
HAL Id: hal-04817362
https://hal.science/hal-04817362v2

Submitted on 6 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Hybrid Genetic Programming and Deep Reinforcement
Learning for Low-complexity Robot Arm Trajectory

Planning
Quentin Vacher, Nicolas Beuve, Paul Allaire, Thibaut Marty, Mickaël

Dardaillon, Karol Desnos

To cite this version:
Quentin Vacher, Nicolas Beuve, Paul Allaire, Thibaut Marty, Mickaël Dardaillon, et al.. Hybrid
Genetic Programming and Deep Reinforcement Learning for Low-complexity Robot Arm Trajectory
Planning. Across the Disciplines, 2024, pp.139-150. �10.5220/0013012500003837�. �hal-04817362v2�

https://hal.science/hal-04817362v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Hybrid Genetic Programming and Deep Reinforcement Learning for
Low-complexity Robot Arm Trajectory Planning

Quentin Vacher a, Nicolas Beuve b, Paul Allaire c, Thibaut Marty d, Mickaël Dardaillon e and
Karol Desnos f

Univ Rennes, INSA Rennes, CNRS, IETR – UMR 6164, F-35000 Rennes, France
first.last@insa-rennes.fr

Keywords: Genetic Programming, Reinforcement Learning, Inverse Kinematics.

Abstract: Robot arm control is a technological challenge where an algorithm needs to learn a deep understanding of
spatial navigation. In particular, spatial navigation requires learning the relationship between the motor joint
angular positions and the Cartesian coordinates of the robot. Trajectory planning is an even more complex
challenge, where the algorithm must create a trajectory between two coordinates that does not cause a collision.
State-of-the-art algorithms capable of solving trajectory planning are based on deep Reinforcement Learning
(RL). These algorithms achieve high accuracy but suffer from high computational complexity. This paper
proposes to use a genetic RL algorithm, the Tangled Program Graphs (TPGs), to solve trajectory planning.
Using a genetic process, the TPGs generate a graph of programs with low inference complexity. On a first
trajectory planning problem, the algorithm used achieves performance close to the state-of-the-art, but with a
100 less execution time and a 20× smaller model size. On a second and more difficult problem, the TPGs are
not able to learn with efficiency. We propose a hybrid solution that mixes the TPGs and a state-of-the-art deep
RL algorithm, the Soft Actor-Critic (SAC). This solution achieves better performance than the state-of-the-art
for both problems, with 6 to 20 times faster execution times.

1 INTRODUCTION

Robot control presents a formidable technological
challenge in today’s landscape. At its core, this chal-
lenge entails the development of algorithms that pos-
sess a deep understanding of spatial relationships.
This understanding is crucial for orchestrating the co-
ordinated movements of the various motors of the
robot. As robots become increasingly ubiquitous
across industries, there is a pressing need to optimize
the computational costs associated with controlling
them. This optimization ensures efficiency without
compromising performance, a balancing act essential
for widespread adoption and practical implementa-
tion.

Some recent techniques, such as Deep Learning,
can efficiently control robot models. Deep Learning

a https://orcid.org/0009-0001-9568-7196
b https://orcid.org/0000-0002-1371-4016
c https://orcid.org/0009-0005-9325-0643
d https://orcid.org/0000-0001-7035-8727
e https://orcid.org/0000-0001-6862-2090
f https://orcid.org/0000-0003-1527-9668

solutions (Giorelli et al., 2015) effectively predict the
motor joint values of a robot to reach a desired posi-
tion. However, these solutions struggle to avoid colli-
sions during trajectory planning.

Deep Reinforcement Learning (RL) methods can
efficiently learn how to avoid collisions (Zhong et al.,
2021). This class of methods is well-suited for trajec-
tory planning, but suffers from a high computational
complexity.

We propose to use a Genetic Programming (GP)
algorithm, the Tangled Program Graph (TPG), to do
trajectory planning. This algorithm uses GP evolu-
tion to generate a graph designed for a specific task
with really low complexity. With only some tuning of
the training hyperparameters, we show that the TPGs
achieve state-of-the-art RL performance on a Inverse
Kinematics (IK) task, while being 100 times less com-
putationally expensive and having a model size 20
times smaller. However, on a more difficult trajectory
planning task with more diversity, the TPGs alone are
not able to reach equivalent accuracy.

To take advantage of both the low complexity of
the TPGs and the high accuracy of a deep RL algo-
rithm, the Soft Actor-Critic (SAC), a hybrid solution

is proposed. This hybrid solution achieves better re-
sults than the state-of-the-art deep RL on trajectory
planning with collisions, while being 6 to 20 times
faster in inference. Because the hybrid solution com-
bines both algorithms, the inference time of the TPGs
alone is still 4 to 17 times faster than the hybrid solu-
tion at inference The model size is the combination of
both the deep RL and the TPG models, so it is slightly
larger than the state-of-the-art.

The various algorithms and principles used in this
paper are described in Section 2. The experimental
setup, which describes the environment of the robot
and the implementation of the TPGs used, is pre-
sented in Section 3. Section 4 presents the perfor-
mance of the TPGs and the used deep RL algorithm,
the SAC (Haarnoja et al., 2018). Section 5 describes
the hybrid solution that combines the TPGs and the
SAC and compares it with the state-of-the-art. Fi-
nally, a discussion is made in Section 6 and Section 7
concludes this paper.

2 RELATED WORKS AND
BACKGROUND

This section introduces the Inverse Kinematics (IK)
problem. Section 2.1 presents the problem and the
most commonly used existing solutions. Then Sec-
tion 2.2 describes a branch of IK which is the main fo-
cus of this paper: the trajectory planning. Section 2.3
introduces the RL field and the reason why deep RL
solutions are used to solve trajectory planning prob-
lems. Finally, Section 2.4 introduces the TPGs, de-
scribing the principles and applications of this GP al-
gorithm.

2.1 Inverse Kinematics

Inverse Kinematics (IK) is a fundamental problem in
robotics that deals with determining joint configura-
tions for a robot manipulator. The goal is to place the
end-effector in a given position and orientation, where
the end-effector is the hand of the robot. The spatial
coordinates describing the position and orientation of
the end-effector are defined as x ∈ Rn, where n is the
number of dimensions. The motor angular coordi-
nates are defined as q∈Rm, where m is the number of
joints, as illustrated in Figure 1a. The forward kine-
matics problem is equivalent to finding the function
f (·) that satisfies the following equation:

x = f (q) (1)

The function f (·) is based on trigonometric func-
tions, has a complexity of O(n) and a unique solu-

tion. The IK problem consists in finding the func-
tion f−1(·) that calculates the joint coordinates of the
robot q from the position and orientation of the end-
effector x. As illustrated in Figure 1b, this function
can have multiple solutions (Ho and King, 2022) if
the number of joint dimensions m is greater than the
number of space dimensions n. Depending on the im-
plemented robot control strategy, the goal of IK may
be to find all solutions or the one that best satisfies cer-
tain criteria. Criteria can be to find the position that
requires the minimum motor movement or the posi-
tion that maximizes the stability of the robot (Phan-
iteja et al., 2017). There exist several solutions to
solve the IK problems, which can be divided into
three categories: analytical, numerical and learning
solutions.

• Analytical solutions (Sciavicco and Siciliano,
2012) address the kinematic equations directly.
They are effective for problems with few Degrees
of Freedom (DOF) and have a low computational
cost while predicting the exact solution. However,
for larger problems with many joints to control,
analytical methods may never find a solution.

• Numerical solutions, such as the Jacobian trans-
pose (Wolovich and Elliott, 1984) or the damped
least squares method (Wampler, 1986), solve the
IK problem, by iteratively computing an approx-
imation to a solution of the function f−1(·). Be-
cause of this iterative nature, they have a higher
computational cost than analytic solutions, and
the solution may depend on the first approxima-
tion used to initialize the iterations.

• The emergence of deep learning in recent years
has brought new solutions to the IK problem.
Deep learning is known to be very efficient at
solving high-dimensional problems, so it is nat-
urally well suited to the IK problem. A stan-
dard feedforward neural network outperforms
the accuracy of the Jacobian transpose meth-
ods (Giorelli et al., 2015) while computing the re-
sult 100 times faster.

2.2 Trajectory planning

Trajectory planning is a branch of IK where the goal
is to move the end-effector from a coordinate xsrc to
a target coordinate xdst and to control the path taken
along the way to avoid collisions or unavailable posi-
tions.

Deep learning or numerical methods usually com-
pute trajectories by defining intermediate coordinates,
creating a trajectory, and computing the position of
the motor joints coordinate by coordinate (Duka,

q1

q2

q3

q4

Joint 2

Joint 4

Joint 3

Joint 1

(x, y, z)

l2

l4

l3

l1

d

(a) A Robot arm with joints

y1

x1

x1

y1

(b) Robot arms with same location
Figure 1: The 4-DOF Robot arm used in the experiment. (a) The arm with the motor joints (black dots) and the end-effector
coordinates (red dot). (b) A case where two coordinates reach the same end-effector coordinates.

2014). This results in weak collision avoidance and
leaves the possibility that two intermediate coordi-
nates will result in completely different motor posi-
tions. If the method can compute all the mappings of
the function f−1(·) (Ho and King, 2022), then taking
the closest mapping to the previous coordinates can
solve the motor correlation. However, collision avoid-
ance in trajectory planning is much harder to solve
with these methods.

2.3 Reinforcement learning solutions
for trajectory planning

RL is a branch of machine learning in which an agent
interacts with an environment by taking actions that
yield rewards (Sutton and Barto, 2018). The objective
of the agent is to learn a policy, that is, a mapping
from states to actions, that maximizes the cumulative
reward over time.

RL is a good solution for trajectory planning
because the agent can create optimized trajectories
based on a reward defined by the learning environ-
ment. The reward is usually the distance between the
end-effector and the target, but a penalty can be added
to encourage the agent to avoid collisions (Phaniteja
et al., 2017).

Some RL algorithms using deep learning have
shown great efficiency in robot control (Ibarz et al.,
2021), such as the Soft Actor-Critic (SAC) (Haarnoja
et al., 2018). However, these solutions use deep learn-
ing networks that require too much computation for
a deployment on tightly resource-constrained embed-
ded systems. The SAC model from (Haarnoja et al.,
2019) uses 2 layers of 256 units each, leading to at

A B+>

B

(a) TPG example

Team
(Vertex)

Ac�on
(Vertex)

Program
(Edge)

(b) TPG semantics
Figure 2: Semantics of the TPGs.

least 65k parameters, resulting in models of about
300 kB.

2.4 Tangled Program Graphs

Today, Deep RL methods are the most widely used
algorithms for solving trajectory planning in the IK
problem. However, other RL techniques such as the
TPG could be used to solve this problem. TPG is an
algorithm introduced by Kelly and Heywood (Kelly
and Heywood, 2017) based on GP principles that has
been shown to be efficient for RL problems at very
low computational cost.

2.4.1 The TPG model

A TPG, depicted in Figure 2, consists of three main
entities that form a direct graph: the programs, the
teams, and the actions. The actions and teams are
the vertices of the graphs, while the programs are
the edges between a source and a target team or ac-
tion. Teams are internal vertices, while actions are the

leaves of the graph. Each team has several outgoing
edges.

2.4.2 The program

A program is a list of instructions constructed during
the genetic evolution training process. A set of in-
structions is defined by the programmer prior to the
training process. The program maps the state vector
with the different instructions to produce a bid. Dur-
ing the inference process, a team follows the path of
the program with the highest bid and reaches the cor-
responding vertex. The instructions are crucial for the
selection of actions and can be adapted for each type
of problem (Desnos et al., 2021).

2.4.3 The evolution process

The structure of the graph evolves dynamically. A
fixed number of roots are created in each generation
by duplicating and mutating roots that have survived
the natural selection process of the previous gener-
ation . The mutation of a root can change either the
destination of the edges of the root, or the instructions
of the programs on the edges.

The TPGs are able to solve RL problems, such
as the Atari games (Kelly and Heywood, 2017), with
low inference complexity. The evolutionary process
used to train the TPGs produces RL agents with an
adaptive computational complexity that depends on
the difficulty of the problem. Unlike the TPGs, deep
RL methods require a specific model size defined by
a data scientist, which is about 100 times larger than
a TPG and takes about 100 to 1000 times longer to
run than a TPG (Kelly, 2018) for equivalent accuracy.
These characteristics make the TPGs a good candi-
date for the trajectory planning problem.

3 EXPERIMENTAL SETUP

This section presents the experimental setup used to
evaluate the TPGs, the SAC, and the hybrid solution
on trajectory planning tasks. Section 3.1 describes the
robot arm model used. Section 3.2 explains what the
environment is for the TPGs and its different com-
ponents, then Section 3.3 describes some differences
between the environment used by the SAC and the
TPGs.

To ensure reproducibility of the results presented,
all library code, pre-trained TPGs, execution traces
and analysis code are made available as open-source
artifacts (Vacher et al., 2024)

3.1 4-DOF robot arm

The KIT-WIDOWX-ARM-COMP robot arm used in
the experiment has 4-DOF as represented on Fig-
ure 1a. It is a three-link arm placed on a base l1
with rotational joints. The joints are limited to range
[−π

2 ,
π

2], except for the base, which can do a full rota-
tion, but cannot go from −π to π. The RL algorithms
are trained on a simulator built with Orocos library
and a model characterizing of the valid positions was
built using physical constraints of the actual arm.

The model of the robot arm used in the experi-
ment has 4-DOF, Figure 1a shows a representation of
the arm. The arm used is the KIT-WIDOWX-ARM-
COMP. It has six servomotors but two of them con-
trol the hand which is not considered in this study. It
is a three-link arm, as shown in Figure 1a, placed on
a base l1 with rotational joints and different sizes of
joints:

l1 = 125 mm; l2 = 142 mm; l3 = 142 mm;
l4 = 155 mm; d = 49 mm

Motor angular possibilities are limited within the fol-
lowing ranges (note that q1 can not go from −π to π):

q1 ∈ [−π,π]; q2 ∈ [−π

2
,

π

2
];

q3 ∈ [−π

2
,

π

2
]; q4 ∈ [−π

2
,

π

2
]

3.2 The environnement for the TPGs

The environment state The state of the environment
as given to the RL agent is composed of 13 values
divided into four vectors :

1. The four motor positions;

2. The position of the hand Ph = (xh, yh, zh);

3. The position of the target Pt = (xt , yt , zt);

4. The difference between the hand and the target
Pd = (xh− xt , yh− yt , h− zt));

Vector four may seem irrelevant because it is the dif-
ference between vectors two and three, but it has been
empirically found to significantly speed up the train-
ing process for both the TPG and SAC algorithms.

The action space TPGs can only perform a sin-
gle discrete action per inference. The action rotates
one of the four motors either clockwise or counter-
clockwise by 3 motor steps, where a step is approx-
imately 0.0046 rad or 0.26°. With a smaller motor
step size, the results can be more accurate, but require
more actions to learn because the number of actions
needed to reach a target is higher. Hence, there are
eight available actions: that is 2 actions per motor,

plus a ninth action which is a no-action that causes
self-termination.

Objective of the learning The robot arm
must move from coordinates (xsrc,ysrc,zsrc) to
(xdst ,ydst ,zdst). A position is considered reached
when the distance between the end-effector and the
target is less than three millimeters. This value of
three millimeters is arbitrarily chosen. Two different
trajectory planning problems are considered, the first
being simpler than the second:

• Fixed Start (FS): Go from a fixed starting posi-
tion to a random destination.

• Random Start (RS): Go from a random starting
position to a random destination.

For the Fixed Start (FS) problem, all targets can be
reached in a maximum of 1707 actions. The Ran-
dom Start (RS) problem doubles this to 3414. These
values are the maximum number of actions during an
episode to reach the target.

At each generation, the roots are tested on 100 tar-
gets, making 100 episodes per generation. A valida-
tion is performed at each generation with the five best
roots of the training with 100 validation targets. Two
unique sets of validation targets, one for each prob-
lem, are used for all the results presented in this paper.
The targets are sampled uniformly in the reachable 3D
space.

The score Contrary to classic Reinforcement
Learning (RL) algorithms, the TPGs do not use an
instant reward and the Bellman equation (Bellman,
1957) to learn, but only a score at the end of each
evaluation. The score S, as specified in Equation (2),
is the distance in millimeters to the target multiplied
by −1 if the distance d between the target and the
hand is above 3 millimeters. If the distance is lower,
then the objective is reached and the score becomes
positive to encourage to take fewer actions to reach
the target.

S =

{
−1×distance if d ≥ 3
(nbMaxActions−nbActions)×0.01 if d < 3

(2)
Since 100 episodes are evaluated for each root per

generation, the score of a root is the average score of
the 100 episodes.

Invalid positions occur when any part of the robot
is below the bottom of the arm, assuming the robot
is attached to a table. If a collision or an invalid posi-
tion is detected, the action is aborted, and the environ-
ment state remains unchanged. For the TPGs, a root
will always choose the same action with the same en-
vironment state. Consequently, the same action will
be selected repeatedly, causing the arm to stop. As a

result, the score will reflect the current negative dis-
tance, which is unfavorable compared to a successful
outcome. The selection will naturally avoid collisions
and invalid positions.

3.3 The environment variations for the
SAC

The environment used by the SAC is mainly the same
as the environment for the TPGs described in the pre-
vious section.

Using the same reward as the TPGs would not be
fair for either the SAC or the TPGs, because both al-
gorithms learn differently. The TPGs learn with a fi-
nal score at the end of a generation while the SAC
learns with a reward at each action step. The used
reward r is described by Equation 3, where d is the
distance in millimeters between the hand and the tar-
get.

r =


−0.1×d if d ≥ 3 & no collision
−0.1×d−10 if d ≥ 3 & collision
100 if d < 3

(3)

Unlike the TPGs, the SAC can perform multiple
actions at once, thus the SAC has four possible ac-
tions, each of which rotates one of the four motors ei-
ther clockwise or counterclockwise by 3 motor steps.
Because the SAC uses multiple actions, it is limited
to 1000 actions per episode instead of 1707. The limit
could be higher because the reward of the SAC does
not depend on the maximum number of actions, but
some earlier tests showed that it does not affect the
learning of the SAC.

For the TPGs, an episode ends when a collision
occurs, as explained in the description of the score
in section 3.2, but this also corresponds to the goal
of learning: to avoid collisions. The training of the
SAC was initially done with the same behavior, where
a collision would end the episode. The problem is
that this creates episodes with different numbers of
actions. Since the goal of RL is to maximize the sum
of rewards over an episode, this created instability in
the training.

To avoid this problem, during the training of the
SAC, a collision does not end the episode but accu-
mulates negative rewards more quickly. However, for
comparison with the TPGs in inference, a collision
ends the current episode. The SAC is referred as SAC
No Collision on inference (NCi) .

0 50 100 150 200 250 300
Generations

50

100

150

200

250

300

Di
st

an
ce

 (m
m

)

FS - Min=28.61
RS - Min=133.69

(a) Distance (mm) per generation

0 50 100 150 200 250 300
Generations

0

20

40

60

Su
cc

es
s R

at
e

(%
) Max=56.6%

Max=22.6%

(b) Success rate per generation
Figure 3: Results of the TPGs for the FS problem, with fixed starting positions, and the RS problem, with random starting
positions. The curves show the mean of the ten seeds ± the standard deviation in the shaded areas. (a) Shows the distance
results. (b) Shows the percentage of success.

4 RESULTS OF TPGs AND SACs

Section 4.1 presents the results of the TPGs, then the
results of the SAC are shown in Section 4.2. Finally,
in Section 4.3, a comparison of both algorithms is
done.

4.1 Results of the TPGs

The first experiments with the TPGs on trajectory
planning are done for the FS problem, where the ini-
tial position of the arm is fixed between each episode.
Out of the box, training the TPGs with the training hy-
perparameters proposed in Kelly’s work only achieves
a mean distance to the target of 94.5 millimeters over
5 seeds after 150 generations.

An empirical study has been done to improve the
results by tuning the hyperparameters. The parame-
ters studied are the number of roots at each genera-
tion, the number of surviving roots at each generation
and the number of initial roots. The number of roots
did not change, but the number of surviving roots and
initial roots have changed from 180 and 180 to 20 and
7200, respectively. With these parameters, the TPGs
achieve an average distance to target of 38.8 millime-
ters over 10 seeds after 150 generations. The training
was then extended to 300 generations to improve the
results. The TPGs achieve an average distance to tar-
get of 28.61 mm and a success rate of 57% for the FS
problem

A training with the same configuration was done
for the RS problem, where the initial position is
random. The TPGs achieve a distance to target of
133.69 mm and a success rate of 22.6% for the RS
problem. Figure 3 shows the training results of the
TPGs for both objectives.

Table 1: Parameters for training the SAC.

Parameters Values Parameters Values
gamma 0.95 batch size 256

learning rate 5×10−4 buffer size 105

reward scale 2 gradient steps 16
hidden units 256 hidden layer 2
target coef. 0.005

4.2 Results of the SAC

The SAC is trained on 5 seeds using the parameters in
Table 1. One hundred episodes are done for the train-
ing before a validation step of 100 episodes. To eval-
uate a low complexity SAC, a training is done with
16 hidden units per layer instead of 256. Figure 4
presents the results of the different configurations.

The task is learned for the FS problem with a
mean distance of 7.29 mm for the classic SAC. How-
ever, when testing the SAC that reaches 7.29 mm
on the same validation set of targets, but ending the
episode when a collision occurs, the distance drops
to 25.2 mm. On the second objective with a Random
Start (RS), the SAC achieves a average distance of
44.1 mm which drops to 93.5 mm when adding the
collision termination condition.

The alternative SAC configuration with No Col-
lision in training (NCt) reaches 114.16 mm and the
SAC with 16 hidden units reaches 96.14 mm. Since
the performance of these alternative SAC is really bad
compared to the classic SAC, they are not kept for fur-
ther tests.

4.3 Comparison between the TPGs and
the SAC

In this section, a comparison with the results of the
SAC and the TPGs is done. A comparison of the ac-

0 50 100 150
Validation Steps

0

100

200

300

400

Di
st

an
ce

 (m
m

)

 FS - Min=7.29
FS - NCt - Min=114.16
 FS - 16 - Min=96.14
 RS - Min=44.14

(a) Distance (mm) per generation

0 50 100 150
Validation Steps

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
) Max=90.7%

Max=51.0%
Max=44.0%
Max=57.8%

(b) Success rate per generation
Figure 4: Results of SACs on the first objective, with fixed starting positions, and second objective, with random starting
positions. The curves show the mean of the five seeds ± the standard deviation in the shaded areas. The number 16 indicates
that there are 16 number of hidden units per layer instead of 256. NCt indicates that the training is done with no collision
allowed. (a) Shows the distance results. (b) Shows the percentage of success.

curacy of the algorithms is presented in Section 4.3.1
and their computational complexity are studied in
Section 4.3.2.

4.3.1 Performance comparison

Table 2 shows the distance, success rate, and num-
ber of collisions achieved by both algorithms for both
problems. Both the SAC with allowed collisions and
No Collision on inference are measured. For the dis-
tance achieved, the results are similar for the FS prob-
lem, where the SAC NCi and the TPGs reach 25.2 mm
and 28.6 mm, respectively. However? The SAC NCi
is still better than the TPGs for the success rate. It has
a success rate of 82%, while the TPGs has 56.8%. For
the RS problem, the results are better for the SAC NCi
for both metrics, with a distance of 93.5 mm com-
pared to 133.7 mm for the TPGs and a success rate
of 37.4% compared to 22.2%. The only metric where
the SAC and the TPGs are almost equal for both prob-
lems is the number of collisions. The SAC has 11.2%
for the FS problem and 36.8% for the RS problem.
The TPGs is really close with 15.5% for the FS prob-
lem and 37.2% for the RS problem.

Figures 5a and 5b show the distance reached by
each algorithm and each seed for the FS and RS prob-
lems, respectively. SAC NCi has cases where the dis-
tance is really high because due to collision termina-
tion. For the FS problem, although both algorithms
achieve a nearly equal mean distance, the distribu-
tion of the distance is not the same. For the SAC,
most of the distances are close to 3mm, but some are
really bad reaching 500mm, while for the TPGs, the
distances are more spread between 3 and 200mm.

Table 2: Accuracy performance between the SAC over five
seeds, the TPGs over 10 seeds and the hybrid solution over
the 50 combined seeds. The metrics used are the distance,
the success rate and the collision rate. SAC NCi refers to the
SAC with no collision on inference, meaning that a collision
ends the episode. The results are the mean of the seeds ± the
standard deviation.

Metrics Distance Success Collision

Fixed Start Problem

SAC 7.3(±03) 90.7%(±2) 11.2%(±02)
SAC NCi 25.2(±08) 82.0%(±3) 11.2%(±02)

TPGs 28.6(±09) 56.8%(±9) 15.5%(±10)
Hybrid 11.3(±06) 86.9%(±8) 12.2%(±08)

Random Start Problem

SAC 44.1(±03) 57.8%(±4) 36.8%(±04)
SAC NCi 93.5(±04) 37.4%(±5) 36.8%(±04)

TPGs 133.7(±17) 22.2%(±8) 37.2%(±14)
Hybrid 81.2(±22) 49.3%(±9) 36.3%(±11)

4.3.2 Inference Complexity Study

To measure the inference execution time, both algo-
rithms are run on a single-CPU 13th Gen Intel(R)
Core(TM) i7-13700H. SAC uses the PyTorch C++
API and the TPGs uses the C code generation pro-
posed by GEGELATI. The code is compiled using
GCC 13.3 on a Windows 10 operating system. Fig-
ures 5c and 5d show the time per action on each tar-
get for each seed for both problems. Both algorithms
have similar execution times between each seed and
each target for both problems. The TPGs is on aver-
age 96 times faster than SAC for both problems. The
SAC takes 61.53 µs per action, while the TPGs takes
0.64 µs.

0 1 2 3 4 0 1 2 3 4 5 6 7 8 9
0

250

500

750

Di
st

an
ce

 (m
m

) SAC TPGs

(a) Distance reached on each target for the FS problem.

0 1 2 3 4 0 1 2 3 4 5 6 7 8 9
0

250

500

750

Di
st

an
ce

 (m
m

) SAC TPGs

(b) Distance reached on each target for the RS problem.

0 1 2 3 4 0 1 2 3 4 5 6 7 8 9

100

101

102

Ti
m

e/
ac

tio
n

(µ
s) SAC TPGs

(c) Time per action on each target for the FS problem.

0 1 2 3 4 0 1 2 3 4 5 6 7 8 9

100

101

102

Ti
m

e/
ac

tio
n

(µ
s) SAC TPGs

(d) Time per action on each target for the RS problem.
Figure 5: Results of each seed for both the SAC and the TPGs

This complexity is also reflected in the model
sizes. For the SAC, all models have the same size
of 292 kB, while the models of the TPGs have a size
between 11 kB and 18 kB. The models of the TPGs
are 20 times smaller than the model of the SAC.

The TPGs can achieve similar performance to the
SAC on this problem, while being a hundred times
faster and with a model size 20 times smaller. The
results of the TPGs are very promising for the tra-
jectory planning problem. However, there are some
problems with the TPGs. The TPGs, like many GP
algorithms, need much more training time than Deep
RL. The TPGs also have a larger standard deviation
during training compared to the SAC.

5 HYBRID SOLUTION

In this section, we propose a hybrid version that com-
bines the SAC and the TPG to produce a solution that
surpasses the accuracy of the state-of-the-art while
having a lower execution time. Section 5.1 describes
the proposed algorithm, then Section 5.2 presents an
experimental study to find the best solutions. Finally,
Section 5.3 compares the results of the hybrid solu-
tions with the SAC and the TPGs.

5.1 Hybrid solution description

As seen in the previous section, the TPGs and the
SAC reach almost the same mean distance but the dis-
tribution of the distances is not the same. This implies
that the TPGs and the SAC learn different behaviors
to reach a target. The TPGs are on average 95 times

less complex than the SAC. These two features moti-
vate the hybrid solution: we want to benefit from both
behaviors and from the low complexity of the TPGs.

The hybrid solution, described in Algorithm 1, re-
lies on a TPG and a SAC that have been trained from
scratch independently. For inference, the hybrid solu-
tion starts the trajectory planning with the TPG for a
first approach to the target, then switches to the SAC
for the finer approach. There are three conditions that
cause the selection of actions to switch to the SAC:

1. If the actions of the TPG lead to a significant in-
crease in the distance of the arm from its target.
A threshold defined by the sepDistance parameter
is used to trigger this condition. Whenever a se-
ries of TPG actions increases the distance of the
end-effector of the arm beyond this threshold, the
condition is triggered and the SAC takes over the
control of the robot arm.

2. If the TPG chooses the no-action option, it will
terminate itself.

3. If the TPG exhibits cyclic behavior. The inference
of a TPG is a deterministic and stateless process,
which means that given the input state, it will al-
ways result in selecting the same action. As a con-
sequence, a TPG can enter a cycle of actions.

If a collision occurs, no matter if the SAC or the
TPG takes the action, the inference ends immediately.

After switching to the SAC algorithms, the hybrid
algorithm will automatically return to the TPG control
after a fixed number of actions defined by the NbIt-
GoBackTPG integer parameter of the algorithm. This
parameter allows to tune the ratio of actions taken by
the TPG when running the hybrid algorithm.

Data: Environment, TPG agent, SAC agent,
sepDistance, nbItGoBackT PG

Initialize environment;
Start episode;
bestDistance← currentDistanceToTarget;
T PGRunning← true;
counter← 0;
while episode not done do

if TPGRunning then
The TPG takes an action;
if bestDistance+ sepDistance >
currentDistanceToTarget then

T PGRunning← f alse;
else

if TPG stops moving or is cycling
then

T PGRunning← f alse;
end

end
else

The SAC takes an action;
counter← counter+1;
if counter = nbItGoBackT PG then

counter← 0;
T PGRunning← true;

end
end
if bestDistance >

currentDistanceToTarget then
bestDistance←
currentDistanceToTarget;

end
end
End episode;

Algorithm 1: Inference with the TPG and the Deep RL
Algorithm

5.2 Experimental study for hybrid
solution

The described hybrid solution depends on two param-
eters: nbItGoBackTPG the number of SAC iterations
after which the TPG takes over, and sepDistance the
distance to the target increase causing the SAC to take
over. The goal of the hybrid solution is to find a com-
promise between accuracy and complexity. In this
idea, an experimental study is carried out on the two
parameters. 36 combinations of the parameters are
tested:

• nbItGoBackTPG: [1, 5, 10, 50, 100, 1000];

• sepDistance (mm): [1, 3, 10, 20, 100, ∞].

Infinity as the separation distance means that the SAC
can only take over if the TPGs stops moving or starts
cycling.

Five seeds are trained for the SAC and ten for the
TPGs for each configuration. Thus, 50 pairs of the
SAC and the TPG can be generated for the hybrid so-
lution. Each of the 36 combinations is tested with the
50 combinations to ensure the viability of the results.

As shown in Section 4.3.2, the inference execu-
tion time of the TPG and the SAC have a very limited
variations. Instead of the execution time, the ratio of
the actions performed by the TPG to the total num-
ber of actions performed in this episode is measured.
Then, an estimated time per action is calculated with
the mean time of the TPG and the SAC previously
measured on the Intel i7-13700H core. This allows us
to distribute this experimental study on different types
of processors where the execution times may vary de-
pending on the hardware used, while keeping a simple
metric.

Figure 6 presents the results of the 36 configura-
tions for both problems. For the FS problem, the cho-
sen configuration is found with the nbItGoBackTPG
set to 20 iterations and the sepDistance set to 100 mm.
This configuration achieves an average distance of
11.3 mm with a time per action at 16.07 µs. For the
RS problem, the chosen configuration has a sepDis-
tance of 100 mm and the nbItGoBackTPG is set at 10
iterations. This configuration reaches a mean distance
of 85.5 mm with a time per action of 57.96 µs. The
two configurations are colored in green and orange,
respectively, in Figure 6 to highlight that they both
reached top scores within the set of configurations for
both problems.

5.3 Comparison with State-of-the-Art

The comparison with state-of-the-art and the hybrid
solutions is done in the same way as in Section 4.3,
with a performance comparison in Section 5.3.1 and
a complexity comparison in Section 5.3.2.

5.3.1 Performance comparison

The hybrid solution achieves better results than the
SAC and the TPGs for both problems. The results
are described in Table 2. For the FS problem, the
mean distance of 11.3 mm is far below the mean dis-
tance of the SAC and TPG, which reached 25.2 mm
and 28.6 mm, respectively. With a success rate of
86.9% the hybrid algorithm is slightly better than the
SAC, with 82%. The number of collisions increased
slightly from 11.2% to 12.2%, but not significantly
considering the standard deviation of respectively 2%

10 15 20 25 30
Distance (mm)

100

101

Ti
m

e/
ac

tio
n

(µ
s)

TPGs

SAC

(a) Results for the FS problem

80 90 100 110 120 130
Distance (mm)

100

101

Ti
m

e/
ac

tio
n

(µ
s)

TPGs

SAC

(b) Results for the RS problem
Figure 6: Pareto fronts between the distance and the approximate time per action of each of the 36 configurations of the hybrid
solution for both problems. Each point is the average of the 50 combinations. The selected configuration of the FS problem
is colored in green and the and the selected configuration of the RS problem is colored in orange.

and 8% for the SAC and the hybrid solution, respec-
tively. For the RS problem, the mean distance is better
than the SAC by 13%: the SAC is at 93.5 mm while
the hybrid solution is at 81.2 mm. However, the hy-
brid solution of this harder problem has a high stan-
dard deviation of 22 mm, while the SAC is only at
4 mm.

Figures 7a and 7b show the distance reached by
the hybrid solution on different seeds compared to
the SAC. For the FS problem, the hybrid solution has
much fewer cases where an episode ends far from the
target compared to the SAC. For the RS problem, the
distribution of the distance is better for most of the
seeds for the hybrid solution than for the SAC.

To conclude this comparison, the best seeds of
each solution are compared. For the FS problem, the
SAC achieves a mean distance of 13.7 mm and a suc-
cess rate of 87%. The hybrid solution outperforms the
SAC with a success rate of 94% and a mean distance
of 5.1 mm. For the RS problem, the SAC achieves a
mean distance of 86.9 mm and a success rate of 33%.
The hybrid solution is again much better with a suc-
cess rate of 64% and a mean distance of 53.4 mm.

5.3.2 Complexity Study

Figures 7c and 7d show the time per action of the hy-
brid solutions on different SAC and TPG pairs com-
pared to the SAC. For both problems, the hybrid so-
lution has a better time per action with an average
time of 2.77 µs and 10.92 µs on FS and RS problems
respectively while the SAC has a time per action of
61.5 µs for both problems. The hybrid solution is
more effective, by being twenty times faster than the
SAC for the FS problem and 6 times quicker of the

RS problem. The best seeds of the hybrid solution
detailed at the end of the previous section have a time
per action of 3.05 µs for the FS problem and 11.55 µs
for the RS problem. Because the hybrid solution is a
combination of the TPGs and the SAC, the hybrid so-
lution is slower than the TPGs. The TPGs are 4 times
faster than the hybrid solution on the FS problem and
17 times faster on the RS problem.

For the SAC, all models have the same size of
292 kB, while the models of the TPGs have a size be-
tween 11 kB and 18 kB. Thus, the hybrid solution has
a model size of about 305 kB.

6 DISCUSSION

Beyond the performance of the hybrid solution, the
contribution of this work lies in the significant advan-
tages obtained by combining the TPG and the deep
RL algorithm. We show that the synergistic effects of
their complementary strengths lead to improved re-
sults in robot control, in accuracy, and especially in
complexity.

This combined approach opens up new possibil-
ities for solving robot control problems. With the
evolution of deep RL algorithms, harder robot con-
trol tasks are being learned every day (Haarnoja et al.,
2024), with larger model sizes, leading to complex
solutions. Recent research explores reduction in com-
putational cost of the deep RL agent (Gu et al., 2023)
and is complementary to our approach. A hybrid so-
lution using a TPG combined with a low complexity
deep RL algorithm could give even better results.

0 1 2 3 4 0 1 2 3 4 5 6 7 8 9
0

250

500

750

Di
st

an
ce

 (m
m

) SAC Hybrid

(a) Distance reached on each target for the FS problem.

0 1 2 3 4 0 1 2 3 4 5 6 7 8 9
0

250

500

750

Di
st

an
ce

 (m
m

) SAC Hybrid

(b) Distance reached on each target for the RS problem.

0 1 2 3 4 0 1 2 3 4 5 6 7 8 9

100

101

102

Ti
m

e/
ac

tio
n

(µ
s) SAC Hybrid

(c) Time per action on each target for the FS problem.

0 1 2 3 4 0 1 2 3 4 5 6 7 8 9

100

101

102

Ti
m

e/
ac

tio
n

(µ
s) SAC Hybrid

(d) Time per action on each target for the RS problem.
Figure 7: Results of 10 combined seeds of the best hybrid solution for both problems. Plotting the 50 combined seeds would
have been unreadable, instead 10 combinations are shown, the first two seeds of the TPGs with the first of the SAC, seeds 2
and 3 of the TPGs with the second of the SAC, and so on.

The task studied in this paper, trajectory planning,
is well suited for the hybrid solution because it is
easy to detect when a TPG has bad behavior. Bet-
ter ways to detect these bad behaviors should be in-
vestigated in future work to adapt this hybrid solu-
tion to a wider variety of RL tasks where the TPG
have recently been applied (Kelly et al., 2021; Smith
and Heywood, 2023). The TPG have also been ap-
plied to classification tasks (Smith et al., 2021; Chillet
et al., 2023). Studying the design of a hybrid solution
for classification tasks using the TPG and some deep
learning techniques could also lead to interesting re-
sults.

7 CONCLUSION

This paper presents a low complexity solution for tra-
jectory planning on IK using a genetic RL algorithm.
The adaptability of the TPGs allows the learning of
the complex environment. An empirical study of the
parameters of the TPG makes it possible to achieve al-
most state-of-the-art performance on a problem, while
being 100 times faster and having a model size 20
times smaller. However, the tuning is not sufficient to
learn a harder problem, where even the state-of-the-
art struggles. In order to propose a solution with low
complexity and to increase the accuracy on this prob-
lem, a hybrid solution combining the SAC, a state-
of-the-art algorithm, and the TPGs is designed. It
achieves a better accuracy than both SAC and the
TPGs for both problems, while being 20 to 6 times

faster than the SAC depending on the problem. This
hybrid solution does not use any additional training,
the solution uses pre-trained models of the SAC and
the TPGs. Designing training for the hybrid solu-
tion could improve the results and reduce the running
time.

For other IK applications, RL algorithms use
memory, continuous action, multi-action, and visual
tracking, four capabilities that the implementation of
the TPGs used in this paper does not have. An exten-
sion of the TPGs using memory and continuous ac-
tion has already been proposed (Kelly and Banzhaf,
2020). Future work will consider these extensions, as
well as multiple actions, to improve performance for
the IK problem.

ACKNOWLEDGEMENTS

This research was funded, in whole or in part, by
the Agence Nationale de la Recherche (ANR), grant
ANR-22-CE25-0005-01. A CC BY license is applied
to the AAM resulting from this submission, in accor-
dance with the open access conditions of the grant.

REFERENCES

Bellman, R. (1957). A markovian decision process. Journal
of Mathematics and Mechanics, 6(5):679–684.

Chillet, A., Boyer, B., Gerzaguet, R., Desnos, K., and Gau-
tier, M. (2023). Tangled program graph for radio-

frequency fingerprint identification. In 2023 IEEE
34th Annual International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC),
pages 1–7. IEEE.

Desnos, K., Sourbier, N., Raumer, P.-Y., Gesny, O., and
Pelcat, M. (2021). Gegelati: Lightweight artificial in-
telligence through generic and evolvable tangled pro-
gram graphs. In Workshop on Design and Architec-
tures for Signal and Image Processing (14th edition),
pages 35–43.

Duka, A.-V. (2014). Neural network based inverse kine-
matics solution for trajectory tracking of a robotic
arm. Procedia Technology, 12:20–27. The 7th Interna-
tional Conference Interdisciplinarity in Engineering,
INTER-ENG 2013, 10-11 October 2013, Petru Maior
University of Tirgu Mures, Romania.

Giorelli, M., Renda, F., Calisti, M., Arienti, A., Ferri, G.,
and Laschi, C. (2015). Neural network and jacobian
method for solving the inverse statics of a cable-driven
soft arm with nonconstant curvature. IEEE Transac-
tions on Robotics, 31(4):823–834.

Gu, S., Kuba, J. G., Chen, Y., Du, Y., Yang, L., Knoll,
A., and Yang, Y. (2023). Safe multi-agent reinforce-
ment learning for multi-robot control. Artificial Intel-
ligence, 319:103905.

Haarnoja, T., Ha, S., Zhou, A., Tan, J., Tucker, G., and
Levine, S. (2019). Learning to walk via deep rein-
forcement learning.

Haarnoja, T., Moran, B., Lever, G., Huang, S. H., Tirumala,
D., Humplik, J., Wulfmeier, M., Tunyasuvunakool, S.,
Siegel, N. Y., Hafner, R., et al. (2024). Learning agile
soccer skills for a bipedal robot with deep reinforce-
ment learning. Science Robotics, 9(89):eadi8022.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018).
Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor.

Ho, C.-K. and King, C.-T. (2022). Automating the learning
of inverse kinematics for robotic arms with redundant
dofs.

Ibarz, J., Tan, J., Finn, C., Kalakrishnan, M., Pastor, P.,
and Levine, S. (2021). How to train your robot
with deep reinforcement learning: lessons we have
learned. The International Journal of Robotics Re-
search, 40(4–5):698–721.

Kelly, S. (2018). Scaling genetic programming to challeng-
ing reinforcement tasks through emergent modularity.
PhD thesis, Dalhousie University, Halifax, Nova Sco-
tia, Canada.

Kelly, S. and Banzhaf, W. (2020). Temporal memory shar-
ing in visual reinforcement learning. Genetic Pro-
gramming Theory and Practice XVII, pages 101–119.

Kelly, S. and Heywood, M. I. (2017). Emergent tangled
graph representations for atari game playing agents.
In Genetic Programming: 20th European Conference,
EuroGP 2017, Amsterdam, The Netherlands, April
19-21, 2017, Proceedings 20, pages 64–79. Springer.

Kelly, S., Voegerl, T., Banzhaf, W., and Gondro, C. (2021).
Evolving hierarchical memory-prediction machines in
multi-task reinforcement learning. Genetic Program-
ming and Evolvable Machines, 22:573–605.

Phaniteja, S., Dewangan, P., Guhan, P., Sarkar, A., and Kr-
ishna, K. M. (2017). A deep reinforcement learning
approach for dynamically stable inverse kinematics of
humanoid robots. In 2017 IEEE international con-
ference on robotics and biomimetics (ROBIO), pages
1818–1823. IEEE.

Sciavicco, L. and Siciliano, B. (2012). Modelling and con-
trol of robot manipulators. Springer Science & Busi-
ness Media.

Smith, R. J., Amaral, R., and Heywood, M. I. (2021).
Evolving simple solutions to the cifar-10 bench-
mark using tangled program graphs. In 2021 IEEE
Congress on Evolutionary Computation (CEC), pages
2061–2068. IEEE.

Smith, R. J. and Heywood, M. I. (2023). Interpreting tan-
gled program graphs under partially observable dota 2
invoker tasks. IEEE Transactions on Artificial Intelli-
gence, 5(4):1511–1524.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learn-
ing: An introduction. MIT press.

Vacher, Q., Beuve, N., Allaire, P., Marty, T., Dardaillon, M.,
and Desnos, K. (2024). Ecta24 artifacts.

Wampler, C. (1986). Manipulator inverse kinematic solu-
tions based on vector formulations and damped least-
squares methods. Systems, Man and Cybernetics,
IEEE Transactions on, 16:93 – 101.

Wolovich, W. A. and Elliott, H. (1984). A computational
technique for inverse kinematics. The 23rd IEEE Con-
ference on Decision and Control, pages 1359–1363.

Zhong, J., Wang, T., and Cheng, L. (2021). Collision-free
path planning for welding manipulator via hybrid al-
gorithm of deep reinforcement learning and inverse
kinematics. Complex & Intelligent Systems, pages 1–
14.

