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Abstract. The VENoL analytical model was developed to reproduce the nonlin-

ear viscoelastic behaviour of asphalt concrete in dynamic analysis. In this paper, 

it is integrated as a contact law in a 2D model using the Discrete Element Method. 

The commercial software PFC version 5 from Itasca is used to apply the method. 

The asphalt is modelled on a macroscopic scale. The VENoL model is applied in 

the numerical code without any recalibration of its analytical parameters. Partic-

ular care is taken to model the Poisson's ratio, whose value depends on the test 

conditions. This integration is checked by comparing, for complex modulus tests 

in direct tension-compression, the results obtained for the numerical model with 

those extracted from the literature. The results show that with a single set of pa-

rameters, it is possible to model the effects of frequency and temperature. Despite 

the use of a macroscopic scale, the model is also able to model porosity effects 

through the mechanisms of DEM. 
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1 Introduction 

In France, the viscoelastic nature of asphalt concrete is assessed in laboratory with com-

plex modulus tests complying with standard NF EN 12697-26 (June 2018) [1]. The 

VENoL analytical model was developed on the basis of these tests with the aim of 

reproducing the nonlinear viscoelastic behaviour of asphalt mixes in dynamic analysis 

[2]. The work presented in this paper is devoted to the implementation of this model as 

a contact law in a discrete numerical approach. 

Discrete methods consist of a combination of distinct elements, interacting with each 

other according to behaviour laws. If at each time step, the contact forces acting on each 

element are known, the motion equation of each element is deduced from the Newton's 

second law of motion. Discrete methods are usually used for discontinuous media (het-

erogeneous materials, presence of multiple cracks). However, they require long com-

putation times, because of the use of small time steps to maintain model stability. In the 

field of bituminous materials, discrete methods have already been employed by several 



2 

authors [3-5]. The Burgers model is regularly used as a contact law, and a constant 

Poisson’s ratio is often considered. 

In this article, in addition to using the VENoL model as a contact law, a second 

innovation is introduced by considering variations in the Poisson’s ratio according to 

test conditions. The discrete approach adopted is the Discrete Element Method (DEM) 

of CUNDALL and STRACK [6]. The commercial software PFC version 5 from Itasca is 

used. The modelling is performed on a macroscopic scale, which means that the nu-

merical particles represent asphalt aggregates (binder + aggregate). Although the as-

phalt concrete is modelled here continuously, DEM was preferred to the finite element 

method for several reasons. Firstly, DEM makes it easy to introduce relatively complex 

behaviour laws at the contact level. Secondly, the model is developed with a view to 

evolving towards smaller scales and adding progressive multi-cracking of the medium. 

Modelling is carried out in two dimensions to reduce computation time. 

The article is built in three sections. First, a resume of the VENoL model is provided. 

Then, the numerical process for making complex modulus tests is detailed. Finally, the 

numerical model is applied to a bituminous mixture from FREIRE's thesis [7]. The ex-

perimental data come from direct tension-compression tests on a cylindrical specimen 

(DTC-CY). This homogeneous test provides access to measurements of the complex 

Poisson’s ratio, a necessary parameter in the calibration of the numerical model. 

2 VENoL model description 

The VENoL model is based on a Kelvin-Voigt differential equation that results directly 

from the complex stiffness modulus 𝐸∗ relation obtained by dividing the stress signal 

𝜎∗(𝑡) by the strain signal 𝜀∗(𝑡).  

 𝜎∗(𝑡) =  𝐸∗ ∙ 𝜀∗(𝑡) (1) 

Indeed, the equation can be reduced by dividing the imaginary part Im(𝐸∗) by the sig-

nal pulsation 𝜔. A term 𝑖𝜔 then appears as a factor. 

 𝜎∗(𝑡) =  [Re(𝐸∗) + 𝑖𝜔 ∙
Im(𝐸∗)

𝜔
] ∙ 𝜀∗(𝑡) (2) 

The multiplication of 𝑖𝜔 by 𝜀∗(𝑡) gives the derived function, the strain rate 𝜀̇∗(𝑡). The 

real part Re(𝐸∗) is then replaced by the symbol ℜ𝐸, named the stiffness component, 

while the term Im(𝐸∗) 𝜔⁄  is replaced by the symbol ℑ𝜂, the viscosity component.  

 𝜎∗(𝑡) =  ℜ𝐸 ∙ 𝜀∗(𝑡) + ℑ𝜂 ∙ 𝜀̇∗(𝑡) (3) 

The VENoL model operates on the principle of variable parameters, which means that 

the two components ℜ𝐸 and ℑ𝜂 fluctuate by means of analytical equations to take ac-

count of the influence of loading conditions on viscoelasticity. ℜ𝐸 and ℑ𝜂 are thus de-

fined as a function of the pulsation 𝜔 using Carreau-Yasuda-type equations (CY) [2]. 

The influence of other conditions is added by means of superposition principles. The 

effect of temperature 𝑇 is provided by the Time-Temperature Superposition Principle 

(TTSP), whose translation factor 𝑎𝑇 is defined using the Williams-Landel-Ferry law 
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(WLF). The effect of strain amplitude 𝜀0 (non-linearity) is given by the Time-Ampli-

tude Semi-Superposition Principle (TASSP), whose translation factors 𝑎𝐴 and 𝑏𝐴 are 

calibrated using WLF-type equations [2]. These two principles can be combined to 

form the Time-Temperature-Amplitude Semi-Superposition Principle (TTASSP). The 

reduced pulsation 𝜔𝑅−𝑇𝐴 and the reduced viscosity component ℑ𝜂,𝑅−𝑇𝐴 are then calcu-

lated as follows: 

 𝑎𝑇𝐴 = 𝑎𝑇 ∙ 𝑎𝐴 (4) 

 𝜔𝑅−𝑇𝐴 = 𝑎𝑇𝐴 ∙ 𝜔 (5) 

 ℑ𝜂,𝑅−𝑇𝐴 = 
ℑ𝜂

𝑎𝑇𝐴∙𝑏𝐴
 (6) 

 

The VENoL model can also be used to reproduce the real part of the complex Poisson’s 

ratio 𝜈∗, observing that it varies analogously to the phase angle 𝜑𝐸∗ as a function of the 

reduced pulsation. A simple scaling factor 𝑘𝜈∗ is then required, combined with a lower 

limit 𝜈𝑖𝑛𝑓 . 

 Re(𝜈∗) ≈ 𝜈𝑖𝑛𝑓 + 𝑘𝜈∗  ∙ 𝜑𝐸∗ (7) 

The imaginary part of the complex Poisson’s ratio is assumed to be null, as it is very 

small compared with the real part. A biasing effect might be at the origin of the imagi-

nary part. Thus, 𝜈 ≈ Re(𝜈∗). 

3 Numerical process 

3.1 Design of the numerical specimen 

The walls of a mould with the dimensions of the test piece are first created. A provi-

sional contact law "Linear Model" is then imposed for each contact newly created be-

tween two particles. This law is a Kelvin-Voigt model programmed in PFC which does 

not admit tensile behaviour, which means that the contact disappears when the gap 𝑔 

between the edges of the two particles becomes greater than the reference gap 𝑔𝑟. This 

reference gap 𝑔𝑟 is set to zero, so contact is only active when the particles overlap. A 

fictitious stiffness and a fictitious viscous damping are assigned to the model. Particles 

are then generated and automatically distributed within the mould according to charac-

teristics provided by the user: a targeted porosity, a uniform distribution of particle radii 

bounded by a minimum and a maximum radius, a controlled random generation number 

between 10,001 and 19,999 to which a fixed particle configuration corresponds, and a 

density. In this article, targeted porosity is defined as the ratio of the total area of gen-

erated particles to the area of the mould, disregarding overlaps. 

When two particles overlap (𝑔 < 0), a reaction force is created, pushing the particles 

apart. Calculation cycles are then run until the system stabilises thanks to the damping 

effect of the Kelvin-Voigt model. The residual forces are then reset to zero and the 
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mould walls are removed. Afterwards, the law of active contact (𝑔 < 𝑔𝑟) is replaced 

by that defined in section 3.2, which maintains active contact in tension (𝑔 > 𝑔𝑟). The 

gap 𝑔 between each connected particle is then defined as the new reference gap 𝑔𝑟, so 

that forces are maintained at zero when the test starts. And any creation of new contact 

during the test is deactivated by imposing the contact law "Null Model" on non-active 

contacts (potential contact between two neighbouring particles that becomes active 

when 𝑔 < 𝑔𝑟), which maintains zero force and zero moment. 

3.2 Contact law 

The provisional contact law "Linear Model" used to design the specimen in section 3.1 

is replaced by the contact law "Linear Contact Bond Model", which also corresponds 

to a Kelvin-Voigt model consisting of a spring of stiffness 𝑘 and a viscous dashpot of 

damping constant 𝑐 connected in parallel. This model maintains active contact in com-

pression (𝑔 < 𝑔𝑟) and tension (𝑔 > 𝑔𝑟). 

Figure 1 illustrates a newly-created contact between two particles 𝑖 and 𝑗 with dif-

ferent radii 𝑅𝑖 and 𝑅𝑗 and masses 𝑚𝑖 and 𝑚𝑗. In the initial state, when 𝑔 = 𝑔𝑟, the work 

on the contact is null and the centers of the two particles are exactly separated by a 

distance 𝑙0,𝑖𝑗. The contact is represented by a 2D cylinder of length 𝑙𝑖𝑗  and radius 𝑟 

equal to the minimum of the radii of the two particles it connects. In the local plane of 

the contact, each of the particles is free to move along a normal direction 𝑛⃗ 𝑖𝑗 and a shear 

direction 𝑠 𝑖𝑗 , as well as to rotate around its center. The differential displacement and 

rotation velocities between the two particles generate length variations 𝛿𝑛 and 𝛿𝑠 and 

velocity variations 𝛿̇𝑛 and 𝛿̇𝑠 at the contact. Normal and tangential forces 𝐹𝑛 and 𝐹𝑠 are 

consequently generated by the Kelvin-Voigt models. 

 

 

Fig. 1. DEM representation of a viscoelastic contact between two particles in the initial state. 

The PFC software operates with real numbers only. Considering the 2D geometry of 

the contact cylinder, the real part of the complex differential equation of the VENoL 

model can be written in terms of force and displacement. As the VENoL model was 

developed from the axial measurements of the DTC-CY test, its equation must be as-

similated to the normal direction of the contact (Eqs. 8 to 11). In the shear direction, 𝑘𝑠 
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and 𝑐𝑠  are respectively defined as a function of 𝑘𝑛 and 𝑐𝑛 using a coefficient 𝜆𝑠 which 

symbolises the shear/normal ratio (Eqs. 12 to 15). In DEM, the value of the Poisson’s 

ratio depends only on 𝜆𝑠. Depending on the values taken by 𝜆𝑠, the level of the complex 

stiffness modulus of the numerical specimen may be affected. This needs to be cor-

rected by a coefficient 𝜆𝑛. 𝛼1, 𝛼2 and 𝛼3 are adjustment coefficients for 𝜆𝑛 and 𝜆𝑠. 𝛼𝑎𝑐𝑐  

is a calculation acceleration factor. It should be used sparingly, as choosing it too small 

can lead to inertial effects. 

 

Normal contact “𝒏” 

𝐹𝑛(𝑡) = 𝑘𝑛 ∙ 𝛿𝑛(𝑡) + 𝑐𝜂 ∙ 𝛿̇𝑛(𝑡) (8) 

𝑘𝑛 = 𝛼𝑎𝑐𝑐 ∙ 𝜆𝑛 ∙
2𝑟

𝑙0,𝑖𝑗
ℜ𝐸(𝜔𝑅−𝑇𝐴) (9) 

𝑐𝑛 = 𝛼𝑎𝑐𝑐 ∙ 𝜆𝑛 ∙
2𝑟

𝑙0,𝑖𝑗
ℑ𝜂(𝜔𝑅−𝑇𝐴) (10) 

𝜆𝑛 =
1

𝛼1∙[1−𝛼2∙𝜈(𝜔𝑅−𝑇𝐴)]
 (11) 

Shear contact “𝒔” 

𝐹𝑠(𝑡) = 𝑘𝑠 ∙ 𝛿𝑠(𝑡) + 𝑐𝑠 ∙ 𝛿̇𝑠(𝑡) (12) 

𝑘𝑠 = 𝜆𝑠 ∙ 𝑘𝑛 (13) 

𝑐𝑠 = 𝜆𝑠 ∙ 𝑐𝑛 (14) 

𝜆𝑠 =
1−𝛼3∙𝜈(𝜔𝑅−𝑇𝐴)

1+𝜈(𝜔𝑅−𝑇𝐴)
 (15) 

3.3 Test equipment 

The loading plates are made up of groups of particles whose movements are con-

strained. For the DTC-CY test, the upper loading plate is used to apply vertical dis-

placements (Fig. 2). The 𝑦 displacements of its particles are therefore kept free, but the 

𝑥 displacements and rotations 𝜃 are blocked (embedding). The lower loading plate is 

held immobile by the complete blocking of its particles (embedding). The plates are 

also used to measure the reaction forces exerted by the specimen on them, in order to 

calculate the evolution of axial stress during the test. And some particles are targeted 

to be used as axial and radial displacement sensors to determine strain. Each sensor is 

doubled to calculate an average over two measurements. 

3.4 Complex modulus test process 

The user provides the numerical program with the test conditions: frequency, loading 

strain amplitude and surrounding temperature. The test is performed by applying a si-

nusoidal vertical displacement to the upper loading plate. The displacement amplitude 

is gradually increased on the first cycle from zero up to the value set by the user. Two 

to three loading cycles are sufficient to obtain material properties, as test stabilization 

generally occurs between one and two cycles. 

The calculation time step is fixed during the test. A second time discretisation is 

introduced to record the complex stiffness modulus and complex Poisson’s ratio meas-

urements. At the time step following the measurements, the contact properties 𝑘𝑛, 𝑐𝑛 

and 𝑘𝑠, 𝑐𝑠 are updated according to PSETA, in other words, according to the contact 

strain amplitude (non-linearity). 
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Fig. 2. Example of equipment on the numerical test piece PFC-F-C-10019. 

4 Application example 

This example is based on experimental results obtained by FREIRE from DTC-CY com-

plex modulus tests carried out at 50 µm/m on specimen A1-H3 [7] (Fig. 3, “CM-Exp 

A1-H3”). The cylindrical specimen has a height of 140 mm, a diameter of 75 mm and 

an estimated porosity of 6.2%. This specimen is characterized by a BBSG 0/10 mm (a 

French asphalt concrete meaning Béton Bitumineux Semi-Grenu) containing 20% RAP 

(Reclaimed Asphalt Pavement) and a pure bitumen of penetration grade 35/50 dosed at 

4.40%. The true density obtained for this mixture is 2510 kg/m3. 

The VENoL analytical model is first fitted to the experimental data (Fig. 3, “CM-

Mod”). The parameter values are then integrated into the DEM code. Then, the param-

eters 𝛼1, 𝛼2 and 𝛼3 are calibrated using a numerical specimen of similar porosity to the 

A1-H3 reference specimen (Fig. 3, “CM-DEM PFC-F-C-10019”). Complex modulus 

tests are then carried out on five other numerical specimens, two with similar porosities 

(10005 and 10014) and three with different porosities (10003, 10044 and 10023). 

For close porosities, slight fluctuations in modulus are observed due to different par-

ticle distributions and arrangements (Fig. 3a). This effect tends to disappear with 

smaller particles. An increase in porosity leads to a decrease in the density of contacts 

per particle, and hence to an decrease in the complex stiffness modulus. This direction 

is in line with the literature, but it will be necessary to verify later that the modulus 

differentials obtained for various porosities corroborate those obtained experimentally. 

Porosity has a proportional influence on the real and imaginary parts. This means that 

an increase in porosity leads to a decrease in the modulus norm, but does not affect the 

phase angle. Moreover, for a constant Poisson's ratio, the ratio between the moduli of 

two different porosities remains constant regardless of temperature and frequency. 



7 

At the level of the real part of the complex Poisson’s ratio, it is more difficult to 

determine a porosity trend, as it is obscured by its sensitivity to particle distribution and 

arrangement (Fig. 3b). It was also hoped for a while that the DEM mechanisms associ-

ated with nonlinearity effects would automatically model the imaginary part of the com-

plex Poisson’s ratio by simply implementing the real part. However, the real part re-

mains systematically null. It could therefore well be linked to material properties and 

not to a biasing effect as has been assumed. Further investigations are required. 

 

 

 

Fig. 3. FREIRE’s asphalt concrete – Specimen A1-H3 – DTC-CY, CM, 50 μm/m. Effect of nu-

merical porosity in DEM on the complex stiffness modulus in the Cole-Cole plane (a) and on the 

real part Re(𝜈∗) of the complex Poisson’s ratio (b). Superposition of experimental data "Exp", 

analytical model VENoL "Mod" and DEM simulations. 
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5 Conclusion 

The VENoL analytical model was developed to reproduce the nonlinear viscoelastic 

behaviour of asphalt concrete in dynamic analysis. This article presents the approach 

used to implement it as a contact law within a DEM-based numerical code. This ap-

proach is validated by the numerical model's ability to reproduce DTC-CY complex 

modulus tests of an asphalt concrete extracted from the literature, at different tempera-

tures and frequencies, for a single set of parameters. Thanks to the laws of the analytical 

model, the numerical model can also reproduce variations in the real part of the com-

plex Poisson’s ratio. Although the model is designed on a macroscopic scale, it is also 

able to model the mesoscopic effect of porosity using DEM mechanisms. 
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