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Abstract—Intrusion detection systems (IDS) based on deep
learning have proven successful, but struggle to learn contin-
uously and detect new attacks over time due to a supervised
label-based reward function. In this article, we introduce an un-
supervised Deep Double Q Learning (DDQL) method that aims to
detect attacks and learn new behaviors through an unsupervised
reward function leveraging a normality score inspired by car
traffic anomaly detection.
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Learning, Clustering, Unsupervised

I. INTRODUCTION

Intrusion Detection Systems (IDS) are now considered
essential tools. They analyse the traffic to detect malicious
behaviours. Over the decades, numerous approaches have
been adopted for IDS development, starting with signature-
based methods.. Despite being efficient and widely used for
years, patterns that slightly differ from the ones stored in
the database were not detected. It also involves managing
a database and updating it regularly. Anomalies-based IDS
leverage Machine Learning (ML) and Deep Learning (DL) to
detect more complex patterns within the traffic [9] [7] [13].
They have demonstrated significant potential in discerning
behavioural variations and identifying attacks. Nevertheless,
their ability to detect unfamiliar patterns remains limited [18],
and the computational and storage complexities associated
with regular learning pose considerable difficulties.

Reinforcement Learning (RL) offers a compelling solution
to these constraints with the potential to detect and classify
attacks [1] [14] [10]. In RL, an agent refines its policy by
making decisions and receiving rewards or penalties based on
responses of the environment via a reward function (Figure
1). However, RL faces challenges in real-world scenarios with
extensive data volumes and large state spaces [10]. Recent
works have shown that Deep Reinforcement Learning (DRL)
methods, which leverage neural networks are capable of en-
hancing the robustness and the security of a network working
alone without any human intervention [1]. Unfortunately, very
little attention is paid to the reward mechanism and many
works on DRL-based IDSs analysing network traffic use a
supervised reward function that is often label-based, which
prevents the agent from detecting new patterns and training

continuously in a real-time environment where the labels are
unknown [15] [10].

Fig. 1: Reinforcement Learning process

The main goal of our work is to take full advantage of the
learning capabilities of reinforcement learning and implement
an unsupervised IDS that can be used in real-world conditions
and then deal with unknown patterns. In this article, we
present an analysis of two well-known intrusion detection
datasets, focusing on the features that define network flows.
In addition, we introduce a clustering-based method that
leverages flow properties to develop an unsupervised reward
function.

The paper is organized as follows: Section 2 details the two
datasets used for our experiments, including the preprocessing
steps. In Section 3, we delve into the application of DRL
to intrusions detection and describe the core components of
the algorithm. Section 4 is dedicated to the analysis of flow
features, which are essential pieces of information on which
the agent base its decisions. We introduce our unsupervised
reward function in Section 5 followed by a discussion of
potential directions for future research in Section 6.

II. DATASETS

For our experiments, we chose the NSL-KDD [12] and
CICIDS17 [11] datasets, both well-known and covering a wide
range of attacks. This choice was made to evaluate our method
across a broad spectrum of attacks, rather than restricting it
to a specific subset, while allowing comparison with previous
studies.

Obviously, before using NSL-KDD and CICIDS17 we need
to prepare them to fit the data to our model and reduce compu-
tational time. In alignment with common data preparation in
DRL studies [17] [1] [10], we apply the following operations:



Dataset NSL-KDD CICIDS17
Data Model Network flows Network flows
Features 41 (38 continuous, 3 categor-

ical)
81 (68 continuous, 13 categorical)

Total Records 125,973 (train), 22,543 (test) 2,830,743
Labels 23 train, 38 test 15 grouped in 7 categories
Main Classes Normal, DOS, Probe, R2L,

U2R
Normal, Brute Force, DoS, DDoS,
Web, Infiltration, Botnet

Protocols TCP, UDP, ICMP HTTP, HTTPS, FTP, SSH, Email,
etc.

Split Predefined train/test 70% train, 30% test

TABLE I: Comparison of NSL-KDD and CICIDS17 datasets

• Encoding: Categorical features are transformed into nu-
merical ones using Label Encoding and One Hot Encod-
ing.

• Normalization: Each feature is normalized by subtract-
ing the mean and dividing by the standard deviation.

III. DEEP REINFORCEMENT LEARNING FOR INTRUSIONS
DETECTION

Although machine learning and neural networks are fre-
quently utilized for classification tasks, leveraging DRL to
tackle these issues presents challenges. Nonetheless, this ap-
proach offers key benefits. The reward function contributes to
a better control and interpretability during the training phase.
Then, the agent acquires the ability to take decisions and
adapt in dynamic environments, which is an essential aspect
of scenarios involving anomaly detection.

The article focuses on the main components of DRL and ex-
plains how our unsupervised reward function becomes integral
to the training process.

A. Q-network

In a Deep Q-learning algorithm, the Q-network has an
important goal as it aims to approximate the Q-value function.
In our proposition we use a simple Feed Forward Neural
Network (FFNN) of two hidden layers with ReLU activation
for all layers. The decision to use a FFNN was guided by its
popularity in DRL studies for intrusion detection and similar
problems [8] [3], its straightforwardness and the nature of
the environment. To achieve a more stable learning phase
and faster convergence, we use two Q-Networks through the
Double Deep Q-Learning (DDQL) [19].

B. Environment and state

As in many RL-based IDS, the environment is simulated by
sampling a dataset containing flows [1] [17] [14]. Each flow
is characterized by a fixed number of features (22 for NSL-
KDD, 27 for CICIDS17) representing various aspects of the
environment at a given time t. The features of several flows
will constitute a state which is a subgroup of flows.

C. Actions

The actions aims to classify network traffic. In our approach,
we opted for binary classification with labels of ’attack’ and
’normal’. The motivation for this choice is to use a fixed
neural network architecture. If multiple attack labels were

considered, introducing a new attack would necessitate adding
a new output neuron, thereby modifying the neural network’s
architecture and it is not the focus of this article.

D. Reward function

The reward is the feedback of the environment to an
action taken by the agent. It’s a major component because
it determines the quality of agent’s actions and it influences
the evolution of the decision policy. In DRL based IDS, most
of the reward functions are supervised (Equation 1) and give
the agent a good reward if its prediction is equal to the label,
and a bad one otherwise [1] [10] [14].

Reward(st, at) =

{
−1, if at ̸= lt

1, if at = lt
with lt the label for st

(1)
This method imposes limits on the circumstances in which

the agent can operate and reduces its capabilities. Without
labels associated with each flow, the agent is not capable
of learning more and it becomes unable to detect unknown
attacks and behaviours. This motivates our research on an
unsupervised reward function.

IV. FEATURES SELECTION AND ANALYSIS

To make the DRL agent converge, the states it observes has
to provide the most relevant information that it can use to take
a decision. A naive approach could be to incorporate each fea-
ture of a flow (Table I) as a state characteristic. However, this

Fig. 2: NSL-KDD’s PC explained

could lead to high-dimensional states populated with irrelevant
features that do not contribute to efficient intrusion detection
and could increase learning times. To overcome this problem,
once flow data is formatted conveniently, we apply Principal
Component Analysis (PCA) as suggested in [16] keeping
dimensions representing 97% of the variance. Then we end-up
with 22 principal components for the NSL-KDD dataset and
27 for the CICIDS17 dataset. These principal components (PC)



Fig. 3: CICIDS17’s PC explained

result from linear combinations of the original dataset features.
States are now described using these new components. In
the Figure 2 and 3, we detailed how the PC are built and
which features they use. For the NSL-KDD dataset (Figure
2) indicates that error-rate features are critical for anomaly
detection. In the CICIDS17 dataset (Figure 3), features based
on packet characteristics — such as length, size, and temporal
properties — emerge as the most significant indicators of
intrusive activities. This analysis helps us gain better insight
into which features provide the most information about a flow
and what the agent observes to make decisions.

V. TOWARDS AN UNSUPERVISED REWARD FUNCTION

The reward function is a key component of the DRL
algorithm as it steers learning and future actions. The way
we design it can have a significant impact on the performance
of the agent whether in terms of correctness or convergence
time [6].

Fig. 4: Architecture of the unsupervised reward function within
the Double Deep Q-Learning algorithm

In intrusion detection problems using reinforcement
learning, the reward is often a simple comparison between
the labels and the agent’s actions. The challenge is
maintaining this behavior in cases where ground-truth
labels are unavailable. Research in anomaly detection for uni-
dimensional vehicular traffic flows has led to the development
of a clustering-based reward function, referenced in [4]. Our
ongoing research is focused on utilizing clustering algorithms
to calculate the rewards. At every iteration, individual network
flows are aggregated into clusters to determine a normality
score based on the attributes of their respective clusters. This
calculated score reflects the ’normality’ of each network
flow and is then employed within the reward function. This
approach informs the learning agent’s behavior, steering it
toward accurate decision-making in an unsupervised way.

Achieving our objective necessitates overcoming multiple
challenges. Foremost, the selection of an appropriate
clustering algorithm is crucial; it must demonstrate efficacy in
distinguishing between the various classes of network flows
present in IDS datasets. Clustering algorithms are diverse [20]
and can be classified into five main categories: hierarchical,
partitioning, density-based, grid-based and model-based
[21] [2]. Each category presents distinct advantages and
challenges, and our research is currently focused on
identifying the clustering algorithm best suited to our specific
application. This selection involves consideration of factors
such as the expected shape of the clusters, the necessary
parameters involved and the computational complexity of the
algorithms.

In addition, we will concentrate on refining a dimension-
ality reduction algorithm tailored to preserve the most salient
features of network flows, thereby enhancing the efficacy of
clustering operations.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we presented DDQL as a promising
methodology for intrusion detection in network systems,
highlighting its potential to detect and to learn previously
unknown attacks. We propose that the use of an unsupervised
reward function can facilitate the deployment of agents in
a real-life scenario. Nevertheless, this work has highlighted
several areas for further exploration.

The clustering algorithm is a key component of the reward
function. We intend to rigorously evaluate various cluster-
ing algorithms for network traffic, ensuring that the chosen
methodology contributes effectively to a meaningful score for
the DDQL agent’s reward structure. Another important point
to study is feature drift: at each step, we need to provide
the agent with the most relevant features to make a decision.
Consequently, designing robust mechanisms to detect and
adapt to feature drift will be a major area of interest. This is a
important challenge and an essential effort for future research,



as it is crucial for sustained success in intrusion detection
scenarios.

One of the main obstacles to the process of continuous
training with dynamic data streams is the phenomenon of
“catastrophic forgetting” [5], a situation in which the neural
network struggles to recognize old classes as it learns new
ones. To mitigate this phenomenon, we aim to investigate
several strategies, such as the use of an experience replay
mechanism [3], to enable the network to retain its former
knowledge while assimilating new information.

Finally, to assess the effectiveness of the proposed model,
we are working on the definition of a comprehensive evalu-
ation framework. Conventional performance metrics such as
accuracy and F1 score are essential; however, we also seek to
use a large spectrum of scenarios to rigorously test the model’s
ability to detect new attack. We also focus on evaluating en-
ergy consumption during learning and inference phases. Given
the growing importance attached to sustainable computing,
we believe that energy efficiency is an indispensable measure
when evaluating machine learning algorithms.
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