0.2): while
in the thin case ms increases with αP, it decreases in thicker
disks (Fig. 10). For thick disks, which become even thicker as
αP increases, it has been argued that both radial and azimuthal
electric currents are pushed toward the disk surface, leading to
a correspondingly decrease of their value at the disk midplane
(see Sect. 3.1). As a consequence, the equatorial field line curva-
ture p and jet torque become smaller leading to a decrease of ms
with αP (see also Eq. (26)). This also translates into structures
where less and less disk angular momentum is carried away by
the outflows (the torques ratio Λ decreases). This is no longer
true in thin disks, where the turbulent magnetic pressure has a
smaller impact on the disk final size (since Λ scales with 1/ε).
As a consequence, the current densities can remain mostly at
the disk equatorial plane, which translate into magnetic config-
urations much more bent and sheared (both p and q of order
unity). The increase of ms with αP is therefore mostly a conse-
quence of its dependence as µ1/2. We recover here the classical
result obtained with αP = 0 that both the laminar (jet) magnetic
torque and the turbulent (viscous) torque scale as µ1/2, so that
their ratio Λ does not evolve with αP and is proportional to ε−1

(Casse & Ferreira 2000a; Jacquemin-Ide et al. 2019).
Figure 11 shows the evolution with αP of the parameter space

for super-A solutions for different geometrical thicknesses ε. As
expected, it is much smaller than the SM parameter space stud-
ied previously. There is no solution beyond αP = 1 for ε = 0.2
and beyond αP = 4 for ε = 0.1. The reason lies in the fact
that the magnetic surface rotates much too slowly to magneti-
cally drive cold (isothermal) outflows (see the ω panel), in agree-
ment with our analysis of the disk rotation rate at the equatorial
plane.

Despite the supplementary Alfvénic constraint, there is no
better contrast in ξ (or in the magnetic lever arm λ) achieved for
different disk thicknesses. Indeed, the allowed ranges in ξ stay
nearly the same with a typical ξ ∼ 10−3. Note that the jet mass
load κ still always follows closely ξ.
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Fig. 11. Influence of αP on the super-A JED parameter space for various
disk aspect ratio ε = h/r obtained with (αm = Pm = χm = 1): disk ejec-
tion efficiency ξ, rotation rate ω of the magnetic surface, magnetic lever
arm λ, disk magnetization µ, altitude zA/ro of the Alfvén point, and the
electric current gA still available at that point. Colored areas correspond
to regions accessible by super-A solutions with different aspect ratios:
ε = 0.01 (blue), ε = 0.1 (yellow), ε = 0.2 (red). The corresponding
curves represent the average solution for a given αP.

The most striking feature is the very different behavior of
the thin disk solution (ε = 0.01, blue), as shown in the plots of
the disk magnetization µ, the altitude zA/ro of the Alfvén point
and the energy reservoir gA. The typical thin disk solution (curve
in the plot) maintains almost the same magnetization µ regard-
less of αP, in strong contrast to the other two thicker solutions.
This can be understood by the fact that the slight increase in
disk thickness due to αP has not significantly changed the total
pressure2. As a consequence, the accretion-ejection can adapt its
magnetic geometry while keeping roughly the same µ. This has
several consequences. Instead of allowing more mass (larger ξ)
to be ejected, the system favors solutions where the field lines
become more and more bent at the disk surface as αP increases.
While a typical solution with αP = 0 has Br/Bz ∼ 2 at the
SM point, it increases until Br/Bz ∼ 5 for αP = 10. Magneto-
centrifugal acceleration is thus enhanced, and typical outflows
reach the Alfvén point at about the same location (see bottom
left panel in Fig. 11), but without expending much of the ini-

2 In other words, the actual vertical scale height of the disk is not
changed enough and there is no need to significantly increase µ to main-
tain almost the same “no oscillation” island as αP = 0 in Fig. 7. See also
the discussion in Jacquemin-Ide et al. (2019).

Fig. 12. Influence of αP on the super-SM JED parameter space for var-
ious magnetic diffusivity levels αm and (ε = 0.1, Pm = χm = 1): disk
magnetization µ, deviation to Keplerian rotation δ, disk ejection effi-
ciency ξ, thickness expansion hd = zid/h, accretion sonic Mach number
ms, and laminar (jets) to turbulent (viscous) torque ratio Λ. Colored
areas correspond to regions accessible by super-SM solutions with dif-
ferent magnetic diffusivity levels: αm = 0.5 (blue), αm = 1 (yellow),
αm = 3 (red). The corresponding curves represent the average solution
for a given αP.

tial magnetic energy. In contrast to thicker disks with ε = 0.1
and 0.2, whose jets’ remaining energy gA at the Alfvén point
decreases with αP, jets from a thin disk with ε = 0.01 see their
energy increase and remain larger than 1/2.

5.2. Effect of the magnetic diffusivity

We now analyze how the turbulence level parameter αm, which
determines both anomalous magnetic diffusivities and viscos-
ity, affects the JED response to the turbulent magnetic pressure
αP. Since classical JEDs are always dominated by the laminar
jets torque, we will mostly interpret the role played by αm as a
modification of the disk magnetic diffusivities. In this context, it
has already been shown that αm must be large enough (of order
unity) to build up a significant toroidal field at the disk surface
(F97; Jacquemin-Ide et al. 2019). For this reason, we restrict our
study to two other values αm = 0.5 and αm = 3, while keeping
the same set (ε = 0.1, Pm = χm = 1).

The parameter space obtained only with the SM constraint is
displayed in Fig. 12 for the three values of αm. There is no sig-
nificant modification introduced by αm on the necessary increase
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of the disk magnetization µ as a response to an increase of the
magnetic turbulent pressure αP (same reason based on µMRI).
The same lack of strong influence can be seen in the allowed
ranges of the disk ejection efficiency ξ (always <0.1), which are
nearly the same for all αm.

The turbulence level parameter αm has a rather monotonous
effect on several disk quantities, regardless of the amount
of magnetic turbulent pressure. Figure 12 shows that as
αm increases, the deviation from the Keplerian rotation rate
decreases (i.e., δ increases). This is because increasing the mag-
netic diffusivity leads to straighter poloidal and toroidal field
lines. As a consequence, the radial magnetic tension becomes
less pronounced, and δ increases (see Eq. (25)). For the same
reason, the disk is less vertically pinched by the laminar mag-
netic pressure gradient (Eq. (24)), leading to more diffusive disks
already becoming thicker. This effect is naturally maintained as
αP increases and the disk becomes puffier (hd = zid/h increases,
central right panel in Fig. 12). Finally, since both laminar (jets)
and turbulent (viscous) torques scale as µ1/2, one expects Λ ∝
1/αm, so that increasing αm increases the effect of the turbulent
torque, as observed indeed. The decrease in Λ is then amplified
as αP increases. Thus, the stronger the turbulence (large αm and
αP), the less energy and angular momentum the jets extract from
the JED.

How the accretion sonic Mach number ms behaves with turbu-
lence is less straightforward. Forαm = 0.5 andαm = 1, the behav-
ior is similar and monotonous: a largerαm leads to a more diffusive
disk and a larger ms. This can be interpreted as the fact that it is
easier to diffuse through the vertical field lines so that the accre-
tion speed can be higher. As αP increases, leading to a decrease in
the toroidal magnetic field at the disk surface and thus a decrease
of the jet torque, ms decreases. But for a rather large αm = 3, it is
quite surprising to get a smaller ms at αP = 0 (red curve, Fig. 12).
This shows that the field lines inside the disk become too straight
so the toroidal field is mostly generated only at the disk surface.
As a consequence, accretion is lowered at the disk midplane (lack
of torque) despite a very large diffusion. The portion where ms
increases with αP is due to the increase of the disk magnetization
µ, which boosts the torques. Eventually, this is overcome by the
reducing effect of the magnetic turbulent pressure on the toroidal
field, leading to a decrease of ms with αP.

For high magnetic diffusivity and turbulent magnetic pres-
sure, no solution can be found because the ejection of matter is
so delayed that the resistive MHD region expands until the SM
point penetrates the disk. This configuration cannot provide any
solution because the magnetization of the disk is no longer con-
strained.

Finally, Figure 13 presents the impact of αm on the JED
response to an increase of αP, taking into account both SM and
Alfvénic constraints. As seen in the SM-parameter space, the
influence of αm is quite similar for αm = 0.5 and αm = 1.

Although super-A solutions can be found up to αP = 4 for
αm = 1 and only αP = 1 for αm = 0.5, the typical ejection index
remains qualitatively similar (a few 10−3 or mass load κ ∼ 10−3,
leading to a typical magnetic lever arm λ ∼ 102). The reason
why super-A solutions cannot be found with increasing αP is that
because the magnetic field curvature at the disk surface becomes
too small to allow cold ejection: the ratio Br/Bz at the SM point
decreases below unity. As αP increases, the disk magnetization
µ increases accordingly, the rotation rate ω of the magnetic sur-
face decreases (following the decrease of the midplane rotation
δ), and the altitude of the Alfvén point zA/ro increases (best seen
with αm = 1). All these behaviors are consistent with the increas-
ing disk magnetization and the increasing dominant effect of

Fig. 13. Influence of αP on the super-A JED parameter space for various
turbulence level αm obtained with (ε = 0.1, Pm = χm = 1): disk ejec-
tion efficiency ξ, rotation rate ω of the magnetic surface, magnetic lever
arm λ, disk magnetization µ, altitude zA/ro of the Alfvén point, and the
electric current gA still available at that point. Colored areas correspond
to regions accessible by super-A solutions for different magnetic dif-
fusivity levels: αm = 0.5 (blue), αm = 1 (yellow), αm = 3 (red). The
corresponding curves represent the average solution for a given αP.

the poloidal magnetic tension on the jet sub-A region dynam-
ics. This leads to jets that do not propagate much further than the
Alfvén point, as illustrated by the decrease seen in gA (bottom
right, Fig. 13).

As already seen with the SM constraint, the behavior is pro-
foundly different for large αm = 3. The first surprising result
is that no super-A cold solution has been found for αP = 0.
The reason is that at such high magnetic diffusivity, the field
lines in the disk are too straight to allow cold ejection. How-
ever, as αP increases, the generation of electric currents at the
disk surface layers is enhanced, leading to an increase in the
ratio Br/Bz and thus to the existence of super-A outflows. Thus,
without turbulent magnetic pressure, no jet would be produced
here. Quite interestingly, and in agreement with the SM con-
straint, the disk magnetization µ increases less with αP, allowing
to achieve super-A outflows closer to the disk (smaller altitude
zA/ro, of course increasing as µ increases) and potentially propa-
gating much further out from the Aflvén point (gA increasing and
greater than 1/2). However, for αP > 4, ω becomes too small,
and producing super-A jets requires to use of more and more
magnetic energy, leading to a decrease in gA until there is no
super-A solution.

A99, page 15 of 18



Zimniak, N., et al.: A&A, 692, A99 (2024)

6. Discussion

6.1. Summary and caveats

We have studied the effect of including a turbulent magnetic
pressure in a strongly magnetized accretion-ejection structure (a
JED). It turns out that this extra term, which appears only in the
vertical and radial momentum equations, has a tremendous effect
on the JED parameter space and the cold (negligible enthalpy) jet
properties.

Qualitatively, JEDs with a turbulent magnetic pressure
become puffier and appear much less electrically conductive.
They tend to force both radial (Jr) and toroidal (Jφ) electric
current densities to flow at the disk surface, leading to much
more straight magnetic (laminar) field configurations within the
disk, the bending required for energetically allowing cold jets to
be launched occurring mostly at the disk surface (see Fig. 14).
As a consequence, the laminar toroidal magnetic field is also
smaller and developed mostly in the upper layers of the disk.
This has several consequences. While the midplane accretion
remains supersonic, the jet torque is lowered within the disk and
the accretion speed is faster in the disk upper layers. Overall,
jets from these new solutions carry away less accretion energy
and disk angular momentum and also become more collimated
due to a stronger poloidal magnetic tension acting in the sub-A
region.

There are however two important caveats that need to be
discussed, both intimately related to MHD turbulence. The first
one is our choice of the vertical profiles of the anomalous (tur-
bulent) quantities. For the sake of simplicity, but also due to
the lack of thorough analyzes in the literature, we choose to
use simple Gaussian profiles decreasing at a fixed scale. Such
Gaussian profiles are not realized in 3D global MHD simula-
tions when the disk is weakly magnetized (Zhu & Stone 2018;
Jacquemin Ide 2021; Jacquemin-Ide et al. 2021). This numerical
situation corresponds to WED solutions found at magnetizations
below µ ∼ 0.1, where spatial oscillations (MRI channel modes)
have been found (Jacquemin-Ide et al. 2019). A Gaussian pro-
file, or a seemingly decreasing profile on a disk scale height,
has been however observed in simulations at large magnetiza-
tion with µ ∼ 1 (Jacquemin Ide 2021). This is the main reason
why we restricted our analysis to strongly magnetized JEDs. Our
finding that αP leads to a systematic shrinking of the parameter
space may be a consequence of the fact that we do not adjust
the vertical scale of the anomalous transport coefficients, that is,
take into account the feedback of the mean flow on the turbu-
lence. Indeed, the prescribed thermal disk scale height h, used as
the vertical scale of the turbulence, is no longer a valid proxy for
the real disk scale height hd > h. This can lead to solutions that
did not become super-SM or super-A because they ejected matter
too early inside the disk. Taking this new disk scale height into
account could be achieved through an iterative method. How-
ever, this approach would introduce additional numerical com-
plexities, while the actual profiles of turbulent diffusivities are
close to, but not exactly, Gaussian. We have decided to postpone
this analysis to future work, where we will use profiles educated
by 3D numerical simulations.

A second important aspect that severely limits our param-
eter space is the simplifying assumption of isothermal (cold)
outflows. As αP increases, the tension associated with the ver-
tical magnetic field becomes increasingly strong, leading to
sub-Keplerian accretion disks. This dramatic decrease of the
centrifugal drive (and the larger ε = h/r, the smaller ω),
due to the field lines becoming more and more straight at the
disk surface, forbids steady-state ejection to take place. Since
Blandford & Payne (1982) it is well known that enough poloidal
field curvature (bending) is a requirement only for purely mag-

netically driven outflows, that is, outflows with a negligible
enthalpy. Casse & Ferreira (2000b) have shown that any addi-
tional heat input at the disk surface layers deeply modifies the
disk vertical structure, allowing for instance to enhance the disk
mass loss (they provided a warm super-A solution with ξ ∼ 0.5).
Such surface heating may naturally arise from irradiation com-
ing from a hot central source, which could be either the inner-
most disk regions or for instance the accretion shock onto the
hard surface of the central object. But, as these authors point
out, it may also be due to turbulence itself. Now, it is interesting
to see that recent 3D numerical GRMHD simulations do display
signs of an anomalous dissipation above the disk (see Fig. 12
in Scepi et al. 2024). It is still unclear how such a local dissi-
pation, which is withdrawn from the numerical domain at each
time step, actually affects the outflow dynamics.

Clearly, MHD turbulence in the disk does more than just pro-
vide anomalous transport coefficients and a turbulent magnetic
pressure. Another example of a physical process neglected here
is turbulent mass diffusion, which could greatly enhance ξ. Note
that a numerical (due to the grid) mass diffusion can nevertheless
occur in nonturbulent simulations, possibly leading to discrepan-
cies between theoretical expectations and numerical experiments
(see Sect. 3.5 in Murphy et al. 2010). However, addressing all
these points is clearly beyond the scope of the present paper.

6.2. Implications

Putting aside the previous limitations, let us now discuss our
results more quantitatively along with their implications. For our
fiducial parameter set (ε = 0.1, αm = Pm = χm = 1), classical
(i.e., αP = 0) isothermal JED solutions typically have ξ ∼ 10−2,
µ ∼ 0.5 and propagate much beyond the Alfvén point. When tur-
bulent pressure is included up to its maximum value αP = 4, the
ejection efficiency ξ decreases around 10−3, µ increases up to 10,
the disk is significantly sub-Keplerian (δ ∼ 0.6), jets carry only
∼25% of the released accretion power and recollimate immedi-
ately after crossing the Alfvén point. It is therefore highly doubt-
ful that these solutions could be representative of powerful mag-
netically dominated astrophysical jets propagating much further
away from the source. But dealing with the fate of recollimation
jets cannot be done within the framework of self-similarity (see
for instance Jannaud et al. 2023).

However, regardless of the limitations discussed previously,
the turbulent pressure is highly dependent on the disk aspect
ratio ε. Specifically, thin disk solutions with ε = 0.01 (and
αm = Pm = χm = 1) are achieved even up to αP = 10, the disk
remains nearly Keplerian with µ ∼ 1 and jets propagate much
further out than thicker disks. They do however have a very low
ejection efficiency ξ ∼ 10−3. Additionally, the turbulent pressure
allows for new solutions with high diffusivity level αm that were
not achievable before. For instance, solutions with αm = 3 (and
ε = 0.1, Pm = χm = 1) are sub-Keplerian with µ ∼ 2 and still
propagate far beyond the Alfvén point with ξ ∼ 10−2.

It therefore appears that obtaining jets that propagate far
beyond the Alfvén point can be achieved by playing with ε
and/or αm for JEDs at µ near equipartition with an important
turbulent pressure. It turns out that increasing αm is the best way
to enhance the jet mass load, that is, increasing ξ or decreasing
the magnetic lever arm λ. More importantly, classical JED solu-
tions (αP = 0) with αm = 3 could not be found (in agreement
with Jacquemin-Ide et al. 2019). In other words, the presence
of a magnetic turbulent pressure (αP , 0) appears necessary to
obtain more massive, steady-state super-A cold jets at large αm.
The physical reason behind this efficient collaboration between
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Central objectMagnetic field

Electric current density

JED WITHOUT
TURBULENT MAGNETIC PRESSURE

JED WITH
TURBULENT MAGNETIC PRESSURE

Fig. 14. Schematic representation of the effect of the turbulent magnetic pressure. The turbulent magnetic pressure makes the JED puffier and less
electrically conducting, pushing both radial and toroidal electric currents to flow at the disk surface. Field lines become more straight within the
disk and their bending as well as their shear occur at the surface. Asymmetry between the two bipolar jets is much easier to achieve because the
two poloidal currents can be decoupled within the disk.

αm and αP lies in the accretion-ejection geometry depicted in
Fig. 14.

Global 3D MHD simulations of highly magnetized jets,
referred to as MAD in the literature, do provide some hints that
such a geometry is indeed observed in the numerical experi-
ments. The question now is how to determine in which theo-
retical parameter space those simulations ended up. In fact, the
vast majority of numerical papers do not provide the value of the
disk magnetization µ. Instead, the beta plasma is usually given
but it barely allows to recover our control parameter µ. Indeed
the beta plasma is most of the times the ratio of disk averages
(not only averages done at the midplane) and, more importantly,
it always includes the turbulent magnetic pressure.

To our knowledge, the only GRMHD paper allowing to infer
µ, αP and ε is the work of Scepi et al. (2024). The values pro-
vided are measured at 7 rg so quite close to the black hole, where
general relativistic effects might be already at work. Neverthe-
less we indicate them as they provide some insight. For the three
simulations, the parameter sets (ε, µ, αP) are: (0.03, 0.070, 15.1),
(0.1, 0.045, 4.7) and (0.3, 0.015, 5.7). It can be seen from these
values that αP seems to vary with the disk aspect ratio ε, being
larger in the thinner disk. It is also worth noting that the JED
solutions considered in this paper are actually much more mag-
netized. This is an indication that we should seek for solutions
with large αm values (or relax the non-oscillatory condition).
Unfortunately, there is no measure done in the numerical sim-
ulations of the αm parameter. If we assume that scalings derived
from shearing box simulations remain representative of global
simulations, then one should seek for αmPm ∼ 8 (see Eq. (14)).
Looking for new solutions of that kind that could best repro-
duce MAD simulations (including the vertical profiles and out-
flow behavior) is postponed for future work.

Another long-standing discrepancy between theoretical
models and numerical experiments is the value of the disk ejec-
tion efficiency. Commonly measured values for ξ varied from
0.5 to 1 (see e.g., McKinney et al. 2012), while in more recent
simulations Manikantan et al. (2024) found ξ = 0.4 for exam-
ple. Scepi et al. (2024) measure values that vary greatly whether

the wind is cooled down or allowed to stay warm (due to turbu-
lent heat dissipation beyond the disk surface). For warm winds,
ξ goes from 0.12 for ε = 0.03 to ξ = 1.07 for ε = 0.3, while
for cooled winds, ξ ∼ 0.3−07 for this range in ε. Larger disk
ejection efficiencies for warm outflows are consistent with the-
oretical expectations (Casse & Ferreira 2000a) and our results
here show that the allowed values for ξ may indeed depend on
the disk aspect ratio.

In agreement with the disk global energy budget established
between an inner radius rin and an outer radius rout, the released
accretion power, defined as

Pacc =

[
GMṀa(r)

2r

]rin

rout

=
GMṀa(rin)

2rin

1 − (
rout

rin

)1−ξ (35)

is positive only if ξ < 1. Any value of ξ larger than unity shows
that either the disk is not yet in steady-state, or that some extra
energy is being transferred at rin from the central object. For
instance, super-SM solutions with ξ up to 10 are perfectly pos-
sible (see Fig. 10), but their Bernoulli invariant e is negative
and they cannot become super-A. In numerical simulations, that
would correspond to unsteady, very massive bursts of matter that
fall back to the disk at larger radii.

To ensure that simulations have indeed reached a steady-
state, one should seek for the consistency between the disk ejec-
tion efficiency ξ derived from the radial profile of Ṁa(r) and
other disk quantities, such as those in Eq. (20). It is for instance
somewhat troublesome that simulations in Scepi et al. (2024)
display a magnetic flux a ∝ r3/4 (see their Fig. 4) regardless of
the disk aspect ratio ε, which in theory would necessarily require
ξ � 1. Note however that these measurements are done quite
close to the black hole (up to 10 rg), where deviations from the
Newtonian radial profiles are obviously expected.

Another possibility, related to turbulence, that might explain
the very large disk ejection efficiencies reported in global
3D simulations is the presence of a turbulent mass diffusion.
Addressing this last point may however be particularly tricky in
numerical simulations. In any case, deeper comparisons between
3D numerical experiments and theory must be carried out.
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Note that the discrepancy in ξ also holds for 2D MHD sim-
ulations of “alpha” disks, namely simulations where anoma-
lous transport coefficients have been used to mimic turbulence
(Casse & Keppens 2002; Zanni et al. 2007; Tzeferacos et al.
2009; Murphy et al. 2010; Stepanovs & Fendt 2016). No clear
explanation has been proposed yet, except for a possible numer-
ical effect (see discussion in Murphy et al. 2010).

7. Conclusion

In this paper, we have presented a major upgrade on the theory of
highly magnetized (near equipartition) accretion-ejection struc-
tures, also called JEDs. We analyzed the effect of turbulent mag-
netic pressure on the disk structure and its impact on the over-
all interrelationship between the disk and its jets. Although this
pressure appears only in the radial and vertical momentum equa-
tions, it plays a major role and deeply affects the JED parameter
space.

The turbulent magnetic pressure makes the disk puffier and
less electrically conductive, forcing both radial and toroidal elec-
tric currents to flow at the disk surface. Field lines become
more straight inside the disk, and their bending and shearing
occur mostly at the surface. Accretion remains supersonic but
the speed increases at the disk upper layers. For the usual values
of the turbulence parameters explored so far in classical (i.e., no
turbulent magnetic pressure αP = 0) JED models, the inclusion
of turbulent pressure leads to a dramatic decrease in the cold jet
power and angular momentum extraction from the disk.

However, recent 3D global simulations tend to show that
MHD turbulence provides simultaneously large anomalous mag-
netic diffusivities and viscosity as well as a large magnetic tur-
bulent pressure. When combined in the semi-analytical model,
these large values allow for the existence of new super-Alfvénic
jet solutions that were previously impossible to obtain.

The next obvious step is to better characterize the vertical
profiles involved in MHD turbulence. They may indeed differ
from the Gaussian profiles used in this work, which focuses on
strongly magnetized disks (µ ∼ 1). Also associated with these
profiles, some heat dissipation may be always present, providing
an additional enthalpy reservoir for the outflows and allowing,
for instance, more mass to be ejected. Taking into account non-
Gaussian profiles is an absolute necessity in the case of WEDs
(with µ � 1). This is postponed for future work.

Our mathematical description of accretion-ejection struc-
tures allows us to incorporate both laminar and turbulent effects.
However, it is now necessary to use more accurate values and
more realistic vertical profiles for the turbulence, based on the
results of converged 3D numerical simulations.

The JED and WED concepts have emerged on the theoreti-
cal side, while on the computational side MAD and SANE con-
figurations have received much attention. A direct comparison
between these costly 3D numerical experiments and steady-state
theory has finally become feasible.

Our results demonstrate that JEDs provide a state-of-the-art
mathematical description of their MAD numerical counterparts.
However, further efforts from both sides are needed to firmly
establish this point.
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