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Abstract 

In this study, a novel assessment approach of in-vehicle speech intelligibility is presented using 

psychometric curves.  Speech recognition performance scores were modeled at an individual listener level, 

for a set of speech-recognition data previously collected under a variety of in-vehicle listening scenarios.  

The model coupled an objective metric of binaural speech intelligibility (i.e. the acoustic factors) with a 

psychometric curve indicating the listener’s speech recognition efficiency (i.e. the listener factors). In 

separate analyses, two objective metrics were used with one designed to capture spatial release from 

masking and the other designed to capture binaural loudness.  The proposed approach is in contrast to the 

traditional approach of relying on the speech recognition threshold, the speech level at 50% recognition 

performance averaged across listeners, as the metric for in-vehicle speech intelligibility.  Results from the 

presented analyses suggest the importance of considering speech recognition accuracy across a range of 

signal-to noise ratios rather than the speech recognition threshold alone, and the importance of considering 

individual differences among listeners when evaluating in-vehicle speech intelligibility.  

 



1. Introduction 

The perceived vehicle sound quality is strongly correlated with psychoacoustic metrics [1] that 

quantify subjective perception about objective physical characteristics of sounds.  The development of the 

vehicle sound quality performance is becoming more stringent with the increasing use of electric vehicles 

[2].  Vehicles are viewed as one of the most challenging speech communication environments for both 

normal-hearing and hearing-impaired listeners [3 – 6].  The effectiveness of in-vehicle speech 

communication can also affect the perception of the overall vehicle quality.  Vehicle interior noise is the 

main cause of the reduction in speech intelligibility.  Previous research investigated in-vehicle speech 

intelligibility and the effects of the vehicle interior noise spectral content, speech directivity, talker/listener 

distance, binaural listening, hearing profile [7, 8, 9, 10, 11, 12, 13], and speech optimization for improved 

intelligibility of voice messages by driving assistance systems in vehicles [14]. 

The prediction of speech intelligibility is challenging when the speech and background noise at the 

two ears are different.  In such situations, it is crucial to consider binaural speech intelligibility models, as 

shown in recent investigations of in-vehicle speech intelligibility [15, 16].  Previously, binaural recordings 

of speech stimuli in various vehicle running conditions have been made and speech recognition data were 

collected from a cohort of normal-hearing individuals [17].  This raw data (binaural recordings) were used 

in a recent study [16], where two models of binaural hearing have been utilized to fit the data with some 

success in predicting the average speech recognition threshold (SRT), i.e. the speech level relative to the 

noise level (SNR, signal-to-noise ratio) at which a 50% recognition performance is achieved across the 

listeners.   

Modeling in-vehicle speech ineligibility while focusing only on the average SRT has at least two 

drawbacks.  First, this approach would not be able to generate predictions of speech recognition 

performance in terms of percentage correct in word recognition for a given test condition.  In practice, it is 

often useful to estimate the speech recognition scores for a fixed speech level in various test conditions, 

rather than the speech level required to reach 50% performance in these conditions.  Second, even among 

listeners with normal-hearing, individual differences in the efficiency of speech recognition may be 



significant [18, 19].  These types of individual differences have been neglected in research investigations 

of in-vehicle speech intelligibility.  The aim of the present study was to use predictive models to generate 

predictions of not only the average performance across listeners, but also the expected variability among 

individual listeners. Representing the spread of the predicted speech recognition performance could better 

assist in vehicle design and regulatory decision making. 

The current study directly addresses the two limitations stated above by extending binaural speech 

intelligibility models to make predictions of in-vehicle speech recognition scores for individual listeners.  

In particular, psychometric functions are developed that link these scores to the objective predictive indices 

produced by models of speech intelligibility.  Fitting psychometric functions is a common technique in 

psychoacoustics to establish the relationship between the proportion of correct responses as a function of 

signal strength (e.g., [20, 21, 22]). For example, for a speech intelligibility task, as the sound pressure level 

of the speech signal increases, listeners’ percent correct will increase monotonically from chance to 100% 

correct [23 – 26].  As mentioned above, the SRT is defined at some point along the psychometric function 

(e.g., the 50%-correct point).  The slope of the psychometric function at the SRT indicates the rate at which 

speech recognition score changes with SNR [27].  

The applications of psychometric function include evaluating speech intelligibility models [28], the 

effects of the hearing aids’ algorithms on speech intelligibility [29, 30, 31], predicting speech intelligibility 

using automatic speech recognition system and neural networks [32], electrophysiological and behavior 

measures of speech intelligibility [33], and the effects of aging on the masked speech recognition tasks [34]. 

The current study formulates psychometric functions that relate objective metrics of speech 

intelligibility to speech recognition performance and introduces computational procedures to fit the 

psychometric functions to individual listeners’ responses from a speech recognition experiment.  The 

psychometric function threshold and slope parameters could vary from one listener to another, but were 

assumed independent of stimulus conditions.  The effects of stimulus condition and individual listeners 

were separated into the front-end objective metric and the psychometric function, respectively.  Such 

evaluation is new for in-vehicle speech intelligibility applications.   



In the following sections, the formulation of the psychometric functions and the computational 

steps to fit such function is introduced.  This is followed by brief descriptions of the objective metrics of 

binaural speech intelligibility utilized in the current study.  Finally, analysis results by fitting the 

psychometric functions to a set of previously collected speech recognition data involving background noise 

and speech obtained in a vehicle dynamometer test chamber are presented.   

The present analysis utilizes some of the raw data of Samardzic et al. (2012) [17], specifically the 

speech and noise spectra at the speech reception threshold (SRT).  For a detailed discussion of the 

significant characteristics of the background noise, speech and background noise measurements, vehicle 

and human participants’ information and jury testing using a driving simulator, see [17]. The present study 

also uses two speech intelligibility models previously used to predict the corresponding SRTs [15,16] and 

focuses on a dataset for which they give similarly good predictions. What is new here is the psychometric 

function method that is proposed both to compare model predictions and allow prediction of full 

psychometric functions instead of SRT predictions alone.  Some data and model predictions at the SRT are 

re-used here to illustrate this new method; while additional model predictions above and below the SRT 

were produced to be able to consider full psychometric functions. 

2. Predicting Speech Recognition Performance Using Psychometric Functions 

Numerous objective metrics of speech intelligibility, such as the Speech Intelligibility Index (SII, 

ANSI S3.5, 1997, [35]), the Speech Transmission Index (STI, IEC 60268-16, 2003, [36]), and the Short-

Time Objective Intelligibility (STOI, Taal et al., 2011, [37]), have been developed over the past decades.  

These models are developed to capture the influences from various stimulus conditions on speech 

intelligibility performance.  The conditions such as the spectrum of the background noise, the amount of 

reverberation, and the spatial locations of the speech and noise sources relative to the listener, would yield 

the same speech recognition performance as long as the objective (model) predictors calculated for the 

conditions are identical.  



In order to predict speech recognition scores for a listener, a psychometric function can be used to 

relate the objective predictor to proportion correct in speech recognition.  The psychometric function takes 

the form of a logistic function: 

�correct =
�

������	�
�  ,  (1) 

where pcorrect is the proportion correct in speech recognition; z is the objective metric of speech intelligibility; 

and α and β are the threshold and slope parameters of the psychometric function, respectively. The threshold 

parameter α corresponds to the value of the objective metric that corresponds to 50% correct in speech 

recognition). The slope parameter β specifies, at 50% correct, the rate at which the performance score 

increases as the value of the objective metric increases. A greater β value indicates a steeper slope, while a 

smaller β value indicates a shallower50 

 slope.  The logistic function, as specified in Eq. 1 is a common way to formulate psychometric function in 

psychoacoustics [22, 38, 39].  Specifically, the logistic psychometric function is used to describe speech 

recognition performance as a function of SNR [23, 27, 40, 41]. 

In the current modeling approach, the threshold and slope parameters of the psychometric function 

are assumed independent of stimulus conditions but allowed to vary from one listener to another.  Therefore, 

the current model implementations separate the effects of stimulus condition and individual listeners into 

the front-end objective metric and the psychometric function, respectively.  

The psychometric function parameters may be estimated using data collected from a speech 

recognition experiment. This is done first by computing the objective metrics associated with the stimuli 

used during all test trials in the experiment. For example, based on the stimuli on the ith trial of the 

experiment, the model produces a metric zi. For any pair of α and β parameters, the proportion correct in 

keyword recognition pi can be predicted by the logistic psychometric function according to Eq. 1. Let ri 

indicate the number of keywords out of the total of mi keywords correctly recognized by the listener on the 

ith trial. Then the log likelihood of the model based on the ith trial is: 



log ����, ��  = �� log �� + ��� − ��� log�1 − ���.  (2) 

If the speech recognition performance is scored on the sentence level, then mi = 1, and ri is either 1 or 0 

indicating the success or failure in recognizing the sentence, respectively. The model can then be fitted to 

the experimental data by finding the α and β values such that: 

��, �� = argmax
 ,!

∑ log ����, �� � .   (3) 

In practice, the estimated α and β parameters may be influenced by the test stimuli used in the speech 

recognition experiment. For example, the threshold and slope of the psychometric function may vary 

depending on whether the target speech is nonsense syllables, monosyllabic words, spondees, or sentences; 

the slope of the psychometric function may also change when the background noise contains envelope 

fluctuations or consists of competing speech (e.g., [27]).  On the other hand, when listeners are tested using 

the same stimuli in an experiment (e.g. same speech and noise material), the variations in the estimated α 

and β parameters across listeners reflect the listener-specific factors that impact speech understanding. In 

such a situation, a higher α estimate suggests that the listener requires a greater degree of speech audibility 

to achieve 50% recognition, while a lower α estimate suggests that the listener is highly efficient in speech 

recognition. Further, a higher β estimate suggests the listener’s speech recognition performance may 

improve sharply as speech audibility improves, while a lower β estimate suggests the expected benefit from 

the improvement in speech audibility for the listener may be limited.  

3. Applying Psychometric Functions to In-Vehicle Speech Recognition  

This section provides a demonstration of the modeling approach described in the previous section.  

Psychometric functions were fitted to previously collected speech recognition data.  First, the participants, 

stimuli, and procedure involved in the original speech recognition study are briefly described. Two 

objective metrics that were used to generate predictions of speech intelligibility in terms of SRT are then 

described.  This is followed by a description of the computational procedures for fitting the psychometric 

functions.  Finally, results from the analysis are presented.  The goal of this demonstration is to illustrate: 



(1) how to link the objective metrics to speech recognition accuracy through fitting the psychometric 

function, and (2) how the psychometric functions from individual listeners may vary widely even under 

acoustically identical testing conditions. 

3.1. In-vehicle speech recognition data 

The intelligibility of speech was assessed in the presence of vehicle background noise, during a 

driving simulation, using a Brüel&Kjær NVH Desktop Simulator.  The SRT was evaluated with 30 listeners 

from University population who volunteered to participate in the experiment.  The listeners included 18 

males and 12 females between ages of 19 and 30. The average age of the participants was 24 (standard 

deviation 3.2).  All participants reported normal hearing and no hearing difficulties. 

The SRT was measured for two background noise conditions, at 50 kph and 100 kph, and defined 

as the SNR required for 50 % of sentences to be correctly identified, using the recommended procedure for 

the ‘‘hearing in noise test” (HINT, [42]); scoring at the sentence level.  Prior to the SRT evaluation, both 

speech and background noise recordings were needed to create a driving simulation, with speech and noise 

presented through headphones in the driving simulator.  The binaural background noise recordings were 

obtained in a vehicle semi-anechoic four-wheel chassis dynamometer test chamber [17], both at a low speed 

(50 kph) and a high speed (100 kph) using a small sized sedan with a gasoline-fueled 1.8L inline 4-cylinder 

engine, and with a listener head and torso simulator (HATS 4100).  The speed was adjusted using an 

actuator attached to the throttle pedal and the transmission selector was set to drive during the measurements 

to simulate actual vehicle operation.  The background noise measurements did not account for the 

contribution of wind noise.  Vehicle dynamometer rollers with textured coverings were utilized to simulate 

rough roadway surface conditions.  The roller assembly noise rating was less than 50 dBA at 1 meter above 

the rolls at 60 miles per hour.  The test chamber background noise rating was NC-20.   

The speech signal was initially recorded in quiet, in a semi anechoic chamber. The speech 

recordings utilized a talker and a listener HATS unit (Type 4128 and 4100, respectively), to accurately 

capture the directionality of the emitted speech and binaurally received speech inside an operating vehicle. 



The speech material (HINT) sentences were prerecorded in the vehicle with the simulated talker (HATS) 

at three positions: passenger front (F), rear left (L), or rear right (R) seat.  Prior to making the in-vehicle 

speech recordings, the HINT speech calibration signal was played in an anechoic chamber to determine the 

voltages required to generate the sentences at the desired emitting levels in the vehicle, and equalized in 

order to adjust its spectrum at a one-meter distance from the artificial mouth, using the IEC standard 

specification for male speech (IEC 60268-16: 2003, [36]).  The spectrum levels of the HINT sentences 

delivered through the headphones to the human listeners operating a Brüel&Kjær NVH Desktop Simulator 

matched those recorded inside the vehicle to within 0.2 dB, as verified using the HATS and Brüel&Kjær 

NVH Simulator software. For both the speech and noise measurements, the listener was always located in 

the front-left (driver’s) seat. The talker was located in the passenger front (F), rear left (L), or rear right (R) 

seat (Figure 1).  These three configurations were used for both low- and high-speed conditions, for a total 

of six test conditions. 

 

 

Figure 1: Vehicle speech and noise example measurement configuration with a talker tested in the 

passenger front position (F).  Other possible talker locations were the passenger rear right (R) and 

rear left (L) positions.  The listener was always simulated as the driver (D) position. 



3.2.  Objective metrics of in-vehicle speech intelligibility 

According to the modeling procedure described in Sec. 2, to predict speech recognition 

performance, it is necessary to select an appropriate objective index of speech intelligibility to be 

implemented with the psychometric function. In the current analysis, two separate objective metrics were 

chosen based on previous modeling studies from our group (e.g., [15, 16]). These included the effective 

target-to-masker ratio (effective TMR) based on a model of binaural speech intelligibility proposed by 

Lavandier et al. (2012) [43] and the binaural loudness ratio (BLR) based on a model of binaural loudness 

[15].  

Differences in effective TMR across tested conditions directly predict differences in SRT between 

these conditions. The model lavandier2022 considers the benefit from binaural hearing in terms of the 

reduction in speech recognition threshold in dB relatively to a monaural or co-located condition [44]. This 

model is a slightly updated implementation of the model initially proposed by Lavandier & Culling (2010) 

[45] and it has been validated extensively in anechoic laboratory settings [46, 47], as well as in realistic 

reverberant conditions [43]. On the other hand, the BLR is the ratio of the binaural loudness of the speech 

to the binaural loudness of the noise, both specified in sones.  Therefore, BLR is a dimensionless metric 

(sone/sone).  The binaural loudness is estimated using the computational steps described by Moore et al. 

(2014) [48] and specified in ISO 532-2 (2017), [49]. These indices were selected because they involve 

modeling stages that are representative of binaural hearing, which is necessary to capture the effect of 

reverberation and spatial distribution of sound sources within a vehicle. Both the effective TMR and BLR 

have been previously applied to model the average speech recognition threshold for the in-vehicle test 

conditions considered here, with demonstrated success [16].   

The effective TMR was computed following the procedure recommended for lavandier2022 [44].  

Briefly, the binaural recordings of the target speech and vehicle noise from the recognition experiment were 

inputs to the model.  The model output two indices quantifying binaural hearing phenomena called binaural 



unmasking and better-ear listening, the indices being combined to ultimately calculate TMR, also 

considering the speech intelligibility index (SII) weightings (ANSI S3.5, 1997, [35]).   

The BLR was computed in two steps. First, the binaural loudness of the speech and noise were 

calculated separately using the procedure specified in ISO 532–2 (2017) [49], as implemented in the 

‘‘Connect” software of Brüel&Kjær (Nærum, Denmark). Second, the ratio of these two quantities is taken, 

giving the BLR. 

3.3 Analysis Procedures 

 To fit the psychometric function specified in Eq. 1 to the in-vehicle speech recognition data 

described in Sec. 3.1, the objective metrics (zi) were first calculated for the stimuli used on each trial for 

each participant in the experiment. This was done separately for the effective TMR and BLR. In the original 

speech recognition test, the level of the background noise was calibrated to reflect the actual noise generated 

by the running vehicle in the test chamber. The level of the target speech was varied according to a staircase 

adaptive procedure from trial to trial, as recommended for the assessment of the SRT using the HINT 

sentences [42]. For each of the two objective metrics, all speech levels tested in all six conditions of the 

experiment were used to reconstruct the binaural speech stimuli for each participant. Along with the 

recorded binaural noise stimuli, the objective metrics were calculated for all trials, with one effective TMR 

and one BLR for each trial.  

For each listener, one psychometric function was estimated for each of the two objective metrics 

based on all experimental trials across all six test conditions, excluding the first trial, considered to be a 

practice trial, for each condition. This led to a total of 120 trials of data contributing to the fitting of the 

psychometric function. For each of the effective TMR and BLR, one psychometric function was derived 

according to Eqs. 2-3 from the computed objective metrics (zi) and the responses (ri = 0 or 1) collected from 

the 120 trials using the Psignifit 4 Matlab Toolbox [50]. This was repeated for all 30 listeners. 

3.4 Results 



The fitted psychometric functions are shown in the top panel of Figure 2 for the two objective 

metrics. For the BLR (left), the psychometric function relates the BLR value to the proportion correct in 

sentence recognition. For the effective TMR (right), the psychometric function relates the effective TMR 

to the proportion correct in sentence recognition. Substantial individual differences are present in the 

psychometric functions. At the same BLR value or binaural effective TMR, speech recognition performance 

may vary widely among listeners. It seems that inter-subject variability in understanding speech in noise 

drives the variance in the current dataset. Individual listeners may not be treated as a random factor. The 

current analysis illustrates that individual listeners are often not homogeneous in their efficiency in 

performing a speech recognition task. The lower panels of Figure 2 show the histograms of the estimated 

threshold and slope parameters across the 30 listeners. For the BLR, the estimated threshold parameter has 

a mean of 0.67 and a standard deviation of 0.07, and the estimated slope parameter has a mean of 

255.46%/unit BLR and a standard deviation of 87.79%/unit BLR. For the effective TMR, the estimated 

threshold parameter has a mean of 12.13 dB and a standard deviation of 1.53 dB, and the estimated slope 

parameter has a mean of 7.12 %/dB and a standard deviation of 1.91 %/dB.  
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Figure 2: Panel A: the estimated individual psychometric functions that relate the BLR value to 

percentage correct. Each curve in the panel indicates the psychometric function for one listener, 

estimated by pooling data across the six test conditions. Panel B: Same as panel A, but for 

psychometric functions relate the binaural effective TMR to percentage correct. Panel C: the 

distributions of the estimated psychometric-function thresholds and slopes for BLR. Panel D: Same 

as panel C, but for binaural effective TMR.  

 Using all experimental trials averaged across all six test conditions, Figure 3 shows that the 

estimated individual BLR value and binaural effective TMR at a performance level of 50% are highly 

correlated [r = 1.00, p < .001]. Therefore, the threshold predictions from one model may be converted into 

predictions from the other using a simple linear function. The ability to quickly and conveniently calculate 

indices associated with a variety of validated speech intelligibility models is very useful for the in-vehicle 

speech intelligibility optimization. 

 

Figure 3: The estimated individual binaural effective TMR at the SRT for each of the 30 listeners 

plotted against the estimated individual BLR values at threshold. 

4. Discussion and Conclusion 
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In the current study, a modeling technique is presented to fit psychometric functions to in-vehicle 

speech recognition data. This approach combines an objective metric of speech intelligibility in the acoustic 

environment of interest and a psychometric function that links the objective metric to the speech recognition 

accuracy. The acoustic factors are being modeled by the objective metric based on the in-situ recordings of 

the target speech and background noise, while the factors inherent to individual listeners are being modeled 

by the threshold and slope parameters of the psychometric function. This modeling technique can be applied 

to any speech-recognition data where the trial-by-trial speech and noise stimuli and the listener’s responses 

are available. For modeling in-vehicle speech intelligibility, it is typically possible to reconstruct the speech 

and noise stimuli based on the impulse responses measured from the source to the listener locations. This 

is illustrated in the current study using previously collected in-vehicle speech recognition data [17].  

Through this demonstration, it is shown that the fitted psychometric functions can link an objective 

metric of speech intelligibility to the speech recognition performance in terms of proportion correct. This 

means that once fitted, the fitted model is capable of predicting the listener’s speech recognition 

performance for a novel unseen acoustic situation. For example, it is possible to predict the anticipated 

benefit of a sound treatment applied to a vehicle in terms of an improvement in proportion correct. 

Similarly, the fitted model can be used to determine the suitable acoustic designs that would meet a certain 

minimum speech recognition accuracy for the listener. Of course, this approach assumes that the binaural 

front-end model is able to accurately predict the influence of the acoustic conditions being considered. If 

this assumption cannot be made based on previous model validation, then this front-end model associated 

with the psychometric function will probably not fit the data well, and there would be no way to tell whether 

it is caused by the front-end model or the psychometric curve. The estimated threshold and slope parameter 

may not reflect the characteristics of the listeners but be dominated by errors raised from poor model fits. 

Therefore, only objective indexes that have been validated for comparable test conditions are suitable for 

the current analysis approach. For example, for the vehicle dynamometer condition used in this study, both 

BLR and LAV models resulted in comparable SRT predictions, however, the BLR model has been shown 



to fail to predict SRTs when binaural effects are involved [16], so that it should not be used then.  The 

outcome that binaural effects adversely affect BLR predictions was expected considering a review and 

comparison of existing binaural speech intelligibility models, including their domain of validity, as 

described by Lavandier and Best, 2020 [51]. This review highlights that it is crucial to consider better-ear 

listening and binaural unmasking for accurate binaural intelligibility predictions, and BLR does not model 

these effects. 

When multiple speech-recognition models are compared, coupling these models with psychometric 

functions enabled direct predictions of speech-recognition scores regardless of the specific output variables 

or units of the models (i.e. sone/sone in the BLR model, and dB for TMR in the LAV model).  This means 

that (1) each of the models can be used to fit the trial-by-trial data, (2) the fitted models can be directly 

compared in terms of their likelihood, (3) the model predictions can be compared at performance levels 

other than 50%.  Importantly, fitting psychometric functions to the same data set but with different front-

end models makes sense only when both models accurately predict the same data; only then it is possible 

to calibrate/translate the outputs of the front-end models, usually expressed in different units. 

More importantly, the current study highlights the large individual differences among listeners, 

exposing it as a potential issue when optimizing vehicle interior speech intelligibility based on a 

“model/average listener”.  The cause of the individual differences is complex and related to variations in 

peripheral auditory, central auditory, and cognitive processes [52 – 57].  Additionally, by conducting 

behavioral evaluations of in-vehicle speech recognition, as for the data set used here, the current modeling 

technique allows the establishment of the distribution of the psychometric-function parameters. From this, 

the range of anticipated speech-recognition performances can be predicted. Based on the derived 

distribution, it is possible to determine the proportion of listeners that can achieve a certain level of 

speech-recognition performance for a given acoustic environment.   

Despite the demonstrated promise of the presented modeling approach, there are a number of 

limitations that may be worth considering. First, the threshold and slope parameters of the psychometric 



function depend not only on the inherent speech-understanding efficiency of the listener, but also on the 

material used [27]. Therefore, to enable direct comparisons of the psychometric functions across different 

work sites and vehicle manufacturers, it is necessary to use standardized testing materials for the behavioral 

experiment.  Whether the HINT sentences are the most suitable for this purpose is not clear, and the 

rationale for selecting an appropriate speech material is beyond the scope of the current study. Second, in 

the current formulation of the psychometric function (Eq. 1), the threshold and slope parameters are allowed 

to vary from one listener to another, but assumed independent of test conditions (the influence of which is 

assumed to be properly captured by a binaural front-end model, previously validated for such conditions). 

Therefore, the current model implementations separated the effects of test condition and individual listeners 

into the front-end objective metric and the psychometric-function parameters, respectively. However, this 

approach omits the facts that listeners also vary in their sensory processing of the acoustic inputs. This can 

be in part considered by the model (before the psychometric function). For example, Vicente et al. (2020) 

[58] adapted the model lavandier2022 to take into account the effect of hearing loss and make intelligibility 

predictions for hearing-impaired listeners, thus modelling part of the individual variability.  Lavandier et 

al. (2021) [19] showed that this does not consider all the individual variability, in particular for normal-

hearing listeners. In future updates, it is possible to fit additional parameters of the objective metric that 

represent peripheral and binaural processing to individual listeners’ data. This would help capture the 

potential individual differences not only in speech understanding efficiency but also in auditory capabilities. 
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