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S U M M A R Y 

Thermal convection in planetary solid (rocky or icy) mantles sometimes occurs adjacent 
to liquid layers with a phase equilibrium at the boundary. The possibility of a solid–liquid 

phase change at the boundary has been shown to greatly help convection in the solid layer 
in spheres and plane layers and a similar study is performed here for a spherical shell with 

a radius-independent central gravity subject to a destabilizing temperature difference. The 
solid–liquid phase change is considered as a mechanical boundary condition and applies 
at either or both horizontal boundaries. The boundary condition is controlled by a phase 
change number, � , that compares the timescale for latent heat exchange in the liquid side 
to that necessary to build a topography at the boundary. We introduce a numerical tool, 
available at https://github.com/amorison/stablinrb , to carry out the linear stability analysis of 
the studied setup as well as other similar situations (Car tesian geometr y, arbitrar y temperature 
and viscosity depth-dependent profiles). Decreasing � makes the phase change more efficient, 
which reduces the importance of viscous resistance associated to the boundary and makes the 
critical Rayleigh number for the onset of convection smaller and the wavelength of the critical 
mode larger, for all values of the radii ratio, γ . In particular, for a phase change boundary 

condition at the top or at both boundaries, the mode with a spherical harmonics degree of 1 is 
al wa ys fa voured for � � 10 

−1 . Such a mode is also favoured for a phase change at the bottom 

boundary for small ( γ � 0.45) or large ( γ � 0.75) radii ratio. Such dynamics could help 

explaining the hemispherical dichotomy observed in the structure of many planetary objects. 

Key words: Instability analysis; Numerical solutions; Mantle processes. 
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 I N T RO D U C T I O N  

n several instances, convection occurs in solid layers of planetary
nteriors with a phase equilibrium at either or both of the horizon-
al boundaries. Such a situation allows for the possibility of mass
ransfer across the boundary which modifies the dynamics and heat
ransfer characteristics of convection (Labrosse et al . 2018 ). The
rst situation in which this question has been addressed concerns
onvection in the inner core of the Earth (Alboussi ère et al . 2010 ;
onnereau et al . 2010 ; Deguen et al . 2013 , 2018 ; Mizzon & Mon-

ereau 2013 ). These papers showed that the phase change at the
nner-core boundary can be included in the dynamics of the inner
ore as a phase change boundary condition (BC). This BC com-
ines dynamic pressure, radial velocity and its radial deri v ati ve,
ith a control parameter, the dimensionless phase change number,
enoted by � in the present paper. This parameter is the ratio be-
ween the timescale associated with heat transfer in the liquid and
C © The Author(s) 2024. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
he timescale for building a topography of the boundary by a per-
urbation of the stress field in the solid. For a large value of � ,
he topography of the boundary is limited by its buoyancy and the
adial velocity ef fecti vel y decays to zero, which is the classical no-
enetration boundary condition. On the other end, for a small value
f � , the boundar y topog raphy is suppressed by melting and freez-
ng associated with latent heat transfer on the liquid side, which
llows matter to flow through by changing phase. These papers
howed that the critical value for the onset of convection decreases
inearly with � at low values of this parameter and that the preferred

ode of convection in that case has a spherical harmonic degree of
ne, without deformation, which corresponds to a translation of the
nner core. 

In other planetary situations, a solid spherical shell can be the seat
f convection with the possibility of melting and freezing at either
r both of its boundaries. The ice layers of satellites of Jupiter and
aturn are generally bounded by a liquid water ocean, below for the
oyal Astronomical Society. This is an Open Access 
 https://creati vecommons.org/licenses/b y/4.0/ ), which 
 the original work is properly cited. 1121 
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Figure 1. Equatorial view of the problem setup. We consider a solid layer 
(green) surrounded by global magma oceans (red) above and/or below that 
solid. The radii associated with the various interface positions are labelling 
the rele v ant arrows. 
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surface ice layers or above for the high pressure (HP) ice layers in the 
large satellites, Titan and Ganymede (Hussmann et al . 2015 ). The 
implications of the phase change boundary condition on convection 
in HP ice la yers ha ve been studied by use of numerical models 
by Lebec et al . ( 2023a ) and Lebec et al . ( 2023b ). These papers 
show that the efficiency of heat and mass transfer by convection 
in these ice layers is increased by the presence of a solid–liquid 
phase equilibrium at the top. Moreov er, the y show that the thermal 
structure is quite different from that with a classical no-penetration 
BC: only one boundary layer exists, on the no-penetration boundary, 
so that only hot plumes exist in that case, with a broad down-welling 
return flow. They also show that, in some cases, melting of the HP 

ice layer could occur at the bottom, in contact with the solid core, as 
was also shown by previous models that did not include the phase 
change BC (Choblet et al . 2017 ; Kalousov á et al . 2018 ; Kalousov á 
& Sotin 2018 ). In the case of a very salty ocean, a dense ocean could 
stabilize between the HP ice layer and the rocky mantle (Lebec et 
al . 2023b ) which would require to apply a phase change BC at both 
boundaries. 

During their early stages, rocky planets like Earth are thought 
to undergo large amounts of melting, in particular associated with 
giant impacts, which leads to their magma ocean stage (see Elkins- 
Tanton 2012 , for a re vie w). In most cases, the crystallization is 
thought to proceed upward from the bottom and the question of the 
onset of convection in the solid requires to consider the effect of 
the phase change boundary condition (Morison et al . 2019 ). The 
persistence of a dense molten layer at the bottom of Earth mantle 
termed the basal magma ocean, has been suggested to explain the 
present state as imaged by seismology (Labrosse et al . 2007 ). Such 
a layer has recently been proposed to exist today at the bottom of the 
Martian mantle (Samuel et al . 2023 ; Khan et al . 2023 ). In that case, 
a phase change BC needs also to be considered at the bottom when 
modelling convection in the solid mantle. Moreover, extrapolating 
the present situation to the early times of such planets leads to the 
possibility of a solid mantle bounded above and below by magma 
oceans (Labrosse et al . 2007 ). Irrespective of the mechanism by 
which such a situation can emerge during formation of the planet 
(Labrosse et al . 2015 ), the dynamics of the solid layer needs to 
include the phase change BC at both boundaries in that case (Bolr ˜ ao 
et al . 2021 ). 

Some effort has been done to extend the work done in the context 
of inner core dynamics on the effect of the phase change BC on con- 
vection. The simplest situation is undoubtedly the plane layer case. 
Labrosse et al . ( 2018 ) studied that case using linear and weakly 
non-linear analysis and showed phase change helps to start convec- 
tion and leads to large scale flow. When both boundaries are subject 
to a phase change, a translation mode of convection is possible and 
the deforming mode has a very long wavelength. These predictions 
have been tested and extended by Ag r usta et al . ( 2019 ) using a 
mantle convection model. 

The spherical shell geometry has been considered by Deguen 
( 2013 ) who studied the linear onset of convection in a solid spherical 
shell with solid–liquid phase change at either or both of its horizontal 
boundaries. Deguen ( 2013 ) confirmed the important effect of such 
boundary condition on the onset: compared to the classical non- 
penetrative BC, allowing mass transfer across the boundary makes 
the critical Rayleigh number smaller and the preferred mode at onset 
larger scale (smaller spherical harmonic de gree). De guen ( 2013 ) 
considered a gravity acceleration that varies linearly with radial 
direction, as applies to the Earth core. This allowed carrying out a 
linear stability analysis in a full y anal ytical fashion. Howe ver, in the 
present study, we consider a planetary mantle with constant gravity. 
The linear stability analysis can then be solved via numerical tools 
as presented in this paper. 

In this paper, we only study the solid part of the crystallizing man- 
tle. The presence of magma oceans is parametrized with boundary 
conditions at the top and bottom boundaries of the solid domain. 
Such a vision is of course overly simplistic, but it allows us to 
isolate and understand interesting consequences of the presence of 
(magma) oceans on solid-state conv ection. Sev eral previous papers 
have considered the effect of variable compositions associated with 
fractional crystallization at the boundaries (Morison et al . 2019 ; 
Bolr ˜ ao et al . 2021 ; Lebec et al . 2023b ) but we focus here on ther-
mal convection only, using linear stability analysis. 

2  F O R M U L AT I O N  O F  T H E  P RO B L E M  

The solid part of the crystallizing mantle is considered to be a 
spherical shell of external radius R 

+ and internal radius R 

−. Its 
thickness is denoted L = R 

+ − R 

−. The geometry is considered 
constant, leaving aside the possibility of net freezing or melting that 
has been treated by Morison et al . ( 2019 ). For generality purpose, 
we consider global magma oceans can exist above and/or below the 
solid layer. They are also considered to be spherical shells. The Top 
Ocean (TO) extends from the external solid boundary R 

+ to the 
surface of the planet at radius R T ; the interface between the TO and 
the solid layer is called the Top Ocean–Mantle Boundary (TOMB). 
The Basal Ocean (BO) extends from the Core–Mantle Boundary 
(CMB) at radius R c to the internal solid boundary R 

−; the interface 
between the BO and the solid layer is called the Bottom Ocean–
Mantle Boundary (BOMB). See Fig. 1 for a visual representation 
of these layers. 

This section presents the conservation equations describing man- 
tle convection and the boundary conditions to apply to them, with a 
focus on the effect of the solid–liquid phase change. Finally, making 
these equations and associated boundary conditions dimensionless 
exhibits the controlling parameters of this simplified system. 

art/ggae208_f1.eps
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Figure 2. Dynamic topography at the boundaries. Note that the curvature has been removed and the height of topography exaggerated for readability purpose. 
The horizontal dot-dashed lines at z = ±1/2 correspond to the motionless position of the boundaries r = R 

± when no convection operates in the solid and 
there is no net freezing or melting of the magma oceans. Matter departing from the boundary creates a topography h . The thick line on the right side is the 
super-isentropic temperature profile in the motionless steady state. The temperature at the topography follows the melting temperature (thin solid line), and 
therefore departs from the isentropic profile in the liquid. Figure from Labrosse et al . ( 2018 ). 

2

T  

t  

t  

a  

a  

d  

t  

t  

m  

t  

c  

n  

e  

1

∇

0

w  

t
w  

t

ρ

 

h  

a  

p  

2  

r

2

T  

c  

a  

I
b  

T  

(  

o  

a  

f  

a  

s  

p  

e  

a  

c  

o  

s  

T
a  

o  

i  

b
 

a

2

w  

f  

t  

t  

n  

h

w  

l  

b  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/238/2/1121/7692047 by guest on 04 D

ecem
ber 2024
.1 Conservation equations 

he velocity u = ( u r , u θ , u φ), pressure P and temperature T fields in
he solid are linked together by a set of conservation equations. For
he sake of simplicity, the viscosity η and thermal dif fusi vity κ are
ssumed to be uniform throughout the mantle. The gravity acceler-
tion g = −g ̂ r is radial and its intensity g is uniform. This work is
one under the Boussinesq appro ximation w here all density varia-
ions are considered negligible except, of course, in the buoyancy
erm which is the motor of thermal conv ection. Moreov er, the solid

antle has an extremely large Prandtl number, which means iner-
ia terms are negligible compared to the viscous forces. We hence
onsider the solid mantle is an infinite Prandtl number fluid with
o inertia. Under these assumptions, the mass, momentum and en-
rgy conservation equations are the following (e.g. Chandrasekhar
961 ): 

 · u = 0 , (1) 

 = −∇ P + η∇ 

2 u − ραg ̂ r , (2) 

∂ T 

∂t 
+ u · ∇ T = κ∇ 

2 T , (3) 

here ρα is the density used in the buoyancy term. It is related
o the temperature field via the thermal expansion coefficient α
hich is considered constant. Denoting ρ the reference density at a

emperature T 0 , the buoyancy density ρα can be expanded as 

α = ρ ( 1 − α( T − T 0 ) ) . (4) 

Note moreover that in this problem, we do not consider internal
eating occurring in the solid. Only heat advection and diffusion
re included in eq. ( 3 ). This is justified here by the fact that heat
roducing elements (U, K, Th) are incompatible (e.g. Huang et al .
013 ) and therefore are expected to reside in the magma oceans
ather than the solid. 

.2 Boundary conditions 

he boundary positions r = R 

− (BOMB) and r = R 

+ (TOMB)
orrespond to the case where no convection operates in the solid,
nd the solid and liquid layers are at thermodynamic equilibrium.
n this case—referred to as ‘the motionless position’ in this paper—
oth boundaries are spherical, and at the phase change temperatures
 

− and T 

+ . Moreover, no heat is gained or lost by the overall system
which would result in a net melting or freezing of the magma
ceans). In practice, if convection operates in the solid layer, matter
t the boundary departs from its motionless position and therefore
or ms a topog raphy h with respect to it. This topog raphy is either
 solid residing in a liquid or a liquid residing in a solid of the
ame composition, and therefore prone to melting or freezing. This
hase change can act as an erosion mechanism of the topography,
f fecti vel y resulting in an exchange of matter between the solid
nd the liquid layers. Such a system comprises a large wealth of
omplexities and therefore several assumptions need be made in
rder to ease its study. Fig. 2 illustrates what happens as the actual
olid–liquid boundary is deformed around its motionless position.
he topography with respect to the motionless position is denoted h + 

t the TOMB and h − at the BOMB; it is by conv ention positiv e when
riented towards a higher radial position. The actual liquid/solid
nterface of the system is then at r = R 

− + h − for the bottom
oundary and r = R 

+ + h + for the top boundary. 
The normal stress continuity at either boundary can be written

s: 

 η
∂ u r 

∂r 
( h s ) − P ( h s ) = −P ( h l ) , (5) 

here f ( h s ) is the quantity f at the solid side of the boundary, and
 ( h l ) is the quantity f at the liquid side of the boundary. Note that
he viscosity of the liquid is several orders of magnitude smaller
han that of the solid; viscous forces on the liquid side are therefore
eglected. The pressure is then written as the sum between the
ydrostatic pressure P̄ and the dynamic pressure p : 

2 η
∂ u r 

∂r 
( h s ) − p( h s ) 

−P̄ ( h s ) ︷ ︸︸ ︷ 
−P̄ 0 + ρs gh 

= −p( h l ) −P̄ 0 + ρl gh ︸ ︷︷ ︸ 
−P̄ ( h l ) 

, (6) 

here P̄ 0 is the hydrostatic pressure at the boundary in the motion-
ess position. Moreover, the dynamic pressure p ( h l ) in the liquid can
e neglected since its time average value is null and the dynamics

art/ggae208_f2.eps
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of the liquid part is expected to be fast compared to the one of the 
solid. Eq. ( 6 ) then becomes 

2 η
∂ u r 

∂r 
( h s ) − p( h s ) + �ρgh = 0 (7) 

where �ρ = ρs − ρ l is the density contrast between the solid 
and the liquid. Note that for the system to be mechanically stable, 
�ρ should be positive at the top boundary and negative at the 
bottom boundary. The last variable that needs to be connected to 
the dynamics of the solid mantle is the topography h . At the TOMB, 
a positiv e (resp. ne gativ e) topography h + is formed by solid (liquid) 
matter that goes toward the liquid (solid) part but that has not melted 
(crystallized) yet. Conversely, at the BOMB, a positive topography 
h − corresponds to liquid matter going toward the solid but that has 
not frozen yet. 

The topography h ± is formed by the velocity of the solid itself u r 
as well as the freezing-front velocity V r . This freezing-front velocity 
is chosen positive along the outward radial direction. A positive 
value of V r corresponds to freezing at the TOMB, and melting at 
the BOMB. The Lagrangian deri v ati ve of h ± hence verifies 

D h 

±

D t 
= u r + V r . (8) 

Moreover, energy conservation at the boundary is given by Stefan’s 
law: 

ρs L h V r = ( q l − q s ) · ˆ r (9) 

where L h is the latent heat of crystallization and q is the heat flux 
on either side of the boundary. Assuming the topography is at ther- 
modynamic equilibrium (crystallization on a pre-existing freezing 
front with a moderate freezing speed argues against the importance 
of undercooling), the temperature at the boundary T ( h ) is the melt- 
ing temperature at the rele v ant pressure. It is related to the melting 
temperature at the motionless position of the boundary T 

± as fol- 
lows: 

T ( h 

±) = T ± − ∂ T L 
∂ P 

ρl gh 

±. (10) 

∂ T L 
∂ P 

is the Clapeyron slope ( T L being the phase change tempera- 

ture), considered constant on the pressure range across the topogra- 
phy h . 

Solving this set of equations at both boundaries requires a full 
convection model in the liquid to determine the heat flux in the 
liquid q l . Ho wever , the timescale at w hich the liquid ev olves is much 
shorter than that of the solid. This makes solving Navier–Stokes in 
a consistent way for both the solid and liquid layers impractical with 
our current computing power. The liquid behaviour at the timescale 
at which solid-state convection operates is therefore parametrized. 
The parametrization we use is the one that was introduced for the 
core by Deguen et al . ( 2013 ). Assuming advection dominates heat 
transport, one can write 

q l · ˆ r ∼ ρl C p,l v 
′ δT (11) 

where v ′ is the typical fluid velocity in the liquid and δT is the 
temperature departure from the average temperature profile in the 
liquid at the topography. The average temperature profile is assumed 
to be isentropic as convection in magma oceans is expected to be 
vigorous (e.g. Solomatov 2015 ). This leads to 

δT = 

(
∂ T 

∂ P 

∣∣∣∣ − ∂ T L 
∂ P 

)
ρl g h. (12) 
S 
Moreover, the heat flux from the solid q s · ˆ r is considered small 
compared to the one carried out in the liquid and is therefore ne- 
glected in eq. ( 9 ). Injecting eqs ( 11 ) and ( 12 ) in eq. ( 9 ) gives the
following expression for the freezing velocity V r : 

V r = − h 

τφ

(13) 

with τφ the phase change timescale 

τφ = 

ρs L h 

ρ2 
l g C P,l v ′ ( ∂ P T L − ∂ P T | S ) 

. (14) 

τφ is the timescale at which heat is carried in the ocean from places 
of freezing to places of melting. 

Eq. ( 8 ) can be simplified by realizing what are the various 
timescales at play. Let U be the typical scale for the velocity in the 
solid. Denoting τ η = η/( �ρgL ) the viscous timescale, eq. ( 7 ) gives 
us U τ η as scale for the topography. Let us introduce the timescale 
τ c associated with the conv ectiv e derivativ e of the topography in 
eq. ( 8 ), which is the minimum between two values: the timescale 
associated to changes in convection in the solid and l h / U , the ratio 
of the horizontal length scale and the typical solid flow velocity. 
Using these scales to render eq. ( 8 ) dimensionless yields: 

τη

τc 

D h 

′±

D t ′ 
= u 

′ 
r −

τη

τφ

h 

′ , (15) 

primed variables being dimensionless. Following the example of 
Earth’s mantle for which the timescale of mantle convection is 
much larger than that for postglacial rebound, we can safely assume 
that τ c � τ η, meaning the time deri v ati ve of topo graphy in eq. ( 8 ) 
can be neglected (D h /D t ∼ 0). Plugging eq. ( 13 ) in eq. ( 8 ) yields
the following expression for the topography h 

h = u r τφ. (16) 

Substituting h with its expression in eq. ( 7 ) and assuming the topog- 
raphy is small compared to the thickness of the domain, one obtains 
the following boundary condition applied at r = R 

±

�ρgτφu r + 2 η
∂ u r 

∂r 
− p = 0 . (17) 

The topography h is now an implicit variable of the problem that 
can be computed a posteriori . Note that such a boundary condition 
allows a degree-1 topography to develop (the so-called translation 
modes discussed further in this paper), and therefore can lead to 
a displacement of the centre of mass. As detailed by Deguen et 
al . ( 2013 ), gravitational potential perturbations can be incorporated 
in the pressure leading to the same formulation when considering 
self-gravity. 

Assuming viscous forces in the liquid are negligible, the shear 
stress continuity at each boundary is written: 

τrθ = η

(
r 

∂ 

∂r 

(u θ

r 

)
+ 

1 

r 

∂ u r 

∂θ

)
= 0 , 

τrφ = η

(
r 

∂ 

∂r 

(u φ

r 

)
+ 

1 

r sin θ

∂ u r 

∂φ

)
= 0 . (18) 

Those equations are applied directly to the reference boundary R 

±, 
the topography h being considered small. 

Finally, boundary conditions are required for the temperature 
field. As shown by Labrosse et al . ( 2018 ), in the limit of a small 
topography, we can assume that the solid–liquid phase transition oc- 
curs at a laterally constant temperature. Hence, Dirichlet conditions 
are used at both boundaries: 

− − + + 
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.3 Dynamic pr essur e choice 

pplying the boundary condition eq. ( 17 ) at both boundaries might
ead to a non-zero average radial velocity at a boundary. This would
e equi v alent to a net-freezing of one magma ocean and a net-
elting of the other. We want to decouple completely net-freezing

r melting of the magma oceans (related to the long term evolution
f the system) and dynamic freezing or melting at the boundaries
related to the dynamic topog raphy for med by viscous forces). To
his effect, the dynamic pressure needs to be chosen to ensure the
oundary condition eq. ( 17 ) cannot yield a non-zero average radial
elocity. In the rest of this document, 〈•〉 denotes the lateral mean
f a quantity. As pre viousl y, + and − superscripts denote quantities
 v aluated at the top and bottom boundary, respecti vel y. 

Denoting T p the temperature profile such that T = T p yields p =
, the Stokes eq. ( 2 ) becomes 

 = −∇ p + η∇ 

2 u + ρg α( T − T p ) ̂ r . (20) 

ntegrating the Stokes equation over the entire solid domain � and
rojecting on ̂  r gives: 

 = 

∫ 
+ 

(
2 η

∂ u r 

∂r 
− p 

)
d S −

∫ 
−

(
2 η

∂ u r 

∂r 
− p 

)
d S 

+ 

∫ 
�

ρg α( T − T p )dV . (21) 

lugging the phase change boundary condition eq. ( 17 ) in eq. ( 21 )
eads to 

�ρ+ g τ+ 
φ ( R 

+ ) 2 〈 u r 〉 + + | �ρ−| g τ−
φ ( R 

−) 2 〈 u r 〉 −

= ρgα

∫ R + 

R −

(〈 T 〉 − T p 
)

r 2 dr. (22) 

inally, mass conservation gives us: 

 R 

+ ) 2 〈 u r 〉 + = ( R 

−) 2 〈 u r 〉 − . (23) 

his leads to 

(
� ρ+ τ+ 

φ + | � ρ−| τ−
φ

)
( R 

+ ) 2 〈 u r 〉 + = ρα

∫ R + 

R −

(〈 T 〉 − T p 
)

r 2 dr. 

(24) 

Eq. ( 24 ) shows the average topography at the boundaries τ±
φ 〈 u r 〉 ±

s directly proportional to the average buoyancy of the bulk. Choos-
ng T p equal to 〈 T 〉 therefore ensures the average topography (and
verage radial velocity) is zero at all times. Defining the dynamic
ressure as p = P − 〈 P 〉 , the Stokes eq. ( 2 ) becomes 

 = −∇ p + η∇ 

2 u + ρg α( T − 〈 T 〉 ) ̂ r . (25) 

.4 Dimensionless equations 

he equations are made dimensionless in order to reduce the num-
er of parameters describing the physical problem. The scales for
istance, time, and temperature are respecti vel y the thickness of the
omain L = R 

+ − R 

−, the thermal diffusion timescale L 2 

κ
, and the

emperature difference � T = T 

− − T 

+ between the two interfaces.
he dimensionless temperature ̃  T is defined as: 

 T = 

T − T + 

�T 
(26) 

o that it is al wa ys betw een 0 and 1. 
Using the same symbols for dimensionless and dimensional

uantities, the non-dimensional conservation equations are 
 · u = 0 , (27) 

 = −∇ p + ∇ 

2 u + Ra ( T − 〈 T 〉 ) ̂ r , (28) 

∂ T 

∂t 
+ u · ∇ T = ∇ 

2 T , (29) 

ith Ra the Rayleigh number defined as: 

a ≡ ρg α�T L 

3 

ηκ
. (30) 

his dimensionless number compares the buoyancy forces which
riv e conv ection to the momentum and heat dif fusion coef ficients
hich hinder it. 
With eq. ( 26 ), the boundary conditions for the temperature are

traightforward: 

T − = T ( R 

−) = 1; 

T + = T ( R 

+ ) = 0 . (31) 

The free-slip boundary condition eq. ( 18 ) gives: 

r 
∂ 

∂r 

(u θ

r 

)
+ 

1 

r 

∂ u r 

∂θ
= 0 , 

 

∂ 

∂r 

(u φ

r 

)
+ 

1 

r sin θ

∂ u r 

∂φ
= 0 . (32) 

Finally, the normal stress continuity condition eq. ( 17 ) leads to: 

± � 

±u r + 2 
∂ u r 

∂r 
− p = 0 . (33) 

 

+ and � 

− are the dimensionless phase change numbers of the top
nd bottom interfaces, defined as 

 

± ≡ | �ρ| ±gL 

η
τφ. (34) 

hese parameters are ratios between the phase change timescale τφ

nd the timescale needed to build topo graphy b y viscous forces.
hese numbers represent the resistance of the melting/freezing
oundaries to flow of matter through them. If � → 0 at one in-
erface, the boundary condition eq. ( 33 ) reduces to a normal stress
ree condition, meaning the interface is fully permeable. Physically,
elting and freezing of matter is much quicker than viscous building

f topography, allowing matter to pass easily through the interface.
he height of the topography is indeed limited by the rate at which

t is melted/frozen away instead of its buoyancy. On the contrary, if
 → ∞ , the boundary condition eq. ( 33 ) imposes that u r = 0 and

ecomes equi v alent to the definition of dynamic topography under
he usual non-penetrative boundary condition applied in convection

odels (see Ricard et al . 2014 , for a discussion). Physically, viscous
uilding of topography is fast enough for the height of the topog-
aphy to be limited by its weight rather than melting or freezing,
ence preventing matter from crossing the boundary. 

After making the equations dimensionless, only four parameters
re necessary to describe the system. The inner radius R 

− charac-
erizing the geometry (the outer radius being R 

+ = 1 + R 

− since
engths are made dimensionless with the thickness of the domain),
he Rayleigh number Ra describing the strength of convection, and
he two phase change numbers � 

± parametrizing the behaviour of
he two interfaces with the magma oceans. 
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3  M E T H O D  

A first approach to study the system described pre viousl y is a linear 
stability analysis. We study here the stability of the conductive state 
in the solid, varying the phase change numbers � 

± as well as the 
geometry of the system defined by the dimensionless position of the 
inter nal boundar y R 

−. The approach presented here is akin to that 
used by Deguen ( 2013 ) who studies a similar problem with three 
differences: 

(i) The gravity acceleration is considered constant in our study 
while it varies linearly with the radial position in Deguen ( 2013 ); 

(ii) We neglect internal heating in our study, while Deguen ( 2013 ) 
considers a volumetrically heated domain; 

(iii) The Rayleigh number is defined with the temperature differ- 
ence and the domain thickness in our study, but with the volumetric 
heating rate and the outer radius in Deguen ( 2013 ); comparison of 
the critical Rayleigh number values between the two studies should 
therefore be made with care. 

The choices made by Deguen ( 2013 ) were dictated by the will to 
use the same approach as that used for the inner core for which they 
full y appl y. The choices done here are more rele v ant to convection in 
solid mantles and require a different solution technique, as shown 
below. The numerical tool presented in this paper is nonetheless 
v ery v ersatile and can treat the cases solv ed by De guen ( 2013 ) with 
minor modifications. 

3.1 Motionless r efer ence state 

The system of partial differential equations formed by the conserva- 
tion eqs ( 27 )–( 29 ) and their boundary conditions eqs ( 32 ) and ( 31 )
admits a purely conductive (i.e. motionless) steady solution. This 
solution, denoted by an overline, is defined by 

ū = 0 (35) 

and 

∇ 

2 T̄ = 0 . (36) 

The latter equation along with the boundary conditions on temper- 
ature eq. ( 31 ) takes as solution 

T̄ = 

R 

+ R 

−

r 
− R 

−. (37) 

Injecting this in the Stokes eq. ( 28 ) gives 

∇ ̄p = 0 . (38) 

Therefore, ̄p is constant throughout the solid domain. Since it should 
be null to satisfy the phase change boundary condition eq. ( 33 ), one 
obtains 

p̄ = 0 . (39) 

Introducing the temperature anomaly � = T − T̄ , the conservation 
equations become: 

∇ · u = 0 , (40) 

0 = −∇ p + ∇ 

2 u + Ra ( � − 〈 � 〉 ) ̂  r , (41) 

∂ � 

∂t 
+ u · ∇ ( � + T̄ ) = ∇ 

2 �. (42) 

The boundary conditions on � are � = 0 at both boundaries. 
3.2 Poloidal potential f orm ulation 

Since the fluid is considered isoviscous and incompressible, the 
velocity field can be reduced to a scalar field, the poloidal potential 
P defined as (e.g. Ricard & Vigny 1989 ; Ribe 2015 ): 

u = ∇ × ∇ × ( r P) . (43) 

One can notice that the poloidal potential is related to the stream 

vector � : 

u = ∇ × � ⇐⇒ � = ∇ × ( r P) . (44) 

The three components of the velocity field are then: 

u r = 

1 

r 
L 

2 P, (45) 

u θ = 

∂ 

∂θ

(
1 

r 

∂ 

∂r 
( rP 

) 

)
, (46) 

u φ = 

1 

sin θ

∂ 

∂φ

(
1 

r 

∂ 

∂r 
( rP 

) 

)
. (47) 

L 

2 is the scalar operator defined as: 

L 

2 • ≡ ∂ 

∂r 

(
r 2 

∂ •
∂r 

)
− r 2 ∇ 

2 •

= − 1 

sin θ

∂ 

∂θ

(
sin θ

∂ •
∂θ

)
− 1 

sin 2 θ

∂ 2 •
∂φ2 

. (48) 

Using the following properties (e.g. Dormy 1997 ): 

L 

2 • = ( ∇ × ∇ × ( •r )) · r , (49) 

∇ × ∇ × u = −∇ × ∇ × ( r ∇ 

2 P) , (50) 

one can find the poloidal formulation of the momentum conserva- 
tion equation by taking twice the curl of eq. ( 41 ): 

L 

2 

(
∇ 

4 P − Ra 

r 
� 

)
= 0 . (51) 

Assuming the poloidal potential and temperature fields can be de- 
veloped with spherical harmonics (see Section 3.3 ), solutions to 
eq. ( 51 ) involving a non-zero ( ∇ 

4 P − Ra 
r � ) are purely radial func- 

tions of harmonic degree 0. By definition, � does not have a degree- 
0 component. Degree-0 components in P can be taken as zero with- 
out loss of generality since they have no role in eq. ( 43 ), leaving 

∇ 

4 P = 

Ra 

r 
�. (52) 

Introducing Q such as: 

Q ≡ ∇ 

2 P, (53) 

eq. ( 52 ) can be written 

∇ 

2 Q = 

Ra 

r 
�. (54) 

The heat eq. ( 42 ) becomes: 

∂ � 

∂t 
+ ( ∇ × ∇ × ( r P)) · ∇ � = ∇ 

2 � + R 

− R 

+ 1 
r 3 

L 

2 P . (55) 

Using eqs ( 45 ) to ( 47 ), the free-slip boundary condition eq. ( 32 ) 
leads to: 

∂ 2 P 

∂ r 2 
+ ( L 

2 − 2) 
P 

r 2 
= C 

± (56) 

where C 

± denotes an arbitrary constant. The choice of C 

± does 
not matter to perform the linear stability analysis since it is a term 
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f harmonic degree 0 and therefore vanishes when equations are
ritten for higher harmonic de grees. De gree-0 terms are ignored

ince they are forbidden by our definition of the dynamic pressure
s shown in Section 2.3 . 

Finally, since the dynamic pressure does not appear in the poloidal
ormulation of the momentum conservation eq. ( 54 ), it should be
liminated from the normal stress continuity boundary condition
q. ( 33 ). Denoting ω = ∇ × u the vorticity and recalling ∇ · u =
 , one can deduce that 

 

2 u = −∇ × ω . (57) 

he projection of the momentum conservation eq. ( 41 ) along ˆ θ
ives 

1 

r 

∂ p 

∂θ
+ ( ∇ × ω ) · ˆ θ = 0 . (58) 

ince there is no source of toroidal potential in the studied problem,
here is no radial vorticity (e.g. Ribe 2015 ). Hence, 

 ∇ × ω ) · ˆ θ = −1 

r 

∂ 

∂r 

(
rω φ

)
. (59) 

ith eqs ( 45 ) and ( 46 ), one obtains: 

 φ = ( ∇ × u ) · ˆ φ = 

1 

r 

(
∂ 

∂r 
( ru θ ) − ∂ u r 

∂θ

)
= 

∂ 

∂θ

(∇ 

2 P 

)
. (60) 

utting eqs ( 59 ) and ( 60 ) in eq. ( 58 ) leads to: 

∂ p 

∂θ
= 

∂ 2 

∂ θ∂ r 

(
r∇ 

2 P 

)
. (61) 

erforming a similar calculation on the φ direction gives this relation
etween the dynamic pressure and the poloidal potential: 

− p + 

∂ 

∂r 

(
r∇ 

2 P 

) = K ( r ) (62) 

here K ( r ) is a purely radial function constant along the θ and φ
irections. This allows us to substitute the pressure in the phase
hange condition eq. ( 33 ): 

± � 

± 1 

r 
L 

2 P + 

∂ 

∂r 

(
2 

r 
L 

2 P − rQ 

)
= K 

±. (63) 

ote that as C 

± in eq. ( 56 ), the actual value of K 

± is irrelevant in
his study. 

.3 Spherical harmonics development 

erturbations of the poloidal potential P , Q and the temperature
eld � are developed using spherical harmonics as following: 

P = 

∞ ∑ 

l= 1 

l ∑ 

m =−l 

P 

m 

l ( r ) Y 

m 

l ( θ, φ) e σl t , 

 = 

∞ ∑ 

l= 1 

l ∑ 

m =−l 

Q 

m 

l ( r ) Y 

m 

l ( θ, φ) e σl t , 

� = 

∞ ∑ 

l= 1 

l ∑ 

m =−l 

T m 

l ( r ) Y 

m 

l ( θ, φ) e σl t . (64) 

ote that the l = 0 harmonic is not taken into account since it
orresponds to the motionless conductive state. 

In the frame of linear stability analysis, one can study each mode
 l , m ) in an independent way. For a given problem ( R 

−, � 

+ , � 

−), the
oal of the analysis is to determine which mode is the most unstable
nd what is its associated critical Rayleigh number Ra c . Moreover,
he problem is degenerated in terms of lateral orientation. Hence,
he growth rate σ l of any given mode ( l , m ) only depends on l . For
eadability purposes, m indices are dropped. 

The differential operators can easily be written for any mode l .
ndeed, spherical harmonics are eigenfunctions of the L 

2 operator.
pplying L 

2 to a given mode reduces to: 

 

2 • = l( l + 1) • . (65) 

he Laplacian operator applied to a given mode is then: 

 

2 
l • ≡ ∂ 2 •

∂ r 2 
+ 

2 

r 

∂ •
∂r 

− l( l + 1) 

r 2 
• . (66) 

The conservation equations eqs ( 53 ) to ( 55 ) can be written as (the
nly neglected non-linear term being the advection u · ∇ � ): 

Q l = D 

2 
l P l , (67) 

 

2 
l Q l = 

Ra 

r 
T l , (68) 

 σl − D 

2 
l ) T l = R 

− R 

+ l( l + 1) 

r 3 
P l . (69) 

Finally, the boundary conditions eqs ( 31 ), ( 56 ) and ( 63 ) can be
ritten as: 

 T l ) 
± = 0 , (70) 

(
d 2 P l 

dr 2 

)±
+ [ l( l + 1) − 2] 

(
P l 

r 2 

)±
= 0 , (71) 

± � 

±l( l + 1) 

(
P l 

r 

)±
+ 

d 

dr 

(
2 l( l + 1) 

r 
P l − r Q l 

)±
= 0 . (72) 

ote that the lateral constants C 

± and K 

± do not appear in those
quations since they are of degree l = 0. Also, as mentioned pre-
iously, the linearized equations are independent of the order m of
he considered mode (in other words, the pole chosen to define the
pherical harmonics has no physical meaning for the problem at
and). 

.4 Eigenv alue f orm ulation 

sing a Cheb yshe v-collocation approach (e.g. Canuto et al . 1985 ;
uo et al . 2012 ; Labrosse et al . 2018 ), the system defined by

qs ( 67 )–( 72 ) can be formulated as a generalized eigenvalue prob-
em. Cheb yshe v pol ynomials are used to expand the perturbations
long the radial direction. Each vertical mode P l , Q l and T l is entirely
haracterized by N + 1 Chebyshev–Gauss–Lobatto nodal points at

z i = cos iπN with i = 0. . . N . To map the z ∈ [ − 1, 1] space to the r
 [ R 

−, R 

+ ] space, we use the following transformation: 

 i = 

z i + 1 

2 
+ R 

−. (73) 

ach vertical mode can then be represented by a vector with N + 1
omponents. For example, the toroidal potential vertical mode P l is
epresented by P , the vector such as P i = P l ( r i ). Similarly, Q l and
 l are represented by Q and T . 
With such a formalism, the successive radial derivatives of each

ertical mode at any nodal point can be computed with the help of
 differentiation matrix d : 

∂ k P 

∂ r k 
= d 

k P . (74) 



1128 A. Morison et al . 
D

ow
nloaded from

 https://academ
ic.oup.com

/gji/article/238/2/1121/7692047 by guest on 04 D
ecem

ber 2024
Note that for numerical precision reasons, the powers of d 

are computed separately instead of directly as the succes- 
sive powers of d . The differentiation matrices d 

k are cal- 
culated with the help of a Python adaptation of DMSUITE 

(Weideman & Reddy 2000 ). The Python package is available 
at https://github.com/labrosse/dmsuite . 

Denoting r the diagonal matrix 

r ≡

⎛ 

⎜ ⎜ ⎜ ⎝ 

r 0 0 

. . . 

0 r N 

⎞ 

⎟ ⎟ ⎟ ⎠ 

, (75) 

the operator D 

2 
l can be written as the matrix D 

2 : 

D 

2 ≡ d 

2 + 2 r −1 d − l( l + 1) r −2 . (76) 

The system defined by eqs ( 67 )–( 72 ) is then equivalent to the 
matrix equation 

LX = σRX (77) 

with 

X = 

⎛ 

⎜ ⎜ ⎝ 

⎞ 

⎟ ⎟ ⎠ 

P 0 , N 

Q 0 , N 

T 1 , N − 1 

(78) 

L = 

0 , N 0 , N 1 , N − 1 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

d 2 + [ l( l + 1) − 2] r −2 0 0 0 

D 

2 −1 0 1 , N − 1 

d 2 + [ l( l + 1) − 2] r −2 0 0 N 

l( l + 1)( � 

+ r −1 − 2 r −2 + 2 r −1 d ) −( 1 + r d ) 0 0 

0 D 

2 −Ra r −1 1 , N − 1 

l( l + 1)( −� 

−r −1 − 2 r −2 + 2 r −1 d ) −( 1 + r d ) 0 N 

R − R + l( l + 1) r −3 0 D 

2 1 , N − 1 

(79) 

R = 

0 , N 0 , N 1 , N − 1 ⎛ 

⎜ ⎜ ⎝ 

⎞ 

⎟ ⎟ ⎠ 

0 0 0 0 , N 

0 0 0 0 , N 

0 0 1 1 , N − 1 

(80) 

where 1 is the identity matrix. The extra row and column on top and 
right of the matrices are respecti vel y the column and row indices of 
each of the submatrices. For example, the top left submatrix of the 
matrix L is only the first row (hence the 0 on the extra column) of the 
matrix d 

2 + [ l( l + 1) − 2] r −2 . Similarly, the bottom right submatrix 
of the matrix L is the matrix D 

2 without its first and last rows and 
columns. Note that the boundaries of the temperature vertical mode 
are excluded because the Dirichlet boundary condition eq. ( 70 ) is 
then naturally enforced. 

Determining the modes X satisfying eq. ( 77 ) as well as the asso- 
ciated growth rate σ is a generalized eigenv alue problem. Gi ven a 
physical problem � defined by the three parameters � = ( R 

−, � 

+ , 
� 

−), and any Rayleigh number Ra and har monic deg ree l , the finite 
eigenvalue σ with the greatest real part is the growth rate of the 
perturbation of degree l . The eigenvector associated with σ is the 
vertical modes of the perturbation. For a given physical problem � 
and an harmonic l , one can compute the growth rate of the pertur- 
bation as a function of the Rayleigh number. The neutral Rayleigh 
number Ra n is the Rayleigh number such as R ( σ ( Ra n )) = 0 where 
R denotes the real part. Finally, for a given problem � , one can 
compute the neutral Rayleigh number as a function of the harmonic 
degree l of the perturbation. The degree l c for which Ra n ( l ) is min- 
imal is the most unstable mode of the problem � . The associated 
Rayleigh number Ra c = Ra n ( l c ) is the critical Rayleigh number for 
� . 

A numerical implementation of this approach has been developed 
for this study and is freely available at https://github.com/amorison/ 
stablinrb . This tool is more general than the case presented here as 
it also allows solving convection in a plane layer (Labrosse et al . 
2018 ), it includes the possibility of net freezing at the boundary 
(Morison et al . 2019 ) and permits to consider a verticall y v arying 
viscosity and any temperature reference profile, in addition to the 
conductive one presented above. 

4  R E S U LT S  

A simple way to test the linear stability analysis is to perform the 
analysis with classical no-penetration free-slip condition at both 
boundaries for which linear analysis results have already been ob- 
tained. For comparison, in Cartesian geometry, one gets a crit- 
ical Rayleigh number Ra c = 27 π 4 /4 ∼ 657.51 and an associ- 
ated wavenumber k x = π/ 

√ 

2 (Rayleigh 1916 ). In a spherical shell 
of aspect ratio γ ≡ R 

−/ R 

+ = 0.55, the critical Rayleigh num- 
ber is Ra c = 711.95, associated with the harmonic degree l = 

3. This is in perfect agreement with the existing literature (e.g. 
Bercovici et al . 1988 ). Moreover, when γ → 1, the geometry 
of the spherical shell tends towards a laterally infinite Cartesian 
space. With γ = 0.99, the obtained critical Rayleigh number is 
Ra c = 657.528 which is very close to the Cartesian value, as 
expected. 

In all the perfor med analyses, the g rowth rate σ has no imaginary 
part. All the modes at Ra c presented here are hence non-oscillating 
solutions. This has in fact been mathematically demonstrated for 
plane layers (Chandrasekhar 1961 ; Labrosse et al . 2018 ) but not for 
the specific case discussed here. 

Figs 3 and 4 show the most unstable mode and associated critical 
Rayleigh number for various cases. Since the linear problem we 
solve here is degenerated in terms of lateral orientation, all modes 
with the same harmonic degree l but different orders m have the 
same growth rate. We choose in Figs 3 and 4 to represent the critical 
mode of order m = l c ( l c being the degree of the critical mode) 

in the equatorial plane θ = 

π

2 
. Moreover, instead of showing the 

poloidal potential perturbation, we show instead isovalues of the 
stream vector component along ˆ θ . These are streamlines of the flow 

in the equatorial plane. Enforcing l = m leads to the following 
relationship between the � θ component of the stream vector and 
the poloidal potential eigenmode P l : 

� θ ( r, φ) = R 

(
il P l ( r ) Y 

l 
l 

(π

2 
, φ

))
. (81) 

The left column of Fig. 3 shows the classical case with no- 
penetration boundaries. The critical mode consists in nearly aspect- 
ratio-one conv ectiv e rolls, and therefore a critical harmonic de gree 
increasing as the aspect ratio of the shell increases. We can see on 
the right column of Fig. 3 the effects of a small phase change number 
at the bottom boundary while a classic non-penetrative condition is 
prescribed at the top boundary. Owing to the flow-through boundary 
condition, streamlines are not deviated by the boundary and can 

https://github.com/labrosse/dmsuite
https://github.com/amorison/stablinrb
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Figure 3. Temperature perturbation and streamlines of the most unstable mode for no-penetration boundary conditions (left-hand panel) and phase change 
boundary at the bottom only (right-hand panel). Each row is a different value of the aspect ratio γ of the shell. The critical Rayleigh number Ra c and harmonic 
degree l c are indicated under each figure. 
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Figure 4. Temperature perturbation and streamlines of the most unstable mode for a phase change boundary at the top only (left-hand panel) and at both 
boundaries (right-hand panel). Each row is a dif ferent v alue of the aspect ratio γ of the shell. The critical Rayleigh number Ra c and har monic deg ree l c are 
indicated under each figure. 
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Figure 5. Critical Rayleigh number and associated harmonic degree for varying � 

− and various aspect ratios. Left-hand panel: top boundary is non-penetrative, 
right-hand panel: top boundary is flow-through with � 

+ = 10 −2 . 
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nstead pass through it as matter melts (downwellings) or freezes
upwellings). Hence, as discussed in Section 2.4 , a low value of the
hase change number � allows matter to cross the boundary. The
etur n current necessar y to conser ve mass happens in the underlying
cean. This leads to conv ectiv e patterns with a larger wavelength
han the classical rolls, as well as a lower critical Rayleigh number
s less deformation is involved in these modes than in the classical
olls. 

The left-hand column of Fig. 4 shows that with a flow-through
oundary condition with a small phase change number at the top
oundary, the most unstable mode is a deg ree-one patter n regardless
f the aspect ratio of the shell. Matter crystallizes on one hemisphere
f the shell, goes through the other side avoiding the core, and finally
elts on the other hemisphere. As shown in the right-hand column

f Fig. 4 , when both phase change numbers are small (i.e. both
oundaries are flow through), streamlines go straight through the
ntire shell. All the cases shown on Fig. 4 correspond to degree-one
ranslation modes of convection. The solid shell departs from its

otionless position but is constantly recycled and kept in place as
t freezes on one side and melts on the other. When both boundaries
re flow-through, this translation operates without any deformation
n the solid; convection is then only limited by the rate at which melt-
ng and freezing can occur. In this last scenario, the critical Rayleigh
umber is proportional to � 

±, and can even be arbitrarily small as
 

± decrease (see Section 5 ). F inally, w hen only the top bound-
ry is flow-through, the translation is associated to some deforma-
ion in the solid, necessary for the convecting matter to go around
he core. 

Figs 5 to 7 show the effects of varying the phase change number
n the critical Rayleigh number and associated critical harmonic de-
 ree. A first obser vation from these figures is that when both phase
hange numbers are high ( � 

± � 10 2 ), the system exhibits the same
ritical Rayleigh numbers and wavelengths as with the classical non-
enetrative free-slip boundary conditions. This is expected from the
efinition of the phase change number � as discussed in Section 2.4 :
or large values of the phase change number, the boundary condi-
ion on normal stress eq. ( 33 ) converges towards the non-penetrative
ase. As either or both phase change numbers decrease, the corre-
ponding boundaries transition to the flow-through regime. The
ritical Rayleigh number and associated har monic deg ree decrease
s the boundary condition allows for larger wavelength modes of
onvection. When only one boundary is flow-through (Figs 5 and
 ), the critical Rayleigh number decreases of roughly one order of
agnitude compared to the no-penetration case with the same ge-

metry. As shown on Fig. 7 and discussed in Section 5 , the critical
ayleigh number can be arbitrarily small when both boundaries are
ow-through and the translation regime is the most unstable (see
 ig. 7 ). A remarkab le feature visib le on F igs 6 and 7 is that a small
alue of � 

+ (smaller than about 10) leads to a degree-one transla-
ion mode regardless of the aspect ratio of the shell γ or the value
f � 

− (a large value for the latter leads to a translation mode with
eformation as discussed above). 

F inally, F igs 8 –10 show the effect of varying the aspect ratio of
he shell on the stability of several harmonics degree in three se-
ups: flow-through condition only at the bottom (Fig. 8 ), only at the
op (Fig. 9 ), and at both boundaries (Fig. 10 ). As observed before,
igs 9 and 10 show the degree-one mode is the most unstable for any
spect ratio. Moreover, one can notice the neutral Rayleigh number
f other modes is much higher than that of the degree-one, showing
he degree-one translation mode is strongly favoured. The case of a
ow-through boundary only at the bottom depicted in Fig. 8 exhibits
n interesting behaviour. For aspect ratio lower than about 0.75, the
ost unstable mode corresponds to conv ectiv e rolls that cross the

oundary. These rolls are about twice as wide as the classical con-
 ectiv e rolls obtained with non-penetrative boundary conditions, as
bserved in Fig. 3 for γ < 0.8 (for γ = 0.2 it is geometrically im-
ossible for the rolls in the flow-through case to be wider than those
n the non-penetrative case since the latter is already of degree one).
his is similar to the situation obtained for plane layers (Labrosse et
l . 2018 ) except for the quantization stemming from the sphericity.
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Figure 6. Critical Rayleigh number and associated harmonic degree for varying � 

+ and various aspect ratios. Left-hand panel: bottom boundary is non- 
penetrative, right-hand panel: bottom boundary is flow-through with � 

− = 10 −2 . 

Figure 7. Critical Rayleigh number and associated harmonic degree for varying � 

+ = � 

− and various aspect ratios. 
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Increasing γ therefore leads to an increase of l c . Ho wever , for higher 
aspect ratios of the shell, instead of higher harmonic degrees corre- 
sponding merely to these wider rolls, the most unstable mode is of 
degree-one. This mode is the one shown for γ = 0.8 on Fig. 3 , it cor- 
responds to a mode where matter freezes on one inner hemisphere 
and melts on the other, akin to what happens in the translation mode 
excepts more deformation is involved in the solid. This new mode 
has no equi v alent in the plane layer situation since it corresponds 
to an ever increasing wavelength when increasing γ . It takes over 
from higher-degree modes for γ � 0.75 because it requires less 
deformation than higher order modes since the flow consists mostly 
of a rotation around the inner sphere, which is possible because we 
consider free-slip boundary conditions at both boundaries. Note that 
this degree-one mode has a critical Rayleigh number close to that of 
other modes as visible on Fig. 8 , allowing competition between the 
degree-one mode and higher-degree modes at intermediate values of 
the aspect ratio γ . This contrasts strongly with the translation mode 
exhibited by cases with a flow-through condition at the top bound- 
ary (Figs 9 and 10 ) that is clearly the most unstable mode. A similar 
systematics was observed by Deguen ( 2013 ) in the case with a grav- 
ity acceleration varying linearly with radial position (see his figs 3 
and 5). 
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Figure 8. Neutral Rayleigh number of several modes as a function of the aspect ratio of the spherical shell. Boundary conditions are flow-through at the bottom 

( � 

− = 10 −2 ) and non-penetrative at the top. Each colour represents a different har monic deg ree. At a given aspect aspect ratio, the harmonic with the lowest 
neutral Rayleigh number is shown as solid, and other harmonics are dotted. In other words, the solid envelope shows the critical Rayleigh number of the system. 

Figure 9. Neutral Rayleigh number of several modes as a function of the aspect ratio of the spherical shell. Boundary conditions are non-penetrative at the 
bottom and flow-through at the top ( � 

+ = 10 −2 ). Each colour represents a different harmonic degree. The l = 1 harmonic has the lowest neutral Rayleigh 
number and is shown with a solid line, while other harmonics are shown with dotted lines. 
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Figure 10. Neutral Rayleigh number of several modes as a function of the aspect ratio of the spherical shell. Boundary conditions are flow-through at both 
boundaries ( � 

+ = � 

− = 10 −2 ). Each colour represents a different har monic deg ree. The l = 1 harmonic has the lowest neutral Rayleigh number and is shown 
with a solid line, while other harmonics are shown with dotted lines. 

Figur e 11. Ph ysical setup and chosen frame in a degree-one translation 
case. This figure is drawn in the ϕ = 0 plane. The system is axisymmetric 
around ̂  t (i.e. ϕ-invariant). 
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5  A NA LY T I C A L  S T U DY  O F  T H E  

T R A N S L AT I O N  M O D E  

The degree-one translation solution is the dominating convection 
regime at onset when both phase change numbers � 

± are small. This 
section presents an analytical determination of the critical Rayleigh 
number of this mode of convection. 

In this section, U ̂

 t denotes the translation velocity. U is its ampli- 
tude and ̂  t a unit vector along the translation direction. The colatitude 
is chosen as θ = ( ̂ t , ̂  r ) , see Fig. 11 for a schematic of the setup. 

5.1 Equilibrium between b uoy anc y and topographic 
weight 

Integrating the Stokes eq. ( 28 ) over the entire domain � yields 

0 = 

∫ 
+ 

(−p ̂ r + 

(∇ u + ∇ u 

T 
) · ˆ r 

)
dS 

−
∫ 

−

(−p ̂ r + 

(∇ u + ∇ u 

T 
) · ˆ r 

)
dS 

+ 

∫ 
�

Ra ( T − 〈 T 〉 ) ̂  r dV . (82) 

Plugging the free-slip boundary condition eq. ( 32 ) and the phase 
change boundary condition eq. ( 33 ) in eq. ( 82 ) leads to ∫ 

�

Ra ( T − 〈 T 〉 ) ̂  r d V = 

∫ 
+ 

� 

+ u r ̂  r d S + 

∫ 
−

� 

−u r ̂  r d S. (83) 

Eq. ( 83 ) shows the buoyancy of the domain (left-hand side) 
compensates the total weight of the dynamic topographies (right- 
hand side). 
One can expand the temperature and velocity fields as series 
of Legendre polynomials. Projecting eq. ( 83 ) along the translation 
direction ˆ t gives the following relation between their degree one 
components: 

Ra 
∫ R + 

R −

∫ π

0 
T cos θ sin θdθ︸ ︷︷ ︸ 

2 
3 T 1 

r 2 dr 

= 

(
( R 

+ ) 2 � 

+ + ( R 

−) 2 � 

−) ∫ π

0 
u r cos θ sin θdθ︸ ︷︷ ︸ 

2 
3 u r 1 = 2 3 U 

. (84) 

This yields the following relation between the translation ve- 
locity U and the degree-one component T 1 of the temperature 
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 = 

Ra 

( R 

+ ) 2 � 

+ + ( R 

−) 2 � 

−

∫ R + 

R −
T 1 r 

2 dr. (85) 

.2 Critical Rayleigh number 

rom eq. ( 42 ), the linear growth rate of T 1 is 

∂ T 1 
∂t 

= −U 

∂ T̄ 

∂r 
+ D 

2 
1 T 1 (86) 

here T̄ is the reference conductive profile eq. ( 37 ), which is also
he degree-zero component of the temperature field. The advection
f the degree-two component T 2 is neglected as it is a non-linear
erm. If the Rayleigh number is at the critical value for the degree-
ne mode of convection (i.e. the translation mode), then the growth
ate of T 1 should be zero, since we have seen that it is real. Solving

q. ( 86 ) for 
∂ T 1 
∂t 

= 0 (with T ±1 = 0 ) and injecting the solution in

q. ( 85 ) therefore gives us an equation for the critical Rayleigh
umber of the translation mode. 

D 

2 
1 T 1 = U 

∂ ̄T 

∂r 
= −U R 

− R 

+ 1 
r 2 

⇐⇒ T 1 = 

U 

2 
R 

− R 

+ 

×
(

1 − ( R 

+ ) 2 − ( R 

−) 2 

( R 

+ ) 3 − ( R 

−) 3 
r + 

( R 

+ ) 2 ( R 

−) 3 − ( R 

+ ) 3 ( R 

−) 2 

( R 

+ ) 3 − ( R 

−) 3 
1 

r 2 

)
(87) 

his leads to: 

a c = 24 

(
( R 

+ ) 2 � 

+ + ( R 

−) 2 � 

−) (
( R 

+ ) 3 − ( R 

−) 3 
)

R 

+ R 

− ( ( R 

+ ) 2 + 4 R 

+ R 

− + ( R 

−) 2 ) 
. (88) 

ntroducing the aspect ratio γ ≡ R 

−

R 

+ , one obtains: 

a c = 24 
( � 

+ + γ 2 � 

−)(1 − γ 3 ) 

γ (1 − γ )( γ 2 + 4 γ + 1) 
. (89) 

ote that the critical Rayleigh number of the translation mode is
irectly proportional to � 

+ + γ 2 � 

−, and hence to the surface area-
 eighted a verage of the phase change numbers. It can therefore
e arbitrarily small as the values of these phase-change parameters
ecrease. Indeed, since no deformation occurs in the solid, the only
imiting factor for convection to happen in the translation regime is
he rate at which melting and freezing can occur. Moreover, as γ
ets close to 1, the geometry of the system gets closer to that of an
nfinite Cartesian layer. One can notice that 

lim 

γ→ 1 
Ra c = 12( � 

+ + � 

−) , (90) 

hich is the linear critical Rayleigh number of the translation mode
n Cartesian geometry (Labrosse et al . 2018 ). 

 C O N C LU D I N G  R E M A R K S  

ven though a simple approach, the linear stability analysis pre-
ented in this paper sheds light on the dramatic consequences of
he phase change boundary condition on convection in a solid layer
hen it is bounded by liquid above, below or both. Note that the re-

ults obtained for our system are similar to those of Deguen ( 2013 )
or a shell with a gravity increasing with radius and internal heating.
his is not surprising given the strong effects of the phase change
oundary condition on the behaviour of the flow. These boundary
onditions drastically decrease the critical Rayleigh number, af-
ecting the onset of convection in a primitive mantle crystallizing
rom global magma oceans, as e xtensiv ely discussed in Morison
t al . ( 2019 ). The geometry of the flow in the solid is also greatly
f fected b y the possibility for matter to cross the boundary: the ex-
ected conv ectiv e patterns e xhibit a much larger wavelength than
ith classical non-penetrative boundary conditions. In particular,

he l = 1 mode is al wa ys the most unstable when the top boundary
s flow-through, and also for γ � 0.45 or γ � 0.75 when only the
ottom boundary is flow-through. In some fashion, this echoes the
ndings of Zhong & Zuber ( 2001 ) in a Mars-like setup: they found

hat the most unstable mode for Ra yleigh–Ta ylor instability is l =
 when a rheolo gicall y weak asthenosphere is present. This weak
ayer could play a similar role to a flow-through boundary from the
oint of view of the rest of the mantle. 

Obviously, these results are only strictly valid for the onset of
onvection since we neglect here the non-linear terms. Zhong et
l . ( 2000 ); Zhong & Zuber ( 2001 ) are other examples of linear
tability anal yses successfull y predicting the most unstable modes
f fully non-linear simulations, albeit for different physical setups
han the one explored here. Moreover, previous studies using direct
umerical simulations of the whole equations set (Ag r usta et al .
019 ; Bolr ˜ ao et al . 2021 ; Lebec et al . 2023a , b ) show that the main
ffects observed in the linear analysis help to understand the fully
on-linear results. Indeed, as predicted by the linear stability analy-
is, small values of the phase change number lead to flow-through
oundaries associated with longer wavelength than the typical non-
enetrative boundary condition. In Cartesian geometry with phase
hange at both boundaries, non-linear simulations (Ag r usta et al .
019 ) present a behaviour that can very well be predicted with a
eakly non-linear approach (Labrosse et al . 2018 ). In spherical ge-
metry, numerical simulations at high Rayleigh number exhibit the
ranslation mode when both boundaries are flow-through (Bolr ˜ ao et
l . 2021 ). 

An aspect that deserves investigation via non-linear simulation is
he transition between a flow-through boundary (low � ) and non-
enetrative boundary (high � ); while the linear stability analysis
erformed in this study shows that the transition occur over a range
f values 10 −1 � � � 10 3 , simulations in Cartesian geometry seem
o show that the transition in the non-linear regime depends on
he ratio Ra/ � (Ag r usta et al . 2019 ). A systematic exploration of
he non-linear dynamics has already been presented in Lebec et
l . ( 2023a ) but with a ther mal boundar y condition at the bottom
ifferent from the one considered here, and with only one phase
hange boundary. Extending these results to the setup of the present
aper will be the topic of future work. 
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