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BIG DATA APPROACH TO KAZHDAN–LUSZTIG POLYNOMIALS

ABEL LACABANNE, DANIEL TUBBENHAUER AND PEDRO VAZ

Abstract. We investigate the structure of Kazhdan–Lusztig polynomials of the symmetric group by lever-
aging computational approaches from big data, including exploratory and topological data analysis, applied
to the polynomials for symmetric groups of up to 11 strands.
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1. Introduction

We investigate a data set of Kazhdan–Lusztig (KL) polynomials using techniques traditionally employed in
data science.

1A. Background and ideas. The Kazhdan–Lusztig (KL) polynomials are fundamental yet enigmatic
objects in combinatorial representation theory. First introduced in [KL79] for arbitrary Coxeter groups,
this paper focuses on the type A Coxeter group, the symmetric group Sn on {1, ..., n}. In this context, KL
polynomials represent entries in a nonnegatively graded change-of-basis matrix between simple and Verma
modules of sln. As a result, these polynomials are either zero or belong to 1 + vZ≥0[v], where v denotes the
grading variable.

Although a main focus of research in combinatorics, geometry, and representation theory alike, not much is
known about these polynomials. The starting point of this work is the observation that KL polynomials exhibit
patterns akin to statistical distributions. By analyzing these distributions, we aim to uncover structures that
remain elusive through traditional methods, such as combinatorial or geometric approaches. Our methodology
involves systematic data processing and analysis, often referred to as “big data,” utilizing techniques such
as data visualization, exploratory data analysis (EDA), and topological data analysis (TDA). Our approach
is inspired by work in knot theory as, for example, [LHS22, DGS24] and differs from the deep learning
approaches to KL theory as in e.g. [DVB+21,Wil24].

Using these methods, we will discuss several conjectures about KL polynomials and their distribution, and
for some of them we give an indication of how to prove these conjectures.

Remark 1A.1. A critical aspect of this study is the scale of the data: KL polynomials are indexed by pairs
of elements in Sn, resulting in (n!)2 entries. Although computable, their computation for S11, with one per-
mutation fixed as trivial, required approximately 60 days using the program in [War11] on the servers of
Laboratoire de Mathématiques Blaise Pascal, Université Clermont Auvergne. For S12, we anticipate signifi-
cantly higher computational costs, at least 12 times longer, although this is a very conservative lower bound
that completely excludes potential memory limitations. 3

Notation 1A.2. In this paper, we have conjectures and speculations. Conjectures are presented in their
standard sense, while speculations refer to preliminary hypotheses that lack full support from the data. We
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hope that both serve as an inspiration to prove or, equally exciting, disprove the corresponding statements.
We also have questions meant in the standard way of the word. 3

Remark 1A.3. All the data files and supplementary material (such as higher resolution pictures, code, a
possible empty Erratum etc.) can be found online at [LTV24a]. 3

1B. Future directions. The immediate candidates that come to mind to apply big data methods are graph
and knot polynomials, but this section focuses on potential representation-theoretical applications of big data
methods. We outline several avenues for exploration:

(I) Generalizations to other KL polynomials. An immediate extension is to study variations of KL poly-
nomials, such as other types, antispherical or spherical KL polynomials, which have deep connections
to representation theory, cf. [Soe97]. Data for such cases can potentially be generated using existing
software, e.g. [dC06,Gib21]. Another intriguing direction is to investigate the p-canonical (pKL)
polynomials, cf. [JW17], though their computational complexity presents a significant challenge.
Special cases, such as those in [Bai24], may provide a tractable starting point for data collection and
analysis.

(II) Canonical bases and change-of-basis polynomials. Similarly and related, cf. [FKK98], canonical
(a.k.a. crystal) bases of Lie algebras and their change-of-basis matrices give interesting polynomials.
This should already be interesting for small ranks, see for example [KK99, MPT14], or related
quantum base-changes such as [RT19, RT22]. Generating sufficient data for these cases appears
feasible, though computational tools for these specific problems are not yet widely available as far as
we are aware while writing this paper.

(III) Graded representation theory. The simple representations of the symmetric group in finite character-
istic have a nontrivial grading by [BK09]. By taking graded dimensions, one gets a polynomial
invariant associated to (certain) partitions of n. Similar constructions arise in related algebras, such as
KLR algebras, cf. [KL09,Rou08], graded Temperley–Lieb algebras, cf. [PRH14], and KLRW alge-
bras, cf. [Web19,MT23]. The computational tools in [EM24] may provide a valuable starting point
for data generation, with ongoing efforts (as communicated to us by the second author of [EM24]) to
integrate these structures into SageMath.

(IV) Web spaces invariants. Underlying the quantum knot polynomials are spaces of representation theo-
retical origin, often called webs (spiders [Kup96] or birdtracks [Cvi08]), provide a rich setting for
studying polynomial invariants. Early examples include [RTW32,Yam89]. Evaluation of such webs
yields polynomials akin to quantum knot polynomials. While the type A exterior case has a closed
formula, cf. [LTV24b], suggesting limited complexity, extensions to other settings, such as SO(3)
invariants and their connections to chromatic polynomials, cf. [Yam89,FK10], remain largely unex-
plored. The chromatic polynomial has recently been studied via TDA [SS24], and the quantum version
of this category as, e.g., in [MPS17,Tub23] might give some quantization of [SS24]. Computational
complexity here is expected to align with that of canonical bases as in (II).

(V) Tensor categories and knot/three-manifold invariants. Building on [LHS22, DGS24], a promising
direction is to analyze knot and three-manifold invariants arising from tensor categories (in the
sense of [EGNO15]). Examples include invariants derived from Deligne categories, cf. [FL21], mixed
quantum groups, cf. [AK92, STWZ23], subfactor theory, following the exposition in [Jon86], or
exotic asymptotic algebras (see, for example, [MMM+23] for a summary). Currently, there are no
well-developed computational approaches in this area as far as we know, making it an exciting frontier
for future research.

(VI) Many other exciting direction. For example, homology and Ext groups naturally yield polynomial
invariants, opening another avenue for investigation. Exploring these connections may provide novel
insights into representation theory and beyond.

As a side note, many of these and other representation theoretical problems could benefit from AI or deep learn-
ing approaches, but it is essential to distinguish these techniques from the big data methodologies emphasized
in this work.

Acknowledgments. We are deeply grateful to Joe Baine, Andrew Mathas, Geordie Williamson, and Victor
Zhang for their valuable insights and many stimulating discussions. Special thanks to the organizers of the
exceptional conference “Diagrammatic Intuition and Deep Learning in Mathematics” (York, July 2024) and to
Radmila Sazdanovic, whose inspiring talk at that conference started this project. DT would like to thank the
knot PD[X[3, 1, 4, 32], X[1, 7, 2, 6], X[7, 3, 8, 2], X[11, 5, 12, 4], X[5, 11, 6, 10], X[19, 8, 20, 9], X[9, 18, 10,
19], X[25, 12, 26, 13], X[13, 24, 14, 25], X[31, 15, 32, 14], X[15, 21, 16, 20], X[27, 16, 28, 17], X[17, 26, 18, 27],
X[21, 29, 22, 28], X[29, 23, 30, 22], X[23, 31, 24, 30]]—you are not just one of many.
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In this work, we utilized ChatGPT for coding, proofreading, generating conjectures, and assisting with
proof development (and this sentence). Most of the computations were performed using the resources of the
Laboratoire de Mathématiques Blaise Pascal.

2. Preliminaries in a nutshell and notation

Fix the Coxeter presentation of the symmetric group Sn given by simple transpositions as Coxeter genera-
tors. That is, for m(i, i) = 1, m(i, j) = 3 if |i− j| = 1 and m(i, j) = 2 if |i− j| > 1:

Sn = ⟨s1, ..., sn−1|(sisj)m(i,j) = 1⟩, si ↭ (i, i+ 1).

The unit is denoted 1. We will illustrate elements of Sn either using one-line notation or string diagrams
(read from bottom to top), with the prototypical example being:

↭ (1, 5, 4, 7, 8, 9, 2, 10, 3, 6).

The length ℓ(w) of w ∈ Sn is then defined using the above Coxeter presentation, and the reduced expressions
are also defined with respect to this presentation. Two elements v, w ∈ Sn are in Bruhat order with v
being smaller and w being larger, denoted by v ≤B w, if some substring of some reduced word for w is a
reduced word for v. The Bruhat order is a partial order on Sn and we will use expressions like v >B w with
the evident meaning. Finally, left and right descent sets of w ∈ Sn are ldes(w) = {si|siw <B w} and
rdes(w) = {si|wsi <B w}, which are used to define extremal pairs as EP(n) = {v ≤B w ∈ Sn×Sn|ldes(w) ⊂
ldes(v), rdes(w) ⊂ rdes(v)}. We also say v ≤B w form an extremal pair if they are in EP(n).

The Bruhat order can be refined into a total order, called one-line order, with v being smaller and w
being bigger, denoted by v ≤1 w, if v is smaller than w in one-line notation read lexicographically. We also
use e.g. v >1 w as in the Bruhat order.

Let v denote some formal variable. [KL79] associates a polynomial in v, the KL polynomial, with pairs
of elements of Sn. That is, one can show that we have

v, w ∈ Sn 7→ Pv,w = Pv,w(v) ∈ (1 + vZ≥0[v]) ∪ {0}.

We will not repeat here the definition of the KL polynomials but rather list some properties:

(a) Pw,w = 1, and Pv,w ̸= 0 if and only if v ≤B w.

(b) For v <B w we have deg Pv,w ≤ 1
2 (ℓ(w) − ℓ(v) − 1), and the coefficients of v1/2(ℓ(w)−ℓ(v)−1) is called

the µ coefficient µ(v, w). This coefficient is nonzero only if v ≤B w form an extremal pair.

(c) We have Pu,w−Pv,w ∈ Z≥0[v] for all u, v, w ∈ Sn with u ≤B v ≤B w. In particular, Pv,w(1) ≤ P1,w(1)
for all v, w ∈ Sn.

(d) The maximum degree is max{deg Pv,w|v, w ∈ Sn} ≤ ⌊1
2ℓ(w0)⌋ = ⌊ 1

4 (n− 1)n⌋.
(e) The computer program of our choice to compute these polynomials is the one from [War11]. This

program is also available on [LTV24a]. Other good programs to compute KL polynomials (which
are slower in our experience but can compute them for other Coxeter groups as well) are du Cloux’s
program [dC06] and Gibson’s Magma programs [Gib21].

All of these facts can be found in the usual literature on KL polynomials, e.g. [KL79,BB05,Lus03].

Remark 2.1. Our data set seems too small to say anything beyond [War11] about the µ coefficients, but we
still mentioned them via (b), as they have attracted a lot of interest in the past. 3

Example 2.2. The following example fixes our conventions. Let n = 3, and

↭ (1, 2, 3), ↭ (1, 3, 2), ↭ (2, 1, 3),
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↭ (2, 3, 1), ↭ (3, 1, 2), ↭ (3, 2, 1).

The one-line ordering on these is (1, 2, 3) ≤1 (1, 3, 2) ≤1 (2, 1, 3) ≤1 (2, 3, 1) ≤1 (3, 1, 2) ≤1 (3, 2, 1). In this
ordering we can put the KL polynomials Pv,w into a matrix:

1 1 1 1 1 1
0 1 0 1 1 1
0 0 1 1 1 1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 1

 .

Here v indexes the rows and w the columns. The first row is the case of Pw = P1,w, which we will focus on in
some of the sections below. 3

Notation 2.3. As another piece of notation, we collect the KL polynomials as lists (ordered, repetitions
allowed, notation [−]), multisets (not ordered, repetitions allowed, notation (−)) or sets (not ordered, no
repetitions, notation {−}):

list : [Pv,w|v, w ∈ Sn], multiset : (Pv,w|v, w ∈ Sn), set : {Pv,w|v, w ∈ Sn}.
For a multiset we use superscripts to encode multiplicities. We then use the standard computer science notation
to work with these, e.g.

∑
for the sum over all entries, max for the maximal entry etc. 3

Example 2.4. In Example 2.2 we have

(Pv,w|v, w ∈ S3) = (017, 119), {Pv,w|v, w ∈ S3} = {0, 1},
and the list of KL polynomials is the given flattened matrix in that example. We have

#(Pv,w|v, w ∈ S3,Pv,w ̸= 0)/#(Pv,w|v, w ∈ S3) =
19
36 , #{Pv,w|v, w ∈ S3,Pv,w ̸= 0}/#{Pv,w|v, w ∈ S3} = 1

2 ,

where, as throughout, we use # for the number of elements, counted with multiplicities. 3

We now briefly explain the setting we use throughout. If not stated otherwise, we will identify a KL
polynomial with a vector as follows. We use some upper bound d for the degree of polynomials appearing, e.g.
n2. Then, for Pv,w ̸= 0:

Pv,w = 1 + a1v
1 + ... + adv

d ↭ [1, a1, ..., ad] ∈ Zd+1
≥0 ⊂ Rd+1.

For Pv,w = 0, we assign the zero vector. In this way, all KL polynomials are in the same vector space. In the
language of computer science, we create the list of coefficients [1, a1, ..., ad] padded with zeros until we get the
desired length d. Moreover, span is spanPv,w = degPv,w + 1.

Example 2.5. Note that our vectors are padded with zeros, so the span is not necessarily equal to d. Explicitly,
for Pv,w = 1 + 3v5 + 4v9 we have spanPv,w = 10, independent of d. 3

Example 2.6. Using the vector notation, we have
∑

Pv,w = Pv,w(1). 3

Example 2.7. For S10, we can choose d = 22. There is a KL polynomial of the form Pv,w = 1+13v+78v2+
282v3 + 666v4 + 1068v5 + 1176v6 + 879v7 + 432v8 + 132v9 + 22v10 + v11. We get

Pv,w = [1, 13, 78, 282, 666, 1068, 1176, 879, 432, 132, 22, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

as our coefficient list. We have spanPv,w = 12,
∑

Pv,w = 4750, and maxPv,w = 1176. 3

Remark 2.8. Recall that we focus on the symmetric group only; the construction of [KL79] in fact works for
any Coxeter group. It would be interesting to redo the big data analysis for other Coxeter groups. 3

Throughout, we are interested in large n behavior. We now fix some notation that we will use.

Notation 2.9. For functions f, g : Z≥0 → R>0 we use:

f ∼ g ⇔ ∀ε > 0, ∃n0 such that | f(n)g(n) − 1| < ε , ∀n > n0,

f ∈ Ω(g) ⇔ ∃C > 0, ∃n0 such that |f(n)| ≥ C · g(n) , ∀n > n0,

f ∈ O(g) ⇔ ∃C > 0, ∃n0 such that |f(n)| ≤ C · g(n) , ∀n > n0.

We use these, in order, as asymptotic behavior, lower and upper bounds. 3
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Notation 2.10. To analyze functions that behave like na for some a ∈ R, we use effective exponent. For a
function f : Z≥0 → R>0, this is the function n 7→ ln(f(n))−ln(f(n+1))

ln(n)−ln(n+1) . (Note that this is a for f(n) = na, hence
the name.)

For functions that behave like an for some a ∈ R>1 we use successive quotients. For a function f : Z≥0 →
R>0, this is the function n 7→ f(n+1)

f(n) . (Note that this is a for f(n) = an.) 3

Notation 2.11. We sometimes use log plots, which means that we put a logarithmic scale on the y-axis. 3

3. Percentage of nonzero KL polynomials

Recall that Pv,w ̸= 0 if and only if v ≤B w. So, two questions that one might ask are the following:
(3.i) What is the asymptotic behavior n → ∞ of

denn = #(Pv,w|v, w ∈ Sn,Pv,w ̸= 0)/#(Pv,w|v, w ∈ Sn)?

(This is the density.) That is, what is the asymptotic for the percentage of nonzero KL polynomials.

(3.ii) What is the asymptotic behavior n → ∞ of

denavn =
∑

(
∑

Pv,w|v, w ∈ Sn)/#(Pv,w|v, w ∈ Sn)?

That is a similar question as before, but now we ask about the average values of the KL polynomials
at v = 1.

(3.iii) To calculate how ‘fiery’ the pictures is (this will make sense if you read ahead), we use the so-called
mean (pixel) intensity firen: covert the picture to gray scale (by using n 7→ n−min

max−min ) and compute
the average. What is

lim
n→∞

firen?

Before explaining the data, let us explain grid plots of matrices: One visualizes a matrix with R≥0

entries as is with a heat map, where the temperature corresponds to the size of the entry. We use black as the
coldest=smallest entry and white as the hottest=biggest entry. For example,

(
1 1
0 1

)
↭ .

Using the lexicographical order in one-line notation, we can form a matrix (Pv,w(v = 1))v,w∈Sn
∈ Z2

≥0, and
for n = 2 the above picture arises. Here are a few other ranks (n = 3 should be compared with Example 2.2),
with the convention that if all entries are zero or one, then there is only one plot:

, , .
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The following now have two plots:

, ,

, ,

, ,

, .
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The percentage of nonzero entries, the average entry, and the intensity are:

,

,

,

n 1 2 3 4 5 6 7
% ̸= 0 100 75 52.78 36.98 26.26 18.98 13.98

av 1 0.75 0.5278 0.3802 0.2933 0.2489 0.2366
in 1 0.8295 0.7095 0.5346 0.4573 0.4307 0.4140

Note that the average value and the percentage of nonzero entries are the same for n ∈ {1, 2, 3}.
The following conjecture comes from additional data that one gets using (a) in Section 2 as the Bruhat

order is much easier to compute in large scale than KL polynomials. One can also see this in the effective
exponent curve above, which starts to slow down in its decay. For a more refined version of Speculation 3.3
we would need more data as we cannot now avoid calculating KL polynomials.

Conjecture 3.1. We have the asymptotic behavior

denn ∼ n−(2+a) for some a ∈ [0, 1].

We can prove the following.

Theorem 3.2. We have

Ω
(
(0.708...− ϵ)n

)
∋ denn ∈ O(n−2) for all ϵ ∈ R>0.

Here 0.708... = 11
√
25497938851324213335/22!.
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Proof. This follows from the properties of the KL polynomials that we have recalled in Section 2 combined
with [HP08, Theorem 1.1] (the precise value that the authors of [HP08, Theorem 1.1] recalled above can be
found in [HP08, Section 3]). □

In summary, some KL polynomials are much larger than the rest. The following pictures, showing only the
largest KL polynomials, illustrate this. Basically, there is nothing that one can see:

, , .

This motivates:

Speculation 3.3. We have

denavn ∈ Ω(na) for some a ∈ R>0, lim
n→∞

firen = 0.

(The fire goes out, but some KL polynomials get very large.)

For a potential way to attack Speculation 3.3, see the end of Section 5.

Remark 3.4. There are efficient algorithms to check Conjecture 3.1 because it is equivalent to the study of
the proportion of elements u,w ∈ Sn that are in Bruhat order; see [HP08] for a discussion of the latter. The
weighted version Speculation 3.3 of Conjecture 3.1 would need more information on how large KL polynomials
are. There are a few references on this, for example, [BM01] (which proves Section 2.(c)) and [BB03], but
not much seems to be known. 3

4. Number of KL polynomials

From now on, we only look at Pw = P1,w = [1, a1, ..., ad] ∈ Zd+1
≥0 for w ∈ Sn, which corresponds to the first

row in the pictures of Section 3.

Remark 4.1. Note that we lose almost all larger KL polynomials when focusing on the first row; see the final
plot in Section 3. However, the maximal value in this final plot is 44 and appears in the first row with the
second entry being the permutation

,

which is index 4265. The same value appears in two other rows and the same column. This is true in general:
P1,w evaluated at v = 1 is always larger than Pv,w evaluated at v = 1, for all v, w ∈ Sn, see (c) in Section 2. 3

We stress that there is a huge difference between the sets of KL polynomials and the multisets. So, the first
questions we ask are:

(4.i) What is the asymptotic behavior n → ∞ of

numn = #{Pw|w ∈ Sn}?

In other words, we ask about the asymptotic number of different KL polynomials.

(4.ii) What is the asymptotic behavior n → ∞ of

num%
n = #{Pw|w ∈ Sn}/#(Pw|w ∈ Sn)?

This asks for the percentage of different KL polynomials.
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Here are the data:

,

n 1 2 3 4 5 6 7 8 9 10 11
# 1 1 1 2 6 14 55 306 2295 23163 293189

The graph on the left is a log plot.

Conjecture 4.2. We have superexponential growth, i.e.:

numn ∈ Ω(γn) for all γ ∈ R>1.

Moreover, we have exponential decay, i.e.:

num%
n ∈ O(δn) for some δ ∈ (0, 1).

We do not know how to prove Conjecture 4.2. In fact, even when we assume the combinatorial invariance
conjecture (see e.g. [BBD+22] for an overview and some indication that it is true), we would still be left with
understanding the Bruhat intervals of the symmetric group. Counting these is related to pattern avoidance,
see, for example, [Ten07], and appears to be a very difficult problem.

5. Growth of KL polynomials

We are interested in questions of the form:
(5.i) What is the asymptotic behavior n → ∞ of

evn = max{
∑

Pw|w ∈ Sn}?
That is, we ask how fast the KL polynomials evaluated at v = 1 grow in the rank n.

(5.ii) Similarly, what is the asymptotic behavior n → ∞ of

coeffn = max{maxPw|w ∈ Sn}?
That is, we ask how fast the coefficients of KL polynomials grow in the rank n.

(5.iii) We can ask the same questions as in (5.i) and (5.ii) but for the average evavn and coeffav
n instead of the

maximum. Here we mean average in sense of

evavn =
∑

{
∑

Pw|w ∈ Sn}/#{Pw|w ∈ Sn}, coeffav
n =

∑
{
∑

Pw/spanPw|w ∈ Sn}/#{Pw|w ∈ Sn}.
Note that we do not count the padded zeros for the average, but only those zeros that are in the span
of the KL polynomials.

Here are the data that we collected. First, for the evaluation at v = 1:

, ,
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, ,

n 1 2 3 4 5 6 7 8 9 10 11
max 1 1 1 2 4 10 44 239 1541 17566 278576
av 1 1 1 1.5 2.4 4.85 10 25.30 72.71 259.03 1035.78

.

Next, for the maximal coefficient:

, ,

, ,

n 1 2 3 4 5 6 7 8 9 10 11
max 1 1 1 1 2 4 15 73 460 4176 61582
av 1 0.5 0.25 0.21 0.12 0.24 0.57 1.49 4.30 15.33 39.84

.

In both cases, note that the graph on the left is a log plot.

Conjecture 5.1. We have superexponential growth, i.e.:

coeffn ∈ Ω(γn) for all γ ∈ R>1.

Since evn ≥ coeffn, the same holds for evn.

Speculation 5.2. We have at least exponential growth, i.e.:

coeffav
n ∈ Ω(γn) for some γ ∈ R>1.

Since evavn ≥ coeffav
n , the same holds for evavn .
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We now discuss a proof strategy for Conjecture 5.1. For k + 2l = n, we consider

uk
l =

︸ ︷︷ ︸
l

︸ ︷︷ ︸
k

︸ ︷︷ ︸
l

,

which is the element that pulls the first l strings to the last l positions, fixes k strings in the middle, and pulls
the last l strings to the first l positions. In formulas uk

l = (n − l + 1, ..., n, l + 1, ..., n − l, 1, ..., l) (one-line
notation). We use this element to define

wk
l = (wl

0 ⊗ idk ⊗ wl
0) ◦ uk

l ,

which takes uk
l and stacks the longest words wl

0 in Sl on the first and last l strings.

Example 5.3. For l = 1 we have wk
1 = uk

1 , for example,

w8
1 = u8

1 = .

For l > 1 we have wk
1 ̸= uk

1 , for example,

w6
2 = ◦ ,

where the bottom diagram is u6
2 and the top diagram is w2

0 ⊗ id6 ⊗ w2
0. 3

Here is a more specific conjecture:

Conjecture 5.4. We have that Pwk
l

is the Hilbert–Poincaré polynomial of (CPl)×(k−1):

Pwk
l
= (1 + v+ ... + vl)k−1.

Theorem 5.5.
(a) Conjecture 5.4 implies Conjecture 5.1.

(b) Conjecture 5.4 is true for l = 0 and l = 1. This implies that evn and coeffn grow exponentially.

Proof. (a). The middle a-nomial coefficients satisfy(
ba

a, ..., a

)
∼

√
6

(a2−1)π · b−1/2 · ab,

as follows from Stirling’s approximation. Since we can choose l, the conjecture follows.
(b). For l = 0 this is clear, while the l = 1 case follows from [SSV98, Theorem 2]. In particular, as in (a),

Stirling’s approximation gives evn ≥ coeffn ∈ Ω(n−1/2 · 2n). □

Let us recall the proof of [SSV98, Theorem 2], as one might hope that it generalizes to prove Conjecture 5.4
in general. The authors of [SSV98] construct a geometric space, a flag variety, and show that this space admits
a small resolution of singularities. This, in turn, shows that the computation of KL polynomials boils down
to computing ordinary cohomology, which in the l = 1 case is (1 + v)b: the cohomology of a b times product
of the sphere S2, or equivalently, of CP1.

Replacing CP1 by CPl, one could expect something similar to work, in general. However, in this case one
does not have a small resolution of singularities, so some other argument is needed.

Remark 5.6. We first made the naive guess that uk
l can be used to generalize [SSV98, Theorem 2]. However,

the KL polynomial of uk
l is rather difficult, and we do not know its growth rate. 3
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Remark 5.7. For this section, the same references as in Remark 5.6 are relevant. Indeed, we will comment on
one momentarily. 3

One way to address Speculation 3.3 or Speculation 5.2 could be the following. [BB03, Theorem 1] implies
that, for fixed m ∈ Z≥0, the set

{w ∈ Sn|Pw(1) ≤ m}

is characterized by pattern avoidance. For example, m = 1 corresponds to the avoidance of

4231: , 3412: ,

as nicely explained in [Woo09, Appendix]. In turn, the avoidance of these patterns is well studied and
surprisingly strong results are known. For example, for the two patterns 4231 and 3412, we have

#{w ∈ Sn|w avoids 4231} ∼ (1.15...) · (0.95...)n · n!, #{w ∈ Sn|w avoids 3412} ∼ (1.14...) · (0.95...)n · n!,

with precise values for the numbers, see [OEI23, A113228 and A113229] and, for example, [DK13, Section
4.2.4]. Using results of this form systematically might lead to some insight regarding Speculation 3.3 or
Speculation 5.2.

6. Unimodality of KL polynomials

Recall that a multimodal distribution, say with k modes, is a probability distribution with k local peaks
of the distribution. The case k = 1 is called unimodal, k = 2 is bimodal, k = 3 is called trimodal etc.

Applying the same terminology to the vector Pw = [1, a1, ..., ad] ∈ Zd+1
≥0 for w ∈ Sn raises the following

questions:

(6.i) What is the limit n → ∞ of

unin = #{Pw|w ∈ Sn,Pw is unimodal}/#{Pw|w ∈ Sn}?

In other words, we are interested in the percentage of unimodal KL polynomials. We can ask the same
question for the multiset: What is the limit n → ∞ of

unimult
n = #(Pw|w ∈ Sn,Pw is unimodal)/#(Pw|w ∈ Sn)?

(6.ii) Similarly, for k ∈ Z≥3, let multikn denote the percentage of k modal KL polynomials that are not j
modal for j < k, taken among the KL polynomials that are not j modal for j < k. What is

lim
n→∞

multikn?

For example, multi2n is the percentage of bimodal KL polynomials among all nonunimodal KL poly-
nomials. We could track the same statistics for the multiset version.

Let us first point out that there are essentially no unimodal polynomials (similarly for bimodal etc., but we
did not find any more explicit data):

Lemma 6.1. We have

#{P |P ∈ Z∞
>0,

∑
P = n,Pw is unimodal}/#{P |P ∈ Z∞

>0,
∑

P = n} ∈ O(n−a) for all a ∈ R>1.

That is, the percentage of unimodal [a0, ..., ad] ∈ Z∞
>0 goes to zero superpolynomially fast.

Proof. The number of compositions of n is 2n−1. Combine this with [Aul51, Theorem 2]. □

Remark 6.2. We expect something similar to be true for bimodal etc., but we did not find any more explicit
statement. However, we will use a different way to generate polynomials below, but we have not found
a percentage count for these. We still see Lemma 6.1 and the data below as an indication that the KL
polynomials have a remarkable distribution. 3
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The data is as follows:

, ,

n 1 2 3 4 5 6 7 8 9 10 11
% uni(set) 100 100 100 100 83.33 78.57 78.18 80.39 85.84 91.62 95.51

% uni(multiset) 100 100 100 100 99.59 99.10 98.76 98.68 97.56 97.93 98.38
.

This shows the percentage of unimodal KL polynomials (note that the bottom value is 70% not 0%), either
for the set of polynomials or the multiset. For multimodal, the plots are:

, ,

n 1 2 3 4 5 6 7 8 9 10 11
% bi 0 0 0 0 16.67 14.29 10.91 7.84 5.27 2.83 1.40
% tri 0 0 0 0 0 0 3.64 5.88 4.49 3.42 2.10

(Note that the top value is 30% not 100%.) Similarly for the multiset versions. This is not spelled out because
the data set is too small and the percentages are essentially all zero for S11.

Conjecture 6.3. Almost all KL polynomials are unimodal, i.e.:

lim
n→∞

unin = lim
n→∞

unimult
n = 1.

Remark 6.4. Given that the fire seems to go out as in Speculation 3.3, one could expect most KL polynomials
to be rather small and thus to have a higher percentage of unimodal. In particular, one could say that
limn→∞ unin = 1 is more surprising than its multiset version. 3

The following is not fully justified by the above data, as e.g. there are more trimodal KL polynomials for
S11 than bimodal ones. However, we think that the pattern is that they all peak shortly after they appear,
which skews the picture we get for the data we have. So:

Speculation 6.5. Almost all KL polynomials that are not unimodal are bimodal, almost all KL polynomials
that are not unimodal or bimodal are trimodal, etc., i.e.:

lim
n→∞

multikn = 1.

Similarly for the multiset versions.

We sadly do not see any way to prove Conjecture 6.3 or Speculation 6.5 at the time of writing this paper.
However, although we do not know any connection, related effects are known in the literature. Most notable
what one could call log concavity of R polynomials, see e.g. [Bre24, Conjecture 2.4] for details and a precise
formulation, and, for example, [BB05, Corollary 5.5.3] for the relation to KL polynomials.
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7. Roots of KL polynomials: all roots

We now compare the following two pictures, following the ideas in [BCD23] and the references to various
blogs therein. For other root plots of ‘famous’ polynomials see e.g. [WW01] (albeit this reference takes a
quite different perspective).

The first picture is the multiset of roots of the set of KL polynomials. In formulas, we plot

(roots(p)|p ∈ {Pw|w ∈ S11})

with the brightness indicating the density (bright=high density). The second plot is of the same type, but
with a different set of polynomials in 1 + Z≥0[v]. For that plot, it was created using 293189 polynomials in
1+Z≥0[v], with a randomly chosen degree in {1, ..., 15} (the maximal degree of a KL polynomial for S11 is 15),
and then randomly chosen coefficients {0, ..., 61582}. These numbers are chosen in this way because the total
number of distinct KL polynomials for S11 is 293189, the maximal degree is 15, and the maximal coefficient is
61582.

First, the KL polynomials with the leftmost points being ≈ −6.6532 and −1.5:

, .

Next we have the random polynomials, and the leftmost points are now at ≈ −61581.9988 and −1.5:

,

The percentage of real roots is ≈ 24.12%,
the percentage of roots with |root| in [0.9, 1.1] is ≈ 44.15%,

the average real value is ≈ −3849.98.

In both cases, the right plot is a zoomed plot with a marked unit circle.
The plots are very different. To make this into a clearer statement, let us first recall a few facts about the

distribution of roots of random polynomials. Notable are:
(7.a) The tail of negative real numbers. The tail is explained in Section 8 below.

(7.b) The high number of real roots. By [Kac49], the number of expected real roots of a polynomial of
degree k is 2/π ln k. To simplify our calculation, assume that the average degree of our sample is e2

for the usual e ≈ 2.71.... Then the expected percentage of real roots is 4π/e2 ≈ 17.23%.

(7.c) The reason is that they cluster near the unit circle. This is expected for random polynomials; see, for
example, [SV95]. Fairly explicit formulas for the distribution are known, for example, see [MBF+97],
but the only thing we notice here is that, in the limit, almost all roots will have an absolute value in
[1− ϵ, 1 + ϵ] for a fixed ϵ ∈ R>0.
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(7.d) The many holes in the KL plot. We do not know a general statement, but see [BCD23] for similar
patterns (this should be true for other integer valued polynomials as well). The case of coefficients in
{−1, 0, 1} is addressed, for example, in [CKW17]. The only exception is ‘forbidden region’ (the black
pizza slice around zero for real value > 0): this is true in general, and appears in both pictures, and
is a classical result; see e.g. [Fil88, Lemma 2].

Remark 7.1. The references [Kac49,SV95] are for polynomials with complex coefficients since we have not
found any references for integer-valued polynomials. 3

Here are a few statistics for the roots of KL polynomials. First, the percentage of real roots:

,

n 1 2 3 4 5 6 7 8 9 10 11
% 100 100 100 100 83.33 64.29 21.82 5.56 0.92 0.11 0.01 .

Second, how far they are, on average, from the origin:

,

n 1 2 3 4 5 6 7 8 9 10 11
% 0 0 0 100 75 56.94 37.55 27.53 24.26 21.72 20.42

av. real 0 0 0 -1 -0.625 -0.6736 -0.6339 -0.6585 -0.7016 -0.7933 -0.8706
.

As one can see, these are very different from the random distribution. So we ask:

Question 7.2. What is a random KL polynomial (defined so that one gets values closer to the above pat-
terns)?

We do not know how to attack this problem beyond studying and adjusting the above references.

8. Roots of KL polynomials: Perron–Frobenius root

We now address the tail in Section 7.
A polynomial f = [a0, ..., ad] ∈ 1 + vZ[v] satisfies the (negative) Perron–Frobenius (PF for short)

property, or simply is PF, if there exists a root λ ∈ R≤0 of f with −λ > max{|µ| | µ is a root of f, µ ̸= λ}.
Such a λ is called the PF root of f . The name is explained by the proof of the following statement.

Lemma 8.1. Almost all f ∈ 1 + vZ[v] satisfy the PF property, i.e.:

lim
M→∞

{f ∈ 1 + vZ[v]|max[a0, ..., ad] ≤ M,d ≤ M,f is PF}/{f ∈ 1 + vZ[v]|max[a0, ..., ad] ≤ M,d ≤ M} = 1.
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Proof. Let f̄ be f normalized, i.e. if f = [1, a1, ..., ad], ad ̸= 0, then f̄ = [1/ad, a1/ad, ..., 1]. Denote its
coefficients by bi. The companion matrix of f , having f̄ as its characteristic polynomial, is


0 0 0 ··· 0 −b0
1 0 0 ··· 0 −b1
0 1 0 ··· 0 −b2
0 0 1 ··· 0 −b3

... ... ... ... ... ...

0 0 0 ··· 1 −bd−1

.

Ignoring the sign in the final column, the associated graph is strongly connected, unless some bi = 0 (and
this is an if and only if), and the Perron–Frobenius theorem applies. Taking the sign then back into account
gives the negative Perron–Frobenius eigenvalue, and therefore root. Finally, vanishing of a coefficient occurs
with probability 1− (M−1

M )M , but the companion matrix will still satisfy the PF property with one exception:
if bd−1 = 0. As this happens with probability 1

M , the limit M → ∞ of the converse condition, as in the
statement, is 1. □

Since KL polynomials are either zero or in 1 + vZ[v], we can ask:

(8.i) What is the limit n → ∞ of

PFn = #{Pw|w ∈ Sn,Pw is PF}/#{Pw|w ∈ Sn}?

Similarly, but for the multiset, we would like to know the limit n → ∞ of

PFmult
n = #(Pw|w ∈ Sn,Pw is PF)/#(Pw|w ∈ Sn).

(8.ii) Also, what is the asymptotic behavior n → ∞ of

PFmaxn = max{−λ|λ is PF root of Pw, w ∈ Sn,Pw is PF}?

(The sign ensures that this is a nonnegative real number.)

For random polynomials e.g. [Gem86,Bai97] implies that the PF root gets very large. In particular, almost
surely we have PFmax(random) ≥

√
M where M is the bound for the coefficients. In Section 7 we have

M = 61582, so PFmax(random) ≥ 248.1572. Moreover, Conjecture 5.4 would imply that PFmax(random)
grows superexponentially if the KL polynomials were randomly distributed.

Now to the KL polynomials, the left side for the set of polynomials and the right for the multiset:

, ,

n 1 2 3 4 5 6 7 8 9 10 11
% set 0 0 0 0 16.67 21.43 20 15.36 8.89 3.81 1.34

% multiset 0 0 0 0 0.41 0.90 1.2 1.20 1.92 1.30 0.76
.

(Again, let us point out that the top of the diagrams is not at 100%.)
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Regarding the size of the PF roots, we have the following:

, ,

n 1 2 3 4 5 6 7 8 9 10 11
max 0 0 0 1 2 2.618 3 3.354 4.090 5.4206 6.6532 .

One pattern seems to be clear, so:

Conjecture 8.2. Almost all KL polynomials satisfy the PF property, i.e.:

lim
n→∞

PFn = 1, lim
n→∞

PFmult
n = 1.

Let us motivate Speculation 8.3, which is up next. Assuming Conjecture 6.3, almost all KL polynomials
are unimodal. In fact, the ones with the largest coefficients tend to be unimodal as well. However, it seems
that the roots of unimodal polynomials grow slowly. The most famous example of this is (1 + v+ ...+ vl)k−1,
which we have seen in Section 5: Their roots are roots of unity. A nontrivial example is chromatic roots,
the roots of chromatic polynomials (that these polynomials are unimodal is a nontrivial theorem of [Huh12]).
Since the complete graph with k vertices has a chromatic root at k − 1, the rate of growth of the chromatic
roots is linear in the number of vertices.

Speculation 8.3. We have subexponential growth, i.e.:

PFmaxn ∈ O(γn) for all γ ∈ R>1.

Being probably related to Section 6, we do not know how to prove Conjecture 8.2 or Speculation 8.3.

9. The KL ballmapper

Mapper algorithms are classical tools in TDA, originally introduced in [SMC07], designed to explore and
visualize data. These algorithms combine dimensionality reduction, clustering, and graph network techniques
to create a graph out of data. We will use a mild modification that is a bit more suitable for our purpose, as it
gives nicer visualizations, ball mapper from [Dło19]. These types of algorithms have found important appli-
cations, even in the real-world sciences; see, for example, [Dło24] for references and examples of applications.
Moreover, the current section is inspired by [DGS24], which uses the ball mapper on data from knot theory,
Tic-Tac-Toe games, and classical cancer databases. We now explain the results if one applies these methods
to the KL polynomials.

In fact, following [BBD+22], we also used the so-called H polynomials together with the KL polynomials.
See [BBD+22, Section 3.1] for the definition. The point is that knowing the tuple

(
Pw, ℓ(w)

)
is equivalent to

knowing the H polynomial for w used in the ball mapper.

Remark 9.1. The data sets for the H polynomials can also be found in [LTV24a]. 3

We will not recall the definition of the mapper and ballmapper algorithms. Here is a very brief summary
of what the reader needs to know; see the above references for details:

(a) The algorithm we used creates a graph G = G(ϵ) from a point cloud using balls of a prefixed radius
ϵ ∈ R>0. All points in a ball with this radius are collapsed into a vertex of G, i.e. G which has more
vertices the smaller ϵ. The main point then is the study of the family of graphs when one varies ϵ.

(b) In order to improve the graph plots, we rescaled the KL and H polynomials, followed by a principal
component analysis (PCA).

(c) For visualization in 3D, we used force-directed drawing algorithms of (coil-)spring-type and Kamada–
Kawai-type as provided by the Python library Bokeh. Details about these graph visualization algo-
rithms can be found, for example, in [Tam14, Chapter 12].
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(d) More details are explained in [LTV24a]. We give only a sample of what can be found in [LTV24a];
in particular, the graphs are much more impressive in the 3D plot in [LTV24a].

We now present the KL ball mappers for S11. First, the spring embedding for ϵ = 4 · 10−9 and the KL
polynomials, rotated to four different angles:

, ,

, .

Next, the Kamada–Kawai embedding for the same ϵ, the KL polynomials, and again in four different angles:

, ,

, .
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We point out, as the reader is invited to check using the code in [LTV24a], that these arc-like (top) or fish
(bottom) shapes are quite stable when varying ϵ, but also when varying n from roughly n = 8 onward. This
might indicate some stabilization process that happens for n → ∞ but, at the same time, it underlines that
the small n does not provide a sample representative of KL polynomials.

Similarly, the H polynomials in spring and the Kamada–Kawai embedding, both for the same ϵ = 10−9,
are:

, ,

, ,

, ,

, .
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The same comments as for the KL polynomials apply, but this time for this web-type shape.
ChatGPT says about the KL polynomial ball mapper and the H polynomial ball mapper, both for the

spring embedding:
▶ “The overall shape resembles a ‘fish’ or a ‘stream,’ with the dense cluster forming a ’head’ and the

sparser connections on the left resembling a ‘tail.’ It gives the impression of directional flow or gradient
density across the network.”

▶ “The overall structure looks like a dense, irregular web, with some areas more interconnected than
others. The shape does not conform to a specific geometric form, but appears somewhat sprawl-
ing and organic, indicative of a complex network with a dense central region and sparser peripheral
connections.”

Finally, again there is a huge difference between randomly generated polynomials as in Section 7 and KL
polynomials. The ball mapper for the former is a random graph:

.

Thus, in analogy to Question 7.2, we ask:

Question 9.2. What is a random KL polynomial (defined so that one gets BM closer to the above)?

Remark 9.3. We also tried one of the most classical tools from TDA on the KL polynomials: persistent
homology. However, the data set of KL polynomials starts to be interesting very late and is then too large:
we were not able to extract meaningful results. 3
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