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Optimal Execution under Incomplete Information

Etienne CHEVALIER∗ Yadh HAFSI † Vathana LY VATH ‡

December 4, 2024

Abstract

We study optimal liquidation strategies under partial information for a single asset within
a finite time horizon. We propose a model tailored for high-frequency trading, capturing price
formation driven solely by order flow through mutually stimulating marked Hawkes processes.
The model assumes a limit order book framework, accounting for both permanent price impact
and transient market impact. Importantly, we incorporate liquidity as a hidden Markov process,
influencing the intensities of the point processes governing bid and ask prices. Within this set-
ting, we formulate the optimal liquidation problem as an impulse control problem. We elucidate
the dynamics of the hidden Markov chain’s filter and determine the related normalized filtering
equations. We then express the value function as the limit of a sequence of auxiliary continuous
functions, defined recursively. This characterization enables the use of a dynamic programming
principle for optimal stopping problems and the determination of an optimal strategy. It also
facilitates the development of an implementable algorithm to approximate the original liquidation
problem. We enrich our analysis with numerical results and visualizations of candidate optimal
strategies.

Keywords: Optimal Execution, Impulse Control, Stochastic Filtering, Hawkes Processes, Market
Microstructure, Hidden Markov Chain.

Mathematical subject classifications: 93E20, 49L25, 91B28.

1 Introduction

In modern financial markets, the execution of large orders within short timeframes presents unique
challenges. Traders must develop strategies to maximize profits while minimizing risks, navigating a
complex landscape influenced by immediate market depth and liquidity constraints. The studies by
Bouchaud, Farmer, and Lillo [14], Zhou [50], and Taranto et al. [49], for instance, highlight how large
trades impact asset prices by depleting available market liquidity. This depletion occurs because the
market’s immediate depth is limited, meaning that a single large order can exhaust all current buyers
or sellers. Consequently, splitting large orders into smaller blocks often proves advantageous, reducing
the price impact and allowing for more efficient execution.

Research in market microstructure has extensively explored the optimal execution problem across
various models of market impact and cost functions. For instance, Bertsimas and Lo [12] introduced
one of the earliest frameworks for optimal trade execution, focusing on minimizing the total trading cost
given a linear price impact. Almgren and Chriss [2] extended this line of research by considering a trade-
off between volatility risk and liquidation costs. They incorporated linear permanent and temporary
market impact models, providing a more dynamic approach to the execution problem. Their work
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laid the groundwork for subsequent studies, including Ly Vath, Mnif, and Pham [36], Gatheral [30]
and Obizhaeva and Wang [40], who examined different aspects of market impact and execution costs,
proposing models that account for both temporary and permanent price impacts. Different extensions
of these models have been introduced since then to include nonlinear impacts, reflecting more realistic
trading conditions; see e.g. Bouchard, Dang, and Lehalle [13], Guéant, Lehalle, and Fernandez-Tapia
[31], Guilbaud and Pham [32], Kalsi, Lyons, and Arribas [34], Popier and Zhou [43], Becherer, Bilarev,
and Frentrup [10], Fu, Horst, and Xia [29], Cartea and Sánchez-Betancourt [20], and Carmona and
Zeng [19].

Our study builds on this foundation by proposing a model tailored for high-frequency trading,
capturing price formation driven solely by order flow. Our approach incorporates both permanent
and transient market impacts, providing a comprehensive model that goes beyond the specific char-
acteristics of a block-shaped limit order book. This framework extends the prior works of Predoiu,
Shaikhet, and Shreve [44], Obizhaeva and Wang [40] as well as Chevalier et al. [23]. These earlier
studies have examined nonlinear price impact models but considered order arrival processes as Poisson
processes. In contrast, our model represents order arrivals through Hawkes processes. The use of
mutually stimulating point processes to model order flow, as introduced by Bacry, Mastromatteo, and
Muzy [6], allows for a more realistic representation of market dynamics. In fact, similarly to Alfonsi
and Blanc [1], this approach recognizes the feedback loops present in high-frequency trading, where
the occurrence of trades influences the likelihood of subsequent trades. However, our approach adopts
a more general limit order book shape compared to Alfonsi and Blanc [1] as well as fixed transaction
costs, broadening the representation of market impact and taking into account the inherent operational
costs related to trading infrastructure.

As a subsequent step, our modeling approach incorporates the stochastic behavior of liquidity. In
this context, we explore a more realistic approach to modeling market liquidity. Our study acknowl-
edges that liquidity regimes are unobservable, which adds to the challenges presented by Alfonsi and
Blanc [1]. These hidden aspects of market microstructure have been shown to substantially influence
trading outcomes. For instance, the recent work by Chevalier, Hafsi, and Ly Vath [22], based on real
market data, exhibits that the distribution of market liquidity is not directly observable and, further-
more, exhibits substantial intraday variation. Studies like Bayraktar and Ludkovski [9], Colaneri et al.
[24] and Dammann and Ferrari [27] have begun addressing this gap by modeling hidden liquidity as
a stochastic process. These works emphasize that ignoring hidden liquidity can lead to suboptimal
execution strategies, as traders may underestimate the true market depth and the associated risks.
We propose an approach that enables the integration of the dynamics of hidden liquidity, which we
model as a hidden Markov process. This hidden Markov process influences the intensities of the point
processes that govern the bid and ask prices, resulting in prices driven by Markov-modulated Hawkes
processes.

Given the non-observable nature of liquidity within the limit order book, market participants
must operate under a state of incomplete information. Consequently, they are required to estimate the
prevailing liquidity conditions based solely on the observable order flow data. To address this challenge,
we use stochastic filtering to derive our state variables under complete information. More precisely,
we utilize the innovation approach for point processes described in the work of Brémaud [16] and Ceci
and Gerardi [21]. This allows us to derive the Kushner-Stratonovich equations, which characterize
the dynamics of our estimates for these hidden liquidity states as new information becomes available.
This enables us to make informed trading decisions, ensuring that our strategies adapt to the evolving
market conditions.

Once we have a method for estimating liquidity states, we move on to tackle an optimal liquidation
problem formulated as an impulse control problem. The impulse control problem involves determining
the optimal times and sizes of trades. We apply the separation principle, which simplifies the problem
by treating the estimation and control tasks separately. This principle, rooted in control theory, allows
us to manage the complexity of partial observation and control, as described by Menaldi [39], Fleming
and Pardoux [28], Mazziotto and Szpirglas [38], and Mazliak [37]. This approach has been particularly
effective in systems where the underlying state variables cannot be directly observed, requiring robust
estimation techniques to guide optimal control actions. Next, we derive an approximating sequence of
auxiliary functions defined recursively. This approach has also been utilized in the works of Bayrak-
tar and Ludkovski [8] and Ludkovski and Sezer [35], among others. We prove that this sequence of
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functions is continuous and converges locally uniformly to the original value function. This characteri-
zation enables the use of a dynamic programming principle for closed loop optimal stopping problems,
providing us with a critical argument for the explicit determination of the optimal liquidation strat-
egy. Our model introduces complexities and specific features that make it challenging to adapt the
previously established mathematical tools. Overall, our approach to optimal execution incorporates a
broad range of market conditions and dynamics, marking a first in taking into account both hidden
liquidity states and generalized limit order book shapes with fixed transaction costs, to our knowledge.

The article is structured in the following manner. In Section 2, the primary aim is to develop a
model that characterizes the dynamics of a Limit Order Book (LOB) within a framework that accounts
for the stochastic nature of market liquidity. In Section 3, we elucidate the dynamics of the filter using
the Kushner-Stratonovich equations, which allows to update the estimates of the hidden liquidity states
based on new information (see Theorem 3.1). Section 4 formulates the impulse control problem and to
transition to a full information setup using the separation principle. It also introduces an approximating
sequence of functions to characterize the value function and states the dynamic programming principle
in various forms. In Section 5, we investigate the regularity of the value function, which will pave the
way for constructing an optimal strategy under the given market conditions through the Verification
Theorem 5.1. Finally, in Section 6, we provide numerical illustrations of the shape of the optimal
exercise region while assessing the influence of the state variables and the price impact on the candidate
optimal liquidation policy.

2 Model Setup

In this section, our objective is to characterize the dynamics of a limit order book subject to recurrent
buy and sell market orders within a framework of stochastic liquidity. Expanding upon the model
proposed by Alfonsi and Blanc [1] for a single asset, we generalize the impact function and move beyond
the constraints of a block-shaped LOB. This model is selected due to its suitability for high-frequency
trading, as it captures price formation driven by order flow through mutually exciting point processes.
We will further extend this framework across various liquidity regimes by employing Markov-modulated
processes.

2.1 Liquidity Dynamics

Consider a complete filtered probability space (Ω,F,F = {Ft}t≥0,P), where {Ft}t≥0 is a right-
continuous filtration. Throughout this paper, any equality between random variables is understood to
hold P-almost surely, though this is not always explicitly stated.

Markov Chain. Let {It}t≥0 be a continuous-time Markov chain with values in a finite state space
E = {1, . . . , d} ⊂ N and with càdlàg sample paths. Let FI = {FI

t }t≥0 denote the natural filtration
generated by I, augmented by the P-null sets. The process I represents the liquidity state within
the limit order book. This process is driven by a possibly time-dependent transition rate matrix
ψ(t) = (ψjk(t))1≤j,k≤d, such that, for all t ≥ 0,

ψij(t) = lim
h→0

P(It+h = j | It = i)

h
, ∀i ̸= j.

The transition rate matrix ψ(t) captures the probabilities of transitioning between different liquidity
states over infinitesimally small time intervals. The off-diagonal elements ψij(t) for i ̸= j represent the
instantaneous rate of transitioning from state i to state j. We assume that I is stable and conservative,
i.e., for all (j, k) ∈ E2 and t ≥ 0,

ψjj(t) = −
∑
k ̸=j

ψjk(t), and ψjj(t) < +∞.

Order Arrivals. Let i ∈ E be a market regime. Consider the sequences (τ i,+k )k≥1 and (τ i,−k )k≥1

of strictly increasing positive F-measurable stopping times and (vi,+k )k≥1 and (vi,−k )k≥1 as a sequence
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of i.i.d R+-valued F-measurable random variables. Here, (τ i,+k )k≥1 and (τ i,−k )k≥1 represent the ar-

rival times of buy and sell market orders, respectively, while (vi,+k )k≥1 and (vi,−k )k≥1 represent the
corresponding order volumes. We define ni,+ and ni,− as the Poisson counting measures on R+ × R+

associated with the cadlag symmetric two-dimensional Marked Hawkes process defined on the measur-
able space (R+ × R+,B ⊗ B), where B denotes the Borel σ-field on R+. These processes correspond

to the sets of points
{
(τ i,+k , vi,+k ); k ≥ 1

}
and

{
(τ i,−k , vi,−k ); k ≥ 1

}
, respectively. Therefore, for all

C ∈ B ⊗ B,

ni,+(C) :=
∑
k≥1

1C(τ
i,+
k , vi,+k ), and ni,−(C) :=

∑
k≥1

1C(τ
i,−
k , vi,−k ).

We consider the filtration F i,N =
{
F i,N
t

}
t≥0

, which represents the natural filtration of the processes

(ni,+, ni,−), specifically defined for all i ∈ E and t ∈ R+ as

F i,N
t :=

∨
k∈{+,−}

σ
(
ni,k(s, v); s ∈ [0, t], v ∈ R+

)
.

Additionally, we introduce the filtration FI,N =
{
FI,N
t

}
t≥0

as the natural filtration of the processes

(ni,+)i∈E , (n
i,−)i∈E and I, enlarged by the P-null sets N , such that for all t ≥ 0,

FI,N
t :=

(∨
i∈E

FN,i
t ∨ FI

t

)
∨N .

Intensity Dynamics and Combined Measures. In this Markovian framework, we define the
volume distributions νi along with the F i,N -intensities λi,+t and λi,−t . The order intensities λi,+ and
λi,− return to their baseline intensity levels λi∞ at a rate of βi and are influenced by previous order
arrivals through the functions φis and φic, for each liquidity regime i ∈ E. In other words,

dλi,+t = −βi
(
λi,+t − λi∞

)
dt+

∫
R+
φis (v/m1) n

i,+(dt,dv) +
∫
R+
φic (v/m1) n

i,−(dt,dv),

dλi,−t = −βi
(
λi,−t − λi∞

)
dt+

∫
R+
φic (v/m1) n

i,+(dt, dv) +
∫
R+
φis (v/m1) n

i,−(dt, dv),

λi,+0 = κi,+, λi,−0 = κi,−,

(1)

where φic, φ
i
s : R+ × N → R+ are measurable positive functions, (βi)1≤i≤d, and λ

i
∞ are positive reals,

m1 :=
∫
R+ vνi(dv) < +∞, for t ≥ 0.

Next, we introduce the (P,FI,N )-intensities

λ+t :=

d∑
i=1

1{It=i} λ
i,+
t , and λ−t :=

d∑
i=1

1{It=i} λ
i,−
t . (2)

These intensities reflect the aggregated effect of the individual intensities λi,+ and λi,−, weighted by
the current liquidity state It. This aligns with the conclusions drawn by Chevalier, Hafsi, and Ly
Vath [22], where it is shown that the order arrival intensities fluctuate with the order book’s liquidity.
Consequently, the corresponding counting measures n+ and n− for the buy and sell orders satisfy, for
all C ∈ B ⊗ B,

n+(C) :=

d∑
i=1

∑
k≥1

1{I
τ
i,+
k

=i} · 1C(τ i,+k , vi,+k ), and n−(C) :=

d∑
i=1

∑
k≥1

1{I
τ
i,−
k

=i} · 1C(τ i,−k , vi,−k ).

We denote FN =
{
FN
t

}
t≥0

as the natural filtration associated to (n+, n−) and define the marginal

processes N i,±
t :=

∫ t
0

∫
R+ n

i,±(du, dv), counting the number of incoming buy and sell orders, respec-
tively, up to time t within each liquidity regime i ∈ E. Following the definition of the intensities λ+

and λ−, the associated processes N+ and N− can be expressed as

N+
t := N+

0 +

∫ t

0

d∑
i=1

1{Is=i} dN
i,+
s , and N−

t := N−
0 +

∫ t

0

d∑
i=1

1{Is=i} dN
i,−
s , t ≥ 0.
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We focus on the scenario where the marks are identically and independently distributed according to
a common law νi on R+ on each regime i ∈ E, i.e. for any A ∈ B (R+) and t ≥ 0 (See Definition 6.4.III
and Section 7.3 in Daley and Vere-Jones [26]),

λi,±t νi(A) = lim
h→0+

1

h
E
[ ∫ t+h

t

∫
A

ni,±(du,dv) | FN
t

]
.

To ensure the well-definedness of the subsequent processes and to guarantee the non-explosiveness of
N+ and N−, we introduce the following assumptions:

Assumptions 2.1. The following conditions must hold for all i ∈ E:

(A1) The first and second moments are finite:

m1 :=

∫
R+

v νi(dv) < +∞, m2 :=

∫
R+

v2 νi(dv) < +∞.

(A2) The following integrals are finite:∫
R+

(φis)
2

(
v

m1

)
νi(dv) < +∞,

∫
R+

(φic)
2

(
v

m1

)
νi(dv) < +∞.

(A3) The spectral radius of the branching matrix satisfies:

sup
λ∈ρ(∥Γ∥)

|λ| < 1,

where ∥Γ∥ =
{∥∥γjk∥∥}

(j,k)∈{+,−}×{s,c} and ρ (∥Γ∥) is the set of all eigenvalues of ∥Γ(t)∥.

(A4) The decay functions γjk(t) :=
∫ +∞
0

e−βjtφjk(v) dv satisfy:∫ +∞

0

tγjk(t) dt < +∞, ∀(j, k) ∈ {+,−} × {s, c}.

These assumptions establish the necessary conditions for the existence and uniqueness of the asso-
ciated point processes.

Proposition 2.1 (Theorem 8 of Brémaud and Massoulié [17]). Suppose that Assumptions 2.1 are
satisfied, then there exists a unique point process N i,k with associated intensity process λi,k, for all
i ∈ E and k ∈ {+,−}.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

0

20

40

60

80

100

120
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(t)

Counting process
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15

20

25

30

35

40

(t)

Intensity process
Regime change

Figure 1: Representation of a Markov-Modulated Hawkes Process (MMHP) featuring an exponential
Hawkes process intertwined with a two-state Markov chain.
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2.2 Price Modelling

Empirical evidence suggests that an order’s price impact is non-linear (see Brokmann et al. [18]).
Given our interest in short-term liquidity, we derive the market impact function by directly integrating
the density of the limit order book. We choose a general ”shape function” of the LOB (see Predoiu,
Shaikhet, and Shreve [44], Obizhaeva and Wang [40] and Aurélien Alfonsi and Schied [3] for example)
that is represented by a depth density function f : R+ → R+. The density function measures the
frequency of orders per unit price in the LOB. In this order book configuration, the quantity available

at a distance ∆p ≥ 0 from the mid-price p is expressed as V (∆p) :=
∫∆p

0
f(x)dx. The price impact

Q : R+ → R+ of an order executed with a size v is continuous on R∗
+ and is determined by the inverse

function of V , denoted as Q(v) := V −1(v). Here, p − Q(v) represents the post-trade price resulting
from a large investor trading a position of v shares of stock, where p represents the pre-trade mid-price.
Generally, Q(0) equals zero, signifying that no trading activity leads to no impact on the price.

Example 2.1 (Block-Shape). In the work by Obizhaeva and Wang [40], the authors introduce an
example of a block-shaped limit order book, where the density functions are represented as x 7→ f(x) = q,
with q being a positive constant.

Example 2.2 (Power-Shape). An illustrative instance that aligns with the concave price impact and
similar findings by Brokmann et al. [18] and Avellaneda and Stoikov [4] is the power density function
x 7→ f(x) = cx−1+e, where c and e are positive constants.

We define the price process P based on the order flow (n+, n−) and suppose that it is FN -
measurable. This means we rely exclusively on the filtration FN , without observing the filtration
FI generated by the liquidity process I. Consequently, the liquidity status of the traded asset might
not be directly observable. As per convention, a buy order contributes positively to P , whereas a sell
order results in a decrease in P . It is assumed that the price P is a càdlàg process. We depict it as a
composition of a fundamental price component S and a price deviation process D, i.e.,

Pt := St +Dt, ∀t ≥ 0.

We propose to maintain the framework of the impact model introduced by Obizhaeva and Wang
[40] and to assess it under different liquidity regimes in the order book in order to account for these
variations when evaluating transaction costs. We consider the following price dynamics:

dSt = ν
∫
R+
Q(v)n(dt,dv),

dDt = −ρDt−dt+ (1− ν)
∫
R+
Q(v)n(dt,dv),

S0 = s,D0 = d,

∀t ≥ 0, (3)

where n := n+ − n−. This means that a fraction v of the price impact persists permanently, while the
complementary fraction 1−ν exhibits transient behavior, decaying exponentially with a rate parameter
ρ > 0. Finally, the asset bankruptcy time is defined as the FN -stopping time

τS := inf {u ∈ [t, T ] : Pu < 0} ∧ T, (4)

with inf{∅} = +∞.

Remark 2.1. Adapting Corollary 1 from Bacry et al. [5], we obtain similar results to Alfonsi and
Blanc [1] regarding the convergence in law of Smt√

m
to a non-standard Brownian motion with zero drift

when m goes to infinity. This is significant because it implies that the price dynamics are governed by
a diffusion process in low-frequency asymptotic, aligning with the classical literature on the topic.

3 The Filtering Equations

In the subsequent discussion, we define FI as a sub-σ-field generated by the process I, where FI
t is

defined as σ (Is; s ∈ [0, t]) for all t ∈ [0, T ]. We also consider G = {Gt}t≥0 as the initial enlargement
of FN , with Gt := σ(FN

t , σ({It}t≥0)) for all t ≥ 0. The filtration G encapsulates the information
available to a hypothetical observer who knows the entire path of I from the outset at time t = 0.
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Given that the liquidity status of the limit order book is not directly observable, there exists inherent
information incompleteness. Consequently, market participants must estimate it using the data they
have gathered. Here, we present a scenario where they must rely solely on observed order flow FN to
make such estimations.

Assumptions 3.1. We assume, without loss of generality, that the Markov chain I and the jump
processes N+ and N− have no mutual covariation.

Remark 3.1. The proofs in Appendix A cover mutual covariations, but we omit them here to simplify
notation, as they add little value to the model.

Since the process I is not observable, we need to rigorously construct the model introduced in
Section 2. Our aim is to properly define the probability measure P under which N+ and N− have
intensities λ+ and λ−, respectively, as described in (2). To achieve this, we use a change of measure
technique, constructing P from an auxiliary probability measure Q. Under this measure Q, the obser-
vations (N+, N−) transform into a Lévy process, corresponding to a unit rate Poisson process. We
define the Doléans-Dade exponential process Z = (Zt)t∈[0,T ],

Zt :=
∏

k∈{+,−}

exp

{
−
∫ t

0

log
(
λks−

)
dNk

s −
∫ t

0

(
1− λks

)
ds

}
, P− a.s.

Proposition 3.1. Assume that the conditions for existence and uniqueness outlined in Proposition
2.1 are satisfied. Then, EQ(Zt) = 1. Additionally, Z is a positive (P,G)-martingale satisfying

dZt = Zt−
∑

k∈{+,−}

(
(λkt−)

−1 − 1
) [

dNk
t − λkt dt

]
, P− a.s. (5)

Proof. The conditions specified in Proposition 2.1 imply the uniform integrability of the process Z.
The rest of the proof follows directly from Sokol and Hansen [48].

Proposition 3.1 enables the application of the Girsanov theorem, using the Radon-Nikodym density
Z−1 to establish the probability measure P on (Ω,G). Specifically, the relationship between P and Q
is given by dP

dQ |Gt
= Z−1

t , for all t ∈ [0, T ]. As described in Brachetta et al. [15], N+ and N− are Lévy
Poisson processes under Q. Foremost, it’s essential to highlight that their intensities are independent
of I under Q.

Notation 3.1. To improve the clarity of our findings, we define Ŷ as the optional projection of an
FN -progressively measurable process Y in what follows.

As the process I is partially observable, deriving an estimate based on the available information
FN becomes essential to address the control problem (12). This estimation is defined as the projection
of I within the domain of stochastic processes, denoted as L = {Yt ∈ L2(P),∀t ≥ 0 : Y is FN −
measurable}. We define the optional projection of (φ (It))t≥0 as

πτ (φ) := φ̂(Iτ )1{τ<+∞}

= E
[
φ(Iτ )1{τ<+∞} | FN

τ

]
, P− a.s,

(6)

where τ is an FN -predictable stopping time and φ are bounded measurable functions from R to R.

Remark 3.2. As specified in Section II of Bain and Crisan [7], it is crucial to correctly construct an
F-adapted process when dealing with a process that is not adapted to the filtration F . Unlike discrete
time scenarios, directly using the process defined by the conditional expectation E[Yt | Ft], for all
t ∈ [0, T ], is not viable due to its potential lack of uniqueness in null sets dependent on t. This mean
that the process t 7→ πt(φ) would only be defined up to modification. Such a definition could lead to an
unspecified process over a set of strictly positive measure, which is undesirable. As specified in Rao [46],
a proper way to uniquely characterize the optional projection up to indistinguishability for a bounded
measurable process is through (6).
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Now let (π(1), . . . , π(d)) describe the conditional probabilities varying on the unit simplex S :=

{(π(1), . . . , π(d)) ∈ Rd+; π(1) ≥ 0, . . . π(d) ≥ 0,
∑d
i=1 π(i) = 1}, such that

πτ (i) = P
(
{Iτ = i} | FN

τ

)
, (7)

where τ is an FN -predictable stopping time bounded by [0, T ]. Since the filter (6) can be fully de-
scribed by the conditional probability processes (πt(i))t∈[0,T ], we intend to state the filtering equations
for (πt(i))t∈[0,T ] only in the following, with i ∈ E. However, complete proofs of these equations are pro-
vided in the appendix for the case of a filtering problem where the observed processes and unobserved
variables are marked point processes and taking into account the covariations between.

Theorem 3.1 (Kushner–Stratonovich equations). Let t ∈ [0, T ] and i ∈ E. The filter (7) is the unique
FN -adapted càdlàg solution of the stochastic differential equation

dπt(i) =

d∑
l=1

ψli(t)πt−(l)dt+
∑

k∈{+,−}

πt−(i)

(
λi,kt−∑d

j=1 πt−(j)λ
j,k
t−

− 1

)
×
[
dNk

t −
d∑
j=1

πt−(j)λ
j,k
t− dt

]
, (8)

with π0 = µ ∈ S. Additionally, the processes (π(1), . . . , π(d)) are piecewise-deterministic Markov
processes (PDMP).

Proof. Let i ∈ E, and (τ0k )k≥0 be the jump times of the counting process N+ + N−. The fact that
π(i) is a strong solution to the Kushner-Stratonovich equations follows directly from Proposition A.2.
The uniqueness of this solution is established by the results presented in Ceci and Gerardi [21] and
Brachetta et al. [15]. Moreover, this implies that the trajectories of (π(1), . . . , π(d)) are guided by a
system of ordinary differential equations (ODEs) during the intervals between the jump times of N+

and N−. In fact, based on the definition of the dynamics of the intensities (1), we have that, for all
τ0k ≤ t ≤ u < τ0k+1,

dλi,+u = −βi
(
λi,+u − λi∞

)
du, and dλi,−u = −βi

(
λi,−u − λi∞

)
du,

Hence, for all τ0k ≤ t ≤ u < τ0k+1,

λi,+u = (λi,+t − λi∞)e−βi(u−t) + λi∞, and λi,−u = (λi,−t − λi∞)e−βi(u−t) + λi∞.

Additionally, we know that π(i) is governed by the following differential equation between two jumps
and that, for all τ0k ≤ t ≤ u < τ0k+1,

dπu(i) =

d∑
l=1

ψli(u)πu−(l)du−
∑

k∈{+,−}

πu−(i)

λi,ku− −
d∑
j=1

πu−(j)λj,ku−

du, (9)

with πt = µ ∈ S. Consequently, the processes (π(1), . . . , π(d)) are characterized as piecewise-
deterministic Markov processes (PDMPs).

4 Optimal Liquidation Problem

4.1 Control Problem Formulation

Our objective is to address an optimal liquidation problem within a finite time horizon T . Given the
structure of the limit order book under consideration (see Subsection 2.2), the transaction price for a
trade of volume v is expressed as

C (p, v) :=

∫ Q(v)

0

(p− y) f(y)dy − c0

= pv −
∫ Q(v)

0

yf(y)dy − c0,

(10)
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with (p, v) ∈ R+×R+, and c0 > 0 a fixed constant. Since we explore a scenario where an agent engages
with financial markets on a high-frequency timescale, observations are made at discrete intervals.
In this context, employing impulse controls appears to be a logical choice. Furthermore, the fixed
transaction cost c0 deters small-sized orders by enforcing a minimum order size, it disallows continuous
trading.

Definition 4.1 (Admissible strategies). Define At(x) as the set of admissible controls for an agent
with a position x ∈ R+ at time t ∈ [0, T ]. An admissible liquidation strategy α ∈ At(x) consists of a
sequence α = (τk, ξk)k≥1, where (τk)k≥1 is an increasing sequence of FN−stopping times and (ξk)k≥1

a sequence of FN− measurable, R+-valued random variables such that
∑

t≤τk≤T
ξk = x.

The agent’s holdings Xα form an FN -progressively measurable process. We define the controlled
dynamics of the processes Sα, Dα, and Xα as

dSαu = ν
∫
R+
Q(v)n(du,dv), for τk < u ≤ τk+1

Sα
τ+
k

= Sατk − νQ(ξk),

dDα
u = −ρDα

u−du+ (1− ν)
∫
R+
Q(v)n(du,dv), for τk < u ≤ τk+1

Dα
τ+
k

= Dα
τk

− (1− ν)Q(ξk),

Xα
τ+
k

= Xα
τk

+ ξk,

Sαt = s,Dα
t = d,Xα

t = x,

(11)

with u ∈ [t, τS ], k ∈ N∗, v ∈ [0, 1], and α = (τk, ξk)k≥1 an admissible strategy (see Definition 4.1).
By applying classical theory (see Brémaud [16]), we can readily conclude that the aforementioned
system of stochastic differential equations has a unique strong solution. Note that the dynamics of P ,
S and D are partially observable while P , S and D themselves are observable. The fact that P , S and
D are FN -adapted implies that there are no additional terms driving the filter (6).

Notation 4.1. We denote the domain R+ ×R2 × (Rd+)2 ×S by D. The conditional expectation given
(Xα

t , S
α
t , D

α
t , λ̄

+
t , λ̄

−
t , πt) under the probability measure P is denoted by

Et,y[.] = EP
[
. | Xα

t , S
α
t , D

α
t , λ̄

+
t , λ̄

−
t , πt = x, d, s, κ+, κ−, µ

]
,

where y = (x, s, d, κ+, κ−, µ) ∈ D, α ∈ A(x), λ̄+ =
(
λi,+

)
i∈E, λ̄

− =
(
λi,−

)
i∈E, and π = (π(i))i∈E.

We aim to solve an optimal execution problem in feedback form from the perspective of a market
participant seeking to liquidate a positionXt = x within a finite time horizon on a single stock, ensuring
a zero terminal inventory at time τS . The optimization involves minimizing costs while adhering to
execution constraints. We will examine FN -adapted execution strategies involving a series of discrete
trades. We aim to maximize the revenue J over the set of admissible strategies, such that

J (t, y, α) := Et,y
[∑

k

1{t≤τk≤τS}C
(
Sατk +Dα

τk
, |∆Xα

τk
|
)
+ C

(
SατS +Dα

τS , X
α
τS

) ]
. (12)

with t ∈ [0, T ], y ∈ D, α ∈ A(x), and τS the bankruptcy time defined in (4). The corresponding value
function V : [0, T ]×D → R is equal to

V (t, y) := sup
α∈At(x)

J (t, y, α) . (13)

The problem at hand is equivalent to one with partial observation, as the separation principle (see
Fleming and Pardoux [28] and Mazziotto and Szpirglas [38]) enables control and filtering to be disen-
tangled, allowing them to be handled as separate tasks.

We conclude this section with a standard result regarding the finiteness of the value function.

Proposition 4.1. The value function V described in (13) is finite.
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Proof. Let t ∈ [0, T ], y = (x, s, d, κ+, κ−, µ) ∈ D and α ∈ At(x). Based on (10),

C (Pt, x) ≤ Pt

∫ Q(x)

0

f(y)dy − c0

≤ Ptx.

Using Assumptions 2.1, we get that supi∈E Et,y
[
sups∈[0,t]

(∫ s
0
Q(v)ni,±(dv,du)

)2 ]
< +∞. This leads

to Et,y
[
sups∈[0,t] S

2
s

]
< +∞ and Et,y

[
sups∈[0,t]D

2
s

]
< +∞, for all t ∈ [0, T ]. Conversely, given that

p 7→ C(p, x) is non-decreasing on R+, we have that

J (t, y, α) ≤ Et,y
[ ∑
τk∈[t,τS [

C

(
sup
s∈[t,T ]

Ss +Ds, ξτk

)
+ SτS +DτS

]

≤ Et,y
[

sup
s∈[t,T ]

(Ss +Ds)

(
1 +

∑
τk∈[t,τS [

ξτk

)]

≤ (1 + x)Et,y
[

sup
s∈[t,T ]

(Ss +Ds)

]
< +∞.

Since α is arbitrary, we conclude that V is finite.

4.2 Dynamic Programming Principle

When addressing the impulse control problem, it is standard practice to start by defining the value
function as the solution to its corresponding Hamilton-Jacobi-Bellman Quasi-Variational Inequality
(HJBQVI) using the dynamic programming principle. The expected approach is to solve the equation

min {−LV, V −MV } = 0, on [0, T [×R+ × R2
+ × (Rd+)2 × S.

The boundary/terminal conditions here are

V
(
t, 0, s, d, κ+, κ−, µ

)
= 0,

V
(
T, x, s, d, κ+, κ−, µ

)
= C(s+ d, x),

V
(
t, x, s1{s+d<0}, d1{s+d<0}, κ

+, κ−, µ
)
= C(s+ d, x).

The partial integro-differential operator L is defined as

Lφ(t, x, s, d, κ+, κ−, µ) := ∂tφ− ρd∂dφ−
d∑
i=1

µiβi

[
(κi,+ − λi∞)∂κ+φ+ (κi,− − λi∞)∂κ−φ

]

+

d∑
i=1

 d∑
j=1

ψjiµj − µi
∑

k∈{+,−}

(κi,k −
d∑
j=1

µjκ
j,k)

 ∂µi
φ+ Iφ,

with,

Iφ :=∫
R+

[
φ
(
t, x, s+ νQ(z), d+ (1− ν)Q(z), (κi,+ + φis(z/m1))i, (κ

i,− + φic(z/m1))i, (µi +∆µi)i
)

− φ
(
t, x, s, d, κ+, κ−, µ

) ] d∑
k=1

κk,+νk(dz)

+

∫
R+

[
φ
(
t, x, s− νQ(z), d− (1− ν)Q(z), (κi,+ + φic(z/m1))i, (κ

i,− + φis(z/m1))i, (µi +∆µi)i
)

− φ
(
t, x, s, d, κ+, κ−, µ

) ] d∑
k=1

κk,−νk(dz),
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and the intervention operator M is given by

Mφ
(
t, x, s, d, κ+, κ−, µ

)
:=

 sup
ξ∈a(x)

C(s+ d, ξ) + φ (Γ (t, x, s, d, κ+, κ−, µ, ξ)) , if a(x) ̸= {∅},

+∞, otherwise,

with a(x) = {ξ ∈ R+ : ξ ≤ x} ,
and Γ(t, x, s, d, κ+, κ−, µ, ξ) = (t, x− ξ, s− νQ(ξ), d− (1− ν)Q(ξ), κ+, κ−, µ).

(14)

We call C the continuation region

C := {(t, y) ∈ D × [0, T ] : MV < V } ,

and, T the trade region
T := {(t, y) ∈ D × [0, T ] : MV = V } .

In a non-degenerate multidimensional setting like ours, obtaining explicit solutions to the system of
HJBQVIs described above is rare, as it typically occurs only in trivial cases. This arises from the
necessity to solve the related HJBQVI. Moreover, the existence and uniqueness of this system often
require consideration of viscosity solutions. The lack of regularity of the value function could represent
an additional challenge. To circumvent these difficulties, we opt to employ a methodology similar to
that utilized in Costa and Davis [25] and Øksendal and Sulem [41], where the authors demonstrated
that the value function of their control problem resolves a related optimal stopping problem, enabling
them to directly characterize an optimal strategy.

Here, we define the value function as the limit of auxiliary functions. These functions will be used
to study the original value function and to develop an implementable numerical algorithm, detailed in
the next section. Define the subsets AN

t (x) within At(x), for all N ∈ N, as

AN
t (x) :=

{
(τk, ξk)k≥1 ∈ At(x) : τk = +∞ a.s. for all k ≥ N + 1

}
, ∀(t, x) ∈ [0, T ]× R+.

The associated value function VN , which represents the value function when the investor can make a
maximum of N interventions, as

VN
(
t, x, s, d, κ+, κ−, µ

)
:= sup

α∈AN
t (x)

J
(
t, x, s, d, κ+, κ−, µ, α

)
, (15)

with (t, x, s, d, κ+, κ−, µ,N) ∈ [0, T ] × D × N. We also introduce the set Θ of FN -stopping times in
[0, T ], i.e.,

Θt :=
{
t ≤ τ ≤ T : τ is an FN − stopping time

}
.

Proposition 4.2. Let N ∈ N∗. For all t ∈ [0, T ] and y = (x, d, s, κ+, κ−, µ) ∈ D, we have that

VN (t, y) = sup
τ∈Θt

Et,y
[
MVN−1

(
τ, x, Sτ , Dτ , λ̄

+
τ , λ̄

−
τ , πτ

) ]
,

where V0 (t, y) = Et,y
[
C(SτS +DτS , x)

]
.

Proof. Refer to the Appendix B.

Proposition 4.3 (Compact convergence). Let K ⊂ D be a compact set. For every ε > 0, there exists
N0 ∈ N such that for all N ≥ N0,

sup
(t,y)∈[0,T ]×K

|VN (t, y)− V (t, y)| < ε.

Proof. Let N ∈ N. For all t ∈ [0, T ] and y = (x, s, d, κ+, κ−, µ) ∈ K. Since AN ⊆ AN+1
t (x) ⊆ At(x)

for all N ∈ N, then VN ≤ VN+1 ≤ V . Hence, using the monotone convergence theorem, limN→+∞ VN
exists and limN→+∞ VN ≤ V < +∞. Consider α = (τk, ξk)k≥1 ∈ At(x). Recall that the bankruptcy
time τS is defined as τS = inf {u ∈ [t, T ] : Pu < 0} ∧ T . The price is influenced by the same exogenous
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order flow (n+, n−), in addition to the impulse controls, which always drive the price down. The
impulse controls in the strategy α are more frequent than those in the strategy αN . Hence, τS ≤ τNS .

Let αN = (τ̃k, ξ̃k)1≤k≤N ∈ AN
t (x) define the strategy

(τ̃k, ξ̃k) =

{
(τk, ξk) , if 1 ≤ k ≤ N − 1 and τk < τS
(τS , X

α
τS −

∑
1≤k≤N−1 ξk) , else

Using the definition (12) of the reward function J , we obtain that

|J (t, y, α)− J (t, y, αN ) |

≤ Et,y
[ ∑
τN≤τk<τS

C(Sατk +Dα
τk
, ξτk) + |C(SατS +Dα

τS , X
α
τS )− C(SαN

τS +DαN
τS , X

α
τS −

∑
1≤k≤N−1

ξk)|
]
.

(16)

Considering there are almost surely a finite number of switches for any given path, we get that
limN→+∞

∑
τN≤τk<τS

ξk = 0 uniformly. Based on the proof of Proposition 4.1, we know that C(p, x) ≤ px,

for all (p, x) ∈ R× R+. Hence,

Et,y
[ ∑
τN≤τk<τS

C(Sατk +Dα
τk
, ξτk)

]
≤ Et,y

[
sup

u∈[t,T ]

(Sαu +Dα
u )

∑
τN≤τk<τS

ξτk

]

≤

√√√√Et,y
[

sup
u∈[t,T ]

(Su +Du)
2

]
Et,y

[
(

∑
τN≤τk<τS

ξτk)
2

]
,

where the second inequality is obtained using the Cauchy-Schwarz inequality. This proves the uni-

form convergence of the first term to zero since Et,y
[

sup
u∈[t,T ]

(Su +Du)
2

]
is uniformly bounded on the

compact set on [0, T ] × K based on Assumptions 2.1, the price Pα being linearly dependent on the
variables (t, y). Therefore, for any ε > 0 and N large enough,

Et,y
[ ∑
τN≤τk<τS

C(Sατk +Dα
τk
, ξτk)

]
≤ ε

3
. (17)

Next, we will prove the uniform convergence of the second term in inequality (16) to zero using the
expressions of SαN

τS and DαN
τS . Based on (11),

Dα
τS = e−ρ(τS−τN−1)Dα

τN−1

+ (1− ν)
∑

τN≤τk<τS

e−ρ(τS−τk)Q(ξk)

+ (1− ν)

∫ τS

τS∧τN

∫
R+

e−ρ(τS−t)Q(v)n(dt,dv).

SinceDα
u∧τN−1

= DαN
u∧τN−1

,∀u ∈ [t, τS ], we obtain thatDα
τS = DαN

τS +(1−ν)
∑
τN≤τk<τS e

−ρ(τS−τk)Q(ξk).
We proceed in the same way to prove that, SατS = SαN

τS + ν
∑
τN≤τk<τS Q(ξk). Therefore,

Et,y
[
|C(SατS +Dα

τS , X
α
τS )− C(SαN

τS +DαN
τS , X

α
τS )|

]
≤ xEt,y

[ ∑
τN≤τk<τS

Q(ξk)

]
.

As a result, for any ε > 0 and N large enough,

Et,y
[
|C(SατS +Dα

τS , X
α
τS )− C(SαN

τS +DαN
τS , X

α
τS )|

]
≤ ε

3
. (18)

Finally, knowing that the cost function satisfies,

C(SαN
τS +DαN

τS , X
α
τS )−C(S

αN
τS +DαN

τS , X
α
τS−

∑
1≤k≤N−1

ξk) =

∫ Q(Xα
τS

)

Q(Xα
τS

−
∑

1≤k≤N−1

ξk)

(
SαN
τS +DαN

τS − y
)
f(y)dy,

12



we can apply the Cauchy-Schwarz inequality again to bound it,

Et,y
[
|C(SαN

τS +DαN
τS , X

α
τS )− C(SαN

τS +DαN
τS , X

α
τS −

∑
1≤k≤N−1

ξk)|
]

≤

√√√√Et,y
[

sup
u∈[t,T ]

(Su +Du)
2

]
Et,y

[
(Q(Xα

τS )−Q(Xα
τS −

∑
1≤k≤N−1

ξk))2
]
.

Since Q is continuous on R∗
+, and applying similar reasoning as before, the following inequality holds,

for any ε > 0 and N large enough,

Et,y
[
|C(SαN

τS +DαN
τS , X

α
τS )− C(SαN

τS +DαN
τS , X

α
τS −

∑
1≤k≤N−1

ξk)|
]
≤ ε

3
. (19)

As a result of inequalities (17), (18), and (19),

|J (t, y, α)− J (t, y, αN )| ≤ ε.

Therefore,
V (t, y) ≥ J(t, y, αN ) ≥ J(t, y, α)− ε,

Since α and ε are arbitrary, VN converges uniformly to V on [0, T ]×K which concludes the proof.

Next, we present two formulations of the dynamic programming principle. The proof of each result
directly follows from Proposition 3.3 and Proposition 3.4 in Bayraktar and Ludkovski [8]. This will be
key for characterizing the value function in (13) and formulating a verification theorem to obtain the
optimal execution strategy in Section 5.

Proposition 4.4 (Dynamic Programming Principle). Let t ∈ [0, T ] and y = (x, s, d, κ+, κ−, µ) ∈ D.
The value function V is the smallest solution of the dynamic programming equation

V (t, y) = sup
τ∈Θt

Et,y
[
MV

(
τ, x, Sτ , Dτ , λ̄

+
τ , λ̄

−
τ , πτ

) ]
, (20)

such that, V ≥ V0.

Proposition 4.5. Let N ∈ N, t ∈ [0, T ], and y = (x, s, d, κ+, κ−, µ) ∈ D. Let τ+1 :=
{
s ≥ t : N+

t < N+
s

}
,

τ−1 :=
{
s ≥ t : N−

t < N−
s

}
, σ1 := τ+1 ∧ τ−1 , and W0 = V0. Then, the value function V is the pointwise

limit of the sequence

WN (t, y) := sup
s∈[t,T ]

Et,y
[
1{s≥σ1}WN−1(σ1, x, Sσ1

, Dσ1
, λ̄+σ1

, λ̄−σ1
, πσ1

)

+ 1{s<σ1}MWN−1(s, x, Ss, Ds, λ̄
+
s , λ̄

−
s , πs)

]
.

Furthermore, V is the smallest solution of the dynamic programming equation

V (t, y) = sup
s∈[t,T ]

Et,y
[
1{s≥σ1}V (σ1, x, Sσ1 , Dσ1 , λ̄

+
σ1
, λ̄−σ1

, πσ1)

+ 1{s<σ1}MV (s, x, Ss, Ds, λ̄
+
s , λ̄

−
s , πs)

]
,

such that, V ≥ V0.

Remark 4.1. It is important to note that in Proposition 4.5, the supremum is taken over deterministic
times in [t, T ] rather than over the stopping times in Θt. This distinction arises from the character-
ization of the stopping times for piecewise deterministic Markov processes (refer to Theorem 33 in
Brémaud [16]).
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5 Characterization of the Value Function

In this section, we will investigate the regularity of the value function V , which will pave the way for
constructing an optimal strategy.

Lemma 1. Let t ∈ [0, T ], i ∈ E and (x, s, d, κ+, κ−, µ) ∈ D. The following results hold:

1. x0 7→ V (t, x0, s, d, κ
+, κ−, µ) is a non-decreasing function on R+.

2. κi,+0 7→ V
(
t, x, s, d, κ+,1, · · · , κ+,i0 , · · · , κ+,d, κ−, µ

)
is a non-decreasing function on R+

3. κi,−0 7→ V
(
t, x, s, d, κ+, κ+,1, · · · , κ−,i0 , · · · , κ−,d, µ

)
is a non-increasing function on R+.

4. s0 7→ V (t, x, s0, d, κ
+, κ−, µ) and d0 7→ V (t, x, s, d0, κ

+, κ−, µ) are a non-decreasing functions on
R. Additionally, ∂V∂s (t, y) = x, for all (t, y) ∈ [0, T ]×D.

Proof. Refer to the Appendix C.

Lemma 2. Let t0 ∈ [0, T ] and y0 = (x, s, d, κ+, κ−, µ) ∈ D. Then,

lim
(t1,y1)→(t0,y0)

P
(
τ1S = τ0S

)
= 1,

and (t, y) 7→ Et,y[e−ρτS ] is continuous on [0, T ]×D.

Proof. Let (t0, t1) ∈ [0, T ]2, y0 =
(
x0, s0, d0, κ

+
0 , κ

−
0 , µ0

)
∈ D, and y1 =

(
x1, s1, d1, κ

+
1 , κ

−
1 , µ1

)
∈ D.

We suppose, without loss of generality, that t1 ≥ t0. Using the dynamics (3) of the uncontrolled price
process P , we have that, for all u ∈ [t0, T ],

P 1
u − P 0

u = s1 − s0 + d1e
−ρ(u−t1) − d0e

−ρ(u−t0)

+ ν

∫ u

t1

∫
R+

Q(v)n1(ds,dv)− ν

∫ u

t0

∫
R+

Q(v)n0(ds,dv)

+ (1− ν)

∫ u

t1

∫
R+

e−ρ(u−s)Q(v)n1(ds,dv)− (1− ν)

∫ u

t0

∫
R+

e−ρ(u−s)Q(v)n0(ds,dv)

= R(u, t0, t1, y0, y1), P− a.s,

with P 1
t = S1

t +D1
t = s1 + d1, and P

0
t = S0

t +D0
t = s0 + d0. Hence,

P
(
τ1S = τ0S

)
= P

(
inf

u∈[t0,τ0
S [
P 1
u ≥ 0, P 1

τ0
S
< 0

)
= P

(
inf

u∈[t0,τ0
S [
P 0
u +R(u, t0, t1, y0, y1) ≥ 0, P 1

τ0
S
< 0

)
≥ P

(
inf

u∈[t0,τ0
S [
P 0
u ≥ sup

u∈[t0,T ]

| R(u, t0, t1, y0, y1) |, P 0
τ0
S
+R(τ0S , t0, t1, y0, y1) < 0

)
.

Standard calculations show that supu∈[t0,T ] | R(u, t0, t1, y0, y1) | converges in probability to zero when

(t1, y1) → (t0, y0). Additionally, infu∈[t0,τ0
S [ P

0
u ≥ 0 and P 0

τ0
S
< 0 hold P-almost surely. Hence,

lim
(t1,y1)→(t0,y0)

P

(
inf

u∈[t0,τ0
S [
P 0
u ≥ sup

u∈[t0,T ]

| R(u, t0, t1, y0, y1) |, P 0
τ0
S
+R(τ0S , t0, t1, y0, y1) < 0

)
= 1,

and,
lim

(t1,y1)→(t0,y0)
P
(
τ1S = τ0S

)
= 1.

Therefore,

lim
(t1,y1)→(t0,y0)

Et1,y1 [e−ρτ
1
S ] = Et0,y0 [e−ρτ

0
S ].

In conclusion, (t, y) 7→ Et,y[e−ρτS ] is continuous on [0, T ]×D.
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Lemma 3. Let t ∈ [0, T ] and y = (x, s, d, κ+, κ−, µ) ∈ D. The value function without interventions,

V0(t, y) = Et,y
[
C(SτS +DτS , x)

]
, is continuous on [t, T ]×D.

Proof. Let t ∈ [0, T ], and y = (x, s, d, κ+, κ−, µ) ∈ R+ × R2 × (Rd+)2 × S.
We know that

V0 (t, y) = xEt,y[SτS +DτS ]−
∫ Q(x)

0

vf(v)dv − c0

= x(s+ dEt,y[e−ρ(τS−t)]) + xνEt,y
[ ∫ τS

t

∫
R+

Q(v)n(du,dv)

]
+ x(1− ν)Et,y

[ ∫ τS

t

∫
R+

e−ρ(τS−u)Q(v)n(du,dv)

]
−
∫ Q(x)

0

vf(v)dv − c0.

Hence, given that Q is continuous on R+ and that (t, y) 7→ Et,y[e−ρτS ] is continuous on [0, T ]×D, the
continuity of V0 on [0, T ]× (Rd+)2 × S will depend on the continuity of the function

(t, κ+, κ−, µ) 7→ k(t, κ+, κ−, µ) = Et,y
[ ∫ τS

t

∫
R+

e−ρ(τS−u)Q(v)n(du,dv)

]
.

This is because the proof of the continuity of the mapping

(t, κ+, κ−, µ) 7→ Et,y
[ ∫ τS

t

∫
R+

Q(v)n(du,dv)

]
is analogous. We define a functional operator I0 by its action on a test function w as

I0w(t, κ
+, κ−, µ) =

d∑
i=1

Et,y
[ ∫ σ1∧τS

t

∫
R+

πu(i)e
−ρ(τS−u)Q(v)

(
λi,+u − λi,−u

)
νi(dv)du

]
+ Et,y

[
1{σ1≤τS}w

(
σ1, λ

+
σ1
, λ−σ1

, πσ1

) ]
,

with u ∈ [t, T ]. Let us define σn as the n-th jump time of N = N++N− after time t. We then introduce
kn+1(t, κ

+, κ−, µ) recursively as kn+1(t, κ
+, κ−, µ) = I0kn(t, κ

+, κ−, µ), starting with k0(t, κ
+, κ−, µ) =

0, for n ∈ N. As a result,

kn(t, κ
+, κ−, µ) =

d∑
i=1

Et,y
[ ∫ σn∧τS

t

∫
R+

πu(i)e
−ρ(τS−u)Q(v)

(
λi,+u − λi,−u

)
νi(dv)du

]

=

d∑
i=1

Et,y
[ ∫ σn∧τS

t

∫
R+

e−ρ(τS−u)Q(v)n(dv,du)

]
.

Additionally, we have that, for all n ∈ N,

|k(t, κ+, κ−, µ)− kn(t, κ
+, κ−, µ)|

=

d∑
i=1

Et,y
[ ∫ τS

σn∧τS

∫
R+

πu(i)e
−ρ(τS−u)Q(v) | λi,+u − λi,−u | νi(dv)du

]
≤ 2d sup

i∈E
Ei(Q)Et,y

[
(τS − σn ∧ τS) sup

s∈[0,T ]

λi,±s

]

≤ 2d sup
i∈E

Ei(Q)

√
Et,y

[
sup

s∈[0,T ]

(λi,±s )2
]
Et,y

[
(τS − σn ∧ τS)2

]
.

with Ei(Q) :=
∫
R+
Q(v)νi(dv). An implication of Doob’s inequality, along with the stability conditions

outlined in Assumptions 2.1, is that E[supu∈[0,T ](λ
i,±
u )2] is bounded. Consequently, kn converges uni-

formly to k. It remains to demonstrate that the operator I0 preserves continuity, thereby establishing
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the continuity of k and, consequently, V0.
If s+ d ≤ 0:
The price instantaneously falls to zero, thus τS = t since P is càdlàg in the scenario without interven-
tions and no jumps occur at time t+. Therefore,

V0(t, y) = x(s+ d)−
∫ Q(x)

0

vf(v) dv − c0.

Hence, V0 is continuous on {y ∈ D : s+ d ≤ 0}. For the rest of the proof, we will examine the continuity
of V0 on {y ∈ D : s+ d > 0}.
If s ≥ 0 and s+ d > 0:
Since the price P can decrease only after a downward jump of N , we have inf {u ∈ [t, T ] : Pu ≤ 0} ≥ σ1,

P-a.s. Hence, σ1 ∧ τS = σ1 ∧ T , P-a.s. Now let H0,k
i denote the functional operator on a test function

w, such that, for all i ∈ E and k ∈ {+,−},

H0,k
i w(u, κ+, κ−, µ)

=

∫
R+

w(u, (κl,+ + φlc(v/m1))l∈E , (κ
l,− + φls(v/m1))l∈E ,

(
µlκ

l,k∑d
j=1 µjκ

j,k

)
l∈E

)νi(dv).

Utilizing the piecewise-deterministic Markov property of the processes (λi,+)i∈E , (λ
i,−)i∈E , and (π(i))i∈E ,

we can express I0 as

I0w(t, κ
+, κ−, µ) =

d∑
i=1

Et,y
[ ∫ σ1∧T

t

∫
R+

πu(i)e
−ρ(τS−u)Q(v)

(
λi,+u − λi,−u

)
νi(dv)du

]
+ Et,y

[
1{σ1≤T}w

(
σ1, λ

+
σ1
, λ−σ1

, πσ1

) ]
=

d∑
i=1

∫ T

t

π0
u(i)e

ρu
(
λ0,i,+u − λ0,i,−u

)
× Et,y

[
1{u<σ1}e

−ρτS
]
du× Ei(Q(V ))

+
∑

k{+,−}

d∑
i=1

∫ T

t

H0,k
i w

(
u, λ0,+u , λ0,−u , π0

u

)
Pt,y

(
Iu = i, σ1 = τk1 , σ1 ∈ du

)
,

with λ0,i,+u = (κi,+ − λi∞)e−βi(u−t) + λi∞, λ0,i,−u = (κi,− − λi∞)e−βi(u−t) + λi∞ and π0
u is the unique

solution to the ordinary differential equation (9).
Let us introduce the functions m±

i : [0, T ]2 × (Rd+)2 × S, and u ∈ [t, T ] such that, for all i ∈ E,

m+
i (t, u, κ

+, κ−, µ) = Pt,y
(
u < σ1, Iu = i, σ1 = τ+1

)
,

m−
i (t, u, κ

+, κ−, µ) = Pt,y
(
u < σ1, Iu = i, σ1 = τ−1

)
.

(21)

Next, we will determine the forms of m±
i in order to demonstrate their continuity. We know that

Pt,y
(
u < σ1, Iu = i, τ+1 < τ−1

)
= Et,y

(
1{Iu=i} · P

(
u < τ+1 < τ−1 | (Is)s∈[t,u]

))
(22)

Utilizing the definition of a non-homogeneous Poisson process (see Snyder and Miller [47]) and recog-
nizing that the intensities of (λi,+)i∈E and (λi,−)i∈E are deterministic prior to the first jump time σ1
due to their nature as PDMPs (see Proposition 3.1), we get that

P
(
u < τ+1 < τ−1 | (Is)s∈[t,u]

)
= E

[ ∫ +∞

u

d∑
j=1

1{Is=j}λ
0,j,+
s e−

∫ s
t

∑d
i=1 1{Ir=i}(λ

0,i,−
r +λ0,i,+

r )drds | (Is)s∈[t,u]

]
= e−

∫ u
t

∑d
i=1 1{Ir=i}(λ

0,i,−
r +λ0,i,+

r )dr

×
∫ +∞

u

d∑
j=1

λ0,j,+s E
[
1{Is=j}e

−
∫ s
u

∑d
i=1 1{Ir=i}(λ

0,i,−
r +λ0,i,+

r )drds | (Is)s∈[t,u]

]
.
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The transition from the first to the second line is justified by the Fubini-Tonelli theorem. As de-
scribed in Brémaud [16], the dynamics of I can also be understood through the Poisson measure
nIij , which counts the transitions from state i to state j. This process has an FI -intensity given by
t 7→ 1{It−=i}ψij(t), where i and j are elements of the set E. This means that

d
(
1{Iu=i}

)
=
∑
j∈E

(
1{Iu−=j} − 1{Iu−=i}

)
× nIji(du), ∀u ∈ [0, T ].

By applying Itô’s formula, we obtain that

dLiu = d
(
1{Iu=i}e

−
∑d

j=1

∫ u
t
1{Is=j}(λ

0,j,−
s +λ0,j,+

s )ds
)

=

[
− 1{Iu−=i}

(
λ0,i,−u− + λ0,i,+u−

)
du+ d

(
1{Iu=i}

) ]
e−

∑d
j=1

∫ u
t
1{Is=j}(λ

0,j,−
s +λ0,j,+

s )ds.

This results in

dEt,y
(
Liu
)
= Et,y

∑
j ̸=i

Lju−ψji(u)− Liu−ψii(u)

du− Et,y
(
Liu
) (
λ0,i,−u− + λ0,i,+u−

)
du

=

d∑
j=1

Et,y
(
Lju−

)
ψji(u)du− Et,y

(
Liu
) (
λ0,i,−u− + λ0,i,+u−

)
du.

Therefore,

Et,y
(
Liu
)
=
(
µ · e

∫ u
t
ψ(s)−Λ0,−

s −Λ0,+
s ds

)
i
. (23)

where Λ0,+ is a d× d diagonal matrix with (Λ0,+)ii = λ0,i,+. Hence, we get that

Pt,y
(
u < τ+1 < τ−1 | (Is)s∈[t,u]

)
= e−

∫ u
t

∑d
i=1 1{Ir=i}(λ

0,i,−
r +λ0,i,+

r )dr

×
∫ +∞

u

d∑
j=1

λ0,j,+s

d∑
k=1

1{Iu=k} ·
(
e
∫ s
u
ψ(r)−Λ0,−

r −Λ0,+
r dr

)
kj

ds,

and, based on (22), that

Pt,y
(
u < σ1, Iu = i, τ+1 < τ−1

)
= Et,y

(
1{Iu=i} · e

−
∫ u
t

∑d
i=1 1{Ir=i}(λ

0,i,−
r +λ0,i,+

r )dr
)

×
∫ +∞

u

d∑
j=1

λ0,j,+s

(
e
∫ s
u
ψ(r)−Λ0,−

r −Λ0,+
r dr

)
ij
ds

Therefore, for all i ∈ E and u ∈ [t, T ],

m+
i (t, u, κ

+, κ−, µ) =
(
µ · e

∫ u
t
ψ(s)−Λ0,−

s −Λ0,+
s ds

)
i

∫ +∞

u

d∑
j=1

λ0,j,+s

(
e
∫ s
u
ψ(r)−Λ0,−

r −Λ0,+
r dr

)
ij
ds.

Similarly, we get that

m−
i (t, u, κ

+, κ−, µ) =
(
µ · e

∫ u
t
ψ(s)−Λ0,−

s −Λ0,+
s ds

)
i

∫ +∞

u

d∑
j=1

λ0,j,−s

(
e
∫ s
u
ψ(r)−Λ0,−

r −Λ0,+
r dr

)
ij
ds.

Since λ0,i,+u = (κi,+−λi∞)e−βi(u−t)+λi∞ and λ0,i,−u = (κi,−−λi∞)e−βi(u−t)+λi∞, we get a continuous
dependence of λ0,i,+ and λ0,i,+ with respect to their initial parameters. Hence, (t, κ+, κ−, µ) →
m+
i (t, u, κ+, κ−, µ) and (t, κ+, κ−, µ) → m−

i (t, u, κ+, κ−, µ) are continuous on [0, T ]× (Rd+)2 × S, for

all i ∈ E and u ∈ [0, T ]. Additionally, we know that (t, y) 7→ Et,y
[
1{u<σ1}e

−ρτS
]
is continuous on
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[0, T ]×D, based on the results of Lemma 2 and the fact that (t, y) 7→ σ1 is continuous in probability
on [0, T ]×D. Hence, since

Pt,y
(
Iu = i, σ1 = τk1 , σ1 ∈ du

)
= − ∂

∂u
mk
i (t, u, κ

+, κ−, µ)du, (24)

and ∂
∂um

k
i is continuous on [0, T ] × D, we conclude that I0 preserves the continuity. This concludes

this part of the proof.
If s < 0 and s+ d > 0:
The bankruptcy time in case of no prior jumps τ0S satisfies the equation

de−ρ(τ
0
S−t) + s = 0

before time T , which implies that

τ0S =

(
t+

1

ρ
ln

(
−d
s

))
∧ T.

Hence, σ1 ∧ τS = σ1 ∧ τ0S . The rest of the proof is based on similar arguments as those presented in
the previous case. One can just replace T by τS .

Proposition 5.1. The approximating sequence of value functions (WN )N∈N is continuous on [t, T ]×D.

Proof. Let t ∈ [0, T ], N ∈ N, and y = (x, s, d, κ+, κ−, µ) ∈ D. Define a functional operator I1 by its
action on a test function w as

I1w(t, u, y) := Et,y
[
1{u≥σ1}w

(
σ1, x, Sσ1 , Dσ1 , λ̄

+
σ1
, λ̄−σ1

, πσ1

)
+ 1{u<σ1}Mw

(
u, x, s, e−ρ(u−t)d, λ0,+u , λ0,−u , π0

u

)]
,

(25)

with u ∈ [t, T ], λ0,i,+u = (κi,+ − λi∞)e−βi(u−t) + λi∞, λ0,i,−u = (κi,− − λi∞)e−βi(u−t) + λi∞, and π0
u =

Pt,y (Iu = i | σ1 > u) is the unique solution to the ordinary differential equation (9).

Now let H1,k
i denote the functional operator on a test function w : [0, T ] × D 7→ R, for all i ∈ E and

k ∈ {+,−}, such that,

H1,k
i w(u, y) :=∫
R+

w

(
u, x, s+ kνQ(v), d+ k(1− ν)Q(v), (κl,+ + 1{k=−,l=i}φ

l
s(v/m1) + 1{k=+,l=i}φ

l
c(v/m1))l∈E ,

(κl,− + 1{k=+,l=i}φ
l
s(v/m1) + 1{k=−,l=i}φ

l
c(v/m1))l∈E ,

(
µlκ

l,k∑d
j=1 µjκ

j,k

)
l∈E

)
νi(dv).

By means of the strong Markov property,

I1w(t, u, y) =

d∑
i=1

Pt,y (Iu = i, σ1 > u)Mw
(
u, x, s, e−ρ(u−t)d, λ0,+u , λ0,−u , π0

u

)
+

∑
k∈{+,−}

d∑
i=1

∫ u

t

H1,k
i w

(
r, x, s, e−ρ(r−t)d, λ0,+r , λ0,−r , π0

r

)
Pt,y

(
Ir = i, σ1 = τk1 , σ1 ∈ dr

)
,

Using (21), (24), we can express I1 as

I1w(t, u, y) =

d∑
i=1

mi(t, u, κ
+, κ−, µ)Mw

(
u, x, s, e−ρ(u−t)d, λ0,+u , λ0,−u , π0

u

)
−

∑
k∈{+,−}

d∑
i=1

∫ u

t

H1,k
i w

(
r, x, s, e−ρ(r−t)d, λ0,+r , λ0,−r , π0

r

) ∂

∂u
mk
i (t, r, κ

+, κ−, µ)dr,
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with mi(t, u, κ
+, κ−, µ) := m+

i (t, u, κ
+, κ−, µ) +m−

i (t, u, κ
+, κ−, µ) =

(
µ · e

∫ u
t
ψ(s)−Λ0,+

s −Λ0,−
s ds

)
i
.

The lifting function Γ, defined in (14), maintains continuity due to its linearity. Since x 7→ a(x) = [0, x]
defines a hemicontinuous, compact-valued correspondence with a(x) ̸= {∅}, a consequence of the Max-
imum theorem (see Section 3 in Berge [11]) is that the operator M preserves continuity. We apply the
arguments presented in Lemma 3 to prove that the first jump operator I1 preserves continuity. Using
the Maximum Theorem again, since t 7→ [t, T ] also maps to a non-empty set and defines a hemicon-
tinuous compact-valued correspondence, we find that the operator supu∈[t,T ] I1w(t, u, y) associated to
the test function w preserves continuity. Therefore, given that the dynamic programming principle in
Proposition 4.5 states WN+1(t, y) = supu∈[t,T ] I1WN (t, u, y) and W0 = V0 is continuous (see Lemma
3), we conclude that WN is continuous for all N ∈ N, which completes the proof.

Corollary 5.1. The value function V is continuous on [0, T ]×D.

Proof. Based on Proposition 3.2 in Ludkovski and Sezer [35], we have that WN = VN , for all N ∈ N.
Moreover, [0, T ] × D, endowed with the Euclidean metric, is a locally compact space. Since WN has
been proven to be continuous on [0, T ]×D in Proposition 5.1 and that VN converges locally uniformly
to V based on Proposition 4.3, we conclude that V is continuous on [0, T ]×D.

We conclude this section by presenting a verification theorem, which follows from the continuity of
V established in Corollary 5.1, along with Proposition 4.1 in Bayraktar and Ludkovski [8].

Theorem 5.1 (Verification Theorem). Let t ∈ [0, T ], and y = (x, d, s, κ+, κ−, µ) ∈ D. A strategy
α∗ = (τk, ξk)k≥1 is defined recursively as

• Set ξ1 = 0 and τ1 = 0.

• For k ≥ 1,{
τk+1 = inf {s ∈ [τk, T ] : V (s, Y ∗

s ) = MV (s, Y ∗
s )} ,

ξk+1 = argmin
ξ

{
MV (τk+1, Y

∗
τk+1

) = C(Dα∗

τk+1
+ Sα

∗

τk+1
, ξ) + V (Γ(τk+1, Y

∗
τk+1

, ξ))
}
,

where Y ∗
s := (Xα∗

s , Sα
∗

s , Dα∗

s , λ̄+s , λ̄
−
s , πs), for all s ∈ [0, T ].

With the convention that inf{∅} = 0, the strategy α∗ is optimal for Problem 12, i.e.,

V (t, y) = Et,y
[ ∑
τk∈[t,τS [

C(Sα
∗

τk
+Dα∗

τk
, |∆Xα∗

τk
|) + C(Sα

∗

τS +Dα∗

τS , X
α∗

τS )

]
.

6 Numerical Results

Below, we present numerical examples to demonstrate the shape of the optimal exercise and continua-
tion regions. We will also evaluate the impact of the stochastic filtering procedure on the optimal policy
and exercise regions. Now, we will specify the forms of the limit order book density and intensities
used in our illustrations.

• Market impact: Drawing from the research of Bouchaud, Farmer, and Lillo [14] and Gatheral
[30], we propose a price impact model in which the trading size influences the price Q in a concave
manner, meaning that v 7→ V −1(v) forms a continuous concave function from R+ to R+. This
is particularly relevant when the trade size is small, which is often the case in high-frequency
trading. As empirical observations suggest that the price impact function often approximates a
square-root function, we will employ a power-shaped density function x 7→ f(x) = c × x−1+e,
where c and e are positive constants. This results in a concave market impact function v 7→
Q(v) =

(
ev
c

)1/e
and a transaction price equal to C(p, v) = pv − e

e+1
e

e+1 c
(
v
c

) e+1
e − c0 = pv −

c′v
e+1
e − c0, with c

′ = c
e+1

(
e
c

) e+1
e .
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• Hidden liquidity: To ensure clarity in our results, we will focus on two possible regimes
i ∈ {1, 2} throughout the remainder of our study. Based on the findings of Chevalier, Hafsi, and
Ly Vath [22] and Pomponio and Abergel [42], we select an exponential distribution for the order
volumes, given by νi(v) = ζe−ζv. We aim to illustrate the behavior of the liquidating agent when
market trends reverse. This is achieved through the following dynamics of the intensities λi,+t
and λi,−t , defined as

φis

(
v

m1

)
= φic

(
v

m1

)
=

ζη

Γ(1 + η)
vη,

where χ > 1 is a parameter linking the regimes, and ζ and η are positive parameters. Additionally,
we define κ2,+ = κ1,− and κ2,− = κ1,+, leading to λ2,+ = λ1,− and λ2,− = λ1,+. This allows us
to reduce the dimensional complexity impacting the numerical scheme.

We propose this set of parameters for the upcoming numerical results to ensure consistency and clarity
in our analysis. Whenever a variable is not explicitly mentioned as changing within a graph, or if it
is not varying across different scenarios, it takes the default values specified in this set. These default
values will be maintained throughout the computations unless stated otherwise.

Parameters ρ c e c0 ν λ1∞ β η
Values 0.1 1.0 3.0 0.1 0.8 1.0 0.5 0.05

Table 1: Default parameter values used for numerical results.

6.1 Filter Sample Paths

We analyze a two-state homogeneous Markov chain through sample path analysis. When fully ob-
served, the chain exhibits a clear sequence of transitions between states, providing a detailed view of
its temporal evolution. Each transition is directly observable, facilitating straightforward interpreta-
tion of the chain’s dynamics. We choose the scenario where the transition rate matrix Ψ(t) at time
t ∈ [0, T ] is

Ψ(t) =

(
−0.2 0.2
0.2 −0.2

)
.

In the context of our Markov chain with discrete states, the accuracy of our state estimation is illus-
trated using the Maximum A Posteriori (MAP) estimator, which selects the state with the highest
posterior probability Ît = argmaxi∈{0,1} πt(i), where πt(i) refers to the filter (6). This approach en-
sures that the estimate remains within the discrete state space, providing practical and computational
advantages for illustration purposes. However, going forward, we will rely on the Least Squares Esti-
mator (LSE) for its theoretical optimality in minimizing the expected squared error, despite it yielding
a weighted average that may not correspond to an actual discrete state. This ensures a more precise
and theoretically sound estimation in our subsequent analyses.
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Figure 2: Illustration of the filter’s PDMP system trajectory.
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6.2 Optimal Liquidation Strategy

The numerical implementation involves discretizing the domain D and the time horizon [t, T ]. Sub-
sequently, we compute the deterministic supremum in WN+1(t, y) = supu∈[t,T ] I1WN (t, u, y) for all
(t, y) ∈ [0, T ]×D as described in Appendix D. Note that the results presented here use N = 20. How-
ever, we observed that the value function typically converges after approximately 13 iterations. In the
following section, we will primarily discuss the exercise and continuation regions of the approximated
optimal liquidation strategy.

Market Risk. Figure 3 below shows the behavior of the optimal strategy with respect to the buy and
sell intensities. Under the configuration introduced in the beginning of this section, the buy and sell
intensities in Regime 2 are reversed compared to Regime 1. Specifically,

(
λ2,+, λ2,−

)
=
(
λ1,−, λ1,+

)
,

meaning the roles of the buy and sell intensities are swapped between the two regimes.
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Figure 3: Contour plot of the its exercise/continuation region of WN as a function of buy intensity
κ1,+ and sell intensity κ1,−. The prior probability πt(0) = µ0 is set to 0.9 in the left figure, 0.5 in the
central figure, and 0.1 in the right figure.

The continuation and exercise regions, as depicted in Figure 3, are influenced by the agent’s beliefs
π = (π(0), π(1)) regarding the prevailing market regime.

• Left-hand side figure: Here, the probability filter is fixed at 0.9, signaling a high likelihood
of being in regime 1. A higher κ1,+ (buy intensity in regime 1) corresponds to an upward price
trend. In this case, no sell orders take place. Conversely, the higher κ1,− (sell intensity in regime
1), the more likely the agent is to place a sell order (blue region).

• Right-side figure: On the right-hand side plot, the probability filter is fixed at 0.1, signaling
a high likelihood of being in regime 2, where buy and sell intensities have likely switched from
regime 1 to 2. In this case, a higher κ1,+ (or lower κ2,−) corresponds to a downward price trend,
leading the agent to post sell orders (blue region). We observe a clear symmetry with the right-
hand side plot. The optimal strategy involves liquidating when the price is going downward in
regime 2 and upward in regime 1. This reflects the agent’s adaptive strategy to hedge against
market risks and to exit positions when a downward price trend is expected.

• Middle figure: This is further confirmed by the middle plot, where the agent has no prior belief
about the market state. In this case, the agent liquidates when both buy and sell intensities in
regime 1 (and consequently in regime 2) increase. This behavior is justified by the fact that the
likelihood of an imbalance in intensities is higher when both are elevated, compared to when
both are low, allowing the agent to hedge against market risk.

We continue our analysis by examining the dependence of the approximated optimal strategy on the
remaining inventory and the agent’s prior beliefs regarding the market liquidity state, as depicted in
Figure 4.
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Figure 4: Contour plot of the its exercise/continuation region of WN as a function of the filter’s
probability to be in regime 1 and the inventory. The buy and sell intensities (κ1,+, κ1,−) are set to
(5, 1) in the left figure, (3, 3) in the central figure, and (1, 5) in the right figure.

Note that as the prior probability of a downward price movement increases (low πt(0) in the left-
hand side figure), the agent’s incentive to liquidate intensifies, driven by the need to mitigate potential
losses. Moreover, the agent exhibits sensitivity to inventory levels, with larger inventories prompting
liquidation regardless of market liquidity conditions. This is reflected in the expansion of the selling
region as the remaining inventory x increases, highlighting the agent’s tendency to execute trades more
aggressively when managing larger positions.

Liquidity Risk. We now examine the market impact of the trading agent in relation to the trade
sizes. Figure 5 illustrates the power-law shape of the price impact function Q, highlighting its concave
nature. In this analysis, we vary the parameter c to investigate its influence on the optimal order sizes.
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Figure 5: Representation of the market impact Q as a function of the order size for two price impact
parameters: c = 0.7 and c = 1.0.

Figure 6 illustrates the order sizes that maximize the intervention operator M and reveals that an
increased price impact leads to a decrease in the average order size. More interestingly, its analysis
shows that the order sizes are initially proportional to the inventory, after which they stabilize. This
behavior confirms the effect of the concavity of the impact function Q, indicating that as price sensi-
tivity increases, the relationship between order sizes and inventory adjusts in a manner consistent with
the underlying market dynamics. This effect is more pronounced when the price impact is higher, as
depicted in the upper plots for c = 0.7.
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Figure 6: Contour plot of the order sizes as a function of the filter’s probability of being in regime 1 and
the inventory. The buy and sell intensities (κ1,+, κ1,−) are set to (5, 1) in the left figure, (3, 3) in the
central figure, and (1, 5) in the right figure. The upper plots correspond to a price impact parameter
c = 0.7, while the lower plots correspond to c = 1.

Remark 6.1. As shown in Lemma 1, the dimensions of our problem reduce by one since the fundamen-
tal price variable S can be separated from the other variables. Thus, our problem is equivalent to finding
the exercise and continuation regions of the function g introduced in the proof of the aforementioned
Lemma as:

V (t, y) = xs+ sup
α∈At(x)

g(t, x, d, κ+, κ−, µ, α), ∀(t, y) ∈ [0, T ]×D.

The corresponding intervention operator M̃ is defined as

M̃φ
(
t, x, d, κ+, κ−, µ

)
:=

 sup
ξ∈a(x)

C(d, ξ)− νQ(ξ)(x− ξ) + φ
(
Γ̃ (t, x, d, κ+, κ−, µ, ξ)

)
, if a(x) ̸= {∅},

+∞, otherwise,

with Γ̃(t, x, d, κ+, κ−, µ, ξ) = (t, x− ξ, d− (1− ν)Q(ξ), κ+, κ−, µ).

Thus, the continuation region C and the trade region T are equivalent to

C =
{
(t, y) ∈ D × [0, T ] : M̃g < g

}
, and T =

{
(t, y) ∈ D × [0, T ] : M̃g = g

}
.

As a result, the fixed point operator I1, defined in (25), is influenced accordingly and can be expressed
as

I1V (t, u, y) = I1g(t, u, y) + Et,y
[
1{u<σ1}xs+ 1{u≥σ1}xSσ1

]
= xs+ Ĩ1g(t, u, y),
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where,

Ĩ1g(t, u, y) := I1g(t, u, y) + xEt,y
[
1{u≥σ1}(Sσ1

− s)

]
=

d∑
i=1

mi(t, u, κ
+, κ−, µ)M̃V

(
u, x, e−ρ(u−t)d, λ0,+u , λ0,−u , π0

u

)
−

∑
k∈{+,−}

d∑
i=1

∫ u

t

[
H1,k
i V

(
r, x, e−ρ(r−t)d, λ0,+r , λ0,−r , π0

r

)
+ kνEi(Q)x

]
∂

∂u
mk
i (t, r, κ

+, κ−, µ)dr.

Taking all this into account, the numerical implementation boils down to computing the optimal strategy
that maximizes g.

7 Conclusion and discussions

This paper presents a detailed framework tailored for high-frequency trading, capturing price formation
driven solely by order flow. Our model effectively captures the key features of order flow and price
dynamics with mutually stimulating Hawkes processes. By incorporating both permanent and transient
market impact functions in a general LOB form, we achieve a realistic depiction of market conditions.

A notable aspect of our approach is the treatment of liquidity as a stochastic and hidden factor.
We address hidden liquidity with advanced non-linear stochastic filtering techniques, allowing for
more accurate estimates of market states and better trading decisions. This is particularly important
in high-frequency trading where rapid and precise adjustments to market conditions are crucial.

We formulate an optimal execution problem and tackle it as an impulse control problem under
incomplete observations. Through comprehensive numerical illustrations, we demonstrate the accuracy
of our filtering approach and provide a reliable approximation of the optimal value function and its
related optimal liquidation strategy.
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[18] Brokmann, X., Sérié, E., Kockelkoren, J., and Bouchaud, J.-P.: “Slow Decay of Impact in
Equity Markets”. In: Market Microstructure and Liquidity 01.02 (2015), p. 1550007. doi:
10.1142/S2382626615500070.

[19] Carmona, R. and Zeng, C.: “Optimal Execution with Identity Optionality”. In:
Applied Mathematical Finance 29.4 (2022), pp. 261–287. doi:
10.1080/1350486X.2023.2193343.
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A Proofs of the Results in Section 3

Firstly, we introduce new definitions and notations that will be helpful in formulating our results.

Notation A.1. Let’s assume that for each i ∈ {+,−}, N i has the FN -predictable intensity λi. We

also establish the FI-predictable intensity λI of N I . Now, consider dÑ = dN+dN− with Ñ0 = 0,

and let λ̃ be its FN -predictable intensity. We define N I
t =

d∑
l=1
l ̸=It

nIItl(t) and λ
I
t =

d∑
k,l=1
k ̸=l

ψlk(t)1{It=l} as

its FI
t+-predictable intensity, for all t ∈ [0, T ]. Additionally, we define

dÑ I
t = dN+

t dN I
t + dN−

t dN I
t − dN+

t dN−
t dN I

t ,

and λ̃I as the F-intensity of Ñ I , for all t ∈ [0, T ].

In the subsequent discussion, we define FI as a sub-σ-field generated by the process I, where FI
t is

defined as σ (Is; s ∈ [0, t]) for all t ∈ [0, T ]. We also consider FN ’s initial enlargement G = {Gt}t≥0

with Gt = σ(FN
t , σ({It}t≥0)) for all t ≥ 0. The filtration G encapsulates the information available to

a hypothetical observer who knows the entire path of I from the outset at time t = 0.
Since the process I is not observable, we need to rigorously construct the model introduced in
Section 2 in the case of co-jumps. We achieve this by employing the change of measure technique,
which involves constructing a new probability measure. Under this new measure, the observations N
transform into a Lévy process, specifically corresponding to a unit rate Poisson process. To achieve
this, we define the Doléans-Dade exponentials Z = (Zt)t∈[0,T ] as

Zt :=
∏

i∈{+,−}

exp

{
−
∫ t

0

log(λis− − λ̃s−)d
(
N i
s − Ñs

)
−
∫ t

0

(1− λis + λ̃s)ds

}

× exp

{
−
∫ t

0

log(λ̃s−)dÑs −
∫ t

0

(1− λ̃s)ds

}
, P− a.s.

Proposition A.1. Let us assume that Z is uniformly integrable. Then, EQ(Zt) = 1. Additionally, Z
is a positive (P,G)-martingale satisfying

dZt = Zt−
∑

{+,−}

(
(λit− − λ̃t−)

−1 − 1
)[

d(N i
t − Ñt)− (λit − λ̃t)dt

]

+ Zt−
(
(λ̃t−)

−1 − 1
)[

dÑt − λ̃tdt

]
.

Proof. Refer to Sokol and Hansen [48].

The previous proposition allows us to utilize the Girsanov theorem, incorporating the
Radon-Nikodym density Z to establish a new probability measure Q on (Ω,G) given by dQ

dP |Gt
= Zt,
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for all t ∈ [0, T ]. Note that the dynamics of I can alternatively be represented using the Poisson
measure nIlm, which counts transitions from state l to state m. This process has an FI -intensity given
by t 7→ 1{It=l}ψlm(t), where l,m ∈ E. Thus, I has the following semi-martingale decomposition:

dIt =
∑d
m=1(m− It−)n

I
It−m

(dt), t ≥ 0. This will help us derive the Kushner–Stratonovich equation.

We determine the dynamics of E
[
φ(It) | FN

t

]
for a general m-variate point process

(
N1
t , . . . , N

m
t

)
with no common jumps through the use of the innovation method as described in Brémaud [16].

Proposition A.2. Let φ ∈ C2(R) and t ∈ [0, T ]. Let
(
N1
t , . . . , N

m
t

)
be a m-variate point process,

P-non explosive, and let FN be its internal history. Suppose that for each 1 ≤ i ≤ m, N i admits the

FN -predictable intensity λi and that

[
N i, N j

]
= 0, ∀1 ≤ j ̸= i ≤ m. The filter’s equation can be

expressed as

dπt(φ) =

d∑
k,l=1
k ̸=l

(φ(k)− φ(l))ψlk(t)1̂{It=l}dt

+

m∑
i=1

1

πt−(λi)

(
πt−

(
φ(I)λi

)
+ πt−(D

i)− πt−(φ)πt−(λ
i)
)
×
[
dN i

t − πt−(λ
i)dt

]
,

where Di are determined by

E
[
∆M I

t dN
i
t | Ft−

]
= Di

tdt,

and the stochastic process
(
M I
t

)
t∈[0,T ]

is given by

M I
t =

∫ t

0

d∑
k=1
k ̸=Is

(φ(k)− φ (Is))

[
nIIsk(ds)− ψIskds

]
, t ∈ [0, T ].

Proof. Let φ ∈ C2(R). We can derive a semi-martingale representation for φ(It) by applying
Dynkin’s formula. We get that

φ (It) = φ (I0) +

∫ t

0

LIsφ (Is) ds+M I
t , t ∈ [0, T ], (26)

where LI denotes the infinitesimal generator associated to I, such that

LItφ(l) =
d∑
k=1
k ̸=l

(φ(k)− φ(l))ψlk(t), ∀t, l ∈ [0, T ]× E,

and, the stochastic process
(
M I
t

)
t∈[0,T ]

is given by

M I
t =

∫ t

0

d∑
k=1
k ̸=Is

(φ(k)− φ (Is))

[
nIIsk(ds)− ψIskds

]
, t ∈ [0, T ].

Observing that the process (φ(It))t∈[0,T ] is bounded, it follows that M
I is an integrable

FI -martingale, and that

E
[ ∫ t

0

| LIφ(Is) | ds
]
< +∞.

We can easily demonstrate, using the of the tower property of conditional expectations, that the
process M̃ I defined by the martingale problem

dM̃ I
t = dφ̂(It)− L̂Iφ (I)dt, t ∈ [0, T ] (27)
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is an optional FN -martingale. Following the martingale representation theorem (see Theorem T9 of

Section III and Theorem T8 of Section VIII in Brémaud [16]), we can express M̃ I as

dM̃ I
t =

m∑
i=1

Ki
t

[
dN i

t − πt−(λ
i)dt

]
,

where Ki is F δ-predictable, for each 1 ≤ i ≤ m, and∫ t

0

Ki
sπs−(λ

i)ds < +∞. (28)

Let
(
τ in
)
n≥0

define FN -predictable stopping times such that, for each 1 ≤ i ≤ m,

τ in =

{
inf
{
t ≥ 0 |

∫ t
0

(
1 +

∣∣Ki
s

∣∣)πs−(λi)ds ≥ n
}
, if {t |

∫ t
0

(
1 +

∣∣Ki
s

∣∣)πs−(λi)ds ≥ n} ≠ {∅},
+∞, otherwise .

We deduce, through integration by parts, that

d
(
N i
tφ(It)

)
= N i

t−dφ(It) + φ(It−)dN
i
t + d

[
M I
t , N

i
t

]
=
(
N i
t−L

Iφ(It)−Di
t +Di

t + φ(It−)λ
i
t

)
dt+N i

t−dM
I
t + φ(It−)

(
dN i

t − λitdt
)
+∆M I

t dN
i
t .

(29)

Since (φ(It))t∈[0,T ] and
(
N i
t∧τ i

n

)
t∈[0,T ]

are bounded on [0, T ], then t 7→
∫ t∧τ i

n

0
φ(Iu−)

(
dN i

u − λiudu
)
,

t 7→
∫ t∧τ i

n

0
N i
u−dM I

u and t 7→
∫ t∧τ i

n

0
∆M I

udN
i
u −Di

udu are F-martingales. Using the Stieltjes-Lebesgue
formula and equation (26), we derive that

d
(
N i
t φ̂(It)

)
= N i

t−dφ̂(It) + φ̂(It−)dN
i
t + d

[
N i
t , φ̂(It)

]
= N i

t−πt(L
Iφ)dt+N i

t−dM̃
I
t +

(
φ̂(It−) +Ki

t

)[
dN i

t − πt−(λ
i)dt

]
+
(
φ̂(It−) +Ki

t

)
πt−(λ

i)dt.

(30)

Let us observe that
(
πt−(λ

i)
)
t∈[0,T ]

is the unique FN -predictable modification of the intensity λi.

Since the process
(
φ̂(It−)

)
t∈[0,T ]

is bounded and FN -predictable and from the definition of
(
τ in
)
n≥0

,

it follows that

E
[ ∫ t∧τ i

n

0

(
φ̂(Iu−) +Ki

u

)
dN i

u

]
= E

[ ∫ t∧τ i
n

0

(
φ̂(Iu−) +Ki

u

)
λiudu

]
= E

[ ∫ t∧τ i
n

0

(
φ̂(Iu−) +Ki

u

)
πu−(λi)du

]
≤ CE

[ ∫ t∧τ i
n

0

(
1 +Ki

u

)
πu−(λi)du

]
< +∞,

with C > 0. Hence, t 7→
∫ t∧τ i

n

0
N i
u−dM̃ I

u and t 7→
∫ t∧τ i

n

0

(
φ̂(Iu−) +Ki

u

)[
dN i

u − πu−(λi)du

]
are

FN -martingales. Knowing that E[N i
t∧τ i

n
] < +∞, we obtain that, for i ∈ {+,−},

̂N i
t∧τ i

n
φ(It∧τ i

n
) = N̂ i

t∧τ i
n

̂φ(It∧τ i
n
)

= N i
t∧τ i

n

̂φ(It∧τ i
n
).

(31)
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By means of the uniqueness of the Doob-Meyer decomposition for semi-martingales (refer to Section
III.3 in Protter [45]) with reference to (31), we establish that the finite variations in (29) and (30) are
identical. Thus, we conclude that(

φ̂(It−) +Ki
t

)
πt−(λ

i)dt = ̂φ(It−)λitdt+ D̂i
tdt, ∀0 ≤ t ≤ τ in ∧ T.

Recall that
∫ t
0
πs−(λ

−)ds < +∞. Based on (28), we get that limϵ→0+ τ
i
n = +∞ with 1 ≤ i ≤ m.

Therefore, limϵ→0+ τ
i
n ∧ t = t, for all t ∈ [0, T ], and

Ki
t =

1

πt−(λi)

(
̂φ(It−)λit + D̂i

t − φ̂(It−)πt−(λ
i)
)
.

Based on the predictability of Ki, we have that, for all t ∈ [0, T ],

Ki
t =

1

πt−(λi)

(
πt−

(
φ(I)λi

)
+ πt−(D

i)− πt−(φ)πt−(λ
i)
)
.

We conclude from (27) that the filter’s the dynamics are driven by

dπt(φ) = πt
(
LI(φ)

)
dt

+

m∑
i=1

1

πt−(λi)

(
πt−

(
φ(I)λi

)
+ πt−(D

i)− πt−(φ)πt−(λ
i)
)
×
[
dN i

t − πt−(λ
i)dt

]
.

Next, we present the main results of this section.

Theorem A.1 (Kushner–Stratonovich equation). Let φ ∈ C2(R), and t ∈ [0, T ]. The filter (6)
equation can be expressed as

dπt(φ) =

d∑
k,l=1
k ̸=l

(φ(k)− φ(l))ψlk(t)1̂{It=l}dt

+
1

πt−(λ̃)

(
πt−

(
φ(I)λ̃

)
+ πt−(D̃)− πt−(φ)πt−(λ̃)

)
×
[
dÑt − πt−(λ̃)dt

]
+

∑
i∈{+,−}

1

πt−(λi − λ̃)

(
πt−

(
φ(I)(λi − λ̃)

)
+ πt−(D

i − D̃)− πt−(φ)πt−(λ
i − λ̃)

)
×
[
d(N i

t − Ñt)− πt−(λ
i − λ̃)dt

]
,

where D+, D−, and D̃ are determined by

E
[
∆M I

t ∆N
+
t | Ft−

]
= D+

t dt, E
[
∆M I

t ∆N
−
t | Ft−

]
= D−

t dt, and E
[
∆M I

t ∆Ñt | Ft−
]
= D̃tdt,

and the stochastic process
(
M I
t

)
t∈[0,T ]

is given by

M I
t =

∫ t

0

d∑
j=1
j ̸=Is

(φ(j)− φ (Is))

[
nIIsj(ds)− ψIsjds

]
, t ∈ [0, T ].

Proof. The result follows directly from Theorem A.2 and the fact that the following covariations
vanish for all t ∈ [0, T ]:

[N+
t − Ñt, Ñt] = [N−

t − Ñt, Ñt] = [N+
t − Ñt, N

−
t − Ñt] = 0,

[N I
t − Ñ I

t , Ñ
I
t ] = [N I

t − Ñ I
t , Ñt] = [N I

t − Ñ I
t , N

+
t ] = [N I

t − Ñ I
t , N

−
t ] = 0.
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For completeness, we conclude this paragraph by outlining the derivation of the Zakai and
Duncan-Mortensen-Zakai equations. It’s important to note that although presented, these equations
won’t be employed in our approach. Using the Kallianpur–Striebel formula (see Bain and Crisan [7]),
we obtain that, for all φ ∈ C2(R),

πt(φ) =

EQ
[
Z−1
t φ (It) | FN

t

]
EQ
[
Z−1
t | FN

t

] =
σt(φ)

σt(1)
, t ≥ 0. (32)

Proposition A.3 (Zakai equation). The process (σt(φ), t ≥ 0) satisfies the stochastic differential
equation

dσt(φ) = σt−(LI(φ))dt

+
∑

i∈{+,−}

(
σt−

(
φ(I)(λi − λ̃)

)
+ σt−(D

i − D̃)− σt−(φ)
)
×
[
d(N i

t − Ñt)− dt

]

+
(
σt−

(
φ(I)λ̃

)
+ σt−(D̃)− σt−(φ)

)
×
[
dÑt − dt

]
,

(33)

with φ ∈ C2(R) and LItφ(l) =
d∑
k=1
k ̸=l

(φ(k)− φ(l))ψlk(t), ∀t, l ∈ [0, T ]× E.

Proof. Since σt(φ) = πt(φ)σt(1) = EQ
[
Z−1
t | FN

t

]
πt(φ), we get through the Stieltjes-Lesbesgue

formula that

dσt(φ) = dπt(φ)σt−(1) + πt−(φ)dσt(1) + d

[
πt(φ), σt(1)

]
. (34)

Applying the itô formula, we get the (Q,FN )-martingale

dZ−1
t = Z−1

t−

∑
{+,−}

(
λit− − λ̃t− − 1

)[
d(N i

t − Ñt)− dt

]

+ Z−1
t−

(
λ̃t− − 1

)[
dÑt − dt

]
.

Hence, the dynamic of the FN -optional process σ.(1), under the probability measure Q, is

dσt(1) = σt−(1)
∑

{+,−}

(
πt−(λ

i)− πt−(λ̃)− 1
)[

d(N i
t − Ñt)− dt

]

+ σt−(1)
(
πt−(λ̃)− 1

)[
dÑt − dt

]
.

Following the results of Theorem 3.1, we derive the covariation between πt(φ) and σt(1) as

d

[
πt(φ), σt(1)

]
=

∑
i∈{+,−}

1

πt−(λi − λ̃)

(
πt−

(
φ(I)(λi − λ̃)

)
+ πt−(D

i)− πt−(D̃)− πt−(φ)πt−(λ
i − λ̃)

)
× σt−(1)

(
πt−(λ

i)− πt−(λ̃)− 1
)
d

[
N i
t − Ñt

]
+

1

πt−(λ̃)

(
πt−

(
φ(I)λ̃

)
+ πt−(D̃)− πt−(φ)πt−(λ̃)

)
× σt−(1)

(
πt−(λ̃)− 1

)
dÑt.
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We conclude this proof by plugging the previous equations into (34), which yields

dσt−(φ) = σt−(LI(φ))dt

+
∑

i∈{+,−}

(
σt−

(
φ(I)(λi − λ̃)

)
+ σt−(D

i)− σt−(D̃)− σt−(φ)
)
×
[
d(N i

t − Ñt)− dt

]

+
(
σt−

(
φ(I)λ̃

)
+ σt−(D̃)− σt−(φ)

)
×
[
dÑt − dt

]
.

Theorem A.3 enables us to describe the dynamics of the unnormalized filter (σt(φ))t∈[0,T ] by defining

it as the unique strong solution to the Zakai equation (33). This equation exhibits linearity and is
driven by n+ and n− instead of the innovation processes

∫
R+ n

+(.,dv)−
∫ .
0
πs−(λ

+)ds and∫
R+ n

−(.,dv)−
∫ .
0
πs−(λ

−)ds, as seen in the Kushner-Stratonovic equation. This results from the
expression of our filter under the previously constructed probability measure Q. An alternative
method to derive the Zakai equation would be through the change of probability technique. This

involves analyzing the dynamics of the process
(
φ(It)Z̃

ε
t

)
t ∈ [0, T ] using Itô calculus to obtain the

stochastic differential equation governing t 7→ σt(φ) = EQ
[
Z−1
t φ (It) | FN

t

]
, where Z̃εt =

Z−1
t

1+εZ−1
t

for

all t ∈ [0, T ] and ε > 0. The introduction of the transformed process Z̃ε is primarily motivated by its
boundedness, which facilitates the derivation of martingales that are easy to manipulate. The desired
outcome is obtained by letting ε approach 0 (see Bain and Crisan [7]). Nevertheless, given that we
have previously established the Kushner-Stratonovic equation, it is more straightforward to derive
the Zakai equation via the Kallianpur-Striebel formula, as σt(φ) = πt(φ)σt(1) holds for all t ∈ [0, T ].

B Proofs of the Results in Section 4

Proof of Proposition 4.2. Let t ∈ [0, T ], N ∈ N∗ and y = (x, κ+, κ−, d, s, µ) ∈ D. We define U0 and
UN , such that

U0 (t, y) = Et,y
[
C (SτS +DτS , x)

]
UN (t, y) = sup

τ∈Θt

Et,y
[
MVN−1

(
τ, x, Sτ , λ̄

+
τ , Dτ , λ̄

−
τ , πτ

) ]
.

For α = (τk, ξk)k≥1 ∈ AN
t (x), we have that

J (t, y, α) = Et,y
[
1{τ1<τN

S }C
(
Sατ1 +Dα

τ1 , |∆Xτ1 |
) ]

+ Et,y
[
E
[ ∑
τ∈]τ1,τN

S [

C (Sατ +Dα
τ , |∆Xτ |) + C(SατN

S
+Dα

τN
S
, XτN

S
) | FN

τ+
1

]]

As a result of Definition 15 of the value function approximation VN−1 and Definition 14 of the
intervention operator M,

J (t, y, α)

≤ Et,y
[
C
(
Sατ1 +Dα

τ1 ,1{τ1<τN
S }|∆Xτ1 |

)
+ VN−1(τ

+
1 , x− 1{τ1<τN

S }|∆Xτ1 |, Sατ+
1
, Dα

τ+
1
, λ̄+
τ+
1

, λ̄−
τ+
1

, πτ+
1
)

]
≤ Et,y

[
C
(
Sατ1 +Dα

τ1 ,1{τ1<τN
S }|∆Xτ1 |

)
+ VN−1(Γ(τ1, x, S

α
τ1 , D

α
τ1 , λ̄

+
τ1 , λ̄

−
τ1 , πτ1 ,1{τ1<τN

S }|∆Xτ1 |))
]

≤ Et,y
[
MVN−1

(
τ1, x, S

α
τ1 , D

α
τ1 , λ̄

+
τ1 , λ̄

−
τ1 , πτ1

) ]
≤ UN (t, y) .
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It follows that VN ≤ UN .
Let ε > 0. There exists an ϵ-optimal τ∗ ∈ Θt, such that

UN (t, y) ≤ ε

2
+ Et,y

[
MVN−1

(
τ∗, x, Sατ∗ , Dα

τ∗ , λ̄+τ∗ , λ̄−τ∗ , πτ∗
) ]
.

Additionally, there exists an FN
τ∗ -measurable ξ∗ taking values in a (Xτ∗), such that

MVN−1

(
τ∗, x, Sατ∗ , Dα

τ∗ , λ̄+τ∗ , λ̄−τ∗ , πτ∗
)
≤ ε

2
+ C(Sατ∗ +Dα

τ∗ , ξ∗)

+ VN−1(Γ(τ
∗, x, Sατ∗ , Dα

τ∗ , λ̄+τ∗ , λ̄−τ∗ , πτ∗ , ξ∗)).

Hence,

UN (t, y) ≤ ε+ Et,y
[
C(Sατ∗ +Dα

τ∗ , ξ∗) + VN−1(Γ(τ
∗, x, Sατ∗ , Dα

τ∗ , λ̄+τ∗ , λ̄−τ∗ , πτ∗ , ξ∗))

]
. (35)

Finally, we introduce ᾱ, such that

ᾱ =

{
(ξ∗, τ∗) , if k = 1
α̂ = (τk, ξk) , else

where α̂ ∈ AN
τ∗(Xτ∗). We obtain that

VN (t, y) ≥ Et,y
[
C(Sτ∗ +Dτ∗ , ξ∗) + J ᾱ

(
τ∗+, x− ξ∗, Sτ∗+ , Dτ∗+ , λ̄+τ∗+ , λ̄

−
τ∗+ , πτ∗+

)]
.

Using inequality (35) and the fact that α̂ is arbitrary, we get that

VN (t, y) ≥ Et,y
[
VN−1

(
Γ
(
τ∗, x, Sτ∗ , Dτ∗ , λ̄+τ∗ , λ̄−τ∗ , πτ∗ , ξ∗

))
+ C(Sτ∗ +Dτ∗ , ξ∗)

]
≥ UN (t, y)− ε.

As ε approaches zero, we conclude the proof.

C Proofs of the Results in Section 5

Proof of Lemma 1. Proof of result 1:
We fix t ∈ [0, T ] and (d, s, κ+, κ−, µ) ∈ R2 × (Rd+)2 × S. For 0 ≤ x1 ≤ x2, we define

α = (τk, ξk)k≥1 ∈ At(x1) and ᾱ = (τ̃k, ξ̃k)k≥1 ∈ At(x2) such that

(τ̃k, ξ̃k) =

{
(τk, ξk) , if τk < τS
(τS , ξk + x2 − x1), if τk = τS

where ξk can be equal to zero in case there is no action at time τS using the strategy α. Hence,
X ᾱ
τS = Xα

τS + x2 − x1 and X ᾱ
t = Xα

t , for all 0 ≤ t < τS . Since, Q in non-decreasing on R+, we have
that

C
(
SᾱτS +Dᾱ

τS , X
ᾱ
τS

)
= C

(
SατS +Dα

τS , X
α
τS + x2 − x1

)
≥ C

(
SατS +Dα

τS , X
α
τS

)
.

Hence,

V
(
t, x2, s, d, κ

+, κ−, µ
)
≥ J

(
t, x2, s, d, κ

+, κ−, µ, ᾱ
)

≥ Et,y2
[ ∑
τ∈[t,τS [

C
(
Sᾱτ +Dᾱ

τ , |∆X ᾱ
τ |
)
+ C

(
SᾱτS +Dᾱ

τS , X
ᾱ
τS

) ]

≥ Et,y1
[ ∑
τ∈[t,τS [

C (Sατ +Dα
τ , |∆Xα

τ |) + C
(
SατS +Dα

τS , X
α
τS

) ]
.
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Knowing that α is arbitrary, we conclude that

V
(
t, x1, s, d, κ

+, κ−, µ
)
≤ V

(
t, x2, s, d, κ

+, κ−, µ
)

, 0 ≤ x1 ≤ x2.

Proof of results 2 and 3:
Let t ∈ [0, T ], ϵ > 0, (x, s, κ+, κ−, µ) ∈ R+ × R× (Rd+)2 × S and d1 ≤ d2. We define
α = (τk, ξk)k≥1 ∈ At(x) as an ϵ-optimal strategy for V (t, x, s, d1, κ

+, κ−, µ) = V (t, y1), i.e.,

V
(
t, x, s, d, κ+1 , κ

−, µ
)
≤ J

(
t, x, s, d, κ+1 , κ

−, µ, α
)
− ϵ

≤ Et,y1
[ ∑
τ∈[t,τS [

C (Sατ +Dα
τ , |∆Xα

τ |) + C
(
SατS +Dα

τS , X
α
τS

) ]
+ ϵ.

We know that, for all τ ∈ Θt,

Dα
τ = e−ρ(τ−t)Dt − (1− ν)

∑
t≤τk<τ

e−ρ(τ−τk)Q(ξk) + (1− ν)

∫ τ

t

∫
R+

e−ρ(τ−u)Q(v)n(du,dv).

Additionally, we know that the term

Et,y
[ ∫ τ

t

∫
R+

e−ρ(τ−u)Q(v)n(du,dv)

]
=

d∑
i=1

Et,y
[ ∫ τ

t

∫
R+

πi(u)e
−ρ(τ−u)Q(v)(λi,+u − λi,−u )νi(dv) du

]
is non-decreasing in κi,+ and decreasing in κi,− on R+, for all t ∈ [t, T ], τ ∈ Θt and y ∈ D.
Consequently, Et,y2 [Dα

τ ] ≥ Et,y1 [Dα
τ ]. Since p 7→ C(p, x) is non-decreasing on R, we get that

Et,y2
[
C (Sατ +Dα

τ , a)

]
= Et,y2

[
C (Et,y2 [Sατ +Dα

τ ], a)

]
≥ Et,y1

[
C (Et,y1 [Sατ +Dα

τ ], a)

]
≥ Et,y1

[
C (Sατ +Dα

τ , a)

]
,

for all a ∈ R+. Therefore,

V
(
t, x, s, d2, κ

+, κ−, µ
)
≥ Et,y2

[ ∑
τ∈[t,τS [

C (Sατ +Dα
τ , |∆Xα

τ |) + C
(
SατS +Dα

τS , X
α
τS

) ]

≥ Et,y1
[ ∑
τ∈[t,τS [

C (Sατ +Dα
τ , |∆Xα

τ |) + C
(
SατS +Dα

τS , X
α
τS

) ]
≥ V

(
t, x, s, d1, κ

+, κ−, µ
)
− ϵ.

As ϵ approaches zero, we obtain V (t, x, s, d1, κ
+, κ−, µ) ≤ V (t, x, s, d2, κ

+, κ−, µ) for all 0 ≤ d1 ≤ d2.
Therefore, V is decreasing in d on R+. The proofs of result 3 and of the first part of result 4 are
similar to the proof of result 2.
Proof of result 4:
Let t ∈ [0, T ], y = (x, s, d, κ+, κ−, µ) ∈ D and α ∈ At(x). Using (10) and (12), we get that

J (t, y, α) = Et,y
[ ∑
τ∈[t,τS [

(
|∆Xα

τ |(Sατ +Dα
τ )−

∫ Q(|∆Xα
τ |)

0

vf(v)dv − c0

)]

+ Et,y
[
1{|∆Xα

τS
|>0}

(
|∆Xα

τS |(S
α
τS +Dα

τS )−
∫ Q(|∆Xα

τS
|)

0

vf(v)dv − c0

)]
Based on the controlled dynamics of the fundamental price Sα and of the price deviation Dα
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described in (11), the reward function J can be expressed as

J (t, y, α) = xs+ νEt,y
[ ∑
τ∈[t,τS [

|∆Xα
τ |
(∫ τ

t

∫
R+

Q(v)n(du,dv)−
∑

t≤τk<τ

Q(ξk)

)]

+ Et,y
[ ∑
τ∈[t,τS [

|∆Xα
τ |Dα

τ −
∫ Q(|∆Xα

τ |)

0

vf(v)dv − c0

]

+ νEt,y
[
1{|∆Xα

τS
|>0}|∆Xα

τS |
(∫ τS

t

∫
R+

Q(v)n(du,dv)−
∑

t≤τk<τS

Q(ξk)

)]

+ Et,y
[
1{|∆Xα

τS
|>0}

(
|∆Xα

τS |D
α
τS −

∫ Q(|∆Xα
τS

|)

0

vf(v)dv − c0

)]
= xs+ g(t, x, d, κ+, κ−, µ, α).

Hence, the linear dependence on the initial parameter s in the dynamics of Sα makes the following
separation

V (t, y) = xs+ sup
α∈At(x)

g(t, x, d, κ+, κ−, µ, α),

possible. This completes the proof.

D Numerical Implementation

To parameterize the value function V defined in (13), we implement a neural network as a
parametric function approximator. This method is chosen because the exact form of WN is typically
unknown. The neural network approximation is particularly motivated by the high dimensionality of
the problem. To validate this approach, we use the universal approximation theorem, justified by the
continuity of WN (see Proposition 5.1).

Theorem D.1 (Hornik, Stinchcombe, and White [33]). Let W be a value function defined on
(t, y) ∈ [0, T ]×D. Suppose W is continuous on the compact domain [0, T ]×D. Then, for any ϵ > 0,
there exists a neural network Ŵ (t, y; θ) with a sufficiently large number of hidden neurons such that

sup
(t,y)∈[0,T ]×D

|W (t, y)− Ŵ (t, y; θ)| < ϵ.

The neural network is trained iteratively using the following procedure, which enables the
approximation to progressively converge toward the value function V :

• Initialization: We initialize the parameters θ0 and set

W0(t, y; θ0) = V0(t, y),

where V0 is the initial value function. The network has an input layer for state variables, three
hidden layers with 64, 32, and 16 neurons respectively, with ReLU activations, and an output
layer estimating W . Xavier initialization is used for θ to ensure proper gradient flow.

• Data Generation: We generate a set of training samples (t, y) from the discretized domain
[0, T ]×D. For each sample, we compute the target values using the operator I1 defined in (25).

• Approximation of WN : We approximate WN using a neural network. The term ŴN refers to
the approximation of WN from the previous iteration.

• Target Computation: For each training sample, we determine the target value for WN+1 by
computing the supremum over u ∈ [t, T ] of the operator I1 applied to the current
approximation ŴN so that we have

WN+1(t, y) = sup
u∈[t,T ]

I1ŴN (t, u, y).
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• Optimization: We define the loss function L(θ) as the mean squared error between the neural
network output Ŵ (t, y; θ) and the target values WN+1(t, y), such that

L(θ) =
1

M

M∑
i=1

(
Ŵ (ti, yi; θ)−WN+1(ti, yi)

)2
.

The optimization is carried out using the Adam optimizer to update the parameters θ.

• Convergence Check: The convergence of the training process is monitored by evaluating
changes in the loss function and network parameters. The training is concluded when the
change in these metrics falls below a predetermined threshold ϵ.
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