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A B S T R A C T   

Metal-organic framework (MOF)-derived metal oxides blend the sensing properties of metal oxides with MOF 
porosity, enhancing gas sensing capabilities. In this study, M-MOFs (M = Cu, Ni and Zn) were synthesized and 
then calcined at different temperatures to obtain their corresponding metal oxides (CuO, NiO and ZnO). The 
synthesis method incorporated novel approaches to enhance sensor performance, such as optimizing calcination 
temperatures for improved selectivity. Structural and morphological analyses confirmed the high surface area 
and porosity of the metal oxide materials, facilitating efficient gas adsorption and promoting enhanced sensor 
response. Gas sensing studies revealed significantly enhanced performance of MOF-derived metal oxides over M- 
MOFs, strongly influenced by calcination temperature. Moreover, CuO, NiO and ZnO MOF-derived metal oxides 
showed improved selectivity towards H2S, CO and H2 gases, respectively. This study demonstrates that tuning 
MOF and calcination parameters can tailor sensor selectivity effectively.   

1. Introduction 

Hydrogen (H2) is an important gas and has a wide range of appli-
cations in different industries, such as food processing, medical treat-
ments, aerospace, and energy storage. It is also one of the cleanest and 
most environmentally friendly sustainable energy sources due to its 
abundance, cleanliness, and recyclability [1–3]. Furthermore, H2 
monitoring in exhaled breath can be used as a gauge to examine intes-
tinal conditions. For instance, a hydrogen breath test is widely used to 
diagnose small intestinal bacterial overgrowth syndrome and carbohy-
drate (fructose, lactose, and sorbitol) malabsorption [4]. However, it is a 
highly explosive gas (4–75 vol%) with high combustion heat (142 kJ 

g− 1), low ignition energy (0.02 mJ), and high flame propagation ve-
locity [5]. In case of leakage, which is facilitated by H2 small molecule 
size (0.289 nm) and high diffusion coefficient (0.61 cm2/s), the risk of 
disasters is high [6]. Unfortunately, H2 gas leakages cannot be easily 
detected due to H2 absence of color, odor and taste [7]. Hence, reliable 
H2 gas sensors with high sensitivity and robustness are needed to avoid 
leakage-related accidents and explosions [8]. 

H2S gas is a colorless, corrosive, water-soluble, highly toxic, and 
flammable gas in the range of 4–44 vol% with an unpleasant rotten egg- 
like smell. At low concentrations, it is highly irritant to eyes, skin, nose 
and throat and at concentrations above 100 ppm, it paralyzes the ol-
factory nerves, and the sense of odor disappears, which gives the false 
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impression that exposure to the gas was finished. At concentrations 
higher than 1000 ppm it can be lethal [9,10]. In addition, H2S is a known 
biomarker for Down syndrome, Alzheimer’s disease, ischemia, asthma, 
and halitosis [11] Therefore, reliable detection of H2S is also of 
importance. 

CO is odorless, tasteless and colorless with a highly toxic nature, 
which is mainly emitted from the incomplete burning of fossil fuels. It is 
known as the silent killer and since human red blood cell hemoglobin 
(Hb) is a major target site for CO, it combines with hemoglobin to form 
carboxyhemoglobin, a molecule that is incapable of carrying oxygen to 
tissue sites, resulting in tissue hypoxia [12,13]. Nausea, headache and 
dizziness are observed with CO-Hb levels over 10 %, and when the 
amount of CO-Hb increases to 30–50 %, severe health issues like in-
creases in respiratory and heart rates, syncope, motor paralysis and 
confusion are observed. In higher levels of poisoning death is likely [14]. 
Therefore, reliable detection of CO gas is also vital from our safety point 
of view. 

Different H2 gas sensors, such as electrochemical [15], catalytic [16], 
optical [17], surface acoustic wave [18], metallic thin film [19], gaso-
chromic [20] and resistive-based sensors [21], have been developed. 
Also, various gas sensors for the detection of CO and H2S gases have 
been reported in the literature [22–27]. Resistive gas sensors, which rely 
on semiconducting metal oxides (SMO), such as SnO2 [28], In2O3 [29], 
ZnO [30], NiO [31], and CuO [32] display good response and stability, 
fast dynamics, small size, simple operation and low price [33]. However, 
in their pristine form, they generally show poor selectivity towards a 
specific gas. 

Metal-organic frameworks (MOFs) are porous materials in which 
metal clusters and organic ligands are connected through coordination 
bonds [34]. Due to their high specific surface area, tunability and high 
stability, they are ideal materials for potential applications such as gas 
adsorption and separation [35], drug delivery [36], gas sensors [37], 
water treatment [38], catalysis [39] and energy storage [40]. MOFs can 
also be used as precursors for the preparation of different functional 
nanostructures (i.e. SMOs) [41] that are exploited in many different 
fields, including electrochemical energy storage [42], catalysis [43] and 
sensing [44]. Specifically, MOF-derived SMOs have been used as 
electrically-transduced gas sensors, such as chemiresistors, chem-
icapacitors and electrochemical gas sensors [45–49]. 

However, control of high temperature pyrolysis procedure is one of 
most challenging issues to successfully maintain the original high 
porosity and surface areas of MOFs, so that the MOF-derived materials 
could achieve excellent performance as gas sensor [50]. 

Several groups have investigated the use of MOFs and the derived 
SMOs for gas detection due to their large specific surface area, tunable 
pore sizes, low density, and ordered crystal structure. For instance, 
Nguyen et al. tested Co-MOF-74, Ni-MOF-74 and Mg-MOF-74 and found 
that Co-MOF-74 was the best H2 gas sensor due to the presence of two 
oxidation Co states (+2 and + 3) in the cluster [51]. Also, regarding CO 
gas sensing by MOFs, Nguyen et al. [52], reported fabrication of a 
Ni-incorporated MOF gas sensor. However, it showed a low response of 
only 1.7–50 ppm CO gas. Aykanat et al. [53], reported MOFs with 
metallophthalocyanine (MPc, M = Co and Ni) units for CO gas sensing. 
Surya et al. [54] reported Ag-decorated UiO-66 (Zr) MOF-based capac-
itive sensor for the detection of H2S gas. However, overall, MOF gas 
sensors have poor sensing performance due to their low conductivity 
and stability. 

However, overall, MOF gas sensors have poor sensing performance 
due to their low conductivity and stability. However, MOFs, in combi-
nation with metal oxides show promising sensing properties. For 
example, Drobek et al. increased the selectivity of pristine ZnO nano-
wires by growing a thin layer of zeolitic imidazolate frameworks (ZIF)-8 
onto the nanowire surface. This led to a response of 1.44–50 ppm H2 gas 
at 300 ◦C and a very small response to other gases, such as toluene and 
benzene [55]. Following a similar approach, Weber et al. combined ZnO 
nanowires decorated with Pd nanoparticles (NPs) and ZIF-8 as porous 

material. This led to a response of 9–50 ppm H2 gas at 200 ◦C. The 
addition of Pd NPs increased the electron depletion layer depth at the 
Pd–ZnO contact area, leading to higher resistance than with the ZnO NW 
sensor. In the presence of H2 gas, Pd and part of the ZnO surface were 
converted into PdHx and metallic Zn, respectively, which contributed to 
the increase in the conductivity, influencing the sensor response [56]. 

Interestingly, MOFs can be easily transformed into SMOs with a large 
surface area and controlled shape by using the appropriate heat treat-
ment [57,58]. In fact, MOF-derived SMOs combine the good intrinsic 
sensing properties of metal oxides and the highly porous structure of 
MOFs, which can boost the sensing performance [59]. For example, 
DMello et al. recently reported the preparation of a MOF-derived 
Co–ZnO gas sensor anchored on nitrogen-doped carbon that could 
detect H2 (1 % of concentration) at room temperature [60]. Hussain 
et al. reported enhanced sensitivity of CuO-decorated ZnO polyhedral 
nanostructures towards H2S gas [61]. In another study, Chen and 
co-workers, reported MOF-derived Co3O4 NPs over direct grown ZnO 
nanoflowers for selective sensing of CO gas [62]. 

In this work, to tune the selectivity of MOF-derived SMOs towards 
different gases, we synthesized three different MOFs based on Cu, Ni and 
Zn metals and their nanostructured SMOs counterparts (i.e. CuO, NiO 
and ZnO) by calcination in air at different temperatures (400, 500 and 
600 ◦C). The gas sensing test results showed enhanced sensing perfor-
mance of MOF-derived CuO, NiO and ZnO compared with their original 
MOF counterparts. Furthermore, the three MOF-derived SMO gas sen-
sors showed improved selectivity towards H2S, CO and H2 gases, 
respectively. Therefore, the selectivity of the resulting SMO gas sensor 
can be finely adjusted through the strategic selection of MOF precursors 
and specific calcination temperatures. Our study introduces a fresh 
perspective by investigating how variations in calcination temperatures 
influence the gas sensing properties of MOF-derived metal oxides, thus 
improving their practical utility. 

2. Experimentation 

2.1. Materials 

All used chemicals were commercially available and were used as 
purchased. The chemicals 4-carboxypyrazole (4-cpz, 95 %), 1,4-benze-
nedicarboxylic (1,4-bdc, 97 %), 1,4-diazabicyclo [2.2.2] octane 
(DABCO, ≥99 %), copper nitrate trihydrate (Cu(NO3)2⋅3H2O, ≥99 %), 
nickel acetate tetrahydrate (Ni(AcO)2⋅4H2O, ≥99 %), zinc nitrate 
hexahydrate (Zn(NO3)2⋅6H2O, ≥99 %) were from Merck. The solvents 
N,N-dimethylformamide (DMF, ≥99 %), ethanol (≥99 %), diethyl ether 
(≥99 %) and dichloromethane (DCM, ≥99 %) were from Fisher 
Scientific. 

2.2. MOF and MOF-derived SMO synthesis 

NH4[Cu3-(μ3-OH)(μ3-4-cpz)3], (Cu-MOF) was obtained following a 
previously described procedure [63]. Briefly, 222 mg 4-cpz (2 mmol) 
and 480 mg Cu(NO3)2⋅3H2O (2 mmol) were dissolved in 30 mL of an 
aqueous ammonia solution (1:15, NH3/H2O) giving rise to a blue solu-
tion. After incubation for 3 days, the obtained dark blue crystals were 
filtered and rinsed in ethanol and diethyl ether. Before use, crystals were 
reduced to powder in an agate mortar. 

[Ni8(OH)4(H2O)2(cpz)6], (Ni-MOF) was synthesized using the 
approach described in [64]. After dissolving 33.3 mg 4-cpz (0.3 mmol) 
in 16 mL DMF and 99.2 mg Ni(AcO)2⋅4H2O (0.4 mmol) in 4 mL H2O, 
they were mixed for 6 h. The obtained green solid was filtered, rinsed in 
ethanol and diethyl ether, followed by DMF exchange with DCM. 

[Zn2(bdc)2(dabco)] (Zn-MOF) was obtained following a previously 
described protocol [65]. After dissolution of 500 mg Zn(NO3)2⋅6H2O 
(1.68 mmol) and 280 mg 4-bdc (1.68 mmol) in 14 mL DMF and 0.0935 
mg DABCO (0.84 mmol) in 6 mL DMF, the two solutions were stirred at 
120 ◦C for 48 h. The product was washed with DMF and DCM. 
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The obtained Cu-, Ni- and Zn-MOFs were then calcined at 400, 500, 
600 ◦C in air for 2 h to obtain porous nanostructured CuO, NiO and ZnO, 
respectively. 

2.3. Gas sensor fabrication 

Photolithography and SiO2–Si (100) were used to fabricate bi- 
layered and patterned-interdigital electrodes. A Ti (~50 nm) layer was 
deposited to improve the adhesion between the SiO2 substrate and 
electrode, and Pt (~200 nm) was used as electrode. To prepare the gas 
sensors, 10 mg of the synthesized MOFs and MOF-derived SMOs in 
powder form and 0.5 μL α-terpineol were mixed in a mortar and the 
obtained paste was coated onto the electrode layer and dried at 70 ◦C in 
air for 1 h. The obtained gas sensors were annealed at 350 ◦C for 1 h to 
remove the organic species and stabilize their baseline electrical resis-
tance. The thickness of sensing layer over the substrate was ~6 μm 
(Fig. S1). 

2.4. Gas sensing measurements 

The fabricated gas sensors were put into a gas chamber inside a 
horizontal tubular furnace with possible temperature control. In the 
chamber, the concentration of the gas to be tested was obtained by 
adjusting the gas and dry air ratio using mass flow controllers (total flow 

rate = 500 sccm). Each sensor response was calculated using R––Ra/Rg 
or R=Rg/Ra, in function of the sensor type and tested gas, where Rg and 
Ra were the resistance in the presence of gas and air, respectively. The 
response time and recovery time were defined as the times needed to 
reach 90 % of the change in resistance after injection and removal of the 
tested gas, respectively. 

2.5. Characterizations 

Shape and elemental composition were characterized using scanning 
electron microscopy (SEM; Hitachi S4800 microscope, Japan), trans-
mission electron microscopy (TEM; JEOL 2200FS, 200 kV, and JEOL 
ARM-200F, 200 kV) and energy-dispersive X-ray (EDX) spectroscopy 
(Zeiss EVO HD15 microscope with an Oxford X-MaxN EDX detector). 
The crystal phases were determined by X-ray diffraction (XRD; PAN-
Alytical Xpert-PRO diffractometer) using Cu-Kα1 radiation (λ = 1.5406 
Å) and a 2θ range from 10 to 80◦. Raman spectra were measured by 
dispersive Raman spectroscopy (Horiba XploRA), using a 659.55 nm 
laser and a 100x objective. The surface elemental composition and the 
different surface areas were assessed by X-ray photoelectron spectros-
copy (XPS) with a monochromatic X-ray source (Al-Kα; hν = 1486.6 eV) 
and by N2 adsorption-desorption at 77 K. For elemental mapping, a Zeiss 
EVO HD15 microscope and an Oxford X-MaxN energy-dispersive X-ray 
(EDS) detector was used. 

Fig. 1. XRD patterns of (a) Cu-MOF (b) Ni-MOF and (c) Zn-MOF materials calcined in air at 500, 600 and 600 ◦C, respectively. Raman spectra of (d) Cu-MOF (e) Ni- 
MOF and (f) Zn-MOF materials calcined in air at 500, 600 and 600 ◦C, respectively. XPS core-level spectra of (g) Cu 2p for Cu-MOF after calcination at 500 ◦C, (h) Ni 
2p for Ni-MOF after calcination at 600 ◦C, and (i) Zn 2p for Zn-MOF after calcination at 600 ◦C. 
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3. Results and discussion 

3.1. Morphological and structural analyses 

The Cu- and Ni-MOFs were based on the same pyrazolate organic 
ligand, while the Zn-MOF was based on the 4-bdc and DABCO organic 
ligands. Then, these MOFs were calcined to obtain oxide-based mate-
rials, the structure of which was assessed by XRD and Raman mea-
surements. XRD analysis of MOF-derived CuO (obtained by calcination 
at 500 ◦C) (Fig. 1a) highlighted sharp peaks at 32.6◦, 35.6◦, 38.7◦, 48.9◦, 
53.5◦and 58.3◦ that were assigned to the (100), (002), (111), (202), and 
(020) crystalline planes of single phase monoclinic CuO (JCPDS Card 
No.48-1548), respectively. No peak related to impurities, such as Cu, 
Cu2O or Cu(OH)2, was detected, implying the successful synthesis and 
high purity of the starting materials. The XRD analysis of MOF-derived 
NiO (calcination at 600 ◦C) (Fig. 1b) highlighted diffraction peaks at 
37.4◦, 43.4◦, and 63.0◦ that were assigned to the (111), (200) and (220) 
crystalline planes of NiO with NaCl structure (JCPDS Card No. 
47–1049), respectively [66,67]. Two other diffraction peaks at 44.6◦

and 51.9◦ were observed, suggesting the presence of the Ni2O3 phase 
due to calcination in air. The XRD analysis of MOF-derived ZnO 
(calcined at 600 ◦C) (Fig. 1c) showed that all peaks matched the typical 
Wurtzite crystal structure of ZnO (JCPDS No. 36–1451) [68,69]. 
Moreover, the absence of other peaks demonstrated the successful for-
mation of a pure ZnO phase. 

Similarly, Raman measurements were carried out after calcination at 
500 ◦C (Cu-MOF) and 600 ◦C (Ni-MOF and Zn-MOF). Cu-MOF (Fig. 1d) 
displayed one peak at 285 cm− 1 (assigned to the Ag mode of the CuO 
phase) and two peaks at 333 and 620 cm− 1 (assigned to the Bg modes of 
the CuO phase) [70,71], in agreement with previous studies. In the 
Ni-MOF Raman spectrum (Fig. 1e), five Raman peaks at 210, 370, 530, 
690 and 1055 cm− 1 were observed. The peaks at ~200 and 370 cm− 1 

and the peak at 530 cm− 1 corresponded to the first order transverse 
optical (TO) and to the longitudinal optical (LO) phonon modes of NiO, 
respectively. The peaks at 700 and 1055 cm− 1 were assigned to the 2TO 
and 2LO combinations, respectively [72,73]. All Zn-MOF peaks (Fig. 1f) 
matched those described in the literature and the peak at ~1144 cm− 1 

contained contributions from 2A1(LO) and 2E1(LO) [68]. The first- and 
second-order Raman modes, due to ZnO monocrystals, were in line with 
the XRD findings. Then, XPS was used to obtain more information on the 
chemical compositions and states after calcination. The high-resolution 
Cu 2p spectra for Cu-MOF (obtained by calcination at 500 ◦C) displayed 
the specific Cu 2p3/2 (933.9 eV) and Cu 2p1/2 (953.6 eV) peaks and also 
satellite peaks, from 941.4 to 943.7 eV, indicative of Cu2+ presence 
(Fig. 1g). This confirmed the XRD results and the successful synthesis of 
CuO without any impurity, such as Cu, Cu2O or Cu(OH)2. The 
high-resolution Ni 2p spectra of Ni-MOF (obtained by calcination at 
600 ◦C) (Fig. 1h) included binding peaks (~851.7 and 872.1 eV), 
assigned to Ni 2p3/2 and Ni 2p1/2 respectively, and satellite peaks (861.1 
and 879.7 eV). Deconvolution revealed that the Ni 2p3/2 and Ni 2p1/2 
peaks included two peaks/each: two peaks at 853.7 and 871.0 eV 
(assigned to Ni2+, confirming NiO synthesis) and two peaks at 855.5 and 
872.5 eV (assigned to Ni3+ [74,75] indicating Ni2O3 formation during 
calcination in air). The high-resolution Zn 2p spectra for Zn-MOF after 
calcination at 600 ◦C revealed binding peaks at ~1021.6 and 1044.7 eV, 
corresponding to Zn 2p3/2 and Zn 2p1/2, respectively (Fig. 1i). This 
strongly suggests the presence of zinc ions in a divalent state (Zn2+) [76, 
77], in line with the ZnO phase observed by XRD. Fig. S2 shows the 
high-resolution O1s and C1s spectra. The deconvolution of the C1s 
spectrum revealed three peaks that corresponded to the C––C bond of 
phenyl carbons, the C–O bond, and the C––O bond. This indicated that 
residual carbon was still present in all samples. The O1s region of all 
samples was fitted in two curves related to lattice oxygen (O-M) and 
adsorbed oxygen (–OH), in accordance with the literature. The peaks at 
529.6, 529.2, and 530.1 eV were assigned to Cu–O, Ni–O, and Zn–O 
bonds, respectively. 

SEM and TEM analysis were employed to investigate the morphology 
and microstructure of the materials. Then, MOF-derived CuO after 
calcination at 500 ◦C showed the presence of some agglomerations 
among NPs (SEM; Fig. 2a) and of spherical NPs with a mean size of 
~50–60 nm (TEM; Fig. 2b). High-resolution (HR)-TEM analysis indi-
cated that the inter-planar lattice distance was 0.22 nm, which belongs 
to the (111) crystal plane of CuO (Fig. 2c). Similarly, SEM and TEM 
analysis of the MOF-derived NiO (calcined at 600 ◦C) showed some 
agglomeration among NPs (SEM; Fig. 2d) and the presence of NiO NPs of 
almost spherical shape with a mean size of ~25 nm (TEM; Fig. 2e). HR- 
TEM (Fig. 2f) revealed an inter-planar lattice distance of 0.23 nm, which 
belongs to the (002) crystal plane of NiO [78,79]. MOF-derived ZnO 
(calcined at 600 ◦C) was composed of small interconnected NPs with 
homogeneous size (SEM; Fig. 2g), in line with previous results [80]. The 
ZnO NPs were almost spherical with a mean size of ~35–45 nm (TEM; 
Fig. 2h). The inter-planar lattice distance was 0.24 nm, which belongs to 
the (101) crystal plane of ZnO (HR-TEM; Fig. 2i). 

The elemental composition was assessed by EDS (Table 1). In MOF- 
derived CuO (calcined at 500 ◦C), the concentrations of Cu and O ele-
ments were 76.9 and 23.1 wt%, respectively. In MOF-derived NiO 
(calcined at 600 ◦C), Ni and O elements represented 77.3 and 22.7 wt%, 
respectively. In MOF-derived ZnO (calcined at 600 ◦C), Zn and O ele-
ments were 79.1 and 20.9 wt%, respectively. 

The N2 adsorption-desorption curves of the different samples are in 
Fig. 3. The BET surface areas of MOF-derived CuO (calcined at 500 ◦C), 
NiO (calcined at 600 ◦C), and ZnO (calcined at 600 ◦C) were 5.48, 12.65, 
and 8.36 m2/g, respectively. Therefore, NiO had the highest surface 
area. 

3.2. Gas sensing studies 

3.2.1. Gas sensors based on Cu-MOF and Cu-MOF-derived CuO 
After exposure to 1, 5 and 10 ppm H2S gas (a reducing gas) at 100, 

150 and 200 ◦C, the Cu-MOF gas sensor resistance increased (Fig. 4a). 
This indicates that Cu-MOF behaves like a p-type sensor. Conversely, the 
baseline resistance was decreased by the sensing temperature, high-
lighting Cu-MOF semiconducting nature. Plotting Cu-MOF response in 
function of the temperature (Fig. 4b) showed that at all temperatures, 
the response increased with the concentration of H2S gas because more 
gas molecules can be adsorbed onto the sensor surface. The highest 
response was observed at 150 ◦C: 5.05, 6.12 and 7.33 in the presence of 
1, 5 and 10 ppm H2S gas, respectively. 

At 100 ◦C, H2S gas did not have sufficient energy to overcome 
adsorption barrier on the sensing surface. Also, at 200 ◦C, the sensor 
response was decreased relative to 150 ◦C, it can be surmised that the 
desorption rate was higher than the adsorption rate, leading to a 
decrease of the gas response [81]. 

The net adsorption rate was maximized at the optimal temperature, 
and consequently, the gas response was increased. Following exposure 
to 1, 5 and 10 ppm H2S, CO or NO2 gas at 150 ◦C, Cu-MOF resistance 
diminished in the presence of CO gas (as expected because it is a 
reducing gas like H2S gas) and also of NO2 gas (oxidizing gas) (Fig. 4d). 
Moreover, the Cu-MOF gas sensor response was higher when exposed to 
H2S compared with CO and NO2 gases at all three tested concentrations 
(Fig. 4d). For example, the responses to 10 ppm H2S, CO and NO2 gases 
were 7.33, 2.23, and 1.86, respectively. 

Then, the dynamic resistance curves of CuO (obtained by calcination 
at 500 ◦C) following exposure to 1, 5 and 10 ppm H2S at different 
temperatures (250–400 ◦C) (Fig. 5a and b) indicated that the sensor 
performed best at 300 ◦C: 14.25, 16.79, and 20.92 to 1, 5, and 10 ppm 
H2S gas, respectively. This also showed that calcination at 500 ◦C 
increased the sensing activity of this sensor. In the next step, three CuO 
gas sensors calcined at different temperatures (400, 500 and 600 ◦C) 
were compared. Upon exposure to 1, 5 and 10 ppm H2S gas at 300 ◦C 
(Fig. 5c and d), the best response was observed with the gas sensor 
calcined at 500 ◦C. The response to 10 ppm H2S gas of the sensors 
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calcined at 400, 500 and 600 ◦C were 14.09, 20.92 and 12.15, respec-
tively. Lastly, the selectivity of the CuO gas sensor calcined at 500 ◦C was 
investigated in the presence of 1, 5 and 10 ppm H2S, CO, C6H6, C2H5OH 
or NO2 gas at 300 ◦C (Fig. 6a and b). The responses to 10 ppm H2S, CO, 
C6H6, C2H5OH and NO2 gases were 20.92, 5.18, 2.93, 2.51 and 2.05, 
respectively, indicating that this sensor is highly selective towards H2S 

gas. 

3.2.2. Gas sensors based on Ni-MOF and MOF-derived NiO 
Then, the Ni-MOF gas sensor was exposed to 1, 5 and 10 ppm CO gas 

at 50–200 ◦C (Fig. 7a). The resistance in the presence of increasing 
concentrations of CO gas revealed the p-type nature of this gas sensor. In 
addition, the baseline resistance and resistance variations were limited. 
Exposure to different concentrations of CO gas and at different tem-
peratures (Fig. 7b) showed that the best responses were obtained at 
100 ◦C: 2.22, 2.47 and 3.02 with 1, 5 and 10 ppm CO gas, respectively. 
Then, selectivity was evaluated by exposure to increasing concentra-
tions of CO, H2S, ethanol or NO2 gases at 100 ◦C (Fig. 7c and d). This 
experiment showed that the Ni-MOF gas sensor was more selective for 
CO gas. For instance, the responses were 3.02, 1.27, 1.39 and 1.33–10 
ppm CO, H2S, ethanol and NO2 gases, respectively. 

Ni-MOF samples calcined at 400, 500 and 600 ◦C in air for 2 h were 
used for the next experiments. First, the NiO sensor calcined at 600 ◦C 

Fig. 2. (a), (d) and (g), SEM (b), (e), (h) TEM and (c), (f), (i) HR-TEM images of MOF-derived CuO (calcined at 500 ◦C), NiO (calcined at 600 ◦C) and ZnO (calcined at 
600 ◦C), respectively. 

Table 1 
Results of the EDS analysis of MOF-derived SMOs.  

Sample Calcination temperature (◦C) Element Amount (wt %) 

MOF-derived CuO 500 ◦C Cu 76.9 
O 23.1 

MOF-derived NiO 600 ◦C Ni 77.3 
O 22.7 

MOF-derived ZnO 600 ◦C Zn 79.1 
O 20.9  

Fig. 3. N2 adsorption-desorption curves of MOF-derived (a) CuO after calcination at 500 ◦C, (b) NiO after calcination at 600 ◦C, and (c) ZnO after calcination 
at 600 ◦C. 
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was exposed to 1, 5 and 10 ppm CO gas at various temperatures 
(250–400 ◦C) (Fig. 8a and b). The sensor displayed a p-type behavior, 
and the best response was observed at 350 ◦C: 6.5, 8.66 and 10.49 in the 
presence of 1, 5 and 10 ppm CO gas, respectively. Comparison of the 
responses (CO gas at 350 ◦C) of the three NiO gas sensors calcined at 
different temperatures (Fig. 8c and d) indicated that the best response 
was obtained with the sensor calcined at 600 ◦C. For instance, the re-
sponses to 10 ppm CO gas were 4.76, 5.57 and 10.49 for the sensors 
calcined at 400, 500 and 600 ◦C, respectively. Lastly, exposure of the 
NiO sensor calcined at 600 ◦C to various concentrations of CO, H2S, H2, 
ethanol and NO2 gases at 350 ◦C (Fig. 9a and b) highlighted its higher 
sensitivity towards CO gas. For instance, the responses were 10.49, 1.54, 
1.13, 1.11 and 1.22–10 ppm of CO, H2S, H2, ethanol and NO2 gas, 
respectively. 

3.2.3. Gas sensors based on Zn-MOF and MOF-derived ZnO 
The Zn-MOF gas sensor was first exposed to 1, 5 and 10 ppm H2 gas at 

50–200 ◦C (Fig. 10a). The decrease in resistance upon exposure to H2 gas 
indicated that the Zn-MOF sensor displayed an n-type behavior. The best 
responses were obtained at 150 ◦C (Fig. 10b): 3.45, 4.76 and 5.88 to 1, 5 
and 10 ppm H2 gas, respectively. Exposure to H2, CO and NO2 gases at 
150 ◦C (Fig. 10c and d) showed the higher sensitivity of the Zn-MOF gas 
sensor for H2 gas (responses to 10 ppm H2, CO and NO2 gases: 5.88 and 
1.39 and 1.38, respectively). 

Calcination of Zn-MOF at 400, 500 and 600 ◦C was used to obtain 
ZnO gas sensors. First, the gas sensor calcined at 600 ◦C was exposed to 
1, 5 and 10 ppm H2 gas at various temperatures (Fig. 11a). The sensor 
showed an n-type behavior. Then, the response curve of the gas sensor in 
function of the sensing temperature and H2 gas concentration (Fig. 11b) 
indicated that the best response was obtained at 350 ◦C (10.52, 17.25 
and 34.48 to 1, 5 and 10 ppm H2, respectively). Therefore, calcination 
significantly increased the response to H2 gas. Then, comparison of the 
response of the ZnO sensors calcined at various temperatures to different 

concentrations (1, 5 and 10 ppm) of H2 gas at 350 ◦C (Fig. 11c and d) 
indicated that calcination at 600 ◦C gave the best performing gas sensor 
(Fig. 11d). For instance, the response to 10 ppm H2 gas were 15.04, 
29.23 and 34.48 with the ZnO gas sensors obtained by calcination at 
400, 500 and 600 ◦C, respectively. Lastly, the sensor calcined at 600 ◦C 
was exposed to 1, 5 and 10 ppm H2, CO, ethanol, C6H6 and NO2 gases at 
350 ◦C (Fig. 12a and b). This showed that the ZnO gas sensor was more 
selective towards H2 gas. For instance, the responses to 10 ppm H2, CO, 
ethanol, C6H6 and NO2 gases were 34.38, 2.37, 1.41, 1.31 and 1.6, 
respectively. 

3.3. Gas sensing mechanism 

When resistive gas sensors are exposed to fresh air, the oxygen gas in 
air with high electron affinity is adsorbed on their surfaces and takes 
electrons, as described in the following reactions [82]: 

O2(g)→O2(ads) (1)  

O2(ads)+ e− →O−
2 T< 150 ◦C (2)  

O−
2 + e− → 2O− 150 ≤ T< 400 ◦C (3)  

O− + e− →O2− T>400 ◦C (4) 

Generally, equation (2) is dominant at low operation temperatures 
(T < 150 ◦C) and equations (3) and (4) at higher temperatures, namely, 
150≤T < 400 ◦C and T > 400 ◦C, respectively. Depending on their 
compositions, the gas sensors tested in this study displayed different 
optimal sensing temperatures (Table 2). 

Therefore, the dominant oxygen species were O−
2 for MOF-based 

sensors because their optimal sensing temperature was 150 ◦C or 
lesser, while dominant oxygen species were O− for MOF-derived SMO- 
based gas sensors. In the presence of air and electron abstraction by 

Fig. 4. (a) Cu-MOF gas sensor dynamic resistance curves following exposure to 1, 5 and 10 ppm H2S gas at 100 ◦C, 150 ◦C and 200 ◦C. (b) Response to different H2S 
concentrations in function of the temperature. (c) Cu-MOF gas sensor resistance curves following exposure to 1, 5 and 10 ppm H2S, CO or NO2 gas at 150 ◦C. (d) 
Response in function of the gas type and its concentration. 
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Fig. 5. (a) Dynamic resistance curves of the MOF-derived CuO gas sensor (obtained by calcination at 500 ◦C) in the presence of 1, 5 and 10 ppm H2S gas and the 
indicated temperatures; (b) Response of the gas sensor in function of the sensing temperature and H2S concentration. (c) Resistance curves and (d) response to 1, 5 
and 10 ppm H2S gas at 300 ◦C of CuO gas sensors obtained by calcination at 400, 500 or 600 ◦C. 

Fig. 6. (a) Dynamic Resistance curves of the MOF-derived CuO sensor (obtained by calcination at 500 ◦C) in the presence of 1, 5 and 10 ppm of the indicated gases at 
300 ◦C. (b) Corresponding selectivity graph. 
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oxygen ions, an electron depletion layer is formed on the surface of n- 
type sensors (Table 2), in which the amount of electrons is lower than 
that in the core regions, and accordingly, the sensor resistance is higher 
compared with the vacuum condition [83]. For p-type gas sensors 
(Table 2), as a result of the abstract of electrons, a hole accumulation 
layer is formed on the sensor surface, resulting in the formation of a 
hole-rich layer that ultimately leads to lower resistance in air compared 
with the vacuum condition [84]. Upon exposure to reducing gases such 
as CO, H2S and H2, the following reactions are expected [85]:  

CO + O− →CO2+e T = 100 ◦C                                                        (5)  

2CO + O2
− → 2CO2+e T = 350 ◦C                                                    (6)  

2H2+ O2
− → 2H2O + e T = 150 ◦C                                                   (7)  

H2+ O− →H2O + e T = 350 ◦C                                                        (8)  

2H2S+ 3O2
− → 2SO2+2H2O+3e T = 150 ◦C                                     (9)  

H2S+ 3O− →SO2+H2O+3e T = 300 ◦C                                          (10) 

Although MOF-based sensors had a larger surface area compared 
with SMO-derived gas sensors, their sensing performance was weaker, 
possibly due to the lower charge carrier mobility. Also, as all tested 
MOF-based gas sensors had low baseline resistance values in air (<20 

kΩ), no significant resistance variation was occurred in the presence of 
target gases, resulting in a low response. In addition, the non-covalent 
interactions gases occurring on the surface of MOF-based gas sensors 
(i.e. van der Waals forces, hydrogen bonding, and π-π interactions) led to 
minimal electrical resistance change [86] In SMO-based gas sensors, the 
higher charge carrier mobility and baseline resistance values led to 
larger resistance variations upon exposure to gases and consequently 
higher responses were observed. 

Each SMO-based sensor exhibited selectivity towards a specific gas 
(Table 2). The high selectivity towards H2S gas observed for the MOF- 
derived CuO sensor can be mainly related to conversion of CuO to CuS 
in the presence of H2S, as follows [87].  

CuO + H2S→CuS + H2O (g)                                                         (11) 

According to the above reaction, H2S can directly react with semi-
conducting CuO and convert it to CuS with high metallic-like conduc-
tivity. Previously, the formation of CuS upon exposure of CuO to H2S gas 
has been demonstrated by theoretical models or experimental evidence 
[88–91]. Therefore, in the presence of H2S gas, the electrical resistance 
significantly changes, explaining the higher selectivity towards this gas. 
It should be noted that equation (9) is valid when other SMOs, such as 
NiO, are exposed to H2S gas; however, for CuO, the main reaction can be 
assumed to be the one described in equations (9) and (10). 

Fig. 7. (a) Dynamic resistance curves of the Ni-MOF gas sensor in the presence of 1, 5 and 10 ppm CO gas at the indicated temperatures. (b) Response curves in 
function of the temperature and CO gas concentration. (c) Dynamic resistance of the Ni-MOF gas sensor in the presence of 1, 5 and 10 ppm of CO, H2S, ethanol and 
NO2 gases at 100 ◦C. (d) Corresponding selectivity graphs. 
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The MOF-derived ZnO sensor displayed high selectivity towards H2 
gas that can be related to the highly reducing nature of H2 gas and the 
formation of metallic Zn with higher conductivity compared with Zn on 

the surface of ZnO at the sensing temperature [92].  

ZnO + H2→Zn(s) + H2O(g)                                                          (12) 

Fig. 8. Resistance changes of the NiO gas sensor calcined at 600 ◦C to 1, 5 and 10 ppm CO gas at 250, 300, 350 and 400 ◦C. (b) Response curves in function of the 
sensing temperature and CO concentration. (c) Resistance curves and (d) response of the NiO gas sensors in function of the calcination temperature and CO gas 
concentration at 350 ◦C. 

Fig. 9. (a) Resistance curves of the MOF-derived NiO sensor obtained by calcination at 600 ◦C to the indicated gases at 350 ◦C. (b) Corresponding selectivity graph.  
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This explains the higher selectivity towards H2 gas compared with 
other gases. 

Also, the MOF-derived NiO sensor was more selective towards CO 
gas, mainly due to the good catalytic activity of NiO towards CO gas [93] 
and easy oxidation of CO to CO2 gas on NiO surface at the sensing 
temperature. 

Although some surface residual carbons were detected by XPS, their 
effects on the sensing mechanism were not significant because they did 
not form a major phase in the XRD profiles. However, the oxygen species 
attached to residual carbons could participate in the sensing reactions. 

Table 3 compares the H2S, H2, and CO gas sensing properties of the 
present work with those reported in the literature. Overall, it can be seen 
that the response values obtained in the present study are comparable 
and even, in most cases better than those reported in the literature. 

4. Conclusions 

M-MOFs (M = Cu, Ni and Zn) and MOF-derived CuO, NiO and ZnO 
SMOs were synthesized for gas sensing studies. The morphological and 
structural analyses confirmed the synthesis of metal oxides with the 
desired morphology, chemical composition and phases. The gas sensing 
studies revealed the better performance of the MOF-derived metal ox-
ides compared with their MOF templates, but at higher optimal sensing 
temperatures. Moreover, the MOF-derived metal oxide sensing perfor-
mance was influenced by their calcination temperature. Indeed, the best 
selectivity towards H2S, CO and H2 gases were obtained with CuO, NiO 
and ZnO gas sensors calcined at 500, 600 and 600 ◦C, respectively. This 

research represents a significant advancement in the field of gas sensor 
technology, offering innovative MOF-derived metal oxide sensors with 
tailored properties for precise and reliable gas detection in various in-
dustrial and environmental settings. Future studies should investigate 
the fabrication of sensor arrays to easily detect the different gases pre-
sent in a gas mixture. 
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Table 2 
Optimal sensing temperature, selectivity and conductivity type of the different 
gas sensors tested in this study.  

Sensor Optimal 
temperature (◦C) 

Selectivity Conductivity 

Cu-MOF 150 H2S gas (low 
selectivity) 

p-type 

MOF-derived CuO 
calcined at 500 ◦C 

300 H2S gas (high 
selectivity) 

Ni-MOF 100 CO gas (low 
selectivity) 

MOF-derived NiO 
calcined at 600 ◦C 

350 CO gas (high 
selectivity) 

Zn-MOF 150 H2 gas (low 
selectivity) 

n-type 

MOF-derived ZnO 
calcined at 600 ◦C 

350 H2 gas (high 
selectivity)  

Table 3 
Comparison of H2S, H2 and CO gas sensing properties of present work with those 
reported in the literature.  

Material Gas and 
conc. 
(ppm) 

T 
(◦C) 

Response (Ra/ 
Rg) or (Rg/Ra) 

Ref. 

MOF-derived CuO calcined 
at 500 ◦C 

H2S (10) 300 20.92 This 
work 

MOF-derived ZnO–CuO 
composite 

H2S (10) 350 ~12 [94] 

MOF-derived Ru-doped 
Fe2O3 hollow nanobox 

H2S (10) 200 ~11 [95] 

MOF-derived CuFe2O4 NPs H2S (50) 210 210 [96] 
MOF-derived Co3O4/ 

NiCo2O4 

H2S (50) ~6 225 [97] 

MOF-derived Co3O4/ZnO H2S (10) 5 250 [98] 
MOF-derived ZnO calcined 

at 600 ◦C 
H2 (10) 350 34.48 This 

work 
MOF-derived WO3–C/In2O3 

heterostructures 
H2 (200) 250 4.19 [99] 

Au-decorated ZnO H2 (100) 230 37.6 [100] 
Pt-decorated ZnO H2 (15) 250 ~6 (Ig/Ia) [101] 
Ag-decorated ZnO H2 (300) 250 ~5 [102] 
ZnO nanorod arrays H2 (2000) 225 ~25 [103] 
MOF-derived NiO calcined 

at 600 ◦C 
CO (10 
ppm) 

350 10.49 This 
work 

MOF-derived NiO/SnO2 CO (10 
ppm) 

25 2.5 [104] 

MOF-derived porous In2O3/ 
Fe2O3 core–shell 
nanotubes 

CO (200 
ppm) 

260 33.7 [105] 

MOF-derived SnO2/MoSe2 

composite 
CO (200 
ppm) 

25 10 % [(Ra− Rg)/ 
Ra × 100 %] 

[106] 

Co3O4@TiO2 nanocomposite CO (100 
ppm) 

140 16 [107] 

CuO/TiO2 heterojunction CO (800 
ppm) 

250 ~9 [108]  
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[32] Güldüren ME, İskenderoğlu D, Güney H, Morkoç Karadeniz S, Acar M, Gür E. 
Structural, optical, and H2 gas sensing analyses of Cr doped CuO thin films grown 
by ultrasonic spray pyrolysis. Int J Hydrogen Energy 2023;8:20804–14. https:// 
doi.org/10.1016/j.ijhydene.2023.03.057. 

[33] Lee H-S, Kim J, Moon H, Lee W. Hydrogen gas sensors using palladium nanogaps 
on an elastomeric substrate. Adv Mater 2021;33:2005929. https://doi.org/ 
10.1002/adma.202005929. 

[34] Wang S, McGuirk CM, D’Aquino A, Mason JA, Mirkin CA. Metal–organic 
framework nanoparticles. Adv Mater 2018;30:1800202–16. https://doi.org/ 
10.1002/adma.201800202. 

[35] Jiang Y, Hu Y, Luan B, Wang L, Krishna R, Ni H, et al. Benchmark single-step 
ethylene purification from ternary mixtures by a customized fluorinated anion- 
embedded MOF. Nat Commun 2023;14:401–10. https://doi.org/10.1038/ 
s41467-023-35984-5. 

[36] Huang J, Xu Z, Jiang Y, Law W cheung, Dong B, Zeng X, et al. Metal organic 
framework-coated gold nanorod as an on-demand drug delivery platform for 
chemo-photothermal cancer therapy. J Nanobiotechnology 2021;19:219–32. 
https://doi.org/10.1186/s12951-021-00961-x. 

[37] Hu Z, Deibert BJ, Li J. Luminescent metal-organic frameworks for chemical 
sensing and explosive detection. Chem Soc Rev 2014;43:5815–40. https://doi. 
org/10.1039/c4cs00010b. 

[38] Grape ES, Chacón-garcía AJ, Rojas S, Pérez Y, Jaworski A, Nero M, et al. Removal 
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