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Abstract: Toxoplasma gondii is the etiologic agent of toxoplasmosis, a highly prevalent parasitosis.
Toxoplasma gondii (T. gondii) transits in the brain from acute (AT) to chronic toxoplasmosis (CT),
under host immune control. In immunocompromised patients, reactivation of CT is potentially life-
threatening. Behavioral and neurological complications have been associated with CT. Furthermore,
an effective treatment targeting CT is still lacking. We previously reported the efficacy of imiquimod
against CT. Here, we demonstrate the molecular effects of imiquimod or imiquimod followed by
the clinically used combination of sulfadiazine and pyrimethamine (SDZ + PYR) on CT-associated
behavior in a rat model. Imiquimod decreased the number of cysts in the brains of chronically infected
rats due to an induced reactivation of bradyzoites into tachyzoites. Importantly, this decrease was
more pronounced in rats treated with imiquimod followed by SDZ + PYR. Rats chronically infected
with T. gondii exhibited an anxiety-like behavior. Notably, treatment with imiquimod reversed this
behavior aberrancy, with even a more pronounced effect with imiquimod followed by SDZ/PYR.
Similarly, rats chronically infected with T. gondii exhibited learning deficits, and imiquimod alone or
followed by SDZ/PYR reversed this behavior. Our results enhance our knowledge of the implications
of CT on behavioral aberrancies and highlight the potency of imiquimod followed by SDZ + PYR on
these CT-associated complications.

Keywords: cytokines; imiquimod; immune response toxoplasmosis; toxoplasmosis-associated
behavioral disorders

1. Introduction

Toxoplasma gondii (T. gondii) is an obligate intracellular parasite that infects a broad
range of hosts, including approximately one-third of the worldwide human population [1].
The prevalence of this infection varies according to region [2] and can reach an alarming
percentage of 80% in certain areas [1]. In the United States of America, the Center for
Disease Control and Prevention reported that more than 40 million people are infected with
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T. gondii and classified toxoplasmosis among the neglected parasitic infections requiring
public health action control [3].

T. gondii exhibits three distinct infectious stages: tachyzoites (responsible for acute
toxoplasmosis (AT) leading to tissue damage), bradyzoites (responsible for chronic tox-
oplasmosis (CT) manifested as tissue cysts), and sporozoites (infective forms found in
oocysts shed in cats’ feces). AT develops following tachyzoites’ spread and replication.
Tachyzoites reach the brain and the skeletal muscles and convert into bradyzoite cysts,
initiating CT, after the onset of the host immune system (reviewed in [4]). The brain har-
bors the highest cyst load in humans and murine models [5,6]. These intraneuronal cysts
are controlled but not eliminated by the immune system (reviewed in [7,8]), even after
long-term chemotherapeutic options [9]. In immunocompromised patients, reactivation
of CT still occurs and can be fatal [8,10–13]. Hence, a balance between the host immune
response and the parasitic modulators is at the core of the cysts’ persistence, control, and
progression (reviewed in [8,14]).

Until recently, T. gondii persistence in the brains of healthy individuals was regarded
as clinically asymptomatic, while the effects of CT are not fully explored. However, an
increasing number of associations have been made between various medical conditions and
T. gondii infections with only a little molecular proof. These comprise primary neurological
complications, behavioral and psychiatric disorders, and some brain cancers [15–24]. In
humans, an increasing body of literature indicates that CT is associated with aberrant host
behavior [25] and that T. gondii seropositivity is allied with worse immediate and delayed
verbal learning, language proficiency, executive functioning, processing speed, sustained
attention, working memory, as well as global cognition in older adults [26]. Moreover, CT
influences the progression of psychiatric disorders such as schizophrenia, bipolar disorder,
and obsessive-compulsive disorder [24,27,28]. In T. gondii-infected rodents, behavioral
peculiarities were also reported, where infected animals exhibited attenuated aversion
and fear and did not flee a cat’s urine odor (reviewed in [29]). Furthermore, C57BL/6
mice infected with the type II strain of T. gondii exhibited hyperactivity, anxiety, and
depressive-like behavior in both early and long-term CT, and these behavioral alterations
were paralleled with an upregulation of several cytokines and chemokines [30].

Treatment of toxoplasmosis remains limited to general anti-parasitic/anti-bacterial
drugs (reviewed [31–34]). The recommended first-line therapy remains the synergistic
combination of pyrimethamine (PYR), an inhibitor of dihydrofolate reductase enzyme,
and sulfadiazine (SDZ), an inhibitor of the dihydropteroate synthase [33,35,36]. SDZ/PYR
reversed behavioral and neurocognitive changes and resolved locomotor alterations, anxi-
ety, and depressive-like behavior. Furthermore, this combination partially or transiently
ameliorated hyperactivity and habituation memory loss in rodent models [37]. Yet, this
combination is mostly active on AT, with no or little effect on CT. Anti-Toxoplasma drugs and
compounds identified numerous target-based drug screens [38]. Nevertheless, most of these
drugs were effective only against tachyzoites, and only very few target bradyzoites [38].
Hence, to date, there is no approved therapy that eliminates tissue cysts responsible for
CT [38–40].

Imiquimod is an FDA-approved immune-modulatory drug for topical use against
some viral infections [41]. Imiquimod is an immune response activator [42,43] that binds
TLR-7/TLR-8 [44–47], activating the innate immune response by induction, synthesis, and
the release of pro-inflammatory cytokines from monocytes and other immune cells [42,45].
These include IFN-α, IL-6, and TNF-α [48]. Importantly, imiquimod proved efficient against
parasitic infections such as cutaneous leishmaniasis [41,45,49–51] and toxoplasmosis [33,52].
We indeed previously demonstrated that imiquimod holds a high potency against AT and
CT in murine models [52]. Treatment with imiquimod during AT reduced the number
of brain cysts while rendering the remaining ones un-infectious. Importantly, treatment
with imiquimod, post-establishment of CT, significantly reduced the number of brain cysts,
leading to a delay or abortion of reactivation [52]. At the molecular level, imiquimod
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upregulated the expression of TLRs and the activation of the MyD88 pathway, resulting in
the induction of the immune response to control reactivation [52].

We used a rat model with chronic toxoplasmosis and tested the effect of imiquimod on
CT and its associated behavioral changes using the open field test to study the anxiety-like
behavior and the Morris water maze test to assess learning deficits. Moreover, we examined
the effect of imiquimod followed by the combination of SDZ/PYR on the reactivation of
CT and the reversal of CT-associated behavioral disorders.

2. Materials and Methods
2.1. Preparation of Drugs

Imiquimod (2.5 mg/kg) (SIGMA I5159-200MG; Livonia, MI, USA) was dissolved in
dimethylsulfoxide (DMSO) and freshly diluted in an equal volume of lipofundin-MCT/LCT
20% emulsion (B. Braun Melsungen, AG/D-34209; Melsungen, Germany) prior to the rats’
intraperitoneal injection. Sulfadiazine (200 mg/L) (SIGMA S8626-100G; Roedermark, Ger-
many) was dissolved in water and administered in the rats’ drinking water. Pyrimethamine
(10 mg/kg) [9] (SIGMA 46706–250 mg; Roedermark, Germany) was dissolved in ethanol
and freshly diluted in an equal volume of lipofundin-MCT/LCT 20% emulsion before its
intraperitoneal administration to rats.

2.2. In Vitro Maintenance of Parasites in Human Foreskin Fibroblasts

The 76K strain Toxoplasma gondii was kindly provided by Dr. Mathieux Gissot. Tachy-
zoites were serially passaged in Human Foreskin Fibroblasts (HFFs) (American Type
Culture Collection (ATCC, Manassas, MA, USA)—CRL 1634) cultured in Dulbecco’s Mod-
ified Eagle’s Medium (DMEM) (SIGMA; Roedermark, Germany), supplemented with
10% Fetal Bovine Serum (FBS), 1% penicillin-streptomycin, and 1% glutamine (SIGMA;
Roedermark, Germany).

2.3. Protein Gel Electrophoresis and Western Blotting

A sample of freshly collected tachyzoites of the 76K strain was boiled in Laemmli
SDS PAGE sample buffer and separated on 12% polyacrylamide gels. Proteins were
transferred to nitrocellulose membranes (BIO-RAD Cat# 162-0112; Hercules, CA, USA)
at 30 V overnight using a BIO-RAD transfer unit. Nitrocellulose membranes were cut
into strips that were saturated/blocked for 1 h in 5% non-fat dry milk in wash buffer
(15 mM Tris-HCl (pH 8), 150 mM NaCl, and 0.05% Tween 20). An average of 100 µL of
blood withdrawn from rats was centrifuged at 13,000 rpm for 15 min. Then, strips were
incubated with sera from different rats (10 µL in 1 mL of 5% non-fat milk in wash buffer) at
4 ◦C to check for seropositivity. After washing, the strips were then incubated with Goat
Anti-Rat secondary antibody IgG, peroxidase-conjugated (Invitrogen stock concentration
0.8 mg/mL, dilution of 1:500; Waltham, MA, USA), and revealed with luminol-based
chemiluminescent substrate (BIO-RAD Cat# 170-5061; Hercules, CA, USA), which binds to
the secondary antibody and produces light detected by autoradiography.

2.4. Immunofluorescence Assay

For immunofluorescence assay, Human Foreskin Fibroblast (HFF) cells infected with
the 76K strain (1:3 parasite to cell ratio) for 24 h were fixed with 4% paraformaldehyde
in PBS for 20 min. Permeabilization of cells was then performed in 0.2% Triton for
10 min. Following one PBS wash, the blocking of cells with 10% FBS in PBS for 30 min
was performed. Harvested serum from the infected rats was used as a primary antibody
(dilution 1:10) against tachyzoites. Goat Anti-Rat secondary antibody IgG (Alexa Fluor 488,
2 mg/mL Abcam ab 150157, dilution 1:500; Cambridge, UK) was used to stain the tachy-
zoites (green). Staining of nuclei (blue) was performed using 1 µg/mL of Hoechst 33,342
trihydrochloride trihydrate solution (Invitrogen, H33342; Waltham, MA, USA) for 5 min.
Coverslips were then mounted onto slides using a Prolong anti-fade kit (Invitrogen, P36930;
Waltham, MA, USA). Images were acquired with confocal microscopy using the confocal
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microscope (Zeiss LSM 710, Göttingen, Germany), and the analysis of the images was
performed using Zeiss Zen software (Zen 2.3 Sp1).

2.5. Transcriptional Expression Analysis

Quantitative Real-Time PCR (qRT PCR) was performed using a CFX 384 machine
(BIO-RAD; Hercules, CA, USA). Different primers were used to detect transcripts in the
brains of chronically infected rats with T. gondii upon treatment with imiquimod, sulfa-
diazine/pyrimethamine, or imiquimod followed by sulfadiazine/pyrimethamine (Time-
line Figure 1). In qRT-PCR, individual reactions were prepared with 150 ng of cDNA,
0.25 µM of each of the respective forward and reverse primers (Table 1, Macrogen, Seoul,
Republic of Korea), and SYBR Green PCR Master Mix to a final volume of 10 µL. The PCR
reaction consisted of a DNA denaturation step for 3 min at 95 ◦C, followed by 40 cycles
(denaturation at 95 ◦C for 15 s, annealing at 57 ◦C for 60 s, extension at 72 ◦C for 30 s).
Glyceraldehyde-3-Phosphate dehydrogenase (GAPDH) was used as a housekeeping gene.
Reactions were performed in duplicates, and the expression of individual genes was nor-
malized to GAPDH threshold cycle (Ct) values. The threshold cycle (Ct) corresponds to the
cycle at which there is a significant detectable increase in fluorescence. Data were plotted
by calculating ∆Ct (Cttarget gene − CtGAPDH). The percentage of expression was calculated
according to the Livak method: 2−∆∆Ct [53].
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Figure 1. Timeline schedule for the assessment of the effect of imiquimod followed by the combination
of sulfadiazine and pyrimethamine and imiquimod on chronic toxoplasmosis-associated behavioral
disorders. Briefly, on Day 0, Sprague Dawley rats were injected with 3 million tachyzoites/rat of
76K. On Day 7, the acute phase of the infection was verified, and the rats were allowed to reach
chronic toxoplasmosis (Day 30). A group of rats then were treated with imiquimod alone every other
day for 2 weeks, the second group was treated for 1 week with the combination of Sulfadiazine
and Pyrimethamine, and the third group was treated with imiquimod every other day for 2 weeks
followed by 1-week treatment with the combination of sulfadiazine and pyrimethamine. After that,
behavioral tests were performed with an open field test (OFT) for 3 days, followed by the Morris
water maze (MWM) for 6 days.

2.6. Ethic Statement

This animal study was reviewed and approved by the Institutional Animal Care
and Utilization Committee (IACUC) of the American University of Beirut (AUB) (Permit
Number: #: 21-10-590). All rats were housed in a specific pathogen-free facility with a
12 h ON/OFF light cycle. Humane endpoints were fully respected as per AUB IACUC
following the Association for Assessment and Accreditation of Laboratory Animal Care
International guidelines and guide of animal care use book (Guide, NRC 2011).
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Table 1. Summary of primers used in RT-PCR.

Primer Sequence

Rat GAPDH
Forward 5′-GGCAAGTTCAACGGCACAG-3′

Reverse 5′-CGCCAGTAGACTCCACGAC-3′

SAG-1
Forward 5′-ACTCACCCAACAGGCAAATC-3′

Reverse 5′-GAGACTAGCAGAATCCCCCG-3′

BAG-1
Forward 5 ′-GCGGAGAAAGTGGACGATGATGG-3′

Reverse 5′-GTCGGGCTTGTAATTACTCGGG-3′

Rat IL-1α
Forward 5′-AAGACAAGCCTGTGTTGCTGAAGG-3′

Reverse 5′-TCCCAGAAGAAAATGAGGTCGGTC-3′

Rat IL-1β
Forward 5′-CACCTCTCAAGCAGAGCACAG-3′

Reverse 5′-GGGTTCCATGGTGAAGTCAAC-3′

Rat IL-6
Forward 5′-TCCTACCCCAACTTCCAATGCTC-3′

Reverse 5′-TTGGATGGTCTTGGTCCTTAGCC-3′

Rat TNF-α
Forward 5′-AAATGGGCTCCCTCTCATCAGTTC-3′

Reverse 5′-TCTGCTTGGTGGTTTGCTACGAC-3′

Rat IL-10
Forward 5′-GAAAAATTGAACCACCCGGCA-3′

Reverse 5′-TTCCAAGGAGTTGCTCCCGT-3′

Rat INF-γ
Forward 5′-CAAGGCACACTCATTGAAAGC-3′

Reverse 5′-TACTCGTAGCGGTTCAAGCTC-3′

Rat IL-12
Forward 5′-TGGAGTCATAGGCTCTGGA-3′

Reverse 5′-GTCGTGGTCGAAGAAGTAG-3′

Rat i-NOS
Forward 5′-GCTTGCCCCTGGAACTTT-3′

Reverse 5′-CGAACGGGGACCTTCAAA-3′

LDH-2
Forward 5′-ACAATGGCCCAGGCATTCT-3′

Reverse 5′-CAATAAACATATCGTGAAGCCCATA-3′

2.7. Animals and Experimental Design

One-month-old male Sprague Dawley rats were used in our study (Timeline Figure 1).
On day 0, rats were intraperitoneally injected with 3 million tachyzoites of the 76K type
II strain of T. gondii. On day 7, blood samples were collected from the periorbital sinus
of each rat to verify the establishment of AT. The seropositivity of rats against T. gondii
was assessed using immunofluorescence and western blot assays. CT in seropositive
rats was allowed to develop for 4 weeks [54]. Afterward, the imiquimod treatment was
administered intraperitoneally at the dose of 2.5 mg/kg/day every other day [52] for
2 weeks. One group of rats received imiquimod at a dose of 2.5 mg/kg/day every other
day for 2 weeks, followed by the combination of SDZ/PYR for 1 week, while another
control group received the combination of SDZ/PYR for one week. For the behavioral
testing, rats were divided into 6 groups: uninfected controls untreated (UCU), uninfected
controls treated with imiquimod (UCT), untreated rats infected with T. gondii (TU), rats
infected with T. gondii and treated with imiquimod (TT), infected rats treated with the
combination of SDZ/PYR (TC), and infected rats treated with imiquimod followed by
the combination of SDZ/PYR (TTC). Behavioral analysis was started on day 46 with
2 consecutive behavioral tests: an open-field test (OFT for 3 days) and a Morris water maze
test (MWM for 6 days) (Timeline Figure 1). On day 61, rats were sacrificed, their brains were
collected, and bradyzoite cysts were quantified using an optimized Percoll method [55,56].
Molecular analysis of the brain immune response in respective rat groups was performed.

2.8. Behavioral Tests
2.8.1. Open Field Test (OFT)

The open field test was performed to monitor the locomotor activity, anxiety, and
exploratory-like behaviors. Accordingly, the test was conducted for 3 consecutive days,
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with a 5-min session each day. Rats were placed in an opaque plexiglass square field (W:
80 cm, L: 80 cm, H: 40 cm). The ceiling light was turned off and a circular neon lamp
was placed above the center of the field to maximize contrast between the center and the
periphery. On day 1 of the testing, one small object (cube) was placed in the center of
the field’s floor, and then a novel object (ball, then bottle) was introduced on each of the
two remaining days. On the day of the test, each rat was placed in the nearest corner to
the most recently added novel object, and its movement was recorded. The walls and floor
surfaces of the apparatus were cleaned with odorless detergent and then a 70% alcohol
solution between each trial. The rats’ movements (distance traveled, time spent in each
zone (peripheral versus central), time spent exploring central objects) were separately
measured and analyzed using the SMART video tracking 3.0 software (Panlab, Harvard
Apparatus, Holliston, MA, USA) [57,58].

2.8.2. Morris Water Maze (MWM)

The Morris water maze test was used to assess hippocampal-dependent visuospatial
navigation. The test was performed over consecutive days, with day 1 being the habituation
day, followed by days of spatial acquisition testing, a probe trial, and a visible platform on
the final day. The setup consisted of a blue circular plastic pool, 150 cm in diameter and
80 cm in height (Coulbourn Instruments, Holliston, MA, USA), that was filled with water
(25 ◦C) to a depth of 30 cm. The pool was divided into 4 quadrants (Northeast, Northwest,
Southeast, Southwest) and surrounded by visual cues adhered to the room’s walls. On
the day of habituation, rats were allowed to swim freely for 2 min. During the spatial
acquisition trials for 5 days, an “invisible platform” (transparent plexiglass cylinder) was
placed 2 cm below the water surface in the Northeast quadrant. Each rat was placed in
water and allowed to swim for 2 min to reach the platform. In case the rat did not find the
platform, it was placed on it for 30 s. A total of 4 daily trials were performed for every rat,
each with a 30-s rest time in between, and four equidistant immersion landmarks from the
platform with their sequence changed each day. On day 6, the probe trial was performed to
assess the retention of the spatial learning, where each rat was allowed to swim freely for
2 min without the platform and then was immersed in the quadrant opposite the quadrant
that previously had the platform. On the same day, the rats were allowed to swim to a
visible platform (gray opaque plastic cylinder) placed in the Southeast quadrant, with
4 attempts per rat and 4 different immersion positions in the Northwest quadrant, to assess
for potential motor or visual dysfunction that may affect the experiment. At the end of the
daily trials, each rat was placed under a heating lamp to dry, and the pool was periodically
cleaned. Every trial was video recorded and analyzed using the SMART video tracking 3.0
software (Panlab, Harvard Apparatus, Holliston, MA, USA) to measure the escape latency
period from immersion in the pool until reaching the platform and the time spent in each
quadrant [57,58].

2.9. Statistics

Statistical analysis was performed using the Graph Pad Prism Software (Version 8.4.3)
(t-test, one-way ANOVA with post hoc Fisher’s Least Significant Difference, two-way
ANOVA with post hoc Fisher’s Least Significant Difference). *, **, ***, **** indicate
p-values ≤ 0.05, 0.01, 0.001, and 0.0001, respectively. p-values less than 0.05 were con-
sidered significant.

3. Results
3.1. Establishment of Chronic Toxoplasmosis in Sprague Dawley Rat Model

Rats were injected intraperitoneally with a dose of 3 million tachyzoites. While serum
from not-infected rats showed no reactivity (Figure S1A, upper panel), sera from all tested
infected rats reacted with in vitro precultured tachyzoites with immunofluorescence assay
(Figure S1A, lower panel). Similarly, a complex profile of bands, with a major band at 30 kDa
that corresponded to the surface antigen-1 (SAG-1), was detected using sera from infected
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rats with the 76K strain, as compared to sera from non-infected rats. A representative
western blot of sera from 7 rats infected with T. gondii is shown in (Figure S1B). Collectively,
our results demonstrate that Sprague Dawley rats successfully developed AT following
infection with T. gondii tachyzoites.

3.2. Imiquimod Reduces the Number of Brain Cysts, Induces the Conversion of Bradyzoites to
Tachyzoites, and Stimulates an Inflammatory Immune Response in Chronically Infected Rats

We previously reported that post-establishment of CT, imiquimod significantly abridged
the number of brain cysts in mice. This effect was due to reactivation resulting in the
induction of the immune response to control reactivated Toxoplasma foci [52]. Similarly,
in this study, we demonstrated a sharp decrease in brain cyst number upon treatment
with imiquimod (Figure 2A). This decrease was due to a conversion from bradyzoites
into tachyzoites, as manifested by the significant decrease in Bradyzoite antigen-1 (BAG-1)
transcript levels (p-value < 0.01) and the sharp increase in the tachyzoite surface antigen
SAG-1 (p-value < 0.001) (Figure 2B). Imiquimod-induced reactivation was concurrent with
a significant increase in i-NOS (p-value < 0.01) (Figure 2C) and the pro-inflammatory
cytokines IL-12 (p-value < 0.01), IL-1β (p-value < 0.001), IL-1α (p-value < 0.01), IFN-γ
(p-value < 0.0001), and TNF-α (p-value < 0.01) (Figure 2D). A concomitant increase in the
anti-inflammatory response was also noted (Figure 2E). Indeed, imiquimod induced a
significant increase in IL-10 (p-value < 0.01) and IL-6 (p-value < 0.0001) transcript levels
(Figure 2E), presumably to lessen the pro-inflammatory response induced by reactivated
foci. Altogether, the obtained results in a rat model of CT were exactly similar to those
obtained in mice upon treatment with imiquimod.
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Figure 2. Imiquimod exhibits a potent effect against chronic toxoplasmosis. (A) Number of bradyzoite
cysts in the brain of untreated rats (black) and rats treated with imiquimod (red). Each rat was infected
with 3 million tachyzoites of the 76K strain and treated with imiquimod with a dose of 2.5 mg/kg/day.
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A t-test was performed to validate the significance. **** indicate p-values ≤ 0.0001. p-values less than
0.05 were considered significant. SD (±) is reported. The results depict the sum of 4 independent
experiments. (Untreated, n = 24 brains; imiquimod, n = 26 brains). (B) Quantitative Real-Time PCR of
BAG-1 (left panel) and SAG-1 (right panel) from total brain extracts of untreated rats (black) and rats
treated with imiquimod (red). BAG-1 and SAG-1 expression was normalized to GAPDH. t-test was
performed to validate significance. **, *** indicate p-values ≤ 0.01 and 0.001, respectively. p-values of
less than 0.05 were considered significant. SD (±) is reported. The results depict one representative
experiment among two independent ones. (Untreated, n = 8 brains; imiquimod, n = 8 brains).
(C) Quantitative Real-Time PCR for i-NOS from total brain extracts of untreated rats (black) and rats
treated with imiquimod (red). i-NOS expression was normalized to GAPDH. t-test was performed
to validate significance. ** indicate p-values ≤ 0.01, respectively. p-values of less than 0.05 were
considered significant. SD (±) is reported. The results depict one representative experiment among
two independent ones. (Untreated, n = 6 brains; Imiquimod, n = 6 brains). (D) Quantitative Real-Time
PCR of IL-12, IL-1β, IL-1α, IFN-γ, and TNF-α from the brains of untreated rats (black) and rats
treated with imiquimod (red). IL-12, IL-1β, IL-1α, IFN-γ, and TNF-α expression was normalized to
GAPDH. The results depict one representative experiment among two independent ones. (Untreated,
n = 6 brains; imiquimod, n = 6 brains). (E) Quantitative Real-Time PCR of IL-10 and IL-6 from the
brains of untreated rats (black) and rats treated with imiquimod (red). IL-10 and IL-6 expression
was normalized to GAPDH. t-test was performed to validate the significance. **, ***, **** indicate
p-values ≤ 0.01, 0.001, and 0.0001, respectively. p-values less than 0.05 were considered significant.
SD (±) is reported. The results depict one representative experiment among two independent ones.
(Untreated, n = 6 brains; imiquimod, n = 6 brains).

3.3. Treatment with Imiquimod Followed by the Combination of Sulfadiazine and Pyrimethamine Is
More Effective Than Imiquimod Alone on CT

The recommended first-line therapy of toxoplasmosis is the synergistic combination
of SDZ/PYR [33,35,36]. This combination is mostly active on AT, with no or little effect
on CT [38–40]. Imiquimod-induced reactivation of bradyzoites to tachyzoites prompted
us to examine the efficacy of adding SDZ/PYR after treatment with imiquimod (Timeline
Figure 1). While SDZ/PYR did not exhibit any effect on the brain cyst number (3168 cysts
as compared to 3210 cysts in the untreated group), imiquimod followed by SDZ/PYR
drastically and significantly decreased the number of cysts to 882 cysts as compared to
3210 cysts in untreated groups (p-value < 0.0001) and 1116 cysts in rats treated with im-
iquimod alone (Figure 3A, Table 2). Remarkably, treatment with SDZ/PYR after imiquimod,
but not this combination alone, sharply diminished the transcript levels of SAG-1 in the
brains of infected rats, as compared to rats treated with imiquimod alone (p-value < 0.0001)
(Figure 3B, Table 2). In addition, the transcription levels of the bradyzoite-expressed marker
LDH-2 [59] significantly decreased in the brains of chronically infected rats after treatment
with imiquimod or imiquimod followed by SDZ/PYR (p-value < 0.001), while the combina-
tion SDZ/PYR did not exhibit any significant change in the transcripts of this bradyzoite
marker (Figure 3B). Importantly, treatment with imiquimod followed by SDZ/PYR signifi-
cantly reversed the imiquimod-induced immune response. Indeed, transcript levels of the
pro-inflammatory cytokines IL-12, IL-1β, and IFN-γ significantly decreased in the brains of
chronically infected rats treated with imiquimod followed by SDZ/PYR, as compared to
those treated with imiquimod alone (p-value < 0.0001) (Figure 3C). Similarly, a significant
decrease in the transcript levels of the anti-inflammatory cytokine IL-10 was denoted in the
brains of the group of rats treated with imiquimod followed by SDZ/PYR, as compared to
the group of rats treated with imiquimod alone (p-value < 0.05) (Figure 3D). Altogether, our
results reinforce all data showing that SDZ/PYR is not effective on CT and clearly demon-
strate the higher potency of imiquimod followed by SDZ/PYR on CT when compared to
imiquimod alone.
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Figure 3. Imiquimod followed by the combination of sulfadiazine and pyrimethamine exhibits a more
potent effect against chronic toxoplasmosis than with imiquimod alone. (A) Number of bradyzoite
cysts in the brains of untreated rats (black), rats treated with imiquimod (red), rats treated with
the combination of sulfadiazine and pyrimethamine (green), and rats treated with the combination
of imiquimod, sulfadiazine, and pyrimethamine (orange). Each rat was infected with 3 million
tachyzoites of the 76K strain. Afterward, imiquimod treatment was administered intraperitoneally
at the dose of 2.5 mg/kg/day every other day for 2 weeks to a group of rats. Another group of
rats received imiquimod at a dose of 2.5 mg/kg/day every other day for 2 weeks followed by the
combination of SDZ/PYR for 1 week, while another control group received the combination of
SDZ/PYR for one week. Ordinary one-way repeated measures ANOVA with post hoc Fisher’s
least significant difference (LSD) was used to validate significance. **** indicate p-values ≤ 0.0001,
respectively. p-values less than 0.05 were considered significant. SEM (±) is reported. The results
depict the sum of 2 independent experiments. (Untreated, n = 10 brains; IMIQ, n = 10 brains;
SDZ + PYR, n = 10 brains; IMIQ + SDZ + PYR, n = 10 brains). (B) Quantitative Real-Time PCR of
LDH2 (left panel) and SAG-1 (right panel) from total brain extracts of untreated rats (black), rats
treated with imiquimod (red), rats treated with the combination of sulfadiazine and pyrimethamine
(green), and rats treated with the combination of imiquimod, sulfadiazine and pyrimethamine
(orange). LDH-2 and SAG-1 expression was normalized to GAPDH. Ordinary one-way repeated
measures ANOVA with post hoc Fisher’s (LSD) was used to validate significance. ***, **** indicate
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p-values ≤ 0.001 and 0.0001, respectively. p-values less than 0.05 were considered significant. SEM (±)
is reported. The results depict the sum of 2 independent experiments. For Quantitative Real-Time PCR
of LDH2 (Untreated, n = 9 brains; IMIQ, n = 11 brains; SDZ + PYR, n = 10 brains; IMIQ + SDZ + PYR,
n = 11 brains), for Quantitative Real-Time PCR of SAG-1 (Untreated, n = 9 brains; IMIQ, n = 11 brains;
SDZ + PYR, n = 10 brains; IMIQ + SDZ + PYR, n = 11 brains). (C) Quantitative Real-Time PCR
of IL-12, IL-1β and IFN-γ from the total brain extracts of untreated rats (black), rats treated with
imiquimod (red), rats treated with the combination of sulfadiazine and pyrimethamine (green), and
rats treated with the combination of imiquimod, sulfadiazine, and pyrimethamine (orange). IL-12, IL-
1β, and IFN-γ expression was normalized to GAPDH. Ordinary one-way repeated measures ANOVA
with post hoc Fisher’s (LSD) was used to validate significance. ***, **** indicate p-values ≤ 0.001
and 0.0001, respectively. p-values less than 0.05 were considered significant. SEM (±) is reported.
The results depict the sum of 2 independent experiments. For Quantitative Real-Time PCR of IL-
12 (Untreated, n = 10 brains; IMIQ, n = 10 brains; SDZ + PYR, n = 11 brains; IMIQ + SDZ + PYR,
n = 15 brains), for Quantitative Real-Time PCR of IL-1β (Untreated, n = 12 brains; IMIQ, n = 10 brains;
SDZ + PYR, n = 11 brains; IMIQ + SDZ + PYR, n = 15 brains), for Quantitative Real-Time PCR of
IFN-γ (Untreated, n = 11 brains; IMIQ, n = 11 brains; SDZ + PYR, n = 9 brains; IMIQ + SDZ + PYR,
n = 16 brains). (D) Quantitative Real-Time PCR of IL-10 from the total brain extracts of untreated
rats (black), rats treated with imiquimod (red), rats treated with the combination of sulfadiazine
and pyrimethamine (green), and rats treated with the combination of imiquimod, sulfadiazine,
and pyrimethamine (orange). IL-10 expression was normalized to GAPDH. Ordinary one-way
repeated measures ANOVA with post hoc Fisher’s least significant difference (LSD) was used to
validate significance. *, **, **** indicate p-values ≤ 0.05, 0.01, and 0.0001, respectively. p-values
less than 0.05 were considered significant. SEM (±) is reported. The results depict the sum of
2 independent experiments. (Untreated, n = 12 brains; IMIQ, n = 11 brains; SDZ + PYR, n = 12 brains;
IMIQ + SDZ + PYR, n = 13 brains).

Table 2. Summary of number of cysts and reactivation status per tested condition.

Condition Number of Rats Number of Cysts Reactivation

Untreated 12 3210 No

Imiquimod 11 1116 Yes

Sulfadiazine + Pyrimethamine 12 3168 No

Imquimod followed by
Sulfadiazine + Pyrimethamine 13 882 No

3.4. Anxiety-like Behavior Exhibited by Chronically Infected Rats Is Reversed by Imiquimod and
Further Enhanced When Followed by the Combination of Sulfadiazine and Pyrimethamine

Behavioral changes were reported in T. gondii-infected rodents (reviewed in [29,30]. It
was also demonstrated that SDZ/PYR reversed behavioral and neurocognitive changes and
resolved locomotor alterations, anxiety, and depressive-like behavior in rodent models [37].
We investigated the effect of imiquimod or imiquimod followed by SDZ/PYR on the
exploratory and anxiety-like behaviors of chronically infected rats with T. gondii using the
OFT test (Timeline presented in Figure 1). This test is based on the conflict that arises between
the rats’ natural innate aversion to open-lit areas and their drive to explore. In all sessions,
there was no significant difference in the total distance traveled by the different groups of rats
throughout the whole OFT (Figure S2). Over the three sessions, the untreated Toxoplasma group
(TU) spent significantly more time in the periphery as compared to the uninfected control
(UCU) (p-value < 0.01, p-value < 0.001, and p-value < 0.0001, respectively) (Figure 4A left
panel; Table 3). During the first session, no significant difference was denoted in the time
the treated groups spent in the periphery, as compared to the TU group (ns) (Figure 4A left
panel). However, during the second session, both the TT and TTC groups spent less time in
the periphery as compared to the TU group (p-value < 0.05, and p-value < 0.001, respectively)
(Figure 4B, left panel). Similar results were obtained over the third session (p-value < 0.0001
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for both groups) (Figure 4B, left panel). In all the sessions, the TU group spent significantly
more time in the periphery as compared to the UCU group (p-value < 0.0001) (Figure 4A,
right panel), indicating that the Toxoplasma-infected rats exhibit an anxiety-like behavior.
In all sessions, the TT and the TTC groups spent less time in the periphery compared
to the TU group (p-value < 0.01) and with more statistical significance in the TTC group
(p-value < 0.001) (Figure 4A, right panel; Table 3), indicating that imiquimod treatment
reverses the anxiety-like behavior induced by Toxoplasma infection, with a better effect
for imiquimod treatment followed by the SDZ/PYR. Moreover, over the three sessions,
the TU group spent significantly less time in the center, as compared to the UCU group
(p-value < 0.05, p-value < 0.001, and p-value < 0.001, respectively) (Figure 4B, left panel).
While in the first session, the treatment groups were comparable to TU, in subsequent
sessions they spent more time in the center compared to the TU group; in both the second
session (p-value < 0.05 and p-value < 0.01, respectively) and the third session (p-value < 0.05
for both groups) for TT and TTC and in the third session for TC (p-value < 0.01 for both
groups) (Figure 4B, left panel). Cumulatively over the 3 sessions, the TU group spent
significantly less time in the center as compared to UCU (p-value < 0.001) and TTC, which
were comparable (Figure 4B, right panel). These results indicate a Toxoplasma-induced
decrease in exploratory behaviors that is reversed by the treatments.
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Figure 4. Rats chronically infected with T. gondii exhibit an anxiety-like behavior, and imiquimod
reverses this behavior with a better effect when followed by the combination of sulfadiazine and
pyrimethamine. (A) Open field test. On the left side, in session 1, the percentage of time spent in the
periphery was higher in the TU group compared to the UCU group, in addition to significance in
other groups (UCU.UCT **, UCU.TT *). In session 2, the percentage of time spent in the periphery
was higher in the TU group compared to the UCU group and the treated groups, in addition to
the significance in other groups (UCU.UCT **, UCT.TT *, UCT.TC **, UCT.TTC ***). In session
3, the percentage of time spent in the periphery was higher in the TU group compared to the
UCU group and the treated groups in addition to the significance in other groups (UCU.UCT **,
UCT.TT **, UCT.TC **, UCT.TTC ***). On the right side, in all sessions, the percentage of time spent
in the periphery was higher in the TU group compared to the UCU group and the treated groups,
in addition to the significance in other groups (UCU.UCT ***, UCT.TT *, UCT.TC **, UCT.TTC ***).
(B) Open field test. On the left side, in session 1, the percentage of time spent in the center was higher
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in the UCU group compared to the TU group, in addition to significance in other groups (UCU.UCT *).
In session 2, the percentage of time spent in the center was higher in the UCU, TTC, and TT groups
compared to the TU group, in addition to the significance in other groups (UCU.UCT **, UCT.TT *,
UCT.TTC *). In session 3, the percentage of time spent in the center was higher in the UCU, TTC, and
TT groups compared to the TU group, in addition to the significance in other groups (UCU.UCT **,
UCU.TT * UCT.TC **, UCT.TTC *). On the right side, in all sessions, the percentage of time spent
in the center was higher in the UCU and TTC groups compared to the TU group in addition to the
significance in other groups (UCU.UCT **, UCT.TTC *). *, **, ***, **** indicate p-values ≤ 0.05, 0.01,
0.001, and 0.0001, respectively. For the left panels, two-way repeated measures ANOVA with post hoc
Fisher’s (LSD) was used to validate significance. p-values less than 0.05 were considered significant.
SEM ± are reported. For the right panels, ordinary one-way repeated measures ANOVA with post
hoc Fisher’s least significant difference (LSD) was used to validate significance. (UCU, n = 12; UCT,
n = 9; TU, n = 23; TT, n = 20, TC, n = 8, TTC, n = 8).

Table 3. Summary of obtained results on CT-associated anxiety-like behavior per group of tested rats.

Condition
CT-Associated Anxiety-like Behavior

Number of Rats Effect

Uninfected Untreated (UCU) 12 No anxiety-like behavior

Uninfected treated with imiquimod (UCT) 9 Moderate effect on anxiety-like behavior

Infected untreated (TU) 23 Strong effect on anxiety-like behavior

Infected treated with imiquimod (TT) 20 Reversed anxiety-like behavior

Infected treated with
sulfadiazine/pyrimethamine (TC) 8 Reversed anxiety-like behavior

Infected treated with imiquimod followed
by sulfadiazine/pyrimethamine (TTC) 8 Best reversed anxiety-like behavior

Collectively, our results demonstrate that T. gondii chronic infection induces anxiety-
like behavior in rats, and imiquimod treatment reverses this behavior with a better effect
for imiquimod treatment followed by the combination of SDZ/PYR.

3.5. Learning Deficits in Chronically Infected Rats Are Reversed upon Treatment with Imiquimod
Followed by the Combination of Sulfadiazine and Pyrimethamine

The Morris water maze test was performed to evaluate visuospatial navigation and
learning. During the five training days (Timeline described in Figure 1), all the rats
gradually learned to reach the escape platform. The TU group required more time to reach
the invisible platform (higher escape latency) as compared to the UCU group, and this
trend reached statistical significance on days 2 (p-value < 0.001) and 3 (p-value < 0.05)
(Figure 5A). The TT and TTC groups were faster in learning the place of the escape platform
than the TU group with (p-value < 0.01) for both groups on day 2, (p-value < 0.01 for the TT
group and p-value < 0.05 for the TTC group) on day 3, and (p-value < 0.05) for both groups
on day 4 (Figure 5A, Table 4). The probe trial was performed to check the retention of
learning. In the probe trial subtest, all groups showed a similar preference for the Northeast
quadrant where the platform was previously located, indicating an intact retention of
place learning (p-value < 0.0001) (Figure 5B, Table 4). In the visible platform subtest, the
escape latencies were comparable between all the groups without any detectable visual or
locomotor impairment (Figure 5C, Table 4). Altogether, these results show that T. gondii
chronic infection induces visuospatial learning deficits in rats, and imiquimod treatment in
addition to imiquimod treatment followed by the combination of SDZ/PYR reverses this
behavioral disturbance.
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Figure 5. Rats chronically infected with T. gondii exhibit learning deficits in the Morris water maze,
and imiquimod alone or followed by the combination of sulfadiazine and pyrimethamine reverses
this behavior. (A) Latency to reach the escape platform during 5 training days. The TU group
took more time to reach the invisible platform (higher escape latency) compared to the UCU group,
especially on days 2 and 3. The TT and TTC groups had a similar performance to the UCU group
in learning the place of the invisible platform during the 5-day spatial acquisition training (B). In
the probe trial test, the 6 groups showed similar preference for the Northeast Quadrant. The red
circle in the water maze diagram corresponds to the previous location of the platform (N: North, E:
East, S: South, W: West, NE: Northeast, NW: Northwest, SE: Southeast, SW: Southwest). (C) Visual
acuity assessment. All the groups had comparable latency in reaching the visible platform, indicating
comparable visual and motor functions in all groups. For (A,B), two-way repeated measures ANOVA
with post hoc Fisher’s (LSD) was used to validate significance. For (C), ordinary one-way repeated
measures ANOVA with post hoc Fisher’s least significant difference (LSD) was used to validate
significance. *, **, ***, **** indicate p-values ≤ 0.05, 0.01, 0.001, and 0.0001, respectively. p-values less
than 0.05 were considered significant. SEM ± are reported. (UCU, n = 14; UCT, n = 11; TU, n = 23; TT,
n = 20, TC, n = 8, TTC, n = 8).
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Table 4. Summary of obtained results on CT-associated learning deficits per group of tested rats.

Condition
CT-Associated Learning Deficits

Number of Rats Effect

Uninfected Untreated (UCU) 14 No learning deficit

Uninfected treated with imiquimod (UCT) 11 Slight learning deficit

Infected untreated (TU) 23 Strong learning deficits

Infected treated with imiquimod (TT) 20 No learning deficits

Infected treated with
sulfadiazine/pyrimethamine (TC) 8 No learning deficits

Infected treated with imiquimod followed
by sulfadiazine/pyrimethamine (TTC) 8 No learning deficits

4. Discussion

Several associations between CT and behavioral neurological complications were
reported (reviewed in [16]). However, these associations were mostly based on epidemi-
ological studies correlating seropositivity against T. gondii and the respective behavioral
disorders (reviewed in [16]).

Despite the high prevalence of CT worldwide, the current therapies against toxoplas-
mosis remain limited to general anti-parasitic/anti-bacterial drugs (reviewed in [31–34])
and mainly target AT. Indeed, there is no clinically effective drug against CT or its associated
neurological and behavioral complications, and only a few drugs target the bradyzoites
in vitro or in preclinical models (reviewed in [33]). An ideal drug against toxoplasmosis
should not only be effective against the proliferative tachyzoite stage of the parasite but also
against the tissue cyst stage, especially as CT is the most prevalent form of this infection.
An ideal drug can also modulate the host immune function, which plays a key role in CT
maintenance and reactivation. We previously established the potency of the immunomod-
ulatory drug imiquimod against murine CT and offered a molecular understanding of
this efficacy [52]. Since rats are well-established animal models in behavioral studies [60],
we reproduced a rat model of CT and demonstrated the potency of imiquimod alone or
followed by the combination of SDZ/PYR on CT-associated behavioral aberrations. Indeed,
imiquimod significantly decreased the number of cysts in the brains of CT-infected rats,
and this effect was further enhanced upon treatment with imiquimod followed by the
combination of SDZ/PYR. Similar to the obtained results in mice [52], this decrease in cyst
number was due to the imiquimod-induced reactivation of bradyzoites into tachyzoites
and was concurrent with an upregulation of the inducible nitric oxide synthase and the
proinflammatory cytokines (IL-12, IL-1α and IL-1β, TNF-α and IFN-γ). These results in the
rat model of CT are in line with the previous results reporting imiquimod-induced upregu-
lation of several proinflammatory cytokines to control the reactivated foci [52]. This result
is also in line with the well-established role of imiquimod in activating the innate immune
response with induction, synthesis, and the release of pro-inflammatory cytokines (IFN-α,
IL-6, and TNF-α) [48] from monocytes and other immune cells [42,45] and with the pub-
lished literature reporting the role of proinflammatory cytokines in mounting a protective
immune response against T. gondii [7,61–64]. In that sense, IL-12 and IL-1β play a crucial
role in the recruitment of natural killer cells and neutrophils that start producing IFN-γ
until the recruitment of T, which produces the highest amount of this cytokine to combat
the infection (reviewed in [63–66]). The upregulation of IFN-γ in the brains of imiquimod-
treated rats presumably indicates the recruitment of both innate and adaptive immune cells
to fight the reactivated foci. Moreover, it was previously reported that treatment of murine-
established CT with imiquimod, followed by immunosuppression using dexamethasone,
resulted in significant and prolonged survival despite the reactivation [52]. Importantly,
imiquimod followed by SDZ/PYR attenuated the imiquimod-induced inflammatory state
in the brains of CT-infected rats.
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It is well-documented that CT is associated with neurological complications and
behavioral and psychiatric disorders [15–21]. Human CT is associated with aberrant host
behavior [25] and influences the progression of psychiatric disorders [27,28], partly due
to altered dopamine levels, leading to imbalances related to mood control, sleep patterns,
and even attention deficit disorder [67]. Using a panel of behavioral tests including OFT
to study anxiety-like, hyperactivity-like, and exploratory-like behaviors and the Morris
water maze (MWM) to assess hippocampal-dependent visuospatial navigation, we showed
that T. gondii infection induces anxiety-like behavior in chronically infected rats. This was
reflected by the greater time the infected rats spent in the periphery and the less time
they spent exploring the center objects. This result was consistent with a study conducted
on C57BL/6J mice chronically infected with tachyzoite of Toxoplasma Prugniaud strain,
by which mice exhibited an increased anxiety phenotype using OFT [68]. Indeed, these
C57BL/6 mice exhibited hyperactivity, anxiety-like, and depressive-like behaviors in both
early and long-term chronic toxoplasmosis infection, and these behavioral alterations were
paralleled with an upregulation of several cytokines and chemokines [30]. In contrast
to a study conducted on AT by infecting Wistar rats with the type I T. gondii RH strain
where no significant difference in anxiety-like behavior was reported between the controls
and T. gondii infected rats [60], our study demonstrated the effect of CT on inducing
anxiety-like behavior.

Importantly, we demonstrate that imiquimod reverses the anxiety-like behavior in-
duced by Toxoplasma infection and that imiquimod treatment followed by the SDZ/PYR
exhibited a more prominent effect on this aberrant behavior. This result is in line with the
documented effect of SDZ/PYR on reversing behavioral and neurocognitive changes and
resolving locomotor alterations, anxiety, and depressive-like behavior in rodent models [37].
Finally, using the Morris water maze to evaluate visuospatial navigation and learning,
we demonstrated that untreated chronically infected rats with T. gondii exhibited a higher
escape latency and took more time to reach the invisible platform, which is indicative of a
learning deficit. Imiquimod treatment alone or followed by the combination of SDZ/PYR
reversed this behavior. This result was contradictory to a study conducted on rats with
latent toxoplasmosis in which rats exhibited alterations to memory and learning; however,
no significant difference in search latencies to find the hidden platform between the control
group and the T. gondii-infected group was detected [69].

In conclusion, our results enhance our knowledge of the implications of chronic
toxoplasmosis on behavioral aberrancies and highlight the potency of imiquimod followed
by SDZ/PYR on these chronic toxoplasmosis-associated neurological complications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines12061295/s1, Figure S1: (A,B) Sprague Dawley rats
successfully developed acute toxoplasmosis. (A) Immunofluorescence Assay to test the immune
reactivity of infected rats on pre-cultured tachyzoites in HFF using rat serum as a primary antibody.
Goat Anti-Rat secondary antibody IgG (Alexa Fluor 488, 2 mg/mL, Abcam ab 150157, dilution 1:500)
was used to stain the tachyzoites (Green) (first column). Nuclei of cells were stained with DAPI (Blue).
Transmission photomultiplier tube (TPMT) contrast phase, and merged figures are also presented
(columns 2 and 3). The result shown depict one representa-tive experiment among 2 independent
ones. (B) Western Blot Assay to test the immune reactivity of infected rats on tachyzoite extracts, strip
1 corresponds to the serum of uninfected rat and strips 2 to 8 corresponds to sera from prototypes of
infected rats. All rats included in this study were tested for seropositivity. Any seronegative rat was
discarded from the study; Figure S2: (A,B) Total distance travelled by Open Field Test. In all sessions,
no significant difference in the total distance travelled by the different group of rats in the whole OFT.
One-way repeated measures ANOVA with post hoc Fisher (LSD) was used to validate significance.
*, **, ***, **** indicate p values ≤ 0.05; 0.01 and 0.001, 0.0001, respectively. p-values less than 0.05 were
considered significant. SEM ± are reported. For both panels, ordinary one-way repeated measures
ANOVA with post hoc Fisher least (LSD) was used to validate significance. For (A), UCU, n = 10;
UCT, n = 9; TU, n = 22; TT, n = 20. For (B), UCU, n = 6; TU, n = 8; TT, n = 6; TC, n = 8, TTC, n = 8.
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