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Abstract

The goal of this article is to identify and understand the fundamental role of spatial symmetries

in the emergence of undulatory swimming using an anguilliform robot. Here, the local torque at the

joints of the robot is controlled by a chain of oscillators forming a central pattern generator (CPG).

By implementing a symmetric CPG with respect to the transverse plane, motor activation waves

are inhibited, preventing the emergence of undulatory swimming and resulting in an oscillatory

gait. We show experimentally that the swimmer can recover from the traveling wave inhibition

by using distributed fluid force feedback to modulate the phase dynamics of each oscillator. This

transition from oscillatory to undulating swimming is characterized by a symmetry breaking in the

CPG and the body dynamics. By studying the stability of the oscillator chain, we show that the

sensory feedback produces a frequency detuning gradient along the CPG chain while preserving

its stability. To explain the origin of the instability, we introduce a toy model where the couplings

between the dynamics of the oscillators and the body deformation reinforce the symmetry breaking

.

I. INTRODUCTION

Aquatic animals have developed a wide variety of gaits to move efficiently in various fluid

environments. Great progress has been made over the last 20 years in understanding these

swimming modes by reproducing as closely as possible the interactions between an animal

and its environment thanks to bioinspired robots [1–4] or integrative numerical models with

realistic hydrodynamic conditions [5–7]. These platforms have shown how complex motion,

including gait and maneuvers, results from the interplay among the swimmer morphology,

the nervous system and the aquatic environment.

Conversely, the increase in the number of degrees of freedom of these systems makes it

more complex to analyze the fine mechanisms of gait selection, which are generally inter-

preted as emergent phenomena. Nonetheless, these dynamics include also regularities and

spatial symmetries that could help us to reduce this apparent complexity [8, 9]. In the

context of anguiliform swimming, the symmetry of motor activation with respect to the

transversal plane of the swimmer determines the nature of the gait (see Fig. 1). Here, we

∗ johann.heraul@imt-atlantique.fr

2



study experimentally the role of this symmetry to better characterize the interactions be-

tween motor control and swimmer dynamics through sensory feedback, a mechanism which

remains yet poorly understood.

FIG. 1. Illustration of the symmetries in swimming lampreys. If the CPG couplings are symmetric

with respect to the transversal plane, the resulting wave of body deformation is also symmetric

and standing. A necessary condition to drive a propagative wave is to break this symmetry, which

results in two patterns of body deformation with distinct symmetries (even and odd).

We will consider undulatory swimming of anguilliform swimmers at large Reynolds num-

bers such as eels, or lampreys. This gait consists in accelerating the surrounding fluid down

the body thanks to a head-to-tail traveling bending wave. In vertebrates, the rhythmic

muscular pattern sustaining this wave is generated by distributed neural oscillators located

in the spinal cord. This complex network of oscillators [10] is called the central pattern

generator (CPG) [11], and is the basic unit of motor control in the central system.

In lampreys, there is clear evidence that the CPG maintains phase lags along the spinal

cord resulting in a traveling wave of muscular activity [12]. Experiments have shown that

a traveling wave of neural activity called fictive locomotion [11], can be sustained by only

the spinal cord irrespective of the peripheral nervous system, i.e. without sensory feedback

[13]. Nonetheless, sensory signals provided by the peripheral nervous system play a crucial

role in locomotion by shaping and regulating the rhythmic patterns via stimuli from the

body stretching [14] or the surrounding environment [11, 15]. In salamanders, the open loop
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CPG produces all kinds of traveling waves with positive phase and negative phase lags [16].

Hence, the CPGs are not necessarily well-tuned for all animals and sensory feedback could

be a key mechanism in the gait selection process in this case.

Sensory feedback, such as fluid response or stretch feedback, can provide better adapt-

ability to the aquatic environment, such as gait selection [17] or optimal beat frequency [18].

Robotic experiments [17] have also demonstrated that undulatory swimming can be gener-

ated by pressure force feedback without CPG couplings. These observations support that

hydrodynamic sensory feedback coupled with a CPG model reinforces the wave entrainment

and increases the robustness against neural disabilities [17]. A recent numerical study [7]

has confirmed that a mechanism of compensation can also be obtained by proprioceptive

feedback given by the local body curvature. While these results demonstrate the importance

of sensory feedback in motor coordination, the explanation and the mathematical modeling

of these observations remain unclear.

More specifically, we want to know how sensory feedback contributes to the coordination

and recovery of motor function through the prism of symmetries. To study this mechanism,

we implement an artificial CPG such that its symmetries prevent the development of trav-

eling neural waves along the oscillator chain. With such a setup, we can now study how

sensory feedback can generate a propagating wave in a symmetric network of oscillators.

By tackling this new problem, we aim to precisely analyze the mechanism of the gait selec-

tion process induced by sensory feedback (see Fig. 2). To do this, we will use the tools of

nonlinear physics, in particular synchronization theory, modal approach, and perturbation

theory.

This paper is structured as follows. After presenting the robot (section II) and the artifi-

cial neural system (section III), we show in section IV that a propagating wave of deformation

along the swimmer can spontaneously emerge via a symmetry breaking bifurcation when the

strength of the feedback in the network exceeds a threshold. This bifurcation is associated

with a gait transition from the (zero-phase lag) oscillatory swimming to the (negative phase

lag) undulatory swimming. This observation shows that a feedback loop provided by the

sensory system ensures the emergence of an activation wave despite a severe disruption in

the CPG [7, 17] (see Fig. 2).

To account for the observed instability, we propose a theoretical framework for quan-

titatively analyzing the stability of the oscillator network (section V). In this theoretical
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FIG. 2. Schematic illustration of the role of the symmetries in the process of gait selection. The

body dynamics and the fluid response ”reflect” the symmetries of motor coordination. Hence, an

initial antisymmetric component in the neural system can be reinforced by positive feedback allowed

by sensory feedback. Under specific conditions, this loop can be at the origin of an activation wave

in a spatially invariant CPG designed to inhibit propagating waves.

framework, we explain how exteroceptive sensory feedback gives rise to a network whose

couplings are determined by the physics of swimming. Here, the physical medium for com-

munication between the oscillators is the momentum exchanged between the servomotors

and the sensors. We then explain the shape of this network, showing that these couplings

are linked to the transfer function between torque and sensory feedback. We show how to

analyze the stability of this network using a perturbative approach. The main result of this

theoretical part is that sensory feedback does not change the stability of the oscillator net-

work and produces a frequency detuning gradient along the oscillator chain. This approach

gives a good quantitative agreement with the experimental results. Finally, we propose a

simple toy model to account for the instability based on reciprocal couplings between the

oscillators and the body dynamics.
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II. THE ROBOTIC PLATFORM

A. AgnathaX

We investigate the role of symmetry in the CPG thanks to a modular lamprey like robot,

called AgnathaX (see Fig. 3), built out of ten active body modules, a head unit and a

passive tail (more details can be found in [17]). Each of the ten body modules is actuated

by a servomotor. The onboard computer acquires the external sensor signals from all body

modules as well as the full state of the motors (i.e. position, speed, voltage, and current).

It also evaluates the distributed controllers for each module in a 100Hz control loop. The

corresponding output commands of each controller are sent back to the motors to move the

robot. Data gathered from the sensors, motors, and the states of the controllers are logged

during swimming experiments and is exploited for posterior analysis.

The shape of the tail is designed to ensure that it resonates at nominal robot undulation

angles of ±30°, and a frequency of 0.75 Hz [19]. A protective soft, hydrophobic and highly

flexible wrapping sleeve covered the robot modules.

A feed-forward controller based on current control is designed [17] to control the torque

exerted on the ith servomotor. This torque is then proportional to an activation signal

ai = cos(ϕi) with a time-varying phase ϕi(t) (see Fig. 3) resulting from the dynamics of the

ith oscillator in the oscillator chain whose model is introduced in the next section (Sec. III).

FIG. 3. (color online) The robot without (a) and with its suit (b). (c) Local differential hydrody-

namic force sensors. (d) Schema of the phase dynamics where each oscillator is coupled to nearest

oscillators and modulated by the local hydrodynamic force.
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B. Sensory feedback

The robot is equipped with load cells reproducing the mechanoreceptors on the animal

skin. In lampreys, they are called dorsal cells, and are sensitive to touch and pressure on the

lateral side of the body [20]. Hence, pairs of contralateral sensing modules located on both

sides of each segment measure the differential lateral hydrodynamic forces Fi(t) exerted on

each body section [17] via two load cells. For convenience, we prefer to use the nondimen-

sionalized form Si(t) = Fi(t)/F̃ with F̃ = 1N to simplify the principle of homogeneity of the

equations. These data provide the exteroceptive feedback, which accounts for the response

of the environment to the body motion.

III. THE CPG MODEL

A. Phase equation

To drive the motor, we use a motor control based on central pattern generators (CPG).

Many models can reproduce the main features of the CPG such as dynamical systems

coupled to each other or multiple arrays of oscillators. Here, we consider a simple model

of a 1D array of oscillators such that the dynamics of the ith oscillator is governed by its

phase ϕi(t). The local oscillator drives locally the bending torque that is normally produced

by antagonist muscles, each one being activated by one neural oscillator. By using this 1D

model, we focus only on the mechanism of synchronization along the rostrocaudal axis as

well as the symmetries with respect to the transverse plane.

For the sake of simplicity, we also assume that the chain features only close neighbor

couplings as suggested by previous studies [2, 21], and each phase is modulated by local

sensory feedback Si(t). Based on a standard phase reduction [22], the time evolution of the

phase ϕi(t) can be written under the very general form

ϕ̇i = ωi +
∑
k=±1

Ci,i+k sin(ϕi+k − ϕi + ψi,i+k) + Zi(ϕi)Si(t), (1)

where i ∈ [1, N ], N is the index of each oscillator, ωi the intrinsic frequency of the local oscil-

lator, Cik and ψi,i+k the coupling strength and phase delay, and finally Zi(ϕi) the sensitivity

function that accounts for the response of the local oscillator to exogenous perturbations.
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The second right-hand side (RHS) term represents the interoscillator couplings. The last

RHS term corresponds to the contribution of the peripheral system to the synchronization

process, while the other terms are related to the CPG configuration.

Various strategies lead to propagating waves by tuning the CPG properties [9, 11, 21].

In the absence of sensory feedback, the main mechanisms are (i) a phase delay ψi,i+k along

the spinal cord, (ii) an inhomogeneous distribution of intrinsic frequency ωi with either a

frequency gradient or master-slave oscillators, or (iii) an asymmetry between ascending Ci,i−1

and descending Ci,i+1 couplings. Note that these mechanisms can be combined to enhance

the redundancy in the CPG. Conversely, if we consider identical oscillators (ωi = ω0) with

symmetrical couplings between close neighbors (Ci,i±1 = C) without delay (ψi,i+k = 0), i.e.

a spatially invariant system, no phase lag occurs.

Although this latter configuration has never been observed in nature, it represents an

interesting paradigm to investigate the effect of sensory feedback on the dynamics of CPG.

Indeed, the appearance of the propagating motor activation wave can only be caused by

sensory feedback in this case. By pursuing our reasoning on symmetries, this symmetry

breaking must also take the form of one of the three proposed mechanisms. Such mechanisms

are particularly challenging to identify or characterize if the CPG is not initially symmetric

and motivates the implementation of a symmetric CPG.

Consequently, we propose to reduce Eq. (1) to the following simple model

ϕ̇i = ω0 + C
∑
k=±1

sin(ϕi+k − ϕi) + σ cos(ϕi)Si(t), (2)

with a uniform intrinsic frequency ω0 = 0.75 × 2π rad/s, and a coupling strength set to

C = 10 rad/s. The sensitivity function Zi(ϕi) is fixed and given by Zi(ϕi) = σ cos(ϕi),

which is the same as our previous study [17].

The free parameter σ can be varied to modify the weight of sensory feedback in the chain.

The differential equation given by Eq. (2) is integrated in real-time in each robot module,

such that the torque provided by each servomotor is proportional to the activation signal

τi ∝ ai with ai = cos(ϕi). It is worth noting that the motor activation ai and the sensitivity

function are defined by the same trigonometric function cos(ϕi). In our previous study [17],

we observed that this choice led to the emergence of propagating waves in the network.
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B. Phase decomposition and symmetry

To reduce the complexity of the phase dynamics, we propose to solve the linearized

equation (2) without sensory feedback (last RHS term of Eq. (2)) and establish a set of

normal modes to reduce the complexity of the phase dynamics. In the limit of a small phase

difference ϕi+1 − ϕi, equation (2) without sensory feedback can be linearized such that

ϕ̇i = ω0 + C(ϕi+1 + ϕi−1 − 2ϕi). (3)

This schema is called diffusive coupling [23, 24] and is linearly stable. To show this

property, we decompose the phase ϕi as

ϕi = Ωt+ δψi(t) (4)

with Ω the mutual frequency of the oscillators and δψi(t) the local phase lag, which varies

during the setup of the synchronization process, and then converges to a constant value. In

the context of motor activation, the angular frequency Ω controls the beating amplitude.

The phase lags δψi along the spinal cord determine the nature of the gait, i.e. zero phase

lag for the oscillatory swimming [25] and a negative phase lag for the undulatory swimming.
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FIG. 4. Top: eigenvalues Ĉn as a function of the index n. Bottom: eigenmodes with n = 1 (blue

or black curve), n = 2 (red or grey) and n = 3 (yellow or light curve).

The diffusive schema is characterized by eigenmodes vn with eigenvalues Ĉn defined by


vn(i) = cos (κn(i− 0.5)) ,

Ĉn = −2C (1− cos(κn)) ,

(5)
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with the wave vector κn = nπ/N and n ∈ [0, N − 1]. These eigenvalues and eigenmodes (for

n = 1− 3) are reported in Fig. 4. The mutual frequency Ω corresponds to the neutral mode

with n = 0, associated with the uniform mode v0(i) = 1. Hence, the phase lags δψi(t) can

be decomposed into

δψi(t) =
N∑

n=1

δψ̂n(t)vn(i). (6)

We have introduced the modal component δψ̂n(t) that characterizes the amplitude of the

nth mode. This modal component is computed by modal projection defined as δψ̂n = ⟨vn, δψ⟩

and given by

⟨vn, δψ⟩ =
1∑

i vn(i)
2

∑
i

vn(i)δψi. (7)

The diffusive coupling reduces the spatial fluctuation at small scales with a damping rate

given by Ĉn. By projecting Eq. (3) based on Eq. (7), one obtains an ordinary differential

equation for each modal component

d

dt
δψ̂n = Ĉnδψ̂n. (8)

Consequently, in the absence of sensory feedback, the corresponding modal components

δψ̂n(t) are given by

δψ̂n(t) = δψ̂n(0)e
Ĉnt. (9)

Similarly, one shows that the mutual frequency is ω0 such that after a transient, the

oscillator phase converges to ϕi = ω0t with δψi = 0. We have confirmed that in the absence

of feedback, the oscillators are synchronized. The resulting activation wave is standing, as

well as the wave of body deformation illustrated in Fig. 5 (top) because all the motors

beat in sync. Here, the propagating wave of activation can only arise from sensory feedback

terms.

The decomposition proposed in Eq. (4) requires filtering out the fast time fluctuations

arising from the nonlinear dynamics, a point treated in Sec. V. In this sense, the synchro-

nization process is only meaningful for the slow dynamics, i.e. on a timescale larger than

2π/Ω.
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FIG. 5. Superimposition of pictures illustrating the robot gaits (nearly every seconds). They

correspond to the oscillatory swimming (top) and the undulatory swimming (bottom) respectively

before and past the threshold of the instability. Oscillatory swimming, for example, can be exploited

by thunniform swimmers[25], while slender swimmers such as anguilliform swimmers use undulatory

swimming.

The spatial modes {vn} will allow us to reduce the complexity of the network dynamics

by projecting the phase dynamics onto a few modes with different spatial symmetries with

respect to the transverse plane. The even modes starting with the n = 2 mode are sym-

metric with respect to the transversal plane of the chain, while the odd modes n ≥ 1 are

antisymmetric. The decomposition given by Eq. (4) suggests that the large-scale modes

(n = 1, 2) are the least damped (cf Fig. 4) and therefore a priori dominant while having

distinct symmetries. Hence, our approach focuses on the modal dynamics restricted to a

few modes rather than the local dynamics of each oscillator to characterize the appearance

of a propagating wave. We will see that these symmetries and the large-scale dynamics are

decisive in the gait selection process.

IV. GAIT TRANSITION INDUCED BY SENSORY FEEDBACK

A. Gait transition and phase bifurcation

In this section, we report experimental results on the effect of sensory feedback in the

oscillator chain on swimming performance. We gradually increase σ from 0 to 1 in Eq. (2)

with a set of 125 experiments, with at least 5 measurements for each σ. After a transient, all
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the runs converge to a steady regime. For each run, we compute a mean frequency detuning

δΩ = ϕ̇i − ω0, with the time averaging operator · , and a average phase shift δψi = ϕi − Ωt

with Ω = ω0 + δΩ, and its modal amplitude given by the projection δψ̂n = ⟨vn, δψ⟩. The

spatial average of δψi is set to zero by shifting the time origin.

 σ
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FIG. 6. Measured (open circle) and predicted (crosses) frequency detuning δΩ as a function of the

control parameter σ. The prediction is based on the solution of the phase equation given by Eq.

(18) (section V).

For σ < 0.175, the oscillators are fully synchronized with δΩ ≃ 0 (see Fig. 6) and all

the phase shifts δψi remain small (dotted lines in Fig. 7 (a)). In this parameter range,

the robot performs an oscillatory swimming (Fig. 5, top) with a forward body velocity

Ub ≃ 0.22m/s (Fig. 8 (a)). When the parameter σ crosses a threshold σc = 0.175 ± 0.05,

the body velocity Ub shows a sharp transition with a significant increase of 85% (Fig. 8

(a)). This is a noticeable performance gain since all the other physical parameters are kept

constant. This transition can be attributed to a sudden change of gait as illustrated in Fig.5.

A wave of body deformation can be identified in Figs. 5 (bottom) and 8(c-e). During this

transition, the oscillators remain synchronized with a frequency detuning δΩ that increases

almost linearly beyond the threshold (Fig. 6) as previously observed [17]. Reciprocally, we

observe in the network the progressive establishment of a negative gradient of phase shift δψi

along the oscillator chain (thick black curves in Fig. 7.(a)) whose amplitude increases with

the parameter σ (grey arrows). Our results demonstrate that sensory feedback can trigger

a sharp transition from oscillatory to undulatory swimming for anguilliform swimmers.

This transition is associated with a symmetry breaking in the network as illustrated by

the antisymmetric curve of the phase lag δψi (see Fig. 7). Thanks to a modal analysis,

we can show that this symmetry breaking comes from an unstable odd mode. Using the
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FIG. 7. (a) Phase lag δψi along the oscillator chain i ∈ [1, 10] for different σ. The dashed and

dotted curves correspond respectively to σ = 0 and 0.1. Above the onset, the thick black curves

correspond to σ = [0.18, 0.21, 0.3, 0.5, 0.8, 1]. (b) Measured (open circle) and predicted (cross)

modal components δψ̂1 (blue or dark circles) and δψ̂2 (red or grey diamonds) of the phase lag δψi

for each σ (see Eq. (4)). The prediction is based on the solution of the phase equation given by

Eq. (18) (section V).

modal decomposition of the phase shift δψi, we observe that the amplitude of the first odd

component δψ̂1 = ⟨v1, δψ⟩ increases significantly after the threshold σc (Fig. 7 (b)). The

trend of this curve is a clear signature of a critical bifurcation with a small imperfection.

This odd mode breaks the initial even symmetry of the oscillator chain and the motor

coordination. This modal analysis shows that the emergence of a phase gradient in the

oscillator chain is explained by the bifurcation of the first eigenmode of the oscillator chain.

We have also reported the amplitude of the second eigenmode δψ̂2, which is small enough

to be neglected in the phase dynamics.

To further characterize this symmetry breaking, we also computed the growth rate of the

instability (cf Fig. 9). The modal phase shift δψ̂1 initially describes an exponential growth

before reaching a saturated state. By estimating the slope of the tangent at the origin, one

can compute a growth rate ξ (s−1), which is then plotted as a function of σ for different

realizations (black dots). Surprisingly, this value does not increase linearly with σ − σc as

expected for a standard pitchfork instability. Instead, we observe that the growth rate has

a square root dependence. This observation suggests that the instability is not described

by a single mode with one amplitude equation, as in the pitchfork instability, but rather by

at least two interacting modes. This point will be important in determining the model that

accounts for the instability (section V).
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(recognisable by their saturation value which increases with σ)). The slope of the tangent at the

origin determines the initial growth-rate. Bottom: interpolation of the growth-rate ξ as a function

of σ. The red curve corresponds to the critical variation ξ = −ν +
√
ν2 + α(σ − σc) with only two

free parameters ν = 0.0165s−1 and α = 0.902s−1 (cf. equation (23)).

B. Characterization of the internal body motion

In this section, we examine the response of the body dynamics during this transition.

In figure 10, we show the spatiotemporal dynamics of the joint θi(t) before the instability

with σ = 0 (top), just above the threshold with σ = 0.18 (middle), and far beyond the
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threshold of the instability with σ = 1 (bottom). Before the instability, the periodic state

is almost symmetric with respect to the transverse plane in agreement with the symmetry

of the motor activation. When the parameter σ is above the threshold σc = 0.175 (Fig. 10,

middle), one observes the progressive build up of the wave traveling from the top (the head)

to the bottom (the tail) of the image. As σ increases, the propagating wave becomes clearer.
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FIG. 10. Spatiotemporal diagram of the joint angle amplitude (index of the motor versus time)

for (a) σ = 0, (b) σ = 0.18, and (c) σ = 1 (c).

According to Curie’s principles, the symmetry breaking in the oscillator dynamics must

be reflected in the body dynamics via motor activation. It is tempting to assume a corre-

spondence between the modal dynamics in the network and the internal body motion. To

test this hypothesis, we compare the most energetic bending modes (thick curves in Fig.

11(a)) obtained by a proper orthogonal decomposition analysis [26] with the first modes v1

and v2 (dashed curves in Fig. 11(a)). The eigenmodes of the joint amplitudes look very

similar to the first modes of the vector set {vn} (cf section III B), since they are similar to

those of the lumped-mass/stiffness model [27]. We will therefore use this basis to capture the

internal dynamics of the body and facilitate the comparison with the modal phase dynamics.

Thus, we introduce the modal decomposition of the joint amplitude components θi given

by the modal amplitude θ̂n = ⟨vn,θ⟩. We compute its mean square amplitude for each σ and

n = 0, 1, 2 in Fig. 11(b). Before the instability, the oscillation is mostly composed of even
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modes (θ̂0 and θ̂2 in Fig. 11) that are consistent with the symmetry of the driving torques.

The small odd component θ̂1 is mostly due to the asymmetry of the robot (heavier head

and softer tail), and could explain the imperfection in the bifurcation. Near the threshold,

the amplitudes of the even modes θ̂0 and θ̂2 decrease. Conversely, the odd mode θ̂1 increases

significantly (Fig. 11, (b)) which is correlated with the setup of the propagating wave (cf

Fig. 8). After the onset, the component θ̂2 grows again, probably due to the nonlinearities

of the motor activation.
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FIG. 11. (a) Mean square amplitude of the joint modal component θ̂n as a function of σ. (b) Two

first modes from POD for σ = 0.6 (thick blue and red curves) superimposed to the modes v1 and

a combination of v0 and v2 (dashed curves).

The emergence of the propagating wave is actually correlated to the presence of modes

θ̂1 and θ̂2 of different parity. The superposition of an odd and an even mode θ̂1 and θ̂2

is a general mechanism that accounts for wave propagation in bounded domain [28, 29].

Furthermore, the bifurcation imperfection caused by the robot asymmetries, which favors

an odd mode sign, is also consistent with the reproducible rostrocaudal direction of bending

wave propagation for all σ > σc [17].
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FIG. 12. Analogy between the communication between fireflies made possible by the emission of

flashes and the measurement of luminosity, and our experimental platform where each oscillator

recovers information on the state of all the oscillators by perceiving the hydrodynamic force acting

the corresponding module. The angular momentum injected by the k-th servomotor into the serial

mechanical structure is then transferred to the fluid and measured on the wall of the i-th module.

The dynamics of the oscillator of this module is therefore modified by the activity of all the

servomotors, where the weight of the couplings between oscillators depends on the fluid-structure

interactions and the viscoelastic properties of the robot.

V. STABILITY ANALYSIS

A. Physical interactions induced a complex network of oscillators

The simultaneous symmetry breaking in the oscillator chain and in the body motion

suggests a gait transition driven by a positive feedback between the phases and the joint

dynamics. If the coupling from the oscillator chain to the body motion is provided by the

activation of the servomotors, the effect of sensory feedback on the phase dynamics is more

complex to interpret.

Our first goal is to describe the contribution of sensory feedback Si to the dynamics of

the i-th oscillator. A previous study [30] has highlighted the fact that the gait transition

in a CPG can be explained by phase entrainment and phase-locking mechanisms induced

by sensory feedback. However, they hypothesized that sensory feedback is independent of

phase dynamics ϕi to develop an analogy with a particle moving in a potential landscape.

On the contrary, here we hypothesize that sensory feedback results from the dynamics of all

the phases, creating a complex network of oscillators, whose stability must be determined.
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To illustrate this hypothesis, we propose to develop an analogy between the phenomenon

of synchronization of a population of fireflies, a canonical example of collective synchroniza-

tion, and our problem. This comparison is illustrated in figure 12. Male fireflies synchronize

their emission of light of intensity Ii in order to optimize their chances of meeting a mate

[31]. The intensity modulation is controlled by the phase of an oscillator ϕi, which can be

written as Ii ∝ cos(ϕi) for the purpose of the analogy. This synchronization is only possible

if each firefly perceives the local luminosity Si resulting from the flashing of all the fireflies.

Moreover, this luminosity depends on the state of all the flashing phases so that it is pos-

sible to write Si(ϕ1, ϕ2, . . . , ϕN ). Sensory feedback will modify the dynamics of the phase ϕi

of the oscillator with the sensitivity function [32]. For an arbitrary distribution of fireflies,

determining the relationship between the local luminosity Si and the set {Ik} of emissions

can be a difficult task [33].

Our experimental system features the same principle of communication. Each robot

module is an elementary block of the network characterized by an oscillator of phase ϕi,

an action τi and a sensory input Si. The action is provided by the torque τi exerted by a

servomotor on the i-th link, whose phase ϕi is controlled by an oscillator with τi ∝ cos(ϕi).

In turn, the phase ϕi is modulated by the differential hydrodynamic forces Si resulting from

the dynamics of the activation of all the servomotors {τk}. In fact, an action produced by

the kth servomotor could a priori contribute to the motion of the ith module, modify the

local hydrodynamic load, and thus modulate the phase of the ith oscillator.

The key difference in this analogy is the medium of communication. In fireflies, the infor-

mation on the state of the oscillators is determined by the net luminosity resulting from the

coherence of flashes. Since the speed of light is larger than any other speed, it is reasonable

to assume that this transfer is nearly instantaneous. In contrast, in the robotic experi-

ment, communication between oscillators is based on the transport of momentum. Each

servomotor periodically injects angular momentum into the robot structure, which is then

communicated to the fluid. This information is then retrieved by each module by measuring

the differential force due to the exchange of momentum with the fluid. Unlike luminosity-

based communication, momentum-based information transfer can be delayed and depends

on the transfer function of the fluid-structure interactions or the viscoelastic properties of

the robot. In addition, the presence of body deformation modes can provide long-range in-

teractions. A servomotor located at an antinode of a standing bending wave can efficiently
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transfer momentum in the serial structure of the robot, which can then be transferred to a

module close to another antinode. Consequently, the complex physics of swimming deter-

mines the nature of the couplings between the oscillators. A change in gait will therefore

affect the structure of this network.

Again, establishing a simple relationship between the torques and the fluid forces is a

complex task. Unfortunately, the complexity of the physical situation does not allow us to

obtain an explicit relationship of these couplings. However, it is still possible to assume that

the differential fluid force, like the luminosity of fireflies, is an implicit function of all the

phases with Si(ϕ1, ϕ2, . . . , ϕN ).

This preliminary hypothesis allows us to develop a framework for studying the stability

of the network. In the next section, we show how to write the complex network of oscilla-

tors from this statement, and identify the coupling strength and delay from the generalized

Fourier decomposition of Si(ϕ1, ϕ2, . . . , ϕN ). In general, these couplings can lead to very

complex, even chaotic, dynamics. In section VC, we show that our experimental config-

uration, shared by several other experiments [6, 17], simplifies these dynamics. Indeed, if

the amplitude of the diffusive couplings C in the CPG is several orders of magnitude larger

than sensory feedback, characterized by the coefficient σ, then the network dynamics can

be linearized. In this case, we observe that these leading order couplings produce only a

frequency shift of the oscillators, while the phase entrainment phenomenon is negligible.

This result is in agreement with our experimental data and explains the robustness of this

scheme.

B. Mathematical formulation of the complex network

In this section, we propose to establish mathematically the origin of the complex network

of oscillators produced by the feedback by using the slow phase approximation [22, 34] to

identify the dominant terms in the phase dynamics. We assume that the hydrodynamic load

Si(t) acting on the i-th module is an implicit function of the state of the phases given by

(ϕ1, ϕ2, . . . , ϕN). Although it is difficult to express this function explicitly, we can exploit

the periodicity of the phases so that Si can be represented by a 2π-periodic function of all

the phases ϕk with k ∈ [1, 10] reading in complex form [34]
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Si(ϕ1, . . . ) =
10∑
k=1

cik e
jϕk +

10∑
k,l=1

dikle
jϕk+jϕl + c.c. + . . . , (10)

where j is the unitary imaginary number. This equation is an extension of the usual Fourier

series, in which the dynamics is decomposed as a function of the phases ϕi(t), which govern

the periodicity of the physical signals. The term c.c. stands for the complex conjugate. We

have written only the first higher harmonics of the Fourier series whose angular frequency

is 2Ω, while the dots represent the remaining higher harmonics. Note that each Fourier

coefficient cik ∈ C can be interpreted as the linear transfer function between the torque

τk ∝ cos(ϕk) on the kth joint and the differential force Si acting on the ith segment. These

coefficients cik will determine the structure of the oscillator network.

The modulation of the phase dynamics by the feedback in Eq. (2) is given by the product

of the sensitivity function Zi = σ cos(ϕi) with the local feedback Si, which is in complex

form

σ cos(ϕi)Si =
σ
2

10∑
k=1

cike
j(ϕk−ϕi) + σ

2

10∑
k=1

cike
j(ϕk+ϕi)

+σ
2

10∑
k,l=1

dikle
j(ϕk+ϕl−ϕi) + . . .

+c.c.

(11)

When σ is small but not zero, we expect a deviation of the phase difference (ϕk−ϕi) from

zero, i.e. from the fully synchronized state with ϕi = ω0t, for all i ∈ [1, N ]. This deviation

occurs on a slow time scale 1/σ [34] with Ω− ω0 = O(σ), where Ω is the mutual frequency

and ω0 the intrinsic frequency. In contrast, the second and third terms of Eq. (11) vary

in comparison on fast time scales given by 2π/2ω0 and 2π/ω0, respectively. The standard

phase reduction [22, 34] shows that the contribution of fast terms leads to a phase deviation

of order of O(σ) with respect to the slow terms. To preserve the essential dynamics [34],

the fast terms are removed by averaging equation (11), which is consistent with our data

analysis.

Finally, we obtain the complex network of oscillators by averaging the correlation ZiSi

given by Eq. (11) and introducing it into Eq. (2). The resulting slow phase dynamics can

be then written as
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ϕ̇i = ω0 + C
∑
k=±1

sin(ϕi+k − ϕi)

+σ
N∑
k=1

|cik| cos [ϕk − ϕi + arg(cik)] +O(σ2).

(12)

We obtain a network with symmetric couplings of amplitude C, which prevent the ap-

pearance of a traveling wave in the network, superimposed on nonuniform couplings with

weights σ|cik| and delays arg(cik), which can be responsible for the transition. This type of

complex network of oscillators can describe instabilities [10], and we assume that a change

in the network couplings is at the origin of the sudden gait transition. Although the stability

analysis can be performed by various methods [10, 24], they require explicit knowledge of

the complex coefficients cik ∈ CN×N . Unfortunately, we only have access to the N phase

shifts {ϕi} to compute the 2N2 real coupling coefficients that define the real and imaginary

components of cik. Instead of solving this complex inverse problem, we will take advantage

of the smallness of the parameter σ with respect to C to analyze the network close to the

threshold σc.

C. Pertubative approach for the network

Our approach is to expand the phase shift δψi and the frequency shift δΩ = Ω − ω0

of the phase ϕi, as an asymptotic series with small parameter ϵ = σ/C. This parameter

quantifies the relative strength of the network perturbation by the feedback with respect to

the stabilizing diffusive scheme. Note that this parameter remains small in our setup with

ϵ = O
(
10−2

)
. Thus, the mutual frequency Ω and the phase lag δψi are expanded as a power

series of ϵ given by

Ω = ω0 + ϵδΩ(1) + ϵ2δΩ(2) +O (ϵ2) ,

δψi(t) = ϵδψ
(1)
i + ϵ2δψ

(2)
i +O (ϵ2) ,

(13)

with δΩ(k) and δψ
(k)
i the kth-order correction. The synchronized state without phase lag

is recovered for ϵ = 0. We also keep the time dependence of the phase shift to study the

stability of the network. Introducing this perturbative development in the complex network,

we obtain the following leading order approximation for the averaged correlation ZiSi
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ZiSi = δωi + ϵ

N∑
k=1

Lik

(
δψ

(1)
k − δψ

(1)
i

)
+O (ϵ) , (14)

where the dimensionless frequency detuning δωi reads

δωi =
N∑
k=1

|cik| cos (arg(cik)). (15)

Similarly, the coupling coefficients are given by

Lik = −|cik| sin (arg(cik)). (16)

The results show that the leading effect of sensory feedback is to detune the intrinsic

eigenfrequency by δωi for each oscillator. In contrast, the linear coupling terms producing

phase entrainment are only relevant at order ϵ2, which is of the same order as the fast terms

identified in the previous section, and can be neglected at leading order.

Before introducing Eq. (14) into averaged phase equation (12), the problem is nondimen-

sionnalized via the change of variable t → τ = Ct, as suggested by the linear analysis for

σ = 0 (cf section III B). At leading order, we obtain a linear equation for the phase shift

δψ
(1)
i and the frequency shift δΩ(1) by introducing the phase expansion (13) into the slow

phase dynamics (cf Eq.(12)) and the averaged correlation to obtain the following system

d

dτ
δψ

(1)
i + δΩ(1) =

(
δψ

(1)
i+1 + δψ

(1)
i−1 − 2δψ

(1)
i

)
+ δωi. (17)

This equation remains linearly stable with respect to δψ(1)
i since its linear part corresponds

to the diffusive coupling already studied in section III B. Using the eigenvalues Ĉn and

eigenmodes vn of the diffusive scheme, the final phase lag δψ(1)
i and mutual frequency increase

δΩ
(1)
i can be calculated with

δΩ(1) =
ϵ

N

N∑
i=1

δωi, δψ̂(1)
n =

ϵ

|Ĉn|
⟨vn, δω⟩. (18)

Here, δω is the vector with component δωi. Finally, the local phase ϕi after synchroniza-

tion can be written into a dimensionalize form as

ϕi =
(
ω0 + σδΩ(1)

)
t+ σ

∑
n

δψ̂(1)
n vn(i) +O(σ). (19)
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Consequently, the solution of the phase equation for moderate σ can be computed from

the frequency shift δωi along the oscillator chain. Note that the estimation of δωi doesn’t

require the explicit knowledge of the values of the coupling coefficients cik. Instead of using

Eq. (15), the frequency shift can be obtained directly via Eq. (14) using the dominant term

of the averaged correlation with ZiSi ≃ δωi. In general, this term is neglected in order to

directly evaluate the effect of the phase entrainment associated with the Lik coefficients on

the stability of the network[23, 34]. However, we will show that this term is sufficient to

explain the observed frequencies and phases.

We have now shown that the final state of the oscillator network, i.e. the mutual frequency

and phase shift, can be estimated after synchronization using the intrinsic frequency detuning

δωi. Compared to previous studies, this simplified model provides a better understanding of

how sensory feedback works by explicitly linking the perturbation of the CPG given by ZiSi

to the state of the system. In the limit σ/C small, the correlation ZiSi leads to a detuning

δωi of the intrinsic frequency, which acts as a source term in a heat equation on a discrete

domain defined by the diffusive couplings of the CPG.

D. Comparison with the experimental data

To compute the intrinsic frequency detuning δωi from the experimental data, we start

with the result given in equation 14. This result shows that the correlation ZiSi is at leading

order equal to δωi. Therefore, for each sensor, we calculate the time average of ZiSi and

assign its value to δωi. The validity of this truncation will be justified a posteriori.

We have reported in Fig. 13 the intrinsic frequency detuning σδωi along the chain of

oscillators for different σ. We note in Fig. 13 that the frequency shift δωi is of order O(1)

for σ = 0.1, i.e. before instability, which confirms that the correlation ZiSi does not vanish

even for small phase shifts ψi+k − ψi. One also observes the formation of a gradient of the

frequency shift along the oscillator chain as σ increases. Besides, for a given oscillator, σδωi

is a positive and monotonically increasing function of σ, except for i = 10.

Based on the results of the previous section, one can compute the modal amplitudes δψ̂n

and net the frequency variation δΩ from the frequency shift δωi via Eq. (18). We have

reported in Fig. 6 the estimated frequency variation δΩ (black crosses), and the modal

amplitudes δψ̂1 and δψ̂2 in Fig. 7 (b) ( blue and red crosses,respectively). We observe a
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FIG. 13. Frequency detuning σδωi for different σ computed from ZiSi. These curves are associated

with the curves δψi in Fig. 7.(a). The dotted curve corresponds to σ = 0.1 below the onset, while

the thick black curves correspond to σ = [0.18, 0.21, 0.3, 0.5, 1].

very good agreement between the estimated and the measured values. Surprisingly, this

agreement remains valid far beyond the threshold of the instability σc. These results show

that our analysis allows us to calculate the resulting phase shifts for σ/C small by knowing

only the average correlations ZiSi without explicit knowledge of the coupling coefficients.

The increase of the frequency variation δΩ in Fig. 6 results from the spatial average

of the frequency shift δωi, and is thus a direct consequence of the monotonic increase of

each frequency shift δωi. Similarly, the phase gradient δψi at the origin of the undulatory

swimming (see Fig. 7.(a)) results from the gradient of the frequency shift, whose spatial

small-scale fluctuations are smoothed by the diffusive couplings.

This result confirms that sensory feedback leads to a frequency detuning of the intrinsic

frequencies of the oscillators and acts as a source term in the discrete diffusion equation

for the phase. Indeed, if the phase entrainment characterized by the couplings Lik in Eq.

(14) were of the same order of magnitude as those of the diffusive scheme, then we would

not have been able to estimate δωi, and the components δψ̂n and δΩ. Moreover, this result

also rules out the possibility of sensory feedback Si independent of the phase dynamics, a

scenario previously proposed [30], as it would have produced a correlation ZiSi dependent

on the local phase dynamics ϕi. These results prove that there is no phase entrainment due

to sensory feedback.

This paper combines experimental and theoretical evidence for frequency self-tuning in

a CPG network via sensory feedback at the origin of gait selection.
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E. Stability of the body phase dynamics

We have demonstrated that the observed instability in the network cannot be explained by

a mechanism of phase entrainment, since the phase equation remains stable due to diffusive

coupling. If the oscillator network and the body dynamics are stable when both systems are

isolated, the origin of the instability is very likely due to the couplings between these two

subsystems as hypothesized in the introduction. In this section, we propose to explore this

hypothesis by deriving a model that accounts for the instability and is consistent with our

experimental data.

First, we observed that the growth rate ξ of the instability (see Fig. 9) does not vary lin-

early with σ−σc but describes a nonlinear behavior with a square root-like dependence. This

property excludes standard one-dimensional supercritical bifurcations (such as the pitchfork

bifurcation). Indeed, the Taylor expansion of the growth rate ξ of a supercritical bifurcation

would result in ξ ∝ σ − σc, which is not in agreement with the observations.

Among all the possible instability scenarios, we propose to extend the state variable

to two dimensions by considering the odd modes that break the symmetry of the robot

dynamics: one for the phase lag δψ̂1 and the other one for the body deformation |θ̂1|. The

linear evolution of the state variable x(t) ∈ R2 with x(t) = (|θ̂1|, δψ̂1) is thus given by

ẋ(t) = A(σ)x, (20)

with A ∈ R2×2 a matrix with real coefficients Aik. Due to the complexity of the nonlinear

experimental system, we cannot explicitly identify the values and the physical mechanisms

at the origin of these couplings. A new study based on numerical simulations could facilitate

the identification of these couplings by having access to all the physical quantities of the

problem.

Nevertheless, it is still possible to study the implications of such a minimal linear model

that couples phase and body dynamics. First, we assume that each mode is linearly stable

in the absence of coupling, so that the terms Aii are negative. For convenience, we rewrite

these terms as −|Aii|. Second, we state that motor activation controlled by the oscillator

network leads to the growth of the odd mode |θ̂1|. We assume here that it takes the form of

a forcing term given by A12δψ̂1, so that an odd component in the motor coordination leads

to an odd component in the body deformation. Finally, we hypothesize that a symmetry
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breaking in the body dynamics will be reflected in the distribution of hydrodynamic forces

along the body. This symmetry breaking should also be present in the frequency shift δωi

produced by the feedback. This hypothesis leads to a linear relation between δωi and |θ̂1|,

which takes the form: ⟨v1, δω⟩ = A21|θ̂1| where A21 is also constant.

Finally, system 20 and the matrix A can be written

d

dt

|θ̂1|

δψ̂1

 =

−|A11| A12

σA21 −|A22|

|θ̂1|

δψ̂1

 . (21)

Note the presence of the prefactor σ that accounts for the strength of sensory feedback in

the phase dynamics. For σ = 0, the system is stable such that the mode (θ̂1, ψ̂1) converges

to zero, as is the case in our experiment if we neglect the small symmetry imperfection.

This linear system can become unstable for increasing σ while keeping the coefficients Aik

constant, if one of the eigenvalues of the matrix becomes positive. This case occurs when

A12A21 is positive leading to positive feedback. To overcome the damping of the modes, the

feedback strength must be σ > σc with

σc =
|A11| |A22|
A12A21

. (22)

In this condition, the growth rate of the instability can be written in a simple form given

by

ξ = −ν ±
√
ν2 + α(σ − σc), (23)

with the coefficients ν and α defined by

ν =
|A11|+ |A22|

2
, α = A12A21. (24)

We show in Fig. 9 that the grow rate given by Eq. (23) reproduces well the behavior of

the observed growth rate by fixing the free parameters to ν = 0.0165 s−1 and α = 0.9 s−1.

This simple toy model allows us to explain how two initially stable systems given by the

body and the CPG can become unstable by increasing the strength of sensory feedback, as

in the experiment. This model also reproduces the behavior of the observed growth rate

ξ, which does not vary linearly with the parameter σ close to the threshold σc. Note that

the hypothesis of constant linear coupling coefficients is only valid close to the onset of the
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instability and for small amplitudes of δψ̂1 and θ̂1. In general, these coupling coefficients

Aik are strongly dependent on gait properties and therefore vary with σ.

This model does not exclude other scenarios, and requires further studies to be validated.

However, it illustrates well how a symmetry breaking in the neural system can induce a

symmetry breaking in the body dynamics and vice versa, as shown in Fig. 2.

VI. CONCLUSION

In this study, we identified a number of mechanisms explaining the impact of sensory

feedback on the central pattern generator, such as oscillator frequency detuning, large-scale

phase dynamics and reciprocal coupling of modes in the oscillators and body dynamics.

Until now, it was difficult to detect these elements because they were masked by the

non-symmetrical CPG, which naturally produces phase shifts along the spinal cord. The

implementation of a symmetrical CPG has therefore proved fruitful and could be extended

to other types of animal locomotion or other environments (granular or viscous) via robotic

or numerical platforms.

Our theoretical study motivated by the experimental results has also shown that sensory

feedback produces at leading order a steady frequency detuning of the oscillator along the

spinal cord. Surprisingly, such mechanism can also be naturally present in other biological

systems [35, 36]. In lampreys, proprioceptive feedback can cause a tonic excitatory effect,

leading to an increase of the mutual frequency in the network [37, 38]. In our study, we have

therefore identified a possible source of this tonic excitatory effect which in our experiment

comes from an average shift of all the intrinsic frequencies (see section V). Our analytical

study can also justify the adhoc introduction of a tonic excitatory effect in previous numerical

studies [7, 14].

We believe that the mechanisms identified will still be present for more realistic config-

urations of the CPGs, even if other phenomena may be superimposed on them. A natural

continuation of this study would be to analyze these solutions by progressively implementing

an intrinsic phase gradient in the CPGs, for example, thanks to a phase shift [17]. Moreover,

it will be interesting to derive explicitly the toy model and better characterize the interaction

between the body and phase dynamics.
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[20] J. Christenson, A. Boman, P.-Å. Lagerbäck, and S. Grillner, The dorsal cell, one class of

primary sensory neuron in the lamprey spinal cord. i. touch, pressure but no nociception—a

physiological study, Brain research 440, 1 (1988).

29



[21] A. H. Cohen, G. B. Ermentrout, T. Kiemel, N. Kopell, K. A. Sigvardt, and T. L. Williams,

Modelling of intersegmental coordination in the lamprey central pattern generator for loco-

motion, Trends in neuro. 15, 434 (1992).

[22] Y. Kuramoto, Chemical oscillations, waves, and turbulence (2003).

[23] L. M. Pecora and T. L. Carroll, Master stability functions for synchronized coupled systems,

Phys. Rev. Lett. 80, 2109 (1998).

[24] K. S. Fink, G. Johnson, T. Carroll, D. Mar, and L. Pecora, Three coupled oscillators as a

universal probe of synchronization stability in coupled oscillator arrays, Physical Review E

61, 5080 (2000).

[25] A. J. Smits, Undulatory and oscillatory swimming, J. Fluid Mech. 874 (2019).

[26] P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, coherent structures, symmetry and

dynamical systems (2010).

[27] G. M. L. Gladwell, The inverse problem for the vibrating beam, Proceedings of the Royal

Society of London. A. Mathematical and Physical Sciences 393, 277 (1984).

[28] S. Ramananarivo, R. Godoy-Diana, and B. Thiria, Propagating waves in bounded elastic

media: Transition from standing waves to anguilliform kinematics, EPL 105, 54003 (2014).
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