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Large deviation principle at speed n for the random metric in
first-passage percolation

Julien Verges∗

December 3, 2024

Abstract

Consider standard first-passage percolation on Zd. We study the lower-tail large deviations of the
rescaled random metric T̂n restricted to a box. If all exponential moments are finite, we prove that T̂n

follows the large deviation principle at speed n with a rate function J , in a suitable space of metrics.
Moreover, we give three expressions for J(D). The first two involve the metric derivative with respect
to D of Lipschitz paths and the lower-tail rate function for the point-point passage time. The third is
an integral against the 1-dimensional Hausdorff measure of a local cost. Under a much weaker moment
assumption, we give an estimate for the probability of events of the type

{
T̂n ≤ D

}
.

1 Introduction
1.1 Framework
1.1.1 First-passage percolation
We first present the model of first-passage percolation (FPP), introduced in 1966 by Hammersley and
Welsh [15]. The reader interested in a summary of the achievements on this topic is invited to consult
Auffinger, Damron and Hanson’s survey [2]. Let d ≥ 2 be an integer and Ed the set of all non-oriented
nearest-neighbour edges in Zd. A finite sequence π := (x0, . . . , xr) of elements of Zd is called a discrete
path if for all i ∈ J0 , r − 1K, (xi, xi+1) ∈ Ed. We denote by ∥π∥ its number of edges.

Let ν be a probability distribution on [0 , ∞) and consider a family (τe)e∈Ed of i.i.d. random variables
with distribution ν. In this paper a will denote the infimum of its support. The variable τe is called
the passage time along the edge e. The passage time along a discrete path π = (x0, . . . , xr) is defined
as

τ(π) :=
r−1∑
i=0

τ(xi,xi+1). (1.1)

For all A ⊆ Rd and x, y ∈ Zd, the passage time between x and y restricted in A is defined as

TA(x, y) := inf
x

π
⇝y

π⊆A

τ(π), (1.2)

where the infimum spans over discrete paths included in A, whose endpoints are x and y. The map
TA(·, ·) is a pseudometric on A. We call TA-discrete geodesic between x and y any minimizer in (1.2).
We will write T := TZd = TRd . A well-known result ([2], Equation 2.4) states that, under a moment
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condition on ν, there exists a homogeneous function µ on Rd, known as the time constant, such that
for all x ∈ Zd,

T(0, nx)
n

a.s.−−−−→
n→∞

µ(x). (1.3)

Furthermore, without any moment assumption on ν, one can still define µ, such that for all x ∈ Zd,

T(0, nx)
n

P−−−−→
n→∞

µ(x). (1.4)

See e.g. ([5], Theorem 4) for the formulation (1.4). The time constant is a norm if

ν({0}) < pc(Zd), (SubC)

where pc(Zd) is the critical parameter for bond percolation in Zd; otherwise µ(x) = 0 for all x ∈ Rd.
We only study the former case, as the latter is trivial for our purposes.

As a consequence of (1.4) the probability of an event of the form {T(0, ne1) ≤ ζn}, with ζ < µ(e1)
or {T(0, ne1) ≥ ζn}, with ζ > µ(e1) (the so-called lower-tail and upper-tail large deviation events)
converges to 0 as n → ∞. In 1986, Kesten [17] obtained estimates for the speed of convergence: there
exists ([17], Theorem 5.2) a convex decreasing function JK : (a , µ(e1)) → (0 , ∞) such that for all
a < ζ < µ(e1),

lim
n→∞

− 1
n

logP(T(0, ne1) ≤ ζn) = JK(ζ). (1.5)

Besides ([17], Theorem 5.9), under the assumption

∀λ > 0,

∫
[0 ,∞)

exp(λt)ν(dt) < ∞, (Moment)

for all ζ > µ(e1),
lim

n→∞
− 1

n
logP(T(0, ne1) ≥ ζn) = ∞. (1.6)

If ν has a bounded support, we have the stronger estimate

lim
n→∞

− 1
nd

logP(T(0, ne1) ≥ ζn) > 0.

Kesten’s proof of (1.6) may be adapted to any direction, i.e. under (Moment), for all x ∈ Zd and
ζ > µ(x),

lim
n→∞

− 1
n

logP(T(0, nx) ≥ ζn) = ∞. (1.7)

We prove a somewhat stronger version in Appendix B.

1.1.2 Aim of the paper
Our first result, Theorem 1.1, is an extension of (1.5) to any direction, for T[0 ,n]d and T. Consider

X :=
{

(x, ζ) ∈ Rd × (0 , ∞)
∣∣ ζ > a∥x∥1

}
, (1.8)

where ∥·∥1 is the usual 1-norm, defined by (1.41), and a is the infimum of ν’s support, which may be
zero. Define

X := [0 , 1]d. (1.9)

Theorem 1.1. There exists a function Jpp : X → [0 , ∞), such that for all x, y ∈ X and ζ > a∥x − y∥1,

lim
n→∞

− 1
n

logP
(

T(⌊nx⌋,⌊ny⌋) ≤ nζ
)

= lim
n→∞

− 1
n

logP
(

T[0 ,n]d(⌊nx⌋,⌊ny⌋) ≤ nζ
)

= Jpp(x − y, ζ), (1.10)

where ⌊·⌋ denotes the componentwise floor function. Moreover:
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(i) Jpp is convex and absolutely homogeneous.
(ii) For all (x, ζ) ∈ X ,

Jpp(x, ζ) = Jpp(|x|, ζ), (1.11)

where |x| denotes the vector of Rd whose components are the modules of x’s components.
(iii) For all (x1, ζ1), (x2, ζ2) ∈ X , if 0 ≤ x1 ≤ x2 for the componentwise order and ζ1 ≥ ζ2, then

Jpp(x1, ζ1) ≤ Jpp(x2, ζ2). (1.12)

(iv) For all (x, ζ) ∈ X , Jpp(x, ζ) = 0 if and only if ζ ≥ µ(x).

For all x ∈ Rd, we also define

Jpp(x, a∥x∥1) := lim
ζ→a∥x∥1
ζ>a∥x∥1

↑Jpp(x, ζ), (1.13)

where the notation ↑ is used to emphasize that ζ 7→ Jpp(x, ζ) is nonincreasing. Note that the extension
of Jpp on X is also convex and lower semicontinuous. We will call Jpp the elementary rate function, as
it will appear as an integrand in the expression of more sophisticated rate functions.
Remark 1.2. By convexity and (iv), for all x ∈ Rd \{0}, the function ζ 7→ Jpp(x, ζ) is strictly decreasing
on [a∥x∥1 , µ(x)].

We are interested in extending (1.10) for the random metric T[0 ,n]d rather than simply T(⌊nx⌋,⌊ny⌋).
We define, for all n ≥ 1,

T̂n : X × X −→ [0 , ∞)

(x, y) 7−→ 1
n

T[0 ,n]d(⌊nx⌋,⌊ny⌋). (1.14)

The function T̂n is a pseudometric on X. Our second result, Theorem 1.7, gives an estimate for the
probability of T̂n taking values below a target pseudometric D, of the form

P
(

T̂n ≲ D
)

≈ exp
(
−J−(D)n

)
.

Its main assumption is the existence of ξ > 0 such that

E

[(
min

1≤i≤d
τi

)d+ξ
]

< ∞, (StrongShape)

where the τi are i.i.d. with distribution ν.
Under Assumption (Moment), Theorem 1.10 goes further and states that (T̂n)n≥1 follows a large

deviation principle at speed n, i.e. essentially an approximation of the form

P
(

T̂n ≃ D
)

≈ exp(−J(D)n).

1.2 Main theorems
Sections 1.2.1 and 1.2.2 contain the minimal definitions for our main results, namely Theorems 1.7
and 1.10 to make sense: respectively, the natural limit space for T̂n and usual large deviation objects.
Our main theorems are stated in Section 1.2.3.
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1.2.1 The limit space
Almost surely, for all n ≥ 1, T̂n belongs to the space Fb of bounded functions on X2. We endow Fb
with the uniform distance, defined for all D1, D2 ∈ Fb as

d∞(D1, D2) := max
(x,y)∈X2

|D1(x, y) − D2(x, y)|, (1.15)

For all D1, D2 ∈ Fb we denote by D1 ≤ D2 the assertion

∀x, y ∈ X, D1(x, y) ≤ D2(x, y), (1.16)

which defines a partial order on Fb.
Definition 1.3. Given a subset A of Rd, a pseudometric D on A and a continuous path γ : [0 , T ] → A
for the usual topology, we define the D-length of γ as

D(γ) := sup
0=t0<···<tr=T

r−1∑
i=0

D(γ(ti), γ(ti+1)). (1.17)

In the special case where D is the metric induced by ∥·∥1, we will denote by ∥γ∥1 the D-length of γ.
We say that γ is a D-geodesic if it is Lipschitz for ∥·∥1, and

D(γ) = D(γ(0), γ(T )). (1.18)

For all t ∈ (0 , T ) such that the following limit exists, we define the metric derivative of γ at t, with
respect to D as

|γ̇|D(t) := lim
h→0

1
|h|

D(γ(t), γ(t + h)). (1.19)

Note that our definition of geodesic differ from the usual meaning, as we do not require that γ is
an isometry with respect to D, but some regularity with respect to ∥·∥1. All the pseudometrics D we
will consider are dominated by ∥·∥1, therefore their geodesics will also be Lipschitz for the metric D.
Definition 1.4. Let L > 0 and g be a norm on Rd. We define DL

g as the set of all pseudometrics D
on X such that

(i) For all x, y ∈ X,
D(x, y) ≤ g(x − y). (1.20)

(ii) For all x, y ∈ X, there exists a D-geodesic σ from x to y, such that ∥σ∥1 ≤ L.
We define

Dg :=
⋃

L≥0
DL

g . (1.21)

1.2.2 Large deviations
We give here some general large deviation tools. See Dembo-Zeitouni (2009) [11] for the general theory.
Definition 1.5. Let X be a Hausdorff topological space. We call rate function a lower semicontinuous
map I : X → [0 , ∞], i.e. a map whose sublevels {x ∈ X | I(x) ≤ t}, for t ≥ 0, are closed. We further
say that I is a good rate function if its sublevels are compact.

We say that a random process (Xn)n≥1 with values in X follows the large deviation principle (LDP),
at speed an, with the rate function I if for every Borel set A ⊆ X,

inf
x∈A

I(x) ≤ lim
n→∞

− 1
an

logP(Xn ∈ A) ≤ lim
n→∞

− 1
an

logP(Xn ∈ A) ≤ inf
x∈Å

I(x). (1.22)

In this article, except when stated otherwise, we will only consider LDPs at speed n. Lemma 1.6
will be of constant use. It is a consequence of arguments given in the proof of Theorem 4.1.11 in
[11]. The version here was used in ([22], Lemma 1.2) with the speed nd instead of n. Apart from this
difference, the proof may be copied verbatim.
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Lemma 1.6. Let (X, dX) be a metric space and (Xn)n≥1 a random process with values in X. Define,
for all x ∈ X,

I(x) := lim
ε→0

↑ lim
n→∞

− 1
n

logP(dX(x, Xn) ≤ ε)

and

I(x) := lim
ε→0

↑ lim
n→∞

− 1
n

logP(dX(x, Xn) ≤ ε).

Then
(i) I and I are rate functions on X.

(ii) For every open set U ⊆ X,

lim
n→∞

− 1
n

logP(Xn ∈ U) ≤ inf
x∈U

I(x). (1.23)

(iii) For every compact set K ⊆ X,

lim
n→∞

− 1
n

logP(Xn ∈ K) ≥ min
x∈K

I(x). (1.24)

If I := I = I, we say that (Xn)n≥1 satisfies the weak LDP at speed n, with the rate function I.

1.2.3 Result statements
For all D ∈ Dµ, n ∈ N∗ and ε > 0, we introduce the event

LD−
n (D, ε) :=

{
∀x, y ∈ X, T̂n(x, y) ≤ D(x, y) + ε

}
. (1.25)

We then define

J
−(D) := lim

ε→0
↑ lim

n→∞
− 1

n
logP

(
LD−

n (D, ε)
)

(1.26)

and

J−(D) := lim
ε→0

↑ lim
n→∞

− 1
n

logP
(
LD−

n (D, ε)
)
. (1.27)

Those functions are both rate functions. Theorem 1.7 states that J−(D) := J
−(D) = J−(D) and

provides several expressions of J−(D), which involve:
• The elementary rate function Jpp, defined in Theorem 1.1.
• A highway network of D, which is essentially a family of disjoint D-geodesics dense enough so

that any two points x, y ∈ X are linked by a path inside the network with D-length D(x, y) (see
Definition 2.4).

• The gradient by paths (P-grad D)z(u) of D at z ∈ X, in the direction u ∈ Rd, which describes the
D-length of infinitesimal paths originating from D with speed u (see Definition 2.8).

In Equation (1.31), H1 denotes the usual 1-dimensional Hausdorff measure on Rd, whose definition is
recalled in Section 1.5, and S2 denotes the Euclidean unit sphere.

Theorem 1.7. Assume (SubC) and (StrongShape). For all D ∈ Dµ,

J−(D) := J−(D) = J
−(D). (1.28)
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If (σk : [0 , L] → X)k≥1 is a highway network for D, then

J−(D) =
∑
k≥1

∫ L

0
Jpp(σ′

k(t), |σ̇k|D(t))dt. (1.29)

Moreover,

J−(D) = sup
{

K∑
k=1

∫ Tk

0
Jpp(γ′

k(t), |γ̇k|D(t))dt

∣∣∣∣∣ K ∈ N, (γk : [0 , Tk] → X)1≤k≤K 1-Lipschitz,
injective and pairwise disjoint.

}

= sup
{ ∞∑

k=1

∫ Tk

0
Jpp(γ′

k(t), |γ̇k|D(t))dt

∣∣∣∣∣ (γk : [0 , Tk] → X)k≥1 1-Lipschitz,
injective and pairwise disjoint.

}
,

(1.30)

and
J−(D) =

∫
X

max
u∈S2

Jpp(u, (P-grad D)z(u))H1(dz). (1.31)

Besides, for all distinct D1, D2 ∈ Dµ, if D1 ≤ D2 and J−(D2) < ∞,

J−(D1) > J−(D2). (1.32)

Remark 1.8. Equation (1.31) holds with the unit sphere with respect to any norm instead of S2,
provided one also takes the Hausdorff measure associated with the chosen norm. However, we use the
Euclidean norm because it is the usual framework.
Remark 1.9. Contrary to (1.29), (1.31) does not depend on an arbitrary choice of highway network for
D. Actually, we will prove that if J−(D) < ∞, then for H1-almost all z, for all u ∈ S2 except maybe in
one direction, (P-grad D)z(u) = µ(u) (see Lemma 4.9). In particular, by Item in Theorem 1.1,(iv), for
H1-almost all z, the maximum in (1.31) is either 0 or the only positive value of Jpp(u, (P-grad D)z(u)).

Under stronger assumptions, the LDP holds with a rate function that coincides with J− on Dµ,
and is infinite outside.
Theorem 1.10. Assume (SubC) and (Moment). The process

(
T̂n

)
n≥1

follows the large deviation
principle at speed n with the good rate function

J : Fb −→ [0 , ∞]

D 7−→

{
J−(D) if D ∈ Dµ,

∞ otherwise.
(1.33)

In other words, for all A ∈ B(Fb),

inf
D∈A

J(D) ≤ lim
n→∞

− 1
n

logP
(

T̂n ∈ A
)

≤ lim
n→∞

− 1
n

logP
(

T̂n ∈ A
)

≤ inf
D∈Å

J(D). (1.34)

1.3 Open questions and related works
Upper-tail large deviations for the point-point and face-face times. Contrary to
the lower-tail, the order of the upper-tail large deviation probability P(T(0, ne1) ≥ nζ), with ζ > e1,
depends on the distribution. Kesten ([17], Theorem 5.9) proved that if ν has a bounded support then
it is of order exp

(
−nd

)
. Basu, Ganguly and Sly [3] later proved the existence of the rate function, in

dimension 2,1 under a regularity assumption on ν. This regularity assumption was recently relaxed by
the author (see Corollary 1.6 in [22]).

Concerning distributions with unbounded support, Cranston, Gauthier and Mountford gave ([9],
Theorem 1.3) a criterion for P(T(0, ne1) ≥ nζ) to be of order exp

(
−nd

)
, provided the tail of ν has a

1Their proof may be adapted in any dimension, though.

6



specific shape. In a recent article, Cosco and Nakajima [7] proved that for all 0 < r < d, if the tail of ν
decays like exp(−tr), then P(T(0, ne1) ≥ nζ) has order exp(−nr), and they gave an expression of the
point-point rate function.

It is worth noting that the so-called face-face passage time (i.e. the minimal passage time among
paths traversing the box J0 , nKd from one face to the opposite one) seems to display less diverse orders
in its upper-tail large deviations. Indeed Chow and Zhang [6] showed that if ν has one exponential
moment, then the probability that the face-face passage time takes abnormally large values is of order
exp
(
−nd

)
. They also proved the existence of rate function.

Large deviations at the metric level. Assuming that ν is supported by [a , b], with 0 < a <

b < ∞, the author [22] proved a LDP at speed nd for T̂n, with a good rate function I. An integral
expression similar to (1.31) is provided, except the measure is the Lebesgue measure on X. For all
possible adherence values D of T̂n, I(D) = 0 if and only if D ≤ µ, and is finite except on marginal
cases, meaning that result provides an appropriate estimate for the probability of {T̂n ≃ D}, whenever
D is not bounded by µ. On the other hand, whenever D ≤ µ and D ̸= µ, J(D) > 0 and is the limit
of metrics Dn such that J(Dn) < ∞, meaning that Theorem 1.10 provides an appropriate estimate
for the probability of {T̂n ≃ D}, whenever D ≤ µ. Consequently, the LDPs at speed n and nd give
a full picture of the large deviations for (T̂n)n≥1, in the sense that for all positive sequence (an)n≥1
satisfying

an ≪ n, or n ≪ an ≪ nd, or nd ≪ an, (1.35)
for all pseudometrics D on X, either

lim
ε→0

lim
n→∞

− 1
an

logP(LDn(D, ε)) = ∞, (1.36)

or

lim
ε→0

lim
n→∞

− 1
an

logP(LDn(D, ε)) = 0. (1.37)

In other words, there cannot be a third speed an, for which (T̂n)n≥1 satisfies the LDP with a rate
function taking at least one positive, finite value.

However, if ν([t , ∞)) decays like exp(−tr), with 1 < r < d then at least three LDPs, at three
different speeds, are required to describe the large deviations of (T̂n)n≥1. Indeed, in this regime
the probability of deviation events studied in the present article have order exp(−n), while as stated
above, the upper-tail deviations of the point-point passage time have order exp(−nr) and the upper-tail
deviations of the face-face passage time have order exp

(
−nd

)
. It is thus plausible that there exist at

least three speeds for which (T̂n)n≥1 follows a LDP with a nontrivial rate function. The case where
ν([t , ∞)) decays like exp(−t) may also be quite rich, because lower-tail behaviours and some upper-tail
behaviours are both of order exp(−n). In particular the conclusion of Theorem 1.10 fails in this context,
because if (T̂n)n≥1 followed a LDP at speed n, the associated rate function would take positive, finite
values for some metric greater than µ.

Large deviations for the chemical distance in bond percolation. In supercritical bond
percolation, we call chemical distance between two vertices the length of the shortest open path between
these vertices. In the framework of FPP, this corresponds to the case where ν is supported by {1, ∞}.
Garet and Marchand [13] showed that the probability of large deviations events for the chemical distance
has order exp(−n). For the upper-tail part, Dembin and Nakajima [10] recently proved the existence
of the associated rate function.

1.4 Outline of the proofs
In Section 2, we give some topological preliminaries about Dg. We show that the sets DL

g are compact
subsets of Fb, any pseudometric D ∈ Dµ has a highway network and the D-length of Lipschitz paths
is given by an integral involving the gradient by paths. The highway method is a refinement of an
argument used by the author in [22].
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In Section 3, we prove Theorem 1.1. By the FKG inequality, the probability that two translations
of the event in (1.10) occur simultaneously is greater than the product of the individual probabilities.
This allows for a subadditive argument, providing the existence and convexity of the elementary rate
function.

In Section 4, we prove Theorem 1.7. We first upper bound J
−(D) by the right-hand side of (1.29).

To do so, we note that prescribing a passage time smaller than D between a large number of milestones
scattered along the highways essentially implies prescribing a passage time smaller than D everywhere.
Thanks to the FKG inequality, the probability of this scenario is lower bounded by the product of
the individual point-point lower-tail deviation events involved. Applying Theorem 1.1 and letting the
number of milestones tend to infinity yields the desired bound. We then lower bound J−(D) by the
right-hand side of (1.30), using a somehow opposite strategy. Rather than providing an appropriate
scenario for the large deviation event LD−

n (D, ε) to occur, we show that for all families (γk) as in (1.30),
on the large deviation event, there exists a family of abnormally fast pairwise disjoint discrete paths that
"follow" the paths γk. Finally, we prove (1.31) by the so-called area formula (see e.g. Corollary 5.1.13
in [18]). The hard part is to show that (P-grad D) has H1-almost everywhere a simple expression with
respect to the speeds of the highways σk.

In Section 5, we prove Theorem 1.10. For all D ∈ Fb, n ∈ N∗ and ε > 0, we introduce the event

LDn(D, ε) :=
{
d∞

(
T̂n, D

)
≤ ε
}

, (1.38)

and the rate functions

J (D) := lim
ε→0

↑ lim
n→∞

− 1
n

logP(LDn(D, ε)), (1.39)

J (D) := lim
ε→0

↑ lim
n→∞

− 1
n

logP(LDn(D, ε)), (1.40)

i.e. the functions I and I involved in Lemma 1.6, in the special case X = Fb and Xn = T̂n. We
first show that if the metric T̂(b)

n associated with the truncated passage times τe ∧ b is exponentially
equivalent to another pseudometric T̃(b)

n , which has better tightness properties. We then show that
T̃(b)

n , thus T̂(b)
n , follows the LDP with the rate function J, which essentially amounts to showing that

J = J = J. In the case where ν has an unbounded support, we use the fact that the truncated passage
times are exponentially good approximations of T̂n.

1.5 Notations and conventions
Vectors of Rd and norms on Rd. Let (ei)1≤i≤n denote the canonical basis of Rd. We endow
Rd with the norms defined by

∥x∥1 :=
d∑

i=1
|xi|, and ∥x∥2 :=

(
d∑

i=1
x2

i

)1/2

, (1.41)

for all x = (x1, . . . , xd) ∈ Rd. We define d as the metric associated with ∥·∥1, S1 the unit sphere for ∥·∥1
and B1(z, r) (resp. B1(z, r)) the open (resp. closed) ball of center z and radius r for ∥·∥1. Likewise, we
denote by S2, B2(z, r) and B2(z, r) their analogues for ∥·∥2. Given a norm g on Rd, we define

∥g∥1 := sup
u∈S1

g(u) = sup
x∈Rd\{0}

g(x)
∥x∥1

. (1.42)

For all λ > 0, we say that a function with values in Rd is λ-Lipschitz if it is λ-Lipschitz for the norm
∥·∥1.

For all x ∈ Rd, we denote by |x| (resp. ⌊x⌋) the element of Rd whose components are the modules
(resp. the floors) of the components of x. We denote by ≤ the componentwise order on Rd.
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Edges and paths. We will identify any discrete path π = (x0, . . . , xr) to the continuous path
defined as the piecewise affine function π : [0 , r] → Rd such that for all i ∈ J0 , rK, π(i) = xi. The
number of edges ∥π∥ of π, seen as a discrete path, is equal to ∥π∥1 and ∥π∥2 as defined by (1.17), so
there is no collision of notations. Given a continuous path γ : [0 , T ] → Rd, and x, y ∈ Rd, we will write
x

γ
⇝ y if γ(0) = x and γ(T ) = y. For all subsets A of Zd, we denote by E(A) the set of edges whose

endpoints are both in A. We say that a point x ∈ Rd belongs to an edge e ∈ Ed if it belongs to the
segment with the same endpoints as e.

Whenever a continuous path γ : [0 , T ] → Rd appears inside an expression involving set operators,
we identify it with its image. For example, "x ∈ γ" will mean "x ∈ γ([0 , T ])".

Hausdorff measure. Consider a Borel subset A of Rd. For all R > 0, we define

ϕ1
R(A) := inf

∑
i≥1

diam(Ai)

∣∣∣∣∣∣ {Ai}i≥1 subsets of Rd s.t. A ⊆
⋃
i≥1

Ai and ∀i ≥ 1, diam(Ai) ≤ R

,

(1.43)
where diam(Ai) denotes the diameter of Ai for the Euclidean norm. The 1-dimensional Hausdorff
measure of A is defined as (see e.g. Section 2.1 in [18])

H1(A) := lim
R→0

↑ϕ1
R(A). (1.44)

For more details on the Hausdorff measure, see Krantz-Parks (2008) [18].

Miscellaneous We denote by #A the cardinal of a set A. For all integers n ≤ m, we define
Jn , mK := [n , m] ∩ Z. The infimum of ν’s support is denoted by a.

2 Topological preliminaries
2.1 Pseudometrics with bounded-length geodesics
In this section we fix a norm g and study the properties of the space Dg. Up to changing the parametriza-
tion, any Lipschitz path on Rd may be assumed to be 1-Lipschitz. Unless stated otherwise, for all L > 0
and D ∈ DL

g , our D-geodesics are 1-Lipschitz paths σ : [0 , L] → X.

2.1.1 Compactness
Proposition 2.1. For all L > 0, the space DL

g is compact for the topology of the uniform convergence.

Proof. Let L > 0. For all D ∈ DL
g , x, x′, y, y′ ∈ X, by triangle inequality,

|D(x, y) − D(x′, y′)| ≤ D(x, x′) + D(y, y′) ≤ g(x − x′) + g(y − y′).

In particular, DL
g is equicontinuous.

By Arzelà-Ascoli theorem it is thus sufficient to show that it is closed in Fb. Let (Dn)n≥1 be a
sequence of elements of DL

g converging to D ∈ Fb. Then D is clearly a pseudometric dominated by
g. Let x, y ∈ X. Let us show that D has a geodesic from x to y with ∥·∥1-length at most L.For
all n ≥ 1, there exists a Dn-geodesic σn : [0 , L] → X from x to y. Since all the σn are 1-Lipschitz,
the family (σn)n≥1 is equicontinuous, hence there exists an extraction φ : N → N and 1-Lipschitz
path σ : [0 , L] → X such that σφ(n) uniformly converges to σ as n → ∞. Consider a subdivision
0 = t0 ≤ t1 ≤ · · · ≤ tK = L. For all n ≥ 1, by definition of σφ(n),

K−1∑
k=0

Dφ(n)
(
σφ(n)(tk), σφ(n)(tk+1)

)
= Dφ(n)(x, y).
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Letting n → ∞ yields, by uniform convergence,

K−1∑
k=0

D(σ(tk), σ(tk+1)) = D(x, y).

Taking the supremum with respect to the subdivision, we get

D(σ) = D(x, y). (2.1)

Besides, σ(0) = x and σ(L) = y, thus σ is a D-geodesic from x to y. Consequently, D ∈ DL
g .

2.1.2 The highway method
The main result of this paragraph is Proposition 2.5, with states that a pseudometric D ∈ Dµ may be
approximated by considering the uniform space g then "activating" a large number of geodesics for D.
Moreover, those geodesics may be chosen injective and pairwise disjoint. Some of the work, gathered
in Lemma 2.3, may easily be adapted from Lemma 3.3 in [22].

Definition 2.2. Let L > 0 and D ∈ DL
µ . Consider a sequence (σk : [0 , L] → X)k≥1 of D-geodesics.

We recursively define the sequence (D[(σk)1≤k≤K ])K≥0 of functions in Fb as such : D[∅] = µ and for
all K ≥ 0 and x, y ∈ X,

D[(σk)1≤k≤K+1](x, y) :=D[(σk)1≤k≤K ](x, y) ∧ min
0≤s,t≤L

(
D[(σk)1≤k≤K ](x, σK+1(s))

+ D(σK+1(s), σK+1(t)) + D[(σk)1≤k≤K ](σK+1(t), y)
)

.
(2.2)

Lemma 2.3. We adopt the same notations as in Definition 2.2.
(i) For all K ≥ 0, D[(σk)1≤k≤K ] ∈ Dµ.

(ii) For all K ≥ 0,
D[(σk)1≤k≤K ] ≥ D[(σk)1≤k≤K+1] ≥ D. (2.3)

(iii) If the sequence
(
(σk(0), σk(L))

)
k≥1 is dense in X2 for the usual topology, then

D = lim
K→∞

D[(σk)1≤k≤K ]. (2.4)

Definition 2.4. Let L > 0 and D ∈ DL
µ . We say that a sequence (σk : [0 , L] → X)k≥1 of D-geodesics

is a highway network for D if they are injective, pairwise disjoint and (2.4) holds.

Proposition 2.5. Let L > 0 and D ∈ DL
µ . Then D has a highway network. Moreover, any injective

D-geodesic σ may be chosen as the first highway in the network.

The general idea is to consider a family of geodesics (σ̂k)k≥1 whose endpoints form a dense subset
of X, then get rid of the interesctions in order to create pairwise disjoint paths. The second part of
the proposition will be a clear consequence of the proof. We rely on Lemma 2.6 to cut paths.

Lemma 2.6. Let γ : [0 , T ] → X be a continuous path and X0 ⊆ X be a compact set. There exists a
countable family ([sp , tp])p≥1 of pairwise disjoint segments of [0 , T ] such that

(i) For all p ≥ 1, γ([sp , tp]) ∩ X0 = ∅.

(ii) For almost every t ∈ [0 , T ] \
(⋃

p≥1[sp , tp]
)c

, γ(t) ∈ X0.

Proof of Lemma 2.6. Since γ is continuous, γ−1(X \ X0) is an open subset of [0 , T ], thus a countable
reunion of disjoint open intervals. Each of those can be covered almost everywhere by a countable
reunion of disjoint segments.
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Proof of Proposition 2.5. Let ((xk, yk))k≥1 be a dense sequence in X2. For all k ≥ 1, consider a D-
geodesic σ̂k : [0 , L] → X from xk to yk. Up to removing loops and changing the parametrization, we
may assume that they are injective. By Lemma 2.3,

D = lim
K→∞

D[(σ̂k)1≤k≤K ]. (2.5)

Let k ≥ 1. Applying Lemma 2.6 to γ = σ̂k and X0 =
⋃k−1

i=1 σ̂i, we know that there exists a family of
pairwise disjoint segments ([sk,p , tk,p])p≥1 of [0 , L] such that

(i) For all p ≥ 1, σ̂k([sk,p , tk,p]) ∩
(⋃k−1

i=1 σ̂i

)
= ∅.

(ii) For almost every t ∈ [0 , L] \
(⋃

p≥1[sk,p , tk,p]
)c

, σ̂k(t) ∈
⋃k−1

i=1 σ̂i.

We denote by σk,p : [0 , L] → X a 1-Lipschitz and injective reparametrization of σk [sk,p ,tk,p]; note that
it is a D-geodesic. Let (σr)r≥1 be an enumeration of (σk,p)k,p≥1. It is sufficient to show

D = lim
R→∞

D[(σr)1≤r≤R]. (2.6)

Let ε > 0. By (2.5) there exists K > 0 such that

d∞(D, D[(σ̂k)1≤k≤K ]) ≤ ε. (2.7)

Besides, by definition of the [sk,p , tk,p] and Lipschitz continuity, there exists P > 0 such that

K∑
k=1

∞∑
p=P +1

∥σk,p∥1 ≤ ε. (2.8)

Let R > 0 be an integer large enough so that {σk,p}1≤k≤K
1≤p≤P

⊆ {σr}1≤r≤R, and x, y ∈ X. Any

D[(σ̂k)1≤k≤K ]-geodesic between x and y is concatenation of a finite number of straight lines and
subpaths of σ̂k, for 1 ≤ k ≤ K. Thanks to (2.8), the former may be covered by subpaths of the σk,p,
for 1 ≤ k ≤ K and 1 ≤ p ≤ P , except along a ∥·∥1-length smaller than ε. Consequently, by triangle
inequality,

D[(σr)1≤r≤R](x, y) ≤ D[(σ̂k)1≤k≤K ](x, y) + ∥µ∥1ε. (2.9)

Applying (2.3), (2.7) and (2.9) and, we deduce that for large enough R, for all x, y ∈ X,

D(x, y) ≤ D[(σr)1≤r≤R](x, y) ≤ D(x, y) + (∥µ∥1 + 1)ε, (2.10)

hence (2.6).

2.2 Integration along a Lipschitz path
Integrals along a Lipschitz path will appear naturally when we need to compute its length or cost
(see e.g. (1.30)). We gather here the geometric measure theory tools we need to handle these objects,
namely the metric derivative of a path, already defined by (1.19) and a special case of the so-called
area formula (see Lemma 2.11). We also define the gradient by paths of a metric, which makes the link
between the metric derivative of a path with respect to this metric, and its derivative in the usual sense
(see Lemma 2.9). We rely on the monographs by Ambrosio and Tilli [1], and Krantz and Parks [18].

Lemma 2.7. Let γ : [0 , T ] → X be a Lipschitz path.
(i) For almost every t ∈ [0 , T ], γ is differentiable at t, and for all 0 ≤ t1 ≤ t2 ≤ T ,

γ(t2) − γ(t1) =
∫ t2

t1

γ′(t)dt. (2.11)
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(ii) For all D ∈ Dµ, for almost every t ∈ [0 , T ], the limit

|γ̇|D(t) := lim
h→0

D(γ(t), γ(t + h))
|h|

(2.12)

exists, and for all 0 ≤ t1 ≤ t2 ≤ T ,

D
(

γ [t1 ,t2]

)
=
∫ t2

t1

|γ̇|D(t)dt. (2.13)

Proof. The first part is a consequence of the fact that Lipschitz functions are absolutely continuous,
thus satisfy the fundamental theorem of calculus (see e.g. Theorem 7.18 in [21]). The second part is
an adaptation to pseudometrics of Theorem 4.1.6 in [1].

Definition 2.8. Let D ∈ Dµ and z ∈ X. The gradient by paths of D at z is defined as the function

(P-grad D)z : Rd −→ [0 , ∞)

u 7−→ inf

lim
t→0

D
(

γ [0 ,t]

)
t

∣∣∣∣∣∣ γ : [0 , T ] → X Lipschitz, γ(0) = z,
γ is differentiable at t = 0 and γ′(0) = u

 (2.14)

Lemma 2.9. Let D ∈ Dµ, and γ : [0 , T ] → X be a Lipschitz path.
(i) For almost every t ∈ [0 , T ],

|γ̇|D(t) = (P-grad D)γ(t)(γ′(t)). (2.15)

(ii) For all 0 ≤ t1 ≤ t2 ≤ T ,

D
(

γ [t1 ,t2]

)
=
∫ t2

t1

(P-grad D)γ(t)(γ′(t))dt. (2.16)

Proof. By (2.13) and Lebesgue’s differentiation theorem (see e.g. Theorem 7.10 in [21]), for almost all
t ∈ (0 , T ),

|γ̇|D(t) = lim
h→0+

D(γ(t), γ(t + h))
h

= lim
h→0+

D
(

γ [t ,t+h]

)
h

, (2.17)

and γ is differentiable at t. Fix such t. By definition of the gradient by paths,

|γ̇|D(t) ≥ (P-grad D)γ(t)(γ′(t)). (2.18)

Besides, let γ1 : [0 , T1] → X be a Lipschitz path such that γ1(0) = γ(t) and γ′
1(0) = γ′(t). By the

triangle inequality,

|D(γ(t), γ(t + h)) − D(γ1(0), γ1(h))| = |D(z, γ(t + h)) − D(z, γ1(h))|
≤ D(γ(t + h), γ1(h))
≤ µ(γ(t + h) − γ1(h)) = o(h).

Consequently, by (2.17),

|γ̇|D(t) = lim
h→0+

D(γ1(0), γ1(h))
h

≤ lim
h→0+

D
(

γ1 [0 ,h]

)
h

.

Taking the infimum over all paths γ1, we get

|γ̇|D(t) ≤ (P-grad D)γ(t)(γ′(t)). (2.19)

Inequalities (2.18) and (2.19) give the first part of the lemma. The second part is a consequence of the
first one and (2.13).

12



Definition 2.10. Given a Lipschitz, injective path γ and z = γ(t) ∈ γ, we say that z is a regular point
of γ if the derivative γ′(t) exists and is nonzero.

Lemma 2.11. Let γ : [0 , T ] → X be a Lipschitz, injective path. Then
(i) H1-almost every point of γ is regular.

(ii) For all measurable function Φ : X × Rd → R+ such that for all z ∈ X, Φ(z, ·) is absolutely
homogeneous, ∫ T

0
Φ(γ(t), γ′(t))dt =

∫
γ

Φ
(

z,
γ′(γ−1(z)

)
∥γ′(γ−1(z))∥2

)
H1(dz). (2.20)

Proof. The first item is a consequence of the so-called area formula, in the version stated by Theo-
rem 5.1.1 in [18], with M = 1, N = d, f = γ and A the preimage by γ of the set of non-regular points
of γ.

To prove the second one, note that∫ T

0
Φ(γ(t), γ′(t))dt =

∫ T

0
Φ(γ(t), γ′(t))1γ(t) is regulardt

=
∫ T

0
Φ
(

γ(t), γ′(t)
∥γ′(t)∥2

)
∥γ′(t)∥21γ(t) is regulardt.

Another version of the area formula, Corollary 5.1.13 in [18], applied for M = 1, N = d, f = γ and
g(t) = Φ

(
γ(t), γ′(t)

∥γ′(t)∥2

)
1γ(t) is regular, gives

∫ T

0
Φ(γ(t), γ′(t))dt =

∫
γ

Φ
(

z,
γ′(γ−1(z)

)
∥γ′(γ−1(z))∥2

)
1z is regularH1(dz)

=
∫

γ

Φ
(

z,
γ′(γ−1(z)

)
∥γ′(γ−1(z))∥2

)
H1(dz).

3 Elementary rate function
In this section we prove Theorem 1.1. Our general strategy follows a classic approach we first define
Jpp(x, ζ) in the case where x ∈ Zd with a classic subadditive argument (see Lemma 3.1), then extend
to all x ∈ Qd by homogeneity and to all x ∈ Rd by monotonicity (see Lemma 3.2). Equation (1.10)
follows by stationarity. The characterization of the case Jpp(x, ζ) = 0 is covered by Lemma 3.3.

Lemma 3.1. For all x ∈ Zd and ζ > a∥x∥1, the limit

Jpp(x, ζ) := lim
n→∞

− 1
n

logP(T(0, nx) ≤ nζ) = inf
n≥1

− 1
n

logP(T(0, nx) ≤ nζ) (3.1)

exists, and it is finite. Moreover,
(i) For all x ∈ Zd, ζ > a∥x∥1 and k ∈ N∗,

Jpp(kx, kζ) = kJpp(x, ζ). (3.2)

(ii) For all x1, x2 ∈ Zd, ζ1 > a∥x1∥1 and ζ2 > a∥x2∥1,

Jpp(x1 + x2, ζ1 + ζ2) ≤ Jpp(x1, ζ1) + Jpp(x2, ζ2). (3.3)

(iii) For all x ∈ Zd and ζ > a∥x∥1,
Jpp(x, ζ) = Jpp(|x|, ζ). (3.4)
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(iv) For all x1, x2 ∈ Zd, ζ1 > a∥x1∥1 and ζ2 > a∥x2∥1, if 0 ≤ x1 ≤ x2 and ζ1 ≥ ζ2 then

Jpp(x1, ζ1) ≤ Jpp(x2, ζ2). (3.5)

For all x ∈ Qd and ζ > a∥x∥1, we define

Jpp(x, ζ) := 1
k

Jpp(kx, kζ), (3.6)

where k ∈ N∗ is any integer such that kx ∈ Zd; the choice does not matter thanks to (3.2). Moreover,
for all x ∈ Qd, ζ > a∥x∥1 and λ ∈ Q ∩ (0 , ∞),

Jpp(λx, λζ) = λJpp(x, ζ). (3.7)

Lemma 3.2. The function Jpp admits a continuous extension on X that satisfies items (i), (ii) and (iii)
in Theorem 1.1.

Lemma 3.3. For all (x, ζ) ∈ X , Jpp(x, ζ) > 0 if and only if ζ < µ(x).

For all u, v ∈ Zd, ζ > 0 and ℓ > 0, we consider the event

E(u, v, t, ℓ) :=
{

There exists a discrete path u
π
⇝ v with ∥π∥ ≤ ℓ and τ(π) ≤ t

}
. (3.8)

We first prove Theorem 1.1, assuming Lemmas 3.1, 3.2 and 3.3 are true. We will use several times the
following straightforward fact: for all n ∈ N∗, for all u, v ∈ J0 , nKd and t > a,

P
(

T[0 ,n]d(u, v) ≤ t∥u − v∥1

)
≥ ν([a , t])∥u−v∥1 . (3.9)

Proof of Theorem 1.1. We first show that for all distinct x, y ∈ (0 , 1)d, for small enough ε > 0, there
exists z ∈ B1(y − x, ε∥y − x∥1) such that

lim
n→∞

− 1
n

logP
(

T[0 ,n]d(⌊nx⌋,⌊ny⌋) ≤ nζ
)

≤ Jpp(z, (1 − 2ε)ζ) + 2ε − 2εd log ν

([
a ,

ζ

∥y − x∥1

])
(3.10)

and

lim
n→∞

− 1
n

logP
(

T(⌊nx⌋,⌊ny⌋) ≤ nζ
)

≥ Jpp(z, (1 + 3ε)ζ) + 2εd log ν

([
a ,

ζ

∥y − x∥1

])
. (3.11)

Let x, y ∈ (0 , 1)d be distinct,

δ := d({x, y}, ∂X) > 0 and 0 < ε <
ζ − a∥y − x∥1
2ζ + a∥y − x∥1

∧ δ

3 . (3.12)

Let z = z(x, y, ε) ∈ Qd be such that

∥y − x − z∥1 ≤ ε∥y − x∥1. (3.13)

Note that (1−2ε)ζ > a(1+ε)∥y − x∥1 ≥ a∥z∥1. By definition of Jpp(z, (1 − 2ε)ζ) (see (3.1) and (3.6)),
there exists m ∈ N∗ such that mz ∈ Zd, and

− 1
m

logP(T(0, mz) ≤ m(1 − 2ε)ζ) ≤ Jpp(z, (1 − 2ε)ζ) + ε.

By monotone convergence, there exists ℓ > 0 such that

− 1
m

logP(E(0, mz, m(1 − 2ε)ζ, ℓ)) ≤ Jpp(z, (1 − 2ε)ζ) + 2ε. (3.14)

14



Let n ∈ N∗ be such that
m∥y − x∥1 + d

n
< ε∥y − x∥1 and ℓ

n
< ε. (3.15)

Let
K :=⌊n/m⌋. (3.16)

We have ∥∥⌊nx⌋+ Kmz −⌊ny⌋
∥∥

1 ≤ d + ∥nx + Kmz − ny∥1

≤ d + ∥Kmx + Kmz − Kmy∥1 + (n − Km)∥y − x∥1
≤ d + Km∥x + z − y∥1 + m∥y − x∥1.

Consequently, by (3.13) and (3.15),∥∥⌊nx⌋+ Kmz −⌊ny⌋
∥∥

1 ≤ 2εn∥y − x∥1. (3.17)

Consider the event

Fav :=
(

K−1⋂
k=0

E(⌊nx⌋+ kmz,⌊nx⌋+ (k + 1)mz, m(1 − 2ε)ζ, ℓ)
)

∩
{

T[0 ,n]d(⌊nx⌋+ Kmz,⌊ny⌋) ≤ 2ζεn
}

.

(3.18)
Since Fav is an intersection of decreasing events, by the FKG inequality, (3.9) and (3.17),

P(Fav) ≥

(
K−1∏
k=0

P(E(⌊nx⌋+ kmz,⌊nx⌋+ (k + 1)mz, m(1 − 2ε)ζ, ℓ))
)

· ν

([
a ,

ζ

∥y − x∥1

])2εn∥y−x∥1

.

By stationarity of the model,

P(Fav) ≥ P(E(0, mz, m(1 − 2ε)ζ, ℓ))K · ν

([
a ,

ζ

∥y − x∥1

])2εn∥y−x∥1

.

Applying (3.14) gives

− 1
n

logP(Fav) ≤ Km

n
· [Jpp(z, (1 − 2ε)ζ) + 2ε] − 2ε∥y − x∥1 log ν

([
a ,

ζ

∥y − x∥1

])
,

thus

− 1
n

logP(Fav) ≤ Jpp(z, (1 − 2ε)ζ) + 2ε − 2εd log ν

([
a ,

ζ

∥y − x∥1

])
. (3.19)

Assume that Fav occurs. By the inequalities ℓ
n ≤ ε ≤ δ/3 and (3.17), for all k ∈ J0 , K − 1K,

B1(⌊nx⌋+ kmz, ℓ) ⊆ [0 , n]d.

Consequently, for all k ∈ J0 , K − 1K,

T[0 ,n]d(⌊nx⌋+ kmz,⌊nx⌋+ (k + 1)mz) ≤ m(1 − 2ε)ζ.

By triangle inequality,

T[0 ,n]d(⌊nx⌋,⌊ny⌋) ≤

(
K−1∑
k=0

T[0 ,n]d(⌊nx⌋+ kmz,⌊nx⌋+ (k + 1)mz)
)

+ T[0 ,n]d(⌊nx⌋+ Kmz,⌊ny⌋)

≤ Km(1 − 2ε)ζ + 2εnζ ≤ nζ,

thus
Fav ⊆

{
T[0 ,n]d(⌊nx⌋,⌊ny⌋) ≤ nζ

}
. (3.20)
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Combining (3.19) and (3.20) leads to

− 1
n

logP
(

T[0 ,n]d(⌊nx⌋,⌊ny⌋) ≤ nζ
)

≤ Jpp(z, (1 − 2ε)ζ) + 2ε − 2εd log ν

([
a ,

ζ

∥x − y∥1

])
.

Taking the superior limit as n → ∞ gives (3.10).
We now turn to the proof of the lower bound (3.11). Let m ∈ N∗ be such that mz ∈ Zd. Fix n and

K as in (3.15) and (3.16). Consider the event

Fav∗ := {T(⌊nx⌋,⌊ny⌋) ≤ nζ} ∩
{

T[0 ,n]d(⌊nx⌋+ Kmz,⌊ny⌋) ≤ 2ζεn
}

. (3.21)

By the FKG inequality and (3.9),

− 1
n

logP(Fav∗) ≤ − 1
n

logP(T(⌊nx⌋,⌊ny⌋) ≤ nζ) − 2εd log ν

([
a ,

ζ

∥x − y∥1

])
. (3.22)

Besides, the triangle inequality gives

Fav∗ ⊆ {T(⌊nx⌋,⌊nx⌋+ Kmz) ≤ n(ζ + 2ε)} ⊆ {T(⌊nx⌋,⌊nx⌋+ Kmz) ≤ Km(ζ + 3ε)}, (3.23)

for large enough n. Consequently, by stationarity, for large enough n,

− 1
n

logP(T(⌊nx⌋,⌊ny⌋) ≤ nζ) − 2εd log ν

([
a ,

ζ

∥x − y∥1

])
≥ − 1

n
logP(T(⌊nx⌋,⌊nx⌋+ Kmz) ≤ Km(ζ + 3ε))

= −Km

n

1
Km

logP(T(0, Kmz) ≤ Km(ζ + 3ε)).

Taking the inferior limit as n → ∞ gives (3.11).
We now prove (1.10). If x = y, this is clear. If x, y ∈ (0 , 1)d and are distinct, letting ε → 0

in (3.10) and (3.11) gives, by continuity of Jpp on X , the desired result (recall that z depends on ε).
The remaining case is when x, y ∈ [0 , 1]d, are distinct and ζ > a∥x − y∥1. Let 0 < ε < 1

2

(
1 − a∥x−y∥1

ζ

)
.

There exist distinct x̂, ŷ ∈ (0 , 1)d such that

(1 − 2ε)ζ > a∥x̂ − ŷ∥1,

and for large enough n,∥∥⌊nx⌋−⌊nx̂⌋
∥∥

1 ≤ nε∥x − y∥1,
∥∥⌊ny⌋−⌊nŷ⌋

∥∥
1 ≤ nε∥x − y∥1.

The triangle inequality gives for large enough n the inclusions{
T[0 ,n]d(⌊nx̂⌋,⌊nŷ⌋) ≤ n(1 − 2ε)ζ

}
∩
{

T[0 ,n]d(⌊nx̂⌋,⌊nx⌋) ≤ nζε
}

∩
{

T[0 ,n]d(⌊nŷ⌋,⌊ny⌋) ≤ nζε
}

⊆
{

T[0 ,n]d(⌊nx⌋,⌊ny⌋) ≤ nζ
} (3.24)

and

{T(⌊nx⌋,⌊ny⌋) ≤ nζ} ∩
{

T[0 ,n]d(⌊nx̂⌋,⌊nx⌋) ≤ nζε
}

∩
{

T[0 ,n]d(⌊nŷ⌋,⌊ny⌋) ≤ nζε
}

⊆ {T(⌊nx̂⌋,⌊nŷ⌋) ≤ n(1 + 2ε)ζ}.
(3.25)

By the FKG inequality, (3.9) and (1.10) for x̂ and ŷ, we have

Jpp(x̂ − ŷ, (1 − 2ε)ζ) − 2ε log ν

([
a ,

ζ

∥x − y∥1

])
≥ lim

n→∞
− 1

n
logP

(
T[0 ,n]d(⌊nx⌋,⌊ny⌋) ≤ nζ

)
(3.26)

and

Jpp(x̂ − ŷ, (1 + 2ε)ζ) + 2ε log ν

([
a ,

ζ

∥x − y∥1

])
≤ lim

n→∞
− 1

n
logP(T(⌊nx⌋,⌊ny⌋) ≤ n(1 + 2ε)ζ). (3.27)

By continuity of Jpp on X , letting ε → 0 gives (1.10) in full generality.
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Proof of Lemma 3.1. By the FKG inequality and stationarity of the model, for all x1, x2 ∈ Zd and
t1, t2 ≥ 0,

P(T(0, x1) ≤ t1, T(x1, x1 + x2) ≤ t2) ≥ P(T(0, x1) ≤ t1) · P(T(0, x2) ≤ t2).

In particular, by triangle inequality,

P(T(0, x1 + x2) ≤ t1 + t2) ≥ P(T(0, x1) ≤ t1) · P(T(0, x2) ≤ t2). (3.28)

Let x ∈ Zd and ζ > a∥x∥1. For all n, m ∈ N∗, (3.28) with x1 = nx, x2 = mx, t1 = nζ and t2 = mζ
implies

P(T(0, (n + m)x) ≤ (n + m)ζ) ≥ P(T(0, nx) ≤ nζ) · P(T(0, mx) ≤ mζ).
Fekete’s lemma gives the existence of the limit in (3.1). The finiteness of the limit is a consequence
of (3.9).

Let x ∈ Zd, ζ > a∥x∥1 and k ∈ N∗. By (3.1), considering the extraction n 7→ kn yields (3.2).
Let x1, x2 ∈ Zd, ζ1 > a∥x1∥1 and ζ2 > a∥x2∥1. Plugging nxi and nζi into the inequality (3.28)

yields

− 1
n

logP(T(0, n(x1 + x2)) ≤ n(ζ1 + ζ2)) ≤ − 1
n

logP(T(0, nx1) ≤ nζ1) − 1
n

logP(T(0, nx2) ≤ nζ2).

Letting n → ∞ gives (3.3).
Equation (3.4) is a consequence of the invariance of the model with respect to the orthogonal

symmetries of Zd.
Let x =

∑d
i=1 x(i)ei ∈ Zd and ζ > a∥x∥1. Assume that x ≥ 0. Consider

y := −(x(1) + 1)e1 +
d∑

i=2
x(i)ei

and note that
2(x(1) + 1)x = y + (2x(1) + 1)(x + e1).

By (3.2) and (3.3),

2(x(1) + 1)Jpp(x, ζ) ≤ Jpp(y, ζ) + (2x(1) + 1)Jpp(x + e1, ζ).

Besides, (3.4) yields Jpp(y, ζ) = Jpp(x + e1, ζ), thus

2(x(1) + 1)Jpp(x, ζ) ≤ 2(x(1) + 1)Jpp(x + e1, ζ),

i.e.
Jpp(x, ζ) ≤ Jpp(x + e1, ζ).

The analogous inequality with any base vector ei instead of e1 holds. A straightforward induction
argument gives (3.5).

Proof of Lemma 3.2. For all (x, ζ) ∈ X , we define

Ĵpp(x, ζ) := inf
{

Jpp(x′, ζ ′)
∣∣ (x′, ζ ′) ∈ X , x′ ∈ Qd, x′ ≥ |x|, ζ ′ ≤ ζ

}
. (3.29)

By (3.4) and (3.5), if x ∈ Qd then Ĵpp(x, ζ) = Jpp(x, ζ). Item (i) is a consequence of (3.2) and (3.3).
Items (ii) and (iii) hold by definition. The function Ĵpp is convex on the open set X therefore it is
continuous.

Proof of Lemma 3.3. Let (x, ζ) ∈ X .
Direct implication: Assume that ζ ≥ µ(x). We prove that Jpp(x, ζ) = 0. By lower semicontinuity

of Jpp, it is sufficient to treat the case where ζ > µ(x) and x ∈ Qd, which may be further reduced to
x ∈ Zd. We conclude by convergence in probability of the rescaled passage time (see (1.4)).
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Converse implication: Assume that ζ < µ(x). Fix ε := 1
2 (µ(x) − ζ). We first treat the case where

the passage times τe are a.s. bounded by b < ∞. Theorem 6.12 in Boucheron-Lugosi-Massart (2013)
[4] applied to the random variable Z := 1

b T(0,⌊nx⌋), which depends only on a finite number of edge
passage times and is a self-bounding function of these passage times, implies that for all t > 0,

P(Z ≤ E[Z] − t) ≤ exp
(

−h

(
t

E[Z]

)
E[Z]

)
, (3.30)

where h(u) = (1 + u) log(1 + u) − u. Consequently,

P(T(0,⌊nx⌋) ≤ E[T(0,⌊nx⌋)] − t) = P
(

Z ≤ E[Z] − t

b

)
≤ exp

(
−h

(
t

E[T(0,⌊nx⌋)]

)
· E[T(0,⌊nx⌋)]

b

)
.

Besides, E[T(0,⌊nx⌋)] ≥ n(µ(x) − ε) for large n, thus the choice t := εn gives, for large n,

P(T(0,⌊nx⌋) ≤ nζ) ≤ P(T(0,⌊nx⌋) ≤ E[T(0,⌊nx⌋)] − εn)

≤ exp
(

−h

(
εn

E[T(0,⌊nx⌋)]

)
· E[T(0,⌊nx⌋)]

b

)
,

hence
lim

n→∞
− 1

n
logP(T(0,⌊nx⌋) ≤ nζ) ≥ h

(
ε

µ(x)

)
· µ(x)

b
> 0,

i.e. Jpp(x, ζ) > 0.
We now turn to the general case. For all b > a and e ∈ Ed, we define τ

(b)
e := τe ∧ b and denote

by µ(b) the associated time constant. Theorem 1.6 in Garet-Marchand-Procaccia-Théret (2017) [14],2
states that

lim
b→∞

µ(b)(x) = µ(x).

In particular there exists b > a such that ζ < µ(b)(x). The straightforward inclusion

{T(0,⌊nx⌋) ≤ ζ} ⊆
{

T(b)(0,⌊nx⌋) ≤ ζ
}

and the previous case concludes the proof.

4 Monotonous rate function
In this section we assume that (SubC) and (StrongShape) are satisfied and prove Theorem 1.7, which
amounts to proving Propositions 4.1, 4.2, 4.3 and 4.4. Recall the definitions (1.26) and (1.27) of J

−

and J−.

Proposition 4.1. Let D ∈ Dµ and (σk : [0 , L] → X)k≥1 be a highway network for D (see Defini-
tion 2.4). Then

J
−(D) ≤

∑
k≥1

∫ L

0
Jpp(σ′

k(t), |σ̇k|D(t))dt. (4.1)

Proposition 4.2. Let D ∈ Dµ and (γk : [0 , Tk] → X)1≤k≤K be a finite family of 1-Lipschitz, injective
and pairwise disjoint paths. Then

J−(D) ≥
K∑

k=1

∫ Tk

0
Jpp(γ′

k(t), |γ̇k|D(t))dt. (4.2)

2The result there is stated for x ∈ Zd, but the general case follows by standard arguments.
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Every pseudometric D ∈ Dµ has a highway network by Proposition 2.5, thus combining Proposi-
tions 4.1 and 4.2 gives J−(D) := J−(D) = J

−(D). Moreover Equations (1.29), (1.30) hold.
Proposition 4.3. For all D ∈ Dµ,

J−(D) =
∫

X

max
u∈S2

Jpp(u, (P-grad D)z(u))H1(dz). (4.3)

Proposition 4.4. Let D1, D2 ∈ Dµ be distinct pseudometrics satsifying D1 ≤ D2. If J−(D2) < ∞,
then

J−(D1) < J−(D2). (4.4)
Assumption (StrongShape)’s usefulness stems from Lemma 4.5, a variant of a core lemma in the

proof of the shape theorem (see Lemma 2.20 in [2]). We postpone its proof to Appendix A.
Lemma 4.5. Under Assumption (StrongShape), there exists a constant κ < ∞ such that

lim
n→∞

min
x∈J0 ,nKd

P

(
For all y ∈ J0 , nKd, there exists a discrete path x

π
⇝ y included

in J0 , nKd, such that τ(π) ≤ κ∥x − y∥1 and ∥π∥ ≤ 2∥x − y∥1 + 4

)
> 0. (4.5)

We will say that x ∈ J0 , nKd is a hub if the event in (4.5) occurs.

4.1 Upper bounding the monotonous rate function
In this section we prove Proposition 4.1. We fix a pseudometric D ∈ Dµ and a highway network
(σk : [0 , L] → X)k≥1 for D. For all K ∈ N, we define

DK := D[σ1, . . . , σK ]. (4.6)

We first show that Lemmas 4.6 and 4.7 imply Proposition 4.1, then prove said lemmas.
Lemma 4.6. The metric induced by µ on X satisfies

J
−(µ) = 0. (4.7)

Lemma 4.7. For all K ∈ N,

J
−(DK+1) ≤ J

−(DK) +
∫ L

0
Jpp
(
σ′

K+1(t), |σ̇K+1|D(t)
)
dt. (4.8)

Proof of Proposition 4.1. By Lemma 4.6, J
−(D0) = J

−(µ) = 0. By induction, using (4.8), for all
K ≥ 0,

J
−(DK) ≤

K∑
k=1

∫ L

0
Jpp(σ′

k(t), |σ̇k|D(t))dt. (4.9)

Since (DK)K≥0 converges to D in Fb and J
− is lower semicontinuous, (4.1) holds.

Proof of Lemma 4.6. Let ε > 0. Consider a finite subset {x1, . . . , xK} of X such that X ⊆
⋃K

k=1 B1(xk, ε).
Recall the definition of hubs below Lemma 4.5. We define the event

Fav† :=

 ⋂
1≤k≤K

{⌊nxk⌋ is a hub}

 ∩

 ⋂
1≤k1<k2≤K

{
T[0 ,n]d(⌊nxk1⌋,⌊nxk2⌋) ≤ nµ(xk1 − xk2)

}. (4.10)

This event is an intersection of decreasing events, thus by the FKG inequality,

P
(

Fav†
)

≥

 ∏
1≤k≤K

P(⌊nxk⌋ is a hub)

 ·

 ∏
1≤k1<k2≤K

P
(

T[0 ,n]d(⌊nxk1⌋,⌊nxk2⌋) ≤ nµ(xk1 − xk2)
).
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By Theorem 1.1 and Lemma 4.5,
lim

n→∞
− 1

n
logP

(
Fav†

)
= 0. (4.11)

Besides, we claim that for large enough n,

Fav† ⊆ LD−
n (µ, 2(∥µ∥1 + 2κ)ε), (4.12)

where ∥µ∥1 is defined by (1.42). Indeed assume that Fav† occurs, and n ≥ d
ε . Let x, y ∈ X. There

exist 1 ≤ k1, k2 ≤ K such that

∥x − xk1∥1 ≤ ε and ∥y − xk2∥1 ≤ ε,

therefore ∥∥⌊nx⌋−⌊nxk1⌋
∥∥

1 ≤ 2nε and
∥∥⌊ny⌋−⌊nxk2⌋

∥∥
1 ≤ 2nε.

By triangle inequality,

T[0 ,n]d(⌊nx⌋,⌊ny⌋) ≤ T[0 ,n]d(⌊nx⌋,⌊nxk1⌋) + T[0 ,n]d(⌊nxk1⌋,⌊nxk2⌋) + T[0 ,n]d(⌊nxk2⌋,⌊ny⌋)
≤ κ

∥∥⌊nx⌋−⌊nxk1⌋
∥∥

1 + nµ(xk1 − xk2) + κ
∥∥⌊ny⌋−⌊nxk2⌋

∥∥
1

≤ nµ(xk1 − xk2) + 4κnε.

Besides, using the triangle inequality again gives

µ(xk1 − xk2) ≤ µ(xk1 − x) + µ(x − y) + µ(y − xk2)
≤ µ(x − y) + 2∥µ∥1ε.

Consequently,

T̂n(x, y) ≤ µ(x − y) + 2(∥µ∥1 + 2κ)ε,

thus (4.12).
Equations (4.11) and (4.12) conclude the proof of the lemma.

Proof of Lemma 4.7. For all K ∈ N. To simplify the notations we define σ := σK+1. Let ε > 0 and
P ∈ N∗. For all 0 ≤ p ≤ P , define tp := pL

P . Consider the event

Fav‡ = Fav‡(n, ε, P ) := LD−
n (DK , ε)∩

(
P −1⋂
p=0

{
1
n

T[0 ,n]d(⌊nσ(tp⌋),⌊nσ(tp+1)⌋) ≤ D(σ(tp), σ(tp+1)) + ε

})
.

(4.13)
We claim that

lim
n→∞

− 1
n

logP
(

Fav‡
)

≤ J
−(DK) +

∫ L

0
Jpp(σ′(t), |σ̇|D(t))dt. (4.14)

Indeed Fav‡ is an intersection of decreasing events, thus the FKG inequality gives

P
(

Fav‡
)

≥ P
(
LD−

n (DK , ε)
)

·

(
P −1∏
p=0

P
(

1
n

T[0 ,n]d(⌊nσ(tp⌋),⌊nσ(tp+1)⌋) ≤ D(σ(tp), σ(tp+1)) + ε

))
,

therefore by Theorem 1.1,

lim
n→∞

− 1
n

logP
(

Fav‡
)

≤ J
−(DK) +

P −1∑
p=0

Jpp(σ(tp+1) − σ(tp), D(σ(tp), σ(tp+1))).

Since σ is a D-geodesic, D(σ(tp), σ(tp+1)) = D
(
σ [tp ,tp+1]

)
hence

lim
n→∞

− 1
n

logP
(

Fav‡
)

≤ J
−(DK) +

P −1∑
p=0

Jpp
(
σ(tp+1) − σ(tp), D

(
σ [tp ,tp+1]

))
.
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Lemma 2.7 gives

lim
n→∞

− 1
n

logP
(

Fav‡
)

≤ J
−(DK) +

P −1∑
p=0

Jpp

(∫ tp+1

tp

σ′(t)dt,

∫ tp+1

tp

|σ̇|D(t)dt

)
. (4.15)

The function Jpp is convex and homogeneous therefore Jensen’s inequality in its multivariate version
(see [19]) yields (4.14).

We now show that for all n ∈ N∗,

Fav‡ ⊆ LD−
n

(
D, (P + 2)ε + 4L∥µ∥1

P

)
. (4.16)

Let n ∈ N∗. Assume that Fav‡ occurs. Let x, y ∈ X. By Definition 2.2, one of the following holds:
(i) DK+1(x, y) = DK(x, y).
(ii) There exists 0 ≤ s, t ≤ L such that

DK+1(x, y) = DK(x, σ(s)) + D(σ(s), σ(t)) + DK(σ(t), y).

In the case (i),
T̂n(x, y) ≤ DK+1(x, y) + ε (4.17)

is straightforward. In the case (ii), there exist p, q ∈ J0 , P K such that |s − tp|, |t − tq| ≤ L
P . Since σ is

1-Lipschitz and D ≤ DK ≤ µ, we have by triangle inequality,

DK+1(x, y) ≥ DK(x, σ(tp)) + D(σ(tp), σ(tq)) + DK(σ(tq), y) −
4L∥µ∥1

P
. (4.18)

Up to exchanging x and y we may assume that p ≤ q. By triangle inequality

T̂n(x, y) ≤ T̂n(x, σ(tp)) +
q−1∑
i=p

T̂n(σ(ti), σ(ti+1)) + T̂n(σ(tq), y)

≤ DK(x, σ(tp)) +
q−1∑
i=p

D(σ(ti), σ(ti+1)) + DK(σ(tq), y) + (P + 2)ε.

Besides, σ is a D-geodesic therefore

T̂n(x, y) ≤ DK(x, σ(tp)) + D(σ(tp), σ(tq)) + DK(σ(tq), y) + (P + 2)ε. (4.19)

Combining (4.18) and (4.19), we get

T̂n(x, y) ≤ DK+1(x, y) + (P + 2)ε + 4L∥µ∥1
P

. (4.20)

The inclusion (4.16) is a consequence of (4.17) and (4.20).
By (4.14) and (4.16),

lim
n→∞

− 1
n

logP
(

LD−
n

(
DK+1, (P + 2)ε + 4L∥µ∥1

P

))
≤ J

−(DK) +
∫ L

0
Jpp(σ′(t), |σ̇|D(t))dt. (4.21)

Choosing ε := P −2 and letting P → ∞ yields (4.8).
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4.2 Lower bounding the monotonous rate function
In this section we fix a pseudometric D ∈ Dµ and prove Proposition 4.2. We first show that it is a
consequence of Lemma 4.8 then prove the lemma.

Lemma 4.8. For all finite families of injective, pairwise disjoint, 1-Lipschitz paths (γk : [0 , Tk] → X)1≤k≤K ,

J−(D) ≥
K∑

k=1
Jpp(γk(Tk) − γk(0), D(γk)). (4.22)

Proof of Proposition 4.2. Let (γk)1≤k≤K be a family of paths as in Proposition 4.2. Let P ∈ N∗ and
0 < δ < 1

P min1≤k≤K Tk. For all 1 ≤ p ≤ P and 1 ≤ k ≤ K, we define the paths

γk,p := γk
[ (p−1)Tk

P ,
pTk

P

] and γ
(δ)
k,p := γk

[ (p−1)Tk
P ,

pTk
P −δ

].
The paths

(
γ

(δ)
k,p

)
1≤k≤K
1≤p≤P

are 1-Lipschitz, injective and pairwise disjoint therefore by Lemma 4.8,

J−(D) ≥
K∑

k=1

P∑
p=1

Jpp

[
γk

(
pTk

P
− δ

)
− γk

(
(p − 1)Tk

P

)
, D
(

γ
(δ)
k,p

)]
.

Letting δ → 0 and using the lower semicontinuity of Jpp, we get

J−(D) ≥
K∑

k=1

P∑
p=1

Jpp

[
γk

(
pTk

P

)
− γk

(
(p − 1)Tk

P

)
, D(γk,p)

]

=
K∑

k=1

∫ Tk

0

P

Tk
Jpp

[
γk

(
Tk

P

⌈
Pt

Tk

⌉)
− γk

(
Tk

P

(⌈
Pt

Tk

⌉
− 1
))

, D

(
γ

k,
⌈

P t
Tk

⌉)]dt.

By homogeneity of Jpp,

J−(D) ≥
K∑

k=1

∫ Tk

0
Jpp

[
P

Tk

[
γk

(
Tk

P

⌈
Pt

Tk

⌉)
− γk

(
Tk

P

(⌈
Pt

Tk

⌉
− 1
))]

,
P

Tk
D

(
γ

k,
⌈

P t
Tk

⌉)]dt. (4.23)

By (2.11), (2.13) and Lebesgue’s differentiation theorem (see e.g. Theorem 7.10 in [21]), for all 1 ≤ k ≤
K and almost every t ∈ [0 , Tk],

lim
P →∞

P

Tk

[
γk

(
Tk

P

⌈
Pt

Tk

⌉)
− γk

(
Tk

P

(⌈
Pt

Tk

⌉
− 1
))]

= γ′
k(t) (4.24)

and
lim

P →∞

P

Tk
D

(
γ

k,
⌈

P t
Tk

⌉) = |γ̇k|D(t). (4.25)

For all t satisfying (4.24) and (4.25), by lower semicontinuity of Jpp,

lim
P →∞

Jpp

[
P

Tk

[
γk

(
Tk

P

⌈
Pt

Tk

⌉)
− γk

(
Tk

P

(⌈
Pt

Tk

⌉
− 1
))]

,
P

Tk
D

(
γ

k,
⌈

P t
Tk

⌉)] ≥ Jpp(γ′
k(t), |γ̇k|D(t)).

Consequently, taking the inferior limit as P → ∞ in (4.23) and applying Fatou’s lemma gives (4.2).

Proof of Lemma 4.8. If J−(D) = ∞, there is nothing to prove. Assume that J−(D) < ∞. Let
(γk)1≤k≤K be a family of paths as in the lemma. Fix δ > 0 such that for all distinct 1 ≤ k1, k2 ≤ K,(

γk1 + B(0, 2δ)
)

∩
(
γk2 + B(0, 2δ)

)
= ∅. (4.26)
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For all 1 ≤ k ≤ K, we will denote by γk the set γk + B(0, 2δ). Define

η := δ minu∈S1 µ(u)
2∥µ∥1

≤ δ. (4.27)

Note that
min
u∈S1

Jpp(δu, ∥µ∥1η) > 0. (4.28)

Define
R :=

⌈
J−(D) + 1

minu∈S1 Jpp(δu, ∥µ∥1η)

⌉
. (4.29)

Fix P ∈ N∗ large enough so that max1≤k≤K Tk

P ≤ η
2 , and 0 < ε ≤ η∥µ∥1

2 . Let n ≥ 1. For all 0 ≤ p ≤ P

and 1 ≤ k ≤ K, define xk,p :=
⌊
nγk

(
pTk

P

)⌋
. Recall the definition of hub below Lemma 4.5. We consider

the events

E1(n) := {For all 1 ≤ k ≤ K and 0 ≤ p ≤ P , xk,p is a hub}, (4.30)

and

E2(n) :=
{

There exist pairwise disjoint discrete paths z1
π1⇝ z′

1, . . . , zR
πR⇝ z′

R in J0 , nKd

such that for all r ∈ J1 , RK, ∥zr − z′
r∥1 ≥ nδ and τ(πr) ≤ n∥µ∥1η

}c

. (4.31)

We define
Fav∗∗ = Fav∗∗(n, ε) := LD−

n (D, ε) ∩ E1(n) ∩ E2(n). (4.32)
We claim that

J−(D) = lim
ε→0

↑ lim
n→∞

− 1
n

logP(Fav∗∗(n, ε)). (4.33)

Indeed E1(n) is an intersection of a finite number of decreasing events whose probability is lower
bounded by (4.5), thus the FKG inequality gives

lim
n→∞

− 1
n

logP(E1(n)) = 0.

Since LD−
n (D, ε) is also decreasing, using the FKG inequality again yields

J−(D) = lim
ε→0

↑ lim
n→∞

− 1
n

logP
(
LD−

n (D, ε) ∩ E1(n)
)
. (4.34)

Besides, by the union bound and the BK inequality, for all n ∈ N∗,

P(E2(n)c) ≤
∑

(zr)1≤r≤R

(z′
r)1≤r≤R

R∏
r=1

P(T(zr, z′
r) ≤ n∥µ∥1η),

where the sum spans over families of points of J0 , nKd such that for all 1 ≤ r ≤ R, ∥zr − z′
r∥1 ≥ nδ. In

particular there exists a polynomial Pol such that for all n ∈ N∗,

P(E2(n)c) ≤ Pol(n) sup
z∈Zd

∥z∥1≥nδ

P(T(0, z) ≤ n∥µ∥1η)R
.

Taking the log, multiplying by − 1
n and using (3.1), we get

− 1
n

logP(E2(n)c) ≥ − 1
n

log Pol(n) + R inf
z∈Zd

∥z∥1≥nδ

− 1
n

logP(T(0, z) ≤ n∥µ∥1η)

≥ − 1
n

log Pol(n) + R min
∥u∥1≥1

Jpp(δu, ∥µ∥1η)
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Applying Theorem 1.1(iii) gives

− 1
n

logP(E2(n)c) ≥ − 1
n

log Pol(n) + R min
u∈S1

Jpp(δu, ∥µ∥1η)

≥ − 1
n

log Pol(n) + J−(D) + 1,

hence
lim

n→∞
− 1

n
logP(E2(n)c) ≥ J−(D) + 1. (4.35)

Combining (4.34) and (4.35) gives (4.33).
Fix 1 ≤ k ≤ K. We now show that for large enough n,

Fav∗∗ ⊆
{

1
n

Tnγk
(⌊nγk(0)⌋,⌊nγk(Tk)⌋) ≤ D(γk) + εP + 2κTkR

P

}
. (4.36)

Assume that Fav∗∗ occurs, and n ≥ P (3d+4)
Tk

. For all 0 ≤ p ≤ P − 1, we denote by πp a discrete
T[0 ,n]d -geodesic from xk,p to xk,p+1. We say that p is good if πp ⊆ nγk, and bad otherwise. If p is

bad, we denote by xp
π̂p
⇝ yp the largest subpath of πp containing xp and included in nγk. For all bad

integer p, we denote by [p] the set of bad integers q such that xp and xq are connected by a discrete
path included in

R :=
⋃

p bad
π̂p.

Moreover, a bad integer p is called maximal bad if p = max[p]. Let (p(0), . . . , p(N)) be the only
subsequence of J0 , P K such that p(0) = 0, p(N) = P and for all i ∈ J0 , N − 1K:

(i) If p(i) is good then p(i + 1) = p(i) + 1.
(ii) If p(i) is maximal bad then p(i + 1) = p(i) + 1.
(iii) If p(i) is bad but not maximal bad then p(i + 1) = max[p(i)].
Let i ∈ J0 , r − 1K. In the case (i), since πp ⊆ nγk,

1
n

Tnγk

(
xk,p(i), xk,p(i)+1

)
= 1

n
T[0 ,n]d

(
xk,p(i), xk,p(i)+1

)
. (4.37)

Since LD−
n (D, ε) occurs,

1
n

Tnγk

(
xk,p(i), xk,p(i+1)

)
≤ D

(
γk

(
p(i)Tk

P

)
, γk

(
p(i + 1)Tk

P

))
+ ε. (4.38)

In the case (ii), since E1(n) occurs and
∥∥xk,p(i) − xk,p(i)+1

∥∥
1 ≤ nTk

P + d, there exists a discrete path

xp(i)
π′

p(i)
⇝ xp(i)+1 included in J0 , nKd, such that

τ(π′
p(i)) ≤ κ

(
nTk

P
+ d

)
≤ 2nTkκ

P
and

∥∥∥π′
p(i)

∥∥∥ ≤ 2
(

nTk

P
+ d

)
+ 4 ≤ 3nTk

P
.

Besides,

d
(

π′
p(i), (nγk)c

)
≥ d(xp, (nγk)c) −

∥∥∥π′
p(i)

∥∥∥
≥ d

(
nγk

(
pTk

P

)
, (nγk)c

)
−
∥∥∥∥xk,p − nγ

(
pTk

P

)∥∥∥∥
1

−
∥∥∥π′

p(i)

∥∥∥
≥ 2nδ − d − 3nTk

P
≥ nδ > 0.
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Consequently, π′
p(i) ⊆ nγk, thus

1
n

Tnγk

(
xk,p(i), xk,p(i+1)

)
≤ 2nTkκ

P
. (4.39)

In the case (iii), there exists a self-avoiding path xk,p(i)
π′

p(i)
⇝ xk,p(i+1) included in R. It satisfies

τ
(

π′
p(i)

)
≤

∑
q∈[p(i)]

τ(π̂q)

≤
∑

q∈[p(i)]

τ(πq).

=
∑

q∈[p(i)]

T[0 ,n]d(xk,q, xk,q+1).

Besides, LD−
n (D, ε) occurs therefore

1
n

Tnγ

(
xk,p(i), xk,p(i+1)

)
≤

 ∑
q∈[p(i)]

D

(
γ

(
qTk

P

)
, γ

(
(q + 1)Tk

P

))+ ε · #[p(i)]. (4.40)

By triangle inequality, (4.38), (4.39) and (4.40) yield

1
n

Tnγk
(xk,0, xk,P ) ≤

∑
0≤p≤P −1

p good

(
D

(
γk

(
pTk

P

)
, γk

(
(p + 1)Tk

P

))
+ ε

)
+ 2Tkκ

P
#{0 ≤ p ≤ P − 1 | p is maximal bad}

+
∑

0≤p≤P −1
p bad

(
D

(
γk

(
pTk

P

)
, γ_kp

(p + 1)Tk

P

)
+ ε

)
,

thus

1
n

Tnγk
(xk,0, xk,P ) =

P −1∑
p=0

D

(
γk

(
pTk

P

)
, γk

(
(p + 1)Tk

P

))
+ εP + 2Tkκ

P
#{0 ≤ p ≤ P − 1 | p is maximal bad}.

(4.41)

Moreover, for all bad p, ∥xp − yp∥ ≥ nδ, and

1
n

τ(π̂p) ≤ D

(
γk

(
pTk

P

)
, γ

(
(p + 1)Tk

P

))
+ ε

≤
∥µ∥1Tk

P
+ ε ≤ ∥µ∥1

(η

2 + η

2

)
= ∥µ∥1η.

Since the paths π̂p for maximal bad integers p are pairwise disjoint and E2(n) occurs, there are at most
R maximal bad integers. Plugging this bound into (4.41) gives, for large enough n,

1
n

Tnγk
(xk,0, xk,P ) ≤ D(γk) + εP + 2κTkR

P
, (4.42)

thus the inclusion (4.36).
By (4.36), for large enough n,

Fav∗∗(n, ε) ⊆
K⋂

k=1

{
1
n

Tnγk
(⌊nγk(0)⌋,⌊nγk(Tk)⌋) ≤ D(γk) + εP + 2κTkR

P

}
.
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Note that the events the intersection are independent, thus by (4.33),

J−(D) ≥
K∑

k=1
lim

n→∞
− 1

n
logP

(
1
n

Tnγk
(⌊nγk(0)⌋,⌊nγk(Tk)⌋) ≤ D(γk) + εP + 2κTkR

P

)
. (4.43)

Theorem 1.1 gives

J−(D) ≥
K∑

k=1
Jpp

(
γk(Tk) − γk(0), D(γk) + εP + 2κTkR

P

)
.

Since Jpp is lower semicontinuous, letting ε → 0 then P → ∞ leads to (4.22).

4.3 Intrisic expression
In this section we prove Proposition 4.3. We fix L > 0, D ∈ DL

µ and a highway network (σk : [0 , L] → X)k≥1
(see Definition 2.4). Our main argument is Lemma 4.9, which states that if J−(D) < ∞, then
(P-grad D)z(u) = µ(u) except if z belongs to a highway, and u is tangent to the highway at z. We
postpone its proof after the proof of Proposition 4.3.

Lemma 4.9. Assume that J−(D) < ∞. Then for H1-almost all z ∈ X \
⋃

k≥1 σk,

(P-grad D)z = µ, (4.44)

and for all k ≥ 1, for H1-almost all z = σk(t) ∈ σk, for all u ∈ Rd \ (σ′
k(t)R),

(P-grad D)z(u) = µ(u). (4.45)

Proof of Proposition 4.3. For all k ≥ 1, using (2.15) and Lemma 2.11, we get∫ L

0
Jpp(σ′

k(t), |σ̇k|D(t))dt =
∫ L

0
Jpp
(
σ′

k(t), (P-grad D)σk(t)(σ′
k(t))

)
dt

=
∫

σk

Jpp

(
σ′

k

(
σ−1

k (z)
)∥∥σ′

k

(
σ−1

k (z)
)∥∥

2
, (P-grad D)z

(
σ′

k

(
σ−1

k (z)
)∥∥σ′

k

(
σ−1

k (z)
)∥∥

2

))
H1(dz).

By (1.31),

J−(D) =
∑
k≥1

∫
σk

Jpp

(
σ′

k

(
σ−1

k (z)
)∥∥σ′

k

(
σ−1

k (z)
)∥∥

2
, (P-grad D)z

(
σ′

k

(
σ−1

k (z)
)∥∥σ′

k

(
σ−1

k (z)
)∥∥

2

))
H1(dz). (4.46)

If J−(D) = ∞, the result now follows from

Jpp

(
σ′

k

(
σ−1

k (z)
)∥∥σ′

k

(
σ−1

k (z)
)∥∥

2
, (P-grad D)z

(
σ′

k

(
σ−1

k (z)
)∥∥σ′

k

(
σ−1

k (z)
)∥∥

2

))
≤ max

u∈S2
Jpp(u, (P-grad D)z(u)), (4.47)

for all z ∈
⋃

σk. Otherwise, by Theorem 1.1(iv), for all u ∈ S2,

Jpp(u, µ(u)) = 0.

In particular, by Lemma 4.9, (4.47) is an equality H1-almost everywhere on the highway network,
and the right-hand side is zero H1-almost everywhere outside the highway network, giving the desired
result.

Proof of Lemma 4.9 . Let 0 < ε < 1. Note that since Jpp is continuous on X , Theorem 1.1(iv) implies

C(ε) := min
u∈S2

Jpp(u, (1 − ε)µ(u)) > 0. (4.48)
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For all k ≥ 1, we define Xk as the set of regular points of σk (see Definition 2.10), and

X0 := X \
⋃
k≥1

σk.

By Lemma 2.11,

H1

X \

⋃
k≥0

Xk

 = 0. (4.49)

To prove Lemma 4.9, it is sufficient to show that the subset

Aε := {z ∈ X0 | ∃u ∈ S2 s.t. (P-grad D)z(u) ≤ (1 − 3ε)µ(u)}

∪
⋃
k≥1

{σk(t) ∈ Xk | ∃u ∈ S2 not colinear to σ′
k(t), s.t. (P-grad D)z(u) ≤ (1 − 3ε)µ(u)} (4.50)

is H1-negligible. Let P ∈ N∗, R > 0 and z ∈ Aε. By definition of (P-grad D)z and Aε, there exists
uz ∈ S2 and a Lispchitz path γz : [0 , T ] → X such that γz(0) = z, γ′

z(0) = uz,

lim
t→0

D
(

γz [0 ,t]

)
t

≤ (1 − 2ε)µ(uz),

and for small enough t,

γz([0 , t]) ∩

(
P⋃

p=1
σp

)
⊆ {z} : (4.51)

indeed, for all 1 ≤ p ≤ P , either z /∈ σp and this is clear, or z is a regular point of σp, and uz doesn’t
belong to the tangent line of σp at z. In particular, there exists 0 < rz ≤ R

20 such that

D
(

γ [0 ,rz ]

)
≤ (1 − ε)µ(γz(rz) − γz(0)) (4.52)

and for all t ∈ (0 , rz],
t

2 ≤ ∥γz(t) − γz(0)∥2 ≤ 2t. (4.53)

Up to a reparametrization, γz may be assumed to be injective. Since Aε is a bounded subset of Rd, by
Vitali’s covering theorem (see e.g. Section 15.A in [16]), there exists a countable subset {zi}i≥1 of Aε

such that
Aε ⊆

⋃
i≥1

B2(zi, 6rzi
), (4.54)

and the balls B2(zi, 2rzi) are pairwise disjoint. To simplify the notations we will write ri and γi instead
of rzi

and γzi
. By (4.54) and the definition of ϕ1

R(Aε) (see (1.43)),

ϕ1
R(Aε) ≤ 12

∑
i≥1

ri. (4.55)

We now upper bound the right-hand side of (4.55). First note that for all i ≥ 1, by (4.53),

γi([0 , ri]) ⊆ B(zi, 2ri).

In particular, for all 0 < δ < 1 the γi([δri , ri]) are pairwise disjoint. Since they are also disjoint from
the (σp)1≤p≤P by (4.51), Proposition 4.2 gives

∑
i≥1

∫ ri

δri

Jpp(γ′
i(t), |γ̇i|D(t))dt +

P∑
p=1

∫ L

0
Jpp
(
σ′

p(t), |σ̇p|D(t)
)
dt ≤ J−(D).
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By monotone convergence, letting δ → 0 gives

∑
i≥1

∫ ri

0
Jpp(γ′

i(t), |γ̇i|D(t))dt +
P∑

p=1

∫ L

0
Jpp
(
σ′

p(t), |σ̇p|D(t)
)
dt ≤ J−(D).

Hence, by Proposition 4.1,

∑
i≥1

∫ ri

0
Jpp(γ′

i(t), |γ̇i|D(t))dt ≤
∞∑

p=P +1

∫ L

0
Jpp
(
σ′

p(t), |σ̇p|D(t)
)
dt. (4.56)

Besides, for all i ≥ 1, Jensen’s inequality in its multivariate version (see [19]) and Lemma 2.7 gives∫ ri

0
Jpp(γ′

i(t), |γ̇i|D(t))dt ≥ Jpp

(
γi(ri) − γi(0), D

(
γ [0 ,ri]

))
.

By homogeneity of Jpp, (4.52) and (4.53),

∫ ri

0
Jpp(γ′

i(t), |γ̇i|D(t))dt ≥ ∥γi(ri) − γi(0)∥2Jpp

 γi(ri) − γi(0)
∥γi(ri) − γi(0)∥2

,
D
(

γ [0 ,ri]

)
∥γi(ri) − γi(0)∥2


≥ ri

2 min
u∈S2

Jpp(u, (1 − ε)µ(u)) = riC(ε)
2 .

Combining this inequality with (4.56), we get

∑
i≥1

ri ≤ 2
C(ε)

∞∑
p=P +1

∫ L

0
Jpp
(
σ′

p(t), |σ̇p|D(t)
)
dt. (4.57)

By (4.55) and (4.57),

ϕ1
R(Aε) ≤ 24

C(ε)

∞∑
p=P +1

∫ L

0
Jpp
(
σ′

p(t), |σ̇p|D(t)
)
dt.

Letting R → 0 yields

H1(Aε) ≤ 24
C(ε)

∞∑
p=P +1

∫ L

0
Jpp
(
σ′

p(t), |σ̇p|D(t)
)
dt.

Since J−(D) < ∞, the series on the right-hand side converges by (1.29), thus letting P → ∞ gives
H1(Aε) = 0, which concludes the proof.

4.4 Strict monotonicity : proof of Proposition 4.4
Let D1, D2 ∈ Dµ be distinct pseudometrics such that D1 ≤ D2: in particular there exist x, y ∈ X such
that D1(x, y) < D2(x, y). Also assume that J−(D2) < ∞. There exists a Lipschitz path γ : [0 , T ] → X
such that D1(γ) < D2(γ). In particular, by (2.16) and (2.20) there exists a Borel set A ⊂ X such that
H1(A) > 0, and for all z ∈ A, there exists u ∈ S2 such that

(P-grad D1)z(u) < (P-grad D2)z(u).

By Lemma 4.9 and Remark 1.2, for all z ∈ A,

max
u∈S2

Jpp(u, (P-grad D1)z(u)) < max
u∈S2

Jpp(u, (P-grad D2)z(u)).

Besides, the analogous weak inequality is true for all z ∈ X, thus Proposition 4.3 concludes.
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5 Large deviation principle
The goal of this section is to prove Theorem 1.10. For all b ∈ [1 , ∞] and e ∈ Ed, we define

τ (b)
e := τe ∧ b. (5.1)

We denote by T̂(b)
n , µ(b), J (b) and J−,(b) the analogues of T̂n, µ, J and J− for the edge passage times(

τ
(b)
e

)
e∈Ed

. For all b < ∞, we will introduce an auxiliary process (T̃(b)
n )n≥1 with values in Db∥·∥1

(see (5.14)), such that:
(i) For all α > 0, there exists L > 0 such that

lim
n→∞

− 1
n

logP
(

T̃(b)
n /∈ DL

b∥·∥1

)
≥ α. (5.2)

(ii) For all n ≥ 1,
d∞

(
T̂(b)

n , T̃(b)
n

)
≤ 2bd

n
. (5.3)

Theorem 1.7 and (5.2) will imply that (T̃(b)
n )n≥1 satisfies the LDP, with the rate function J. We will

deduce the same for
(

T̂(b)
n

)
n≥1

by (5.3). We treat the general case by letting b → ∞, under some good

moment assumptions. To control the probability that T̂n takes abnormally large values, we rely on
Lemma 5.1, proven in Section B.
Lemma 5.1. Assume (Moment). For all ε > 0,

lim
n→∞

− 1
n

sup
x,y∈X

logP
(

T̂n(x, y) ≥ µ(x − y) + ε
)

= +∞. (5.4)

5.1 Geodesic lengths
Lemma 5.2 essentially states that it is very atypical for the random metric T[0 ,n]d to have geodesics of
length Ln, with large L. It will be the key argument in the proof of (5.2). Note that the bound (5.6)
is uniform over all truncations of the passage times by b ∈ [1 , ∞]. For all b ∈ [1 , ∞], L > 0 and n ≥ 1,
we define the event

LongGeo(b)
n (L) :=

{
There exists a discrete geodesic σ ⊆ J0 , nKd

for T(b)
[0 ,n]d , such that ∥σ∥ ≥ Ln

}
. (5.5)

Lemma 5.2. For all α > 0, there exists L > 0 such that for all b ∈ [1 , ∞],

lim
n→∞

− 1
n

logP
(

LongGeo(b)
n (L)

)
≥ α. (5.6)

Proof. For all L, C > 0 and n ≥ 1 we define the event

En(L, C) :=
{

There exists a self-avoiding discrete path π ⊆ J0 , nKd

such that ∥π∥ ≥ nL and τ (1)(π) ≤ nC

}
. (5.7)

We claim that there exists β > 0 such that for large enough L,

lim
n→∞

− 1
n

logP(En(L, d∥µ∥1 + 1)) ≥⌊L⌋β, (5.8)

By Proposition 5.8 in [17] (and a union bound on the possible starting point of a discrete path in
J0 , nKd) there exists a constant C1 > 0 such that

β := lim
n→∞

− 1
n

logP(En(1, C1)) > 0. (5.9)
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Let L ≥ d∥µ∥1+1
C1

be an integer. We have

P(En(L, d∥µ∥1 + 1)) ≤ P(En(L, LC1))
≤ P(EnL(1, C1)).

Consequently,
− 1

n
logP(En(L, d∥µ∥1 + 1)) ≥ L ·

(
− 1

nL
logP(EnL(1, C1))

)
.

Letting n → ∞ gives (5.8).
By Lemma 5.1,

lim
n→∞

− 1
n

log sup
x,y∈J0 ,nKd

P
(

T[0 ,n]d(x, y) ≥ n(d∥µ∥1 + 1)
)

= ∞. (5.10)

By union bound and (5.10),

lim
n→∞

− 1
n

logP
(

∃x, y ∈ J0 , nKd
, T[0 ,n]d(x, y) ≥ n(d∥µ∥1 + 1)

)
= ∞. (5.11)

Let L > 0 be such that (5.8) holds and b ∈ [1 , ∞]. We have the inclusion

LongGeo(b)
n (L) ⊆

{
∃x, y ∈ J0 , nKd

, T[0 ,n]d(x, y) ≥ n(d∥µ∥1 + 1)
}

∪ En(L, d∥µ∥1 + 1),

therefore by (5.8) and (5.11),

lim
n→∞

− 1
n

logP
(

LongGeo(b)
n (L)

)
≥⌊L⌋β,

which concludes the proof.

5.2 The continuous metric
In this section we fix b ∈ [1 , ∞) and define T̃(b)

n . We prove that it is a good approximation of T̂(b)
n and

it follows the LDP with the rate function J (b).

Definition 5.3. Let n ≥ 1. We extend T(b)
[0 ,n]d to [0 , n]d as follows. For all edges (x−, x+), (y−, y+) ∈

E
(
J0 , nKd

)
and all x ∈ [x− , x+], y ∈ [y− , y+], we define

T(b)
[0 ,n]d(x, y) := min

x′∈{x−,x+}
y′∈{y−,y+}

(
∥x − x′∥1τ(x−,x+) + T(b)

[0 ,n]d(x′, y′) + ∥y − y′∥1τ(y−,y+)

)
. (5.12)

We then define, for all x, y ∈ [0 , n]d,

T(b)
[0 ,n]d(x, y) := (b∥x − y∥1) ∧ min

x′,y′

(
b∥x − x′∥1 + T(b)

[0 ,n]d(x′, y′) + b∥y′ − y∥1

)
, (5.13)

where the minimum is taken on all pairs of points, belonging to a pair of (maybe equal) edges in
E
(
J0 , nKd

)
. For all x, y ∈ X, we define

T̃(b)
n (x, y) := 1

n
T(b)

[0 ,n]d(nx, ny). (5.14)

Lemma 5.4. The process (T̃(b)
n )n≥1 takes values in Db∥·∥1

and for all x, y ∈ 1
nJ0 , nKd,

T̃(b)
n (x, y) = T̂(b)

n (x, y). (5.15)

Moreover, for all α > 0, there exists L > 0 that does not depend on b, such that

lim
n→∞

− 1
n

logP
(

T̃(b)
n /∈ DL

b∥·∥1

)
≥ α. (5.16)
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Proof. Let n ≥ 1. It is clear that T̃(b)
n is a pseudometric on X, is upper bounded by b∥·∥1 and

satisfies (5.15). Let x, y ∈ [0 , n]d. It follows from the definition of T(b)
[0 ,n]d that there exists a T(b)

[0 ,n]d -
geodesic σ from nx to ny that admits the decomposition

nx
σ1⇝ x′ σ2⇝ x′′ σ3⇝ y′′ σ4⇝ y′ σ5⇝ ny, (5.17)

where:
• the points x′ and y′ belong to edges in E

(
J0 , nKd

)
, and the points x′′, y′′ belong to J0 , nKd,

• the paths σ1, σ2, σ4 and σ5 are straight lines,
• the path σ3 is a discrete geodesic for T(b)

[0 ,n]d between x′′ and y′′

(some σi may be trivial). Moreover, σ2 and σ4 are subsets of edges in E
(
J0 , nKd

)
, thus

∥σ∥1 ≤ ∥σ3∥ + 2dn + 2. (5.18)

Fix α > 0 and let L > 0 be the number provided by Lemma 5.6. Since t 7→ 1
t σ(t) is a T̃(b)

n -geodesic,
we have

lim
n→∞

− 1
n

logP
(

T̃(b)
n /∈ DL+2d+2/n

b∥·∥1

)
≥ α,

thus
lim

n→∞
− 1

n
logP

(
T̃(b)

n /∈ DL+2d+1
b∥·∥1

)
≥ α,

which concludes the proof.

Lemma 5.5. For all n ≥ 1, almost surely

d∞

(
T̂(b)

n , T̃(b)
n

)
≤ 2bd

n
. (5.19)

In particular, replacing T̂(b)
n by T̃(b)

n in the definition of J
(b) (see (1.39)), J (b) (see (1.40)) and J−,(b)

(see (1.26) and (1.27) defines the same functions.

Proof. The pseudometrics T̂(b)
n and T̃(b)

n coincide on
(

1
nJ0 , nKd

)2
, thus the almost sure bound follows

by triangle inequality.

Lemma 5.6. The process (T̃(b)
n )n≥1 follows the LDP with the good rate function

J (b) : Fb −→ [0 , ∞]

D 7−→

{
∞ if D /∈ Dµ(b) ,

J−,(b)(D) if D ∈ Dµ(b) .
(5.20)

Proof. Let D ∈ Fb. We claim that (T̃(b)
n )n≥1 follows the weak LDP with the rate function J (b), i.e.

J (b)(D) = J
(b)(D) = J (b)(D). (5.21)

For all ε > 0, we define the events

L̃D
(b)
n (D, ε) :=

{
d∞

(
T̃(b)

n , D
)

≤ ε
}

(5.22)

and

L̃D
−,(b)
n (D, ε) :=

{
∀x, y ∈ X, T̃(b)

n (x, y) ≤ D(x, y) + ε
}

, (5.23)
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i.e. the analogues of LDn(D, ε) and LD−
n (D, ε) with T̂n replaced by T̃(b)

n (see (1.25) and (1.38)). We
treat three cases differently.

Case 1: Assume that D /∈ Db∥·∥1
. Let L > 0. Since DL

b∥·∥1
is compact, there exists ε > 0 such that

L̃D
(b)
n (D, ε) ⊆

{
T̃(b)

n /∈ DL
b∥·∥1

}
.

In particular,
J (b)(D) ≥ sup

L>0
lim

n→∞
− 1

n
logP

(
T̃(b)

n /∈ DL
b∥·∥1

)
.

By (5.16), J (b)(D) = ∞, thus (5.21).
Case 2: Assume that D ∈ Db∥·∥1

\Dµ(b) . Then there exists x, y ∈ X such that D(x, y) > µ(b)(x−y).
There exists ε > 0 be such that

L̃Dn(D, ε) ⊆
{

T̃(b)
n (x, y) ≥ µ(b)(x − y) + ε

}
.

In particular, by Lemma 5.1, J (b)(D) = ∞, thus (5.21).
Case 3: Assume that D ∈ Dµ(b) . The inequality J (b)(D) ≥ J−,(b)(D) = J (b)(D) is clear. If

J−,(b)(D) = ∞, then (5.21) is proven. Otherwise by Lemma 5.4 there exists L > 0 such that

lim
n→∞

− 1
n

logP
(

T̃(b)
n /∈ DL

b∥·∥1

)
> J−,(b)(D). (5.24)

Fix ε > 0. Let δ ∈ (0 , ε). Consider the compact sets

Kε :=
{

D′ ∈ DL
b∥·∥1

∣∣∣ D′ ≤ D, and there exists x, y ∈ X such that D′(x, y) ≤ D(x, y) − ε
}

and

Kε,δ :=
{

D′ ∈ DL
b∥·∥1

∣∣∣ D′ ≤ D + δ, and there exists x, y ∈ X such that D′(x, y) ≤ D(x, y) − ε
}

By Proposition 4.4, compactness and lower semicontinuity of J−,(b),

min
D′∈Kε

J−,(b)(D′) > J−,(b)(D). (5.25)

Note that by (1.24),

lim
n→∞

− 1
n

logP
(

T̃(b)
n ∈ Kε,δ

)
≥ min

D′∈Kε,δ

J (b)(D′)

≥ min
D′∈Kε,δ

J−,(b)(D′).

Using compactness and lower semicontinuity again yields

lim
δ→0

↑ lim
n→∞

− 1
n

logP
(

T̃(b)
n ∈ Kε,δ

)
≥ min

D′∈Kε

J−,(b)(D′).

Consequently, by (5.25), for small enough δ ∈ (0 , ε),

lim
n→∞

− 1
n

logP
(

T̃(b)
n ∈ Kε,δ

)
> J−,(b)(D).

This implies that for small enough δ ∈ (0 , ε),

lim
n→∞

− 1
n

logP
(

L̃D
−
n (D, δ)

)
= lim

n→∞
− 1

n
logP

(
L̃D

−
n (D, δ) ∩

{
T̃(b)

n /∈ Kε,δ

})
≥ lim

n→∞
− 1

n
logP

(
L̃Dn(D, ε)

)
.
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Letting δ → 0 then ε → 0 leads to J−,(b)(D) ≥ J (b)(D), which concludes the proof of (5.21).
Equation (5.21) and Lemma 1.6 imply that (T̃(b)

n )n≥1 follows the weak LDP, with the rate function
J (b). Furthermore, Proposition 2.1 and (5.16) implies that (T̃(b)

n )n≥1 is exponentially tight, meaning
that for all α > 0, there exists a compact K ⊆ Fb such that

lim
n→∞

− 1
n

logP
(

T̃(b)
n /∈ K

)
> ∞. (5.26)

Consequently, by Lemma 1.2.18 in [11], the process (T̃(b)
n )n≥1 follows the LDP with the good rate

function J (b).

5.3 LDP for the classic passage time
We now prove that under the Assumptions (SubC) and (Moment), (T̂n)n≥1 follows the LDP with the
rate function J. For the truncated rescaled metric T̂(b)

n , it is a consequence of Lemmas 5.5 and 5.6.
For the untruncated one, we use a general large deviation theory result providing a LDP for a process
whenever it is in some sense the limit of processes which all follow LDPs. Definition 5.7 and Theorem 5.8
are a reformulation of Definitions 4.2.10, 4.2.14 and Theorems 4.2.13, 4.2.16 in [11] for our framework.

Definition 5.7. Let (X, dX) be a metric space. All the random variables mentioned in this definition
are assumed to be defined on the probability space.

(i) We say that two processes (Xn)n≥1 and (Yn)n≥1 on X are exponentially equivalent if for all ε > 0
and n ≥ 1, the event {dX(Xn, Yn) ≥ ε} is measurable, and with fixed ε > 0,

lim
n→∞

− 1
n

logP(dX(Xn, Yn) ≥ ε) = ∞. (5.27)

(ii) We say that a family of processes
(

(X(b)
n )n≥1, b ∈ [0 , ∞)

)
on X is an exponentially good approxi-

mation of (Xn)n≥1 as b → ∞ if for all ε > 0, b ≥ 1 and n ≥ 1, the event
{

dX

(
X

(b)
n , Xn

)
≥ ε
}

is
measurable, and with fixed ε > 0,

lim
b→∞

lim
n→∞

− 1
n

logP
(

dX

(
X(b)

n , Xn

)
≥ ε
)

= ∞. (5.28)

Theorem 5.8. Let (X, dX) be a metric space.
(i) If the processes (Xn)n≥1 and (Yn)n≥1 on X are exponentially equivalent and (Xn)n≥1 follows a

LDP with a good rate function, then (Yn)n≥1 also follows a LDP, with the same rate function.

(ii) Assume that the processes (X(b)
n )n≥1 on X are exponentially good approximations of (Xn)n≥1 as

b → ∞, and for all b ≥ 1, (X(b)
n )n≥1 follows the LDP with a rate function I(b). Then (Xn)n≥1

follows the weak LDP with the rate function

I : x 7−→ lim
ε→0

↑ lim
b→∞

inf
x̂∈BX(x,ε)

I(b)(x̂). (5.29)

If furthermore I is a good rate function and satisfies, for all closed sets F ,

inf
x∈F

I(x) ≤ lim
b→∞

inf
x∈F

I(b)(x), (5.30)

then (Xn)n≥1 follows the LDP with the rate function I.

Lemma 5.9. Assume (SubC) and (Moment). The processes (T̂(b)
n )n≥1 are exponentially good approx-

imations of (T̂n)n≥1 as b → ∞.
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Proof. Fix ε > 0, α > 0. Let L > 0 be the number given by Lemma 5.2. For all n ≥ 1 and b ≥ 1,
define

LDGreedyn(b) :=
{

There exists a self-avoiding discrete path π ⊆ J0 , nKd
,

such that ∥π∥ ≤ Ln and τ(π) − τ (b)(π) ≥ 2dεn

}
. (5.31)

Note that for all n ≥ 1 and b ≥ 1, we have{
d∞(T̂(b)

n , T̂n) ≥ 2dε
}

⊆ LongGeo(b)
n (L) ∪ LDGreedyn(b). (5.32)

By union bound and the estimate (5.6), it is thus sufficient to prove that for large enough b,

lim
n→∞

− 1
n

logP(LDGreedyn(b)) ≥ α, (5.33)

Lemma 4.2 in Dembo-Gandolfi-Kesten (2001) [12] provides an answer for a similar problem, in the
framework of the so-called greedy lattice animals: they give an estimate for the upper-tail of the mass
gathered by an animal of size n containing the origin, when the masses are scattered on the vertices
of Zd. An animal there is defined as a finite connected subset of Zd. In particular, self-avoiding paths
are animals. In order to adapt their result to our framework, let us introduce for all v ∈ Zd and
z ∈ {±ei}1≤i≤d the random variable

Mv(z) :=
(
τ(v,v+z) − b

)+
, (5.34)

as well as
Mv :=

∑
z∈{±ei}1≤i≤d

Mv(z). (5.35)

For all z, the variables (Mv(z))v∈Zd are i.i.d. and for all discrete path π,

τ(π) − τ (b)(π) ≤
∑
v∈π

Mv. (5.36)

By Lemma 4.2 in [12] and (Moment), for large enough b, for all z ∈ {±ei}1≤i≤d,

lim
n→∞

− 1
n

logP
(

There exists a self-avoiding discrete path π ⊆ Zd,
such that 0 ∈ π, ∥π∥ ≤ Ln and

∑
v∈π Mv(z) ≥ εn

)
≥ α.

Consequently, the union bound and (5.36) give (5.33).

Proof of Theorem 1.10. Let b < ∞. By (5.19) the processes (T̃(b)
n )n≥1 and (T̂(b)

n )n≥1 are exponentially
equivalent. Consequently, by Theorem 5.8, (T̂(b)

n )n≥1 follows the LDP with the rate function J (b).
By Theorem 5.8(ii) and Lemma 5.9,

(
T̂n

)
n≥1

follows the weak LDP with the rate function

J (∞) : Fb −→ [0 , ∞]
D 7−→ sup

δ>0
lim

b→∞
inf

D̂∈B∞(D,δ)
J (b)(D̂), (5.37)

where B∞(D, δ) denotes the open ball of center D and radius δ, for d∞. To prove the LDP with this
rate function it is sufficient by the second part of Theorem 5.8(ii) to show to that J (∞) is a good rate
function, and for all closed sets F ⊆ Fb,

inf
D∈F

J (∞)(D) ≤ lim
b→∞

inf
D∈F

J (b)(D). (5.38)

By (5.16), using the same argument as in the proof of Lemma 5.6, Case 1, one show that for all α > 0
there exists L > 0 such that for all b ∈ [1 , ∞],

inf
D∈Fb\DL

µ

J (b)(D) ≥ α. (5.39)
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Consequently, J (∞) is a good rate function and (5.38) only needs to be proven for compact F . Let
F ⊆ Fb be a compact set. For all b ≥ 1, since J (b) is lower semicontinuous, it admits a minimizer Db

on F . By compactness there exists a sequence (bk)k≥1 that diverges to ∞ and D ∈ F such that

lim
k→∞

Dbk
= D.

In particular, for all δ > 0, for large enough k,

d∞(D, Dbk
) < δ,

thus

J (∞)(D) ≤ lim
k→∞

J (bk)(Dbk
)

= lim
k→∞

inf
D̂∈F

J (bk)
(

D̂
)

≤ lim
b→∞

inf
D̂∈F

J (b)
(

D̂
)

,

thus (5.38).
We now prove that J (∞) = J. If D ∈ Fb \ Dµ, then (5.39) implies J (∞)(D) = ∞ = J(D). Let

D ∈ DL
µ . To show the inequality J (∞)(D) ≥ J−(D), notice that by an elementary inclusion, for all

ε > 0,
lim

n→∞
− 1

n
logP(LDn(D, ε)) ≥ lim

n→∞
− 1

n
logP

(
LD−

n (D, ε)
)
.

Moreover, since D is in the interior of B∞(D, ε) and T̂n follows the LDP with the rate function J (∞),
the left-hand side may be upper bounded by J (∞)(D). Letting ε → 0 gives J (∞)(D) ≥ J−(D).

Let us prove the converse inequality. If J−(D) = ∞, there is nothing to do. Assume the contrary.
In particular there exists L > 0 such that

inf
D̂∈Fb\DL

µ

J (∞)(D̂) > J−(D). (5.40)

For all ε ≥ 0 we consider the closed set

Fε :=
{

D̂ ∈ Fb

∣∣∣ ∀x, y ∈ X, D̂(x, y) ≤ D(x, y) + ε
}

, (5.41)

and denote by Kε the compact set Fε ∩ DL
µ . Since

(
T̂n

)
n≥1

follows the LDP with the rate function

J (∞), for all ε > 0,

lim
n→∞

− 1
n

logP
(
LD−

n (D, ε)
)

= lim
n→∞

− 1
n

logP
(

T̂n ∈ Fε

)
≥ inf

D̂∈Fε

J (∞)(D̂).

By (5.40),

lim
n→∞

− 1
n

logP
(
LD−

n (D, ε)
)

≥ min
D̂∈Kε

J (∞)(D̂).

By compactness there exists a sequence (εk)k≥1 decreasing to 0 and a converging sequence of metrics
(Dk)k≥1 such that for all k ≥ 1 , Dk ∈ Kεk

and realizes the minimum above. The limit of (Dk)k≥1
belongs to

⋂
ε>0 Kε = K0. Letting k → ∞ gives, by lower semicontinuity of J (∞) ,

J−(D) ≥ min
D̂∈K0

J (∞)(D̂).

However, for all D̂ ∈ K0 \ {D}, by Proposition 4.4,

J (∞)(D̂) ≥ J−(D̂) > J−(D).

Consequently, J−(D) ≥ J (∞)(D), which concludes the proof of J = J (∞).
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A Probability that a vertex is a hub
In this section we prove Lemma 4.5. Our arguments are adapted from Cox and Durrett’s proof of
the shape theorem (see Theorem 3.3 in [8]). We will use Lemma A.1 twice in order to dominate the
passage time between two points by d independent sums of variables with distribution ν. The first step
is to prove a similar result under a stronger moment condition, when the edge passage times may have
short range dependence. Under the assumption E

[
τd+ξ

e

]
< ∞, (4.5) holds by standard estimates on

i.i.d. sums (see Lemma A.2). To conclude under (StrongShape), we need an extra step consisting in
bounding the passage time between two neighbors in 3Zd by the minimum of the passage times along
the d paths provided by Lemma A.1. At the scale of those "long edges", Lemma A.2 can be applied.

Lemma A.1. Fix n ∈ N∗ and distinct vertices x, y ∈ J0 , nKd. There exist at least d pairwise disjoint
except at their endpoints discrete paths π1, . . . , πd from x to y, with length ∥x − y∥1 or ∥x − y∥1 + 2.

Proof. Write x = (x1, . . . , xd) and y = (y1, . . . , yd). Without loss of generality, we can assume the
existence i0 ∈ J0 , dK, such that

• For all i ∈ J1 , i0K, xi = yi ̸= n.
• For all i ∈ Ji0 + 1 , dK, xi < yi.

Let (x = z(0), . . . , z(r) = y) be any path from x to y with length ∥x − y∥1. For all i ∈ J1 , i0K, we
define πi the path (x, z(0) + ei, z(1) + ei, . . . , z(r) + ei, y). For all i ∈ Ji0 + 1 , dK, we define πi as
the only path from x to y which is the concatenation of d − i0 straight lines of respective directions
(ei, ei+1, . . . , ed, ei0+1, . . . , ei−1).

Lemma A.2. Let (τ ′
e)e∈Ed be a family of identically distributed random variables. Assume that there

exists ξ > 0 such that E
[
(τ ′

e)d+ξ
]

< ∞, and for all e ∈ Ed, τ ′
e is independent of the family passage

times along edges having no common endpoint with e. Then there exists a constant κ < ∞ such that

lim
n→∞

min
x∈J0 ,nKd

P

(
For all y ∈ J0 , nKd, there exists a discrete path x

π
⇝ y included

in J0 , nKd, such that τ ′(π) ≤ κ∥x − y∥1 and ∥π∥ ≤ ∥x − y∥1 + 2

)
> 0. (A.1)

Proof. Let x, y ∈ J0 , nKd be distinct vertices and γ1, . . . , γd be the paths given by Lemma A.1, with
removed endpoints. The γi have no common vertex, hence their passage times are independent. Fix
i ∈ J1 , dK. We denote by γ

(1)
i and γ

(2)
i the set of edges along γi, with odd indices and even indices

respectively. By union bound and Markov’s inequality,

P(τ ′(γi) − E[τ ′(γi)] ≥ ∥x − y∥1)

≤ P
(

τ ′(γ(1)
i ) − E

[
τ ′(γ(1)

i )
]

≥ 1
2∥x − y∥1

)
+ P

(
τ ′(γ(2)

i ) − E
[
τ ′(γ(2)

i )
]

≥ 1
2∥x − y∥1

)
≤ 2d+ξ

∥x − y∥d+ξ
1

E
[∣∣∣τ ′(γ(1)

i ) − E
[
τ ′(γ(1)

i )
]∣∣∣d+ξ

+
∣∣∣τ ′(γ(2)

i ) − E
[
τ ′(γ(2)

i )
]∣∣∣d+ξ

]
. (A.2)

Since τ ′(γ(1)
i ) is sum of independent variables distributed as τ ′, by Rosenthal’s inequality (see Theorem 3

in [20]) there exists a constant C2, depending only on d + ξ, such that

E
[∣∣∣τ ′(γ(1)

i ) − τ ′(γ(1)
i )
∣∣∣d+ξ

]1/(d+ξ)
≤ C2 max

((
#γ

(1)
i E

[
|τ ′ − E[τ ′]|d+ξ

])1/(d+ξ)
,(

#γ
(1)
i E

[
|τ ′ − E[τ ′]|2

])1/2
)

.

(A.3)

Consequently, there exists a constant C3, depending only on d + ξ and the distribution of τ ′, such that

E
[∣∣∣τ ′(γ(1)

i ) − τ ′(γ(1)
i )
∣∣∣d+ξ

]
≤ C3∥x − y∥(d+ξ)/2

1 .
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The same goes for the paths γ
(2)
i . Applying this bound to (A.2) yields

P(τ ′(γi) − E[τ ′(γi)] ≥ ∥x − y∥1) ≤ C32d+ξ+1

∥x − y∥(d+ξ)/2
1

.

Consequently, plugging in the inequality ∥γi∥ ≤ ∥x − y∥1 yields

P(τ ′(γi) ≥ (E[τ ′
e] + 1)∥x − y∥1) ≤ C32d+ξ+1

∥x − y∥(d+ξ)/2
1

. (A.4)

Since the variables τ ′(γi) for i ∈ J1 , dK are independent,

P

(
d⋂

i=1
{τ ′(γi) ≥ (E[τ ′

e] + 1)∥x − y∥1}

)
≤ Cd

3 2d(d+ξ+1)

∥x − y∥(d2+dξ)/2
1

. (A.5)

Besides, by union bound and Markov’s inequality,

P

(
max

z∈{±ei}1≤i≤d

(
τ(x,x+z) ∨ τ(y,y+z)

)
≥ ∥x − y∥1

)
≤

4dE
[
(τ ′

e)d+ξ
]

∥x − y∥d+ξ
1

. (A.6)

The right-hand sides of (A.5) and (A.6) are summable over y ∈ Zd \ {x}, and only depends on
x − y. Consequently, there exists an integer r ≥ 1 and a constant C4 > 0 such that for all n ≥ 1 and
x ∈ J0 , nKd,

∑
y∈J0 ,nKd

∥x−y∥1≥r

[
P

(
d⋂

i=1
{τ ′(γi) ≥ (E[τ ′

e] + 1)∥x − y∥1}

)

+ P

(
max

z∈{±ei}1≤i≤d

(
τ(x,x+z) ∨ τ(y,y+z)

)
≥ ∥x − y∥1

)]
≤ 1 − C4.

Using the union bound again, we get that for all n ≥ 1 and x ∈ J0 , nKd,

P

(
For all y ∈ J0 , nKd such that ∥x − y∥1 ≥ r, there exists a discrete path x

π
⇝ y included

in J0 , nKd, such that τ ′(π) ≤ (E[τ ′
e] + 3)∥x − y∥1 and ∥π∥ ≤ ∥x − y∥1 + 2

)
≥ C4.

In particular, (A.1) holds for κ = E[τ ′
e] + 3.

Proof of Lemma 4.5. Assume (StrongShape). For all x, y ∈ J0 , nKd, we write x ∼ y if x − y ∈ 3Zd.
We will denote by [x] the equivalence class of x for ∼ in J0 , nKd. If x − y ∈ {±3ei}1≤i≤d, we say that
x and y are 3-neighbours and define τ ′(x, y) as the minimum of the passage times along the d paths
between x and y provided by Lemma A.1. Following the proof of Lemma 3.1 in [8], one shows that
for all such x, y, E

[
τ ′(x, y)d+ξ

]
< ∞. Up to translation by 3v −⌊3v⌋ and rescaling by a factor 3, for

all equivalence classes [v] of ∼ the family (τ ′(x, y)), spanning over pairs of 3-neighbours (x, y) ∈ [v]2

satisfies the hypothesis of Lemma A.2. We say that a vertex x ∈ J0 , nKd is a pre-hub if it satisfies the
event in (A.1) for the lattice structure on [x] induced by 3-neighbours, and the passage times τ ′. If x

is a pre-hub, then for all y ∈ [x], there exists a discrete path x
π
⇝ y included in J0 , nKd, such that

τ(π) ≤ κ∥x − y∥1 and ∥π∥ ≤ 5
3∥x − y∥1 + 10

3 ≤ 2∥x − y∥1 + 4.

Given x ∈ J0 , nKd, consider the event

E(n, x) :=

 ⋂
x′∈(x+[−2 ,2]d)∩J0 ,nKd

{x′ is a pre-hub}

 ∩

 ⋂
e∈E((x+[−2 ,2]d)∩J0 ,nKd)

{τe ≤ κ}

. (A.7)

37



It is an intersection of decreasing events, therefore by the FKG inequality and Lemma A.2,

lim
n→∞

min
x∈J0 ,nKd

P(E(n, x)) > 0. (A.8)

Let x ∈ J0 , nKd. We are left to show that on the event E(n, x), x is a hub. Assume that E(n, x)
occurs and let y ∈ J0 , nKd. There exists x′ ∈ (x + [−2 , 2]d) ∩ J0 , nKd such that x′ ∼ y and ∥x − y∥1 =
∥x − x′∥1 +∥x′ − y∥1. There exists a path x

π1⇝ x′ with length ∥x − x′∥1, such that τ(π1) ≤ κ∥x − x′∥1.
Moreover, since x′ is a pre-hub, there exists a discrete path x′ π2⇝ y included in J0 , nKd, such that τ(π2) ≤
κ∥x′ − y∥1 and ∥π∥ ≤ 2∥x′ − y∥1 + 4. The concatenation of π1 and π2 has the desired properties.

B Bound for upper-tail large deviations
In this section we prove Lemma 5.1, which states that under Assumption (Moment), the order of the
upper-tail large deviation probability for the point-point time is lower than exp(−αn), for all α > 0.
We essentially follow Kesten’s proof ([17], Theorem 5.9) of the special case x = 0, y = e1: for large n,
we consider a large number of pairwise disjoint corridors, with fixed but large width m which are close
to the segment [nx , ny]. On the large deviation event

{
T̂n(x, y) ≥ µ(x − y) + ε

}
, either the passage

times across all corridors or the passage times from nx and ny to the entrances of each are abnormally
large. The probability of each scenario is bounded by exp(−αn), with arbitrary α > 0.

Proof. We first fix distinct x, y ∈ X̊ and ζ > µ(x − y) then prove the following weaker version of the
result:

lim
n→∞

− 1
n

logP
(

T̂n(x, y) ≥ ζ
)

= +∞. (B.1)

For all integers n, m ≥ 1 and v ∈ Zd, we introduce the subset

Corridor(v, m, n) :=
{

z + s(y − x)
∣∣ z ∈ B2(v, m), s ∈ [0 , n]

}
. (B.2)

Let ε > 0 be such that ζ − µ(x − y) ≥ 4ε. By adapting the argument at the bottom of p. 198 in [17],
one shows the existence of m ≥ 1 such that for all n ≥ m,

E
[
TCorridor(0,m,n)(0,⌊n(x − y)⌋)

]
n

≤ µ(x − y) + ε.

In particular, by Talagrand’s inequality (see e.g. [2], Theorem 3.13),

αm := lim
n→∞

− 1
n

logP
(
TCorridor(0,m,n)(0,⌊n(x − y)⌋) ≥ n(µ(x − y) + 2ε)

)
> 0. (B.3)

Let us fix an intger r. For large enough n, there exist v1, . . . , vr ∈ J0 , nKd, such that:
• The sets Corridor(vi, m, n), for i ∈ J1 , rK are pairwise disjoint and included in J0 , nKd.
• For all i ∈ J1 , rK, ∥∥⌊nx⌋− vi

∥∥
1 ≤

√
n and

∥∥⌊ny⌋− (vi +⌊n(x − y)⌋)
∥∥

1 ≤
√

n. (B.4)

By triangle inequality, we have the inclusion{
T̂n(x, y) ≥ ζ

}
⊆

(
r⋃

i=1

{
T[0 ,n]d(⌊nx⌋, vi) > εn

})

∪

(
r⋃

i=1

{
T[0 ,n]d(⌊ny⌋, (vi +⌊n(x − y)⌋)) > εn

})

∪

(
r⋂

i=1

{
T[0 ,Corridor(vi,m,n)]d(vi, vi +⌊n(x − y)⌋) ≥ (µ(x − y) + 2ε)n

})
.

(B.5)

38



Let i ∈ J1 , rK. We claim that

lim
n→∞

− 1
n

logP
(

T[0 ,n]d(⌊nx⌋, vi) > εn
)

= ∞. (B.6)

and

lim
n→∞

− 1
n

logP
(

T[0 ,n]d(⌊ny⌋, (vi +⌊n(x − y)⌋)) > εn
)

= ∞. (B.7)

Indeed for all λ > 0, using Chernoff’s inequality to bound the passage time along an oriented path
from ⌊nx⌋ and vi and applying (B.4) provides

P
(

T[0 ,n]d(⌊nx⌋, vi) > εn
)

≤ exp(−λεn)E[exp(λτe)]
√

n
,

therefore
lim

n→∞
− 1

n
logP

(
T[0 ,n]d(⌊nx⌋, vi) > εn

)
≥ λε.

By (Moment) this bound holds for all λ > 0, therefore we get (B.6). Equation (B.7) is proven similarly.
Besides, by independence and stationarity,

lim
n→∞

− 1
n

logP
(

r⋂
i=1

{
TCorridor(vi,m,n)(vi, vi +⌊n(x − y)⌋) ≥ (µ(x − y) + 2ε)n

})
≥ αmr. (B.8)

Using the union bound on (B.5) and applying Equations (B.6), (B.7), (B.8) give

lim
n→∞

− 1
n

logP
(

T̂n(x, y) ≥ ζ
)

≥ αmr.

Letting r → ∞ yields (B.1).
We now turn to the proof of (5.4). Fix ε > 0 and α > 0. We define

λ := α + 1
ε

and δ := λε − α

2 logE[exp(λτ)] ∧ 1
2 . (B.9)

Let (xi)1≤i≤r be a finite family of points in X̊ such that X ⊆
⋃r

i=1 B1(xi, δ). Let x, y ∈ X. There
exists i, j ∈ J1 , rK such that for all n ≥ 1/δ,

max
(∥∥⌊nx⌋−⌊nxi⌋

∥∥
1,
∥∥⌊ny⌋−⌊nxj⌋

∥∥
1

)
≤ 2δn. (B.10)

By triangle inequality,{
T̂n(x, y) ≥ µ(x − y) + (3 + 2∥µ∥1)ε

}
⊆
{

T̂n(x, xi) > ε
}

∪
{

T̂n(y, xj) > ε
}

∪
{

T̂n(xi, xj) ≥ µ(xi − xj) + ε
}

.
(B.11)

Using Chernoff’s bound and applying (B.10) gives

P
(

T[0 ,n]d(nx, nxi) > εn
)

≤ exp(−ελn)E[exp(λτe)]2δn
,

thus, by definition of λ and δ,

− 1
n

logP
(

T[0 ,n]d(nx, nxi) > εn
)

≥ α.

Similarly,

− 1
n

logP
(

T[0 ,n]d(ny, nxj) > εn
)

≥ α.
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Consequently, applying the union bound to (B.11) and plugging in these two inequalities, we get

− 1
n

logP
(

T̂n(x, y) ≥ µ(x − y) + (3 + 2∥µ∥1)ε
)

≥ α ∧ min
1≤i,j,≤r

[
1
n

logP
(

T̂n(xi, xj) ≥ µ(xi − xj) + ε
)]

− log 2
n

.
(B.12)

Letting n → ∞ and using (B.1) gives

lim
n→∞

− 1
n

logP
(

T̂n(x, y) ≥ µ(x − y) + (3 + 2∥µ∥1)ε
)

≥ α. (B.13)

That bound holds for all α > 0, hence (5.4).
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