
HAL Id: hal-04818085
https://hal.science/hal-04818085v1

Submitted on 4 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Analysis of a Ballast-Less Railway Track
Through a Periodically Supported Timoshenko Beam

and Dynamical Forces Consideration
D. Gonzalez Velasco, D. Duhamel, T. Hoang, G. Foret, H. Lenglin, B.

Findinier

To cite this version:
D. Gonzalez Velasco, D. Duhamel, T. Hoang, G. Foret, H. Lenglin, et al.. Dynamic Analysis of
a Ballast-Less Railway Track Through a Periodically Supported Timoshenko Beam and Dynami-
cal Forces Consideration. The Sixth International Conference on Railway Technology: Research,
Development and Maintenance, Sep 2024, Prague, Czech Republic. pp.1-12, �10.4203/ccc.7.5.13�.
�hal-04818085�

https://hal.science/hal-04818085v1
https://hal.archives-ouvertes.fr


Dynamic Analysis of a Ballast-Less Railway
Track Through a Periodically Supported
Timoshenko Beam and Dynamical Forces

Consideration

D. Gonzalez Velasco1, D. Duhamel1, T. Hoang1,
G. Foret1, H. Lenglin2 and B. Findinier2

1 Laboratoire Navier, Ecole Nationale des Ponts et Chaussees,
Champs-sur-Marne, France

2 GETLINK, Coquelles, France
Abstract

This article focuses on the extension of a ballast-less railway track analytical model
to compute its dynamic responses due to the application of forces on the structure.
Similarly to various existing models, the railway track is represented as a periodically
supported Timoshenko beam on individual and independent supports. The supports
consist of a two-stage damping spring system with a mass in between. The structure
is subjected to mobile forces, representing the passage of trains, which move along
the railway track at a constant speed. In existing models, the structure is subjected to
static forces, representing trains as a moving mass. Since dynamic forces, resulting
from wheel or track defects, can turn into the most important source of loads that can
stress the structure, a new formulation of the force is introduced with the aim of taking
into account the influence of dynamic forces on the behavior of the railway track. This
new approach aims to improve the understanding of the railway track’s response to a
load that seeks to be more complete and faithful to real-world phenomena.

Keywords: ballast-less railway track, analytical model, Timoshenko’s beam theory,
static and dynamic loads, moving forces, dynamical reponse.
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1 Introduction

Railway track modeling is of great interest in addressing the need to assess the struc-
ture’s response when subjected to various loads, primarily caused by train transit.
Within the existing literature, different approaches to railway track modeling can be
found, stemming from either numerical or analytical modeling perspectives. Vari-
ous possibilities are explored, such as approximating a railway track to a periodically
supported beam for the analytical case and loading it with point or moving loads.

Analytical models are known for their efficiency in computing calculations within
a short time span. In the railway sector, they are particularly valuable for structural
design since they can provide the structure’s response in terms of reaction forces and
displacement within seconds and can be adapted to study multiple railway track con-
figurations. This approach has been adopted by multiple authors [1–6], who represent
the railway track as a periodically supported beam using Euler’s and Timoshenko’s
beam theories. Loading is introduced through a static mobile force, aiming to repre-
sent the train’s weight moving at a constant speed.

Among the types of loads to which a railroad track may be subjected, static loads
have been accurately addressed in the works from Hoang [4, 5] and Claudet [1]. On
the other hand, dynamic loads, resulting from wheel or track defects, are often viewed
as detrimental to the structure’s health and are not considered yet in existing analytical
models, to our knowledge.

Through this article, the aim is to extend the scope of analytical models of periodi-
cally supported beams by introducing not only static but also dynamic loads to obtain
the response of a ballastless railway track. Initially, we will address the proposed
ways to model the different components interacting in the problem, and then present
the complete development of the analytical model based on the Timoshenko’s beam
model. Finally, examples of model applications will be presented where a railway
structure will be subjected to static and/or dynamic loads to evaluate its behavior.

2 Railway track analytical model development

2.1 Problem Description

The objective here is to model the behavior of a ballastless railway track. Since the
problem is treated from an analytical point of view, it will be considered as a one-
dimensional (1D) problem. For the modeling of the railway track we consider a
general problem, which has the advantage of being adaptable according to the con-
figuration one wishes to study. That is to say, as shown in Figure 1, the railway track
is divided into patterns, all of which are identical and periodic. These patterns are
characterized by having a finite number of point supports m, which may or may not
be spaced the same distance apart from each other and have different mechanical char-
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Figure 1: Railway track configuration subjected to moving loads. This specific system
contains identical and equally spaced supports within the section L com-
posed by m = 4 different supports having distinct mechanical properties
represented by the various colours.

acteristics among them. The modeling choice starts by dividing the structure into it’s
different components: the supports, the rail, and the loads.

The supports will be modeled as independent and ponctual systems, as shown in
figure 1, capable of exhibiting linear (or nonlinear) behavior. This independent mod-
eling fact, facilitates the representation of railway tracks containing homogeneous or
non-homogeneous sections. ks,p(ω) being an equivalent stiffness of the system, it can
be expressed in terms of kr,p(ω) and kf,p(ω), which are parameters taking into account
the rail pad stiffness and the under-sleeper stiffness respectively, as shown in figure 1.
This formulation is written as follows,

1

ks,p(ω)
=

1

kr,p(ω)
+

1

kf,p(ω)
(1)

Regarding the forces acting on the system, they will be categorized into two com-
ponents. Firstly, there will be static loads representing the weight of the train, supple-
mented by dynamic loads represented as a function of space. These loads will move
along the track at a constant speed v, with each load separated from the next by a
distance Dj , which refers to the spacing between each pair of wheels composing a
train.

Thus, the total force applied to the system under examination is expressed in Equa-
tion 2, where the first term accounts for the reaction forces generated by the supports,
and the second term represents the forces due to the passage of trains.

F (x, t) =
∑
n∈Z

m−1∑
p=0

Rp(t−
nL

v
)δ(x−pl−nL)−

K∑
j=1

(Qj,stat+Qj,dyn(x))δ(x+Dj−vt)

(2)
From the last expression, and as shown in figure 1, Rp corresponds to the reaction

support forces, L to a section length, l to the distance between consecutive supports
and Qj to the force contribution attributed to the train transit. Qj is then divided
into its static and dynamic component. Qj,stat corresponds to a constant force, so it
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comes to a term remaining the same over space and time, whereas Qj,dyn is a term
consisting on an amplitude (Qd) of a force times a function in space describing the
force’s application behavior. Expressing the dynamic term of the force yields,

Qj,dyn(x) =
∑
n∈Z

Qd,j fj(x− nL) (3)

fj is a function defined in [−L
2
, L
2
], describing the jth force distribution and is null

outside this domain.
On the other hand, the rail will be modeled using the Timoshenko beam theory,

which is suitable for analyzing a wide range of frequencies and provides results closer
to reality when the train’s speed is significant and the spacing between supports is
small [5]. The dynamic equation governing the behavior of the beam is as follows, ρS ∂2wr(x,t)

∂t2
= κSG

(
∂2wr(x,t)

∂x2 − ∂ϕr(x,t)
∂x

)
+ F (x, t)

ρI ∂2ϕr(x,t)
∂t2

= EI ∂2ϕr(x,t)
∂x2 + κSG

(
∂wr(x,t)

∂x
− ϕr

) (4)

Where E, I , wr, ϕr, ρ, S, and κ represent, respectively, the Young’s modulus, the
moment of inertia, the vertical displacement of the beam, the rotation of the beam’s
section, the mass density, the section area, and the shear factor of the beam’s section.

2.2 Dynamic state equations development

The method described here reduces the number of unknowns by employing the as-
sumption of ”periodic conditions”. This means that due to the system’s periodicity, the
response of a support m located at x = 0 will be identical to that of a support located
at a distance L, as they possess the same equivalent stiffness (Kq = Kq+nm, ∀n ∈ Z)
and experience similar loading. The response of the support situated at L will conse-
quently exhibit a time delay of L

v
relative to that of the support at x = 0. This periodic

condition is extended to the force application term, which shall be spacially and tem-
porally periodic to garanty a proper stablishment of the problem. Accounting for the
periodicity of the system, the relationship between reaction forces among supports of
different placements and the forces applicated to the system is respectively expressed
as follows, {

Rnm+p(t) = Rp(t− nL
v
), ∀n ∈ Z

F (x, t) = F (x− nL, t− nL
v
), ∀n ∈ Z

(5)

Rp(t), situated in the domain 0 ≤ p < m and at the coordinate x = pl, denotes the
reaction force of support p.

In addressing the problem, Hoang and Claudet employed an approach, that will be
adopted here as well, relying on the Fourier series decomposition of periodic functions
that depict the phenomenon.
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In order to solve the system of equations proposed in 4, Hoang et al. [4] propose
applying the Fourier transform with respect to t, and then to use the Fourier series
expansion with respect to x. Timoshenko’s beam dynamic equation Fourier transform
with respect to t results in,{

κSG∂ϕ̂r(x,ω)
∂x

= κSG∂2ŵr(x,ω)
∂x2 + ρSω2ŵr(x, ω) + F̂ (x, ω)

−κSG∂ŵr(x,ω)
∂x

= EI ∂2ϕ̂r(x,ω)
∂x2 + (ρIω2 − κSG)ϕ̂r(x, ω)

(6)

Furthermore, by following the same procedure for equation 2, and introducing xp =
pl, it becomes,

F̂ (x, ω)

e−iω x
v

=

(∑
n∈Z

m−1∑
p=0

R̂p(ω)e
iω

xp
v δ (x− nL− xp)

−
K∑
j=1

(Qj,stat +
∑

n∈ZQd,j fj(x− nL)

v
e−iω

Dj
v

)
(7)

Thus, we can notice that F̂ (x, ω)eiω
x
v is L-periodic. So by setting,

ŵr(x, ω) = Ψ(x, ω)e−iω
v
x and ϕ̂r(x, ω) = Φ(x, ω)e−iω

v
x (8)

It is possible to rewrite equation 6. Therefore, it becomes,

κSG
(
∂Φ
∂x

− iω
v
Φ
)
= κSG

(
∂2Ψ
∂x2 − 2 iω

v
∂Ψ
∂x

− ω2

v2
Ψ
)
+ ρSω2Ψ+ ei

ω
v
xF̂ (x, ω)

κSG
(
iω
v
Ψ− ∂Ψ

∂x

)
= EI

(
∂2Φ
∂x2 − 2 iω

v
∂Φ
∂x

− ω2

v2
Φ
)
− (κSG− ρIω2) Φ

(9)

At this point, by performing a Fourier series expansion of Φ(x, ω) and Ψ(x, ω) it
is possible to find a solution to the system expressed in equation 9, by using Floquet’s
theorem. The Fourier series expansion of Φ(x, ω) and Ψ(x, ω) takes the following
form,

Ψ(x, ω) =
∞∑

n=−∞

pn(ω)e
i2πn x

L and Φ(x, ω) =
∞∑

n=−∞

qn(ω)e
i2πn x

L (10)

Where pn and qn are the Fourier coefficients for Ψ(x, ω) and Φ(x, ω) respectively.
Moreover, equation 7 being L-periodic, its Fourier coefficients are computed by

setting,

1

L

∫ L/2

−L/2

F̂ (x, ω)eiω
x
v e−2iπn x

L dx =
1

L

m−1∑
p=0

R̂p(ω)e
i(ω

v
− 2πn

L )xp −
K∑
j=1

[
δ0n
v
Qj,stat e

−iω
v
Dj

+
Qd,j e

−iω
v
Dj fj,n

Lv

]
(11)
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Where by the properties of the Dirac delta, δ0n = 1 if n = 0, and δ0n = 0 if n ̸= 0. In
the other hand, fj,n is the Fourier coefficient of the function fj(x) defined by fj,n =
1
L

∫ L
2

−L
2

fj(x)e
−2πin x

Ldx.

Now, the Fourier series expansion of equation 9 is performed. This comes to re-
placing equation 10 and 11, into equation 9, and then doing the expansion of the
derivatives with respect to x accordingly. From these operations equation 9 becomes,

κSG
(
i2πn
L

− iω
v

)
qn = −κSG

(
ω
v
− 2πn

L

)2
pn + ρSω2pn +

R̂n(ω)
L

−
(

δ0nQS(ω)
v

+ Q̂D
n (ω)
v

)
κSG

(
iω
v
− i2πn

L

)
pn = −EI

(
ω
v
− 2πn

L

)2
qn − (κSG− ρIω2) qn

(12)
With, 

R̂n(ω) =
∑m−1

p=0 R̂p(ω)e
i(ω

v
− 2πn

L )xp

QS(ω) =
∑K

j=1Qj,stat e
−iω

v
Dj

Q̂D
n (ω) =

∑K
j=1Qd,j e

−iω
v
Djfj,n

By isolating qn from the second equation of system 12 and reinjecting it into 11,
we have that the Fourier coefficients for Φ(x, ω) and Ψ(x, ω) become respectively,

pn = p̃nR̂n(ω)−
(
δ0n

p̃0L
v
QS(ω) + p̃nL

v
Q̂D

n (ω)
)

qn = q̃nR̂n(ω)−
(
δ0n

q̃0L
v
QS(ω) + q̃nL

v
Q̂D

n (ω)
) (13)

p̃n, q̃n, and zn can be calculated through the following expressions according to [4],


p̃n =

κSG−ρIω2+EI(ω
v
− 2πn

L )
2

Lzn

q̃n = − iκSG(ω
v
− 2πn

L )
Lzn

zn = κSGEI
(
ω
v
− 2πn

L

)4 − ρISω2(κG+ E)
(
ω
v
− 2πn

L

)2
+ ρSω2 (ρIω2 − κSG)

Replacing equation 13 into 10, we obtain the following relations,

Ψ(x, ω) = R̂n(ω)
∑∞

n=−∞ p̃ne
i2πn x

L −
(

p̃0L
v
QS(ω) +

∑∞
n=−∞

Q̂D
n L
v

p̃ne
i2πn x

L

)
Φ(x, ω) = R̂n(ω)

∑∞
n=−∞ q̃ne

i2πn x
L −

(
q̃0L
v
QS(ω) +

∑∞
n=−∞

Q̂D
n L
v

q̃ne
i2πn x

L

)
(14)

In order to express equation 14 in a more compact and intuitive way, let’s define,

η(x, ω) =
∑∞

n=−∞ p̃ne
i 2πnx

L

γ(x, ω) =
∑∞

n=−∞ q̃ne
i 2πnx

L

(15)
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Thus, we can finally obtain an expression to define the vertical displacement at
position x of the beam (rail), and at frequency ω. Introducing the first equation of
system 15 into the first equation of 14, and considering the relation defined in 8, we
get,

ŵr(x, ω) =
m−1∑
p=0

R̂p(ω)e
iω
v
(xp−x)η(x− xp, ω)−

K∑
j=1

(
p̃0L

v
Qj,state

−iω
v
Dj

+
∞∑

n=−∞

p̃ne
i 2πn

L
xQd,jL

v
e−iω

v
Djfn,j

)
e−iω

v
x

(16)

The equation 16 can be rewritten in the following form in order to be compare to
the beam displacement expression that can be found in other texts such as [1, 4]

ŵr(x, ω) =
m−1∑
p=0

R̂p(ω)e
iω
v
(xp−x)η(x−xp, ω)−

(
η(0, ω)QS(ω) + Q̃⋆

D(ω)
)
e−iω

v
x (17)

With,



∀x ∈ [0;L], η(x, ω) =
ei

ωx
v

2EI (λ2
1 + λ2

2)

[
C1

λ1

sinλ1(L− x) + e−iωL
v sinλ1x

cosLλ1 − cos ωL
v

−C2

λ2

sinhλ2(L− x) + e−iωL
v sinhλ2x

coshLλ2 − cos ωL
v

]

QS(ω) =
p̃0L

v
η(0, ω)−1

K∑
j=1

Qj,state
−iω

Dj
v

Q̃⋆
D(ω) =

K∑
j=1

∞∑
n=−∞

p̃ne
i 2πn

L
xQd,jL

v
e−iω

v
Djfn,j

C1,2 = 1−
ρIω2 ∓ EIλ2

1,2

κSG

p̃0L =
κSG− ρIω2 + EI ω2

v2

κSG
(
EI ω4

v4
− ρSω2

)
− ρSI (κG+ E − ρv2) ω4

v2

Equation 17 is the result of the periodic property inherent in the system of interest
and the dynamic equation of the Timoshenko beam.

The term Q̃⋆
D(ω) implicitly contains the existing interaction between the beam’s

behaviour and the dynamic loading. Having into account that the problem treated
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here comes to a direct problem solution, the function Qj,dyn(x) is given and expres-
sion 16 can be solved. Section 3 presents few study case when imposing a function
to Qj,dyn(x) in order to asset the railway track’s behaviour subjected to static and
dynamic loading.

To propose a general form, let’s set x = xq. In this case, considering that η(x, ω) is
L-periodic, then η(q,p)(ω) = η(q,m+p)(ω) = η(xp − xq, ω). Furthermore, we highlight
the relation between the displacement for the general formulation, where ŵq(ω) =
ŵr(xq, ω)e

iω
v
xq .Thus, equation 17 consequently becomes,

ŵq(ω) =
m−1∑
p=0

ηq,pR̂p(ω)− (η0(ω)QS(ω) + Q̃⋆
D) (18)

Or written in a matricial form,

Cp R̂ = ŵ + (η0QS1+ Q̃⋆
D) (19)

In equation 19, we have a relationship between the support reaction force and the
vertical displacement of the beam. However, we do not yet know any of these two
values. To do this, it is necessary to introduce an additional relation that will come
from the equation of dynamic stiffness of the support motif. The discussion to come
will therefore be intended to address the various existing formulations to have a re-
lationship between the vertical displacement of the supports and its reaction force, in
order to calculate the response of the railway track subjected to loads.

2.3 Direct reponses computation

For cases where we want to calculate the track response for a configuration with only a
few dozen supports and where the reaction forces that provide the supports are linearly
related to displacement, it is preferable to use the direct formulation proposed here.
This formulation is based on the support stiffness equation, which in its matrix form
is written as follows:

ŵ = −D R̂ (20)

Equation 20 is the last relation we need to calculate the track response. In equation
20, the unknown vector is the vector of reaction forces R̂. However, the support stiff-
ness equation can also be formulated so that the unknown vector is the one containing
the displacements of the supports, as follows:

R̂ = −K ŵ (21)

For the force formulation described by equation 20, D contains the inverses of the
dynamic stiffnesses of the supports of the motif in its diagonal. This can be expressed
as follows:
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D =


k−1
s,0 · · · · · · 0
... k−1

s,1

...
... . . . ...
0 · · · · · · k−1

s,m−1


By replacing equation 20 into equation 19,

R̂ = A−1(1η0QS + Q̃⋆
D) (22)

With A =
(
Cp +D

)
.

As for the displacement formulation described by equation 21, K is the matrix
containing the dynamic stiffnesses of the supports of the motif L in its diagonal. It has
the following form:

K =


ks,0 · · · · · · 0

... ks,1
...

... . . . ...
0 · · · · · · ks,m−1


By replacing equation 21 into equation 19,

ŵ = −B−1(1η0QS + Q̃⋆
D) (23)

With B =
(
Cp K+ I

)
.

For the formulations presented above, at each frequency, the matrices A and B of
dimensions m×m must be calculated, and then inverted. The formulation of equation
22 is preferable when we want to know the impact of a stiffer support in a motif. On
the contrary, to know the effect of supports with low (or even zero) stiffness in a motif,
it is preferable to use equation 23.

3 Study case

In the present section a dynamic loading function is going to be imposed. To simplify
expressions and make the analysis easier to perform, we are going to treat the case
where the structure is going to be loaded by the passage of only one wheel (Dj = 0
and K = 1). Applying this previously simplification, the equation describing the
railway’s track vertical displacement comes to,
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ŵq(xq, ω) =
m−1∑
p=0

R̂p(ω)e
iω
v
(xp)η(xq − xp, ω)−

(
p̃0L

v
Qstat +

∞∑
n=−∞

p̃nL

v
ei

2πnxq
L fn

)
(24)

The mechanical parameters describing the Timoshenko’s beam beaviour are pre-
sented in table 1.

Parameter Notation Value
Rail mass ρS 60 kg ·m−1

Rail flexion stiffness EI 6.38MN ·m2

Timoshenko’s ratio κ 0.4
Shear modulus G 8.077GPa
Train’s speed v 37 m · s−1

Block’s mass M 100 kg
Suppports spacing l 0.6 m
Railpad stiffness kr 192MN ·m−1

Railpad damping ξr 1.97MN · s ·m−1

Under-sleeper stiffness kf 26.4MN ·m−1

Under-sleeper damping ξf 0.17MN · s ·m−1

Table 1: Parameters used for railway’s track responses computation.

For this example, the dynamic loading Qdyn(x) will take the form of a Heaviside
step function, defined as follows,

Qdyn(x) = H(x) =

{
A if x ∈ [−− a, a]

0 otherwise

Being A the dynamic loading amplitude. When performing a Fourier transform over
this last function, it takes the following form,

fn =

{
sinπn a

L

πn
, n ̸= 0

a
L
, n = 0

Thus, the expression to compute the railway track vertical displacement becomes,

ŵq(xq, ω) =
m−1∑
p=0

R̂p(ω)e
iω
v
(xp)η(xq−xp, ω)−

(
p̃0L

v
Qstat +

∞∑
n=−∞

p̃nL

v
ei

2πnxq
L

1

πn
sin(

πna

L
)

)
(25)

From this point, we establish that the section of ballastless railway track to be stud-
ied in this case will consist of m = 40 equally spaced supports with the mechanical
properties outlined in Table 1.
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Figure 2: Loading conditions used to compute the railway’s track response (on the
left). Maximum reaction force experienced by each support n over the im-
posed loading conditions (on the right).

Three different cases will be considered. The first two cases represent the railway
track statically loaded by a force Qstat = 90N/m for the first case and Qstat = 110N/m
for the second case. This loading condition models a constant force moving along the
structure at a constant speed of v = 37m/s. The third case to be studied will consider
the same railway track loaded by a force traveling at the same speed as before, having
a static component where Qstat = 90N/m and a dynamic component where the support
n = 0 will experience a load amplitude A = 20 kN when the moving load passes over
it.

Figure 2 illustrates the loading conditions imposed on the structure, along with the
maximum reaction forces experienced by each of the supports for the three different
cases studied. In case 3, it can be observed that the supports located far from the
zone where the dynamic shock occurs have the same reaction force as the supports
studied in case 1. This aligns with our expectations, as the dynamic loading at a distant
location would already be absorbed by the supports located nearby to the dynamic
loading zone. Consequently, support n = 0 from case 3 exhibits the same response as
the supports in case 2 since they would be subjected to the same total load. Finally,
for the supports located at n0 ± 5, they represent a transition zone where the supports
are initially loaded, then perturbed, and after the perturbation dissipates, they return
to their equilibrium state.

4 Concluding remarks

This article utilizes Timoshenko beam theory on a condition that considers a peri-
odic structure to calculate its response to a load. Incorporating the contribution of
dynamic loads into this analytical model of railway track presents significant interest
when aiming to perform pre-dimensioning calculations of the track or to reliably and
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quickly assess how changes in various parameters may affect track behavior. By repre-
senting realistic force formulations, this approach enables exploration of maintenance
strategies by assessing the impact of various parameters, such as support spacing in
overloaded areas. Moreover, it offers insights into the track’s behavior under pre-
cise dynamic loading functions, facilitating the study of how the structure responds to
simulated track defects or wheel irregularities.
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[6] X. Zhang, D. Thompson, X. Sheng, “Differences between Euler-Bernoulli and
Timoshenko beam formulations for calculating the effects of moving loads on
a periodically supported beam”. Journal of Sound and Vibration, 481, 115432,
2020.

12


