
HAL Id: hal-04816962
https://hal.science/hal-04816962v1

Submitted on 3 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

SPARTA: Interpretable functional classification of
microbiomes and detection of hidden cumulative effects
Baptiste Ruiz, Arnaud Belcour, Samuel Blanquart, Sylvie Buffet-Bataillon,

Isabelle Luron Le Huërou-Luron, Anne Siegel, Yann Le Cunff

To cite this version:
Baptiste Ruiz, Arnaud Belcour, Samuel Blanquart, Sylvie Buffet-Bataillon, Isabelle Luron Le Huërou-
Luron, et al.. SPARTA: Interpretable functional classification of microbiomes and detection of hid-
den cumulative effects. PLoS Computational Biology, 2024, 20 (11), pp.e1012577. �10.1371/jour-
nal.pcbi.1012577�. �hal-04816962�

https://hal.science/hal-04816962v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


SPARTA : Interpretable functional classification of
microbiomes and detection of hidden cumulative
effects.
Baptiste Ruiz1, Arnaud Belcour1,2, Samuel Blanquart1, Sylvie
Buffet-Bataillon3,4, Isabelle Le Huërou-Luron3, Anne Siegel1, Yann Le
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Abstract
The composition of the gut microbiota is a known factor in various dis-
eases and has proven to be a strong basis for automatic classification of
disease state. A need for a better understanding of microbiota data on
the functional scale has since been voiced, as it would enhance these ap-
proaches’ biological interpretability. In this paper, we have developed a
computational pipeline for integrating the functional annotation of the gut
microbiota into an automatic classification process and facilitating down-
stream interpretation of its results. The process takes as input taxonomic
composition data, which can be built from 16S or whole genome sequenc-
ing, and links each component to its functional annotations through inter-
rogation of the UniProt database. A functional profile of the gut micro-
biota is built from this basis. Both profiles, microbial and functional, are
used to train Random Forest classifiers to discern unhealthy from control
samples. SPARTA ensures full reproducibility and exploration of inher-
ent variability by extending state-of-the-art methods in three dimensions:
increased number of trained random forests, selection of important vari-
ables with an iterative process, repetition of full selection process from
different seeds. This process shows that the translation of the microbiota
into functional profiles gives non-significantly different performances when
compared to microbial profiles on 5 of 6 datasets. This approach’s main
contribution however stems from its interpretability rather than its perfor-
mance: through repetition, it also outputs a robust subset of discriminant
variables. These selections were shown to be more consistent than those
obtained by a state-of-the-art method, and their contents were validated
through a manual bibliographic research. The interconnections between
selected taxa and functional annotations were also analyzed and revealed
that important annotations emerge from the cumulated influence of non-
selected taxa.
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Author summary
The field of personalized medicine has major stakes in using an individual’s
microbiota as a descriptor of health. This raises the question of the inter-
pretability of microbiotal signatures found for various diseases. To gain
insight into this matter, we developed the SPARTA (Shifting Paradigms to
Annotation Representation from Taxonomy to identify Archetypes) pipeline
to highlight and interlink significantly discriminating taxa and metabolic
functions. SPARTA relies on the integration of the information from the
UniProt database concerning the gut microbiota’s functional annotation
to microbial abundance data, and Machine Learning classification, with
the novel preconception of keeping explicit and thorough information on
the connections between taxa and annotations. Through iteration, this
method can output a reduced list of the microbiotas’ descriptors, both in
terms of microbial taxa and functions, with insight into their robustness,
for better ease of downstream interpretation. The selection was compared
to state-of-the-art approaches, and its contents were validated through a
manual bibliographic check of its outputs. Finally, we highlight how dis-
criminant metabolic functions may arise from the aggregation of several
low-abundance taxa, giving visibility to these functions which are there-
fore not easily derivable from approaches based on microbial composition,
marking them as potentially novel leads.

Introduction 1

The importance and perspectives opened by the human gut microbiota 2

have been at the forefront of the discussion in the medical field in the past 3

years, as a wide array of unsuspected impacts on host health have been 4

derived from its composition. When studying the gut microbiota, the tax- 5

onomic scale has generally been favored, to identify biomarkers for various 6

conditions [1–3]. In recent years, however, some voices in the medical com- 7

munity have called for increased inclusion of the gut microbiota’s functional 8

paradigm in coming analyses. Specifically, taxonomy-based approaches do 9

not properly account for functional redundancies between species and, in 10

turn, might fall short in identifying novel biochemical pathways that should 11

be targeted by innovative therapies [4]. 12

Functional profilings can be built with several methods, depending on 13

the upstream sequencing method. For raw shotgun metagenomic sequenc- 14

ing (MGS) reads, various tools have been developed for functional analysis, 15

notably including the HuMAnN pipeline [5–7] which can quantify func- 16

tional annotations (FAs) in a sample based on sequence alignments. For 17

processed 16S sequencing data, PiCRUSt2 [8, 9] stands as one of the most 18

popular tools for functional profiling. Other tools can be agnostic in re- 19

gard to the sequencing method, such as the EsMeCaTa pipeline [10], which 20

functionally annotates an input list of taxonomic affiliations according to 21

the content of the UniProt database. All of these tools associate FAs to 22

taxa via the interrogation of internal or external databases, creating a link 23

between the taxonomic and functional paradigms. 24

The resulting functional profiles constitute a basis for uncovering func- 25

tional markers within the gut microbiota, provided these markers can be 26

ranked or filtered based on how informative they are. Such a ranking 27

can be handled through a linear approach, for example using the limma 28
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tool [11], which fits a Generalised Linear Model over the data before test- 29

ing whether each variable’s regression coefficient is significantly different 30

from zero [12–14]. Previous studies in clinical predictive modeling have 31

also highlighted the potential for tree-based methods to perform such a 32

variable selection, such as Random Forests (RFs) [15] thanks to their in- 33

herent aptitude for variable ranking through the Gini feature importance 34

metric [16]. 35

RFs are also particularly relevant in this regard, due to their proven 36

efficiency in classifying microbiota data [17], outperforming other classic 37

techniques, such as Support Vector Machines (SVMs) [17–19]. 38

While the shift to functional profiles might lead to a decrease in classi- 39

fication performance, the subsequent analyses based on RF feature impor- 40

tance scores singled out impactful metabolic functions [20, 21]. Obtaining 41

a set of discriminant functions is one of the major aspects when turning to 42

FAs instead of taxa descriptors. However, the usual number of FAs identi- 43

fied in in microbiota data is not always easily tractable (2895 ECs derived 44

from 121 species with HuMAnN3 in context of a meta-analysis of Colorec- 45

tal Cancer cohorts for example [7]), both for interpretation and for ML 46

algorithms. As a result, the question of variable selection, that is selecting 47

a meaningful subset among all FAs, remains a crucial post-processing step 48

to deliver tractable results. 49

Variable selection based on ranked features can be established through 50

a fixed criterion. For instance, the limma tool can be coupled with a se- 51

lection based on adjusted p-value [12–14]. Variable selection can also take 52

the form of a set amount of top features from the list, as implemented by 53

MetAML [19] for example, which searches for the optimal top-k features 54

that maximize classification performance, for k in a set list of values. It- 55

erative approaches, such as the RF-based backward elimination procedure 56

(RVFS) [22], wherein a set fraction of the dataset’s variables, chosen at the 57

bottom of the Gini Importance Score’s ranking, is iteratively removed until 58

the model reaches peak performance, are also applicable. These methods, 59

however, all require a choice of discrete parameters: RVFS iteratively se- 60

lects a predetermined percentage of the dataset, and MetAML and limma’s 61

approaches cover only an empirically chosen p-value or set of top k values. 62

This advocates the interest of a fully automated selection process, to re- 63

move user-induced bias altogether, though the evolution of classification 64

performance should still be controlled. 65

Another aspect of these selection processes to take into account is that 66

of the variable selection methods’ robustness: how does the selected list 67

of features change with slight perturbations in the dataset? One measure 68

of such robustness can be derived from the coherence of repeated selection 69

tasks, using resampling. RF models have been proven to be coherent in the 70

right conditions, but their robustness is also highly dependent on the data 71

and chosen approach [23]. As such, an internal measurement of the RF 72

selections’ robustness should be envisaged to add transparency if we are 73

to exploit these selections for downstream biological interpretation. This 74

aspect of the method is evaluated by none of the previously mentioned 75

approaches and remains crucial to ensure robust biological interpretations. 76

In this article, we present a novel approach, implemented as an auto- 77

mated pipeline named SPARTA (Shifting Paradigms to Annotation Rep- 78

resentation from Taxonomy to identify Archetypes). Our method makes 79

it possible not only to exploit the RF as an automated variable selector 80

to improve its performances but also to internally evaluate a variable’s 81
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robustness as a predictor, for better interpretability of the model. Tak- 82

ing as input taxonomic abundance tables for microbiota samples within 83

a dataset together with health status, SPARTA first retrieves the mi- 84

crobiota’s metabolic mechanisms, regardless of the upstream sequencing 85

method. Then SPARTA extracts significantly discriminating features from 86

this process while ensuring consistent classification performances when 87

switching from taxa to FAs as a basis for classification. To achieve that 88

goal, SPARTA extends the MetAML and DeepMicro [18,19] procedures in 89

three dimensions (increased number of trained random forests, selection of 90

important variables with an iterative process, repetition of full selection 91

process from different seeds) to ensure full reproducibility and exploration 92

of inherent variability in performances due to changes in training hyperpa- 93

rameters. 94

This approach was tested on six different datasets pre-processed and 95

used as a reference for classification performance by previous works [18,19]. 96

A post-processing method is also implemented, to accentuate emphasis on 97

genericity and robustness. This involves extracting an adaptive and robust 98

shortlist of significantly discriminant features compiled from a repetition of 99

the method, which we backed through a comparison with selections based 100

on limma and with a manual bibliographic verification. Our pipeline also 101

integrates and exploits the interconnections between organisms and FAs, 102

to also show that cumulative phenomena can be identified by leveraging 103

the relationships between taxa and their expressed FAs. 104

Results 105

SPARTA overview: paired mechanistic analysis from 106

relative microbial abundance profiles 107

SPARTA (see Fig 1) requires two inputs. The first is a table describing the 108

microbial relative abundances (i.e.: taxonomic abundance tables) for each 109

microbiota sample within the dataset, from which functional profiles will 110

be computed. The other is a vector file indicating the groups according to 111

which each sample within the dataset should be classified, represented as 112

green and red colors in Fig 1. 113

SPARTA is based upon the MetAML and DeepMicro [18,19] procedures 114

which describe the average results of, respectively, 20 and 5 RFs’ training 115

from a predefined seed. To gain robustness, SPARTA trains 20 independent 116

random forests (from a parameterized seed) to predict the patient’s status. 117

From the importance score computed on these 20 RFs, SPARTA extracts 118

a shortlist of important features and trains 20 new RFs. This procedure 119

is then repeated on this shortlist until a drop in performance is observed 120

(see Fig 1). This extension of the MetAML and DeepMicro procedures 121

in 3 dimensions (20 random forests, a different seed for each of the 10 122

runs, and an iterative process to select important variables) is a guarantee 123

for robustness. SPARTA also allows the user to set the seed for each 124

run, ensuring full reproducibility and exploration of inherent variability in 125

performances due to changes in training hyperparameters (see Fig 2). 126

SPARTA computes three major outputs. The first is a functional table: 127

by using the EsMeCaTa tool [10] to query the UniProt [24] database, we 128

associate a representative proteome to each taxon from the original pro- 129

files, and link them to FAs (Gene Ontology (GO) terms [25] and Enzyme 130
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Fig 1. A schematic representation of SPARTA’s pipeline. From
taxonomic tables and their associated labels as inputs, the pipeline
produces functional descriptions of the microbiota samples via the
EsMeCaTa pipeline. Both of these profiles are then used as basis for the
training of RF models to discern Control from Patient profiles. The
average importance scores of these variables over all trained forests are
then used as basis for a selection of significantly discriminant variables,
which can then be processed again iteratively, or passed as an output. For
robustness, the process is repeated 10 times, leading to 10 different lists
of significantly discriminant taxa and FAs. These lists can be compiled
into different categories, which group variables by level of robustness
based on the frequency of their appearance in the significant lists. Thus,
unanimous variables are considered to be ”robust” discriminators, those
agreed on by 75% or more of the classifiers are considered ”confident”,
and those that are selected at least once are considered ”candidates”.
Internally to the pipeline implementation, robust features are labeled
”Core-significant”, and the others are labeled as ”Meta-X significant”, X
being the percentage of significant variable lists that include them.
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Fig 2. Classification algorithm implemented in SPARTA : For a
given run k, a test subset is randomly selected within the initial dataset
and set aside. A given iteration j consists in training X random forests
(20 by default), each having a dedicated validation subset. These 20
forests are used to compute a median classification performance P (j, k)
and a shortlist of important features. This lists is used to train the X
random forests of iteration j + 1. By default, SPARTA launches 10 runs
and 5 iterations.
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Commission (EC) numbers [26]). The prevalence of each of the obtained 131

annotations within the individual samples and abundance data are used 132

to calculate scores of FAs, as described in Materials and Methods. This 133

manipulation ensures that the reference-based method EsMeCaTa provides 134

a quantitative annotation-based description of the gut microbiota. 135

The second output consists of classification performances: SPARTA, by 136

default, trains RF [16] classifiers on the obtained functional profiles, and 137

measures their performance in categorizing the samples. It also offers the 138

option to train SVM classifiers. 139

Finally, SPARTA generates a list of features, both taxa and FAs, which 140

are identified as significantly discriminating between the given sample groups 141

based on an automatically calculated selection threshold applied to their 142

average importance scores (Gini or SHAP values, see Materials and Meth- 143

ods). The associations between taxa and annotations are also made ex- 144

plicit, allowing each feature to be linked notably to its significant counter- 145

parts. 146

This process generates shortlists of significantly discriminating features 147

that can be combined for a robust consensus. SPARTA is applied 10 times, 148

each time with different test subsets, leading to some differences in vari- 149

ables considered significant. To address this, variables are categorized as 150

follows: (i) ”Robust” if unanimously deemed significant in all SPARTA 151

runs (above the variable selection threshold). This category contains the 152

variables that are most essential to the discernment of both patient pro- 153

files. (ii) ”Confident” for the variables that were considered significant by 154

at least 75% of the different runs (in our case, by 8 or more runs out of 155

10). This category contains variables that are likely to be important for 156

profile discrimination and could be a complement to the robust shortlist for 157

interpretation. (iii) ”Candidate” for variables shortlisted in at least one 158

SPARTA run. These are variables that should not be fully excluded from 159

consideration when it comes to interpretation, but that are unlikely to be 160

influential. More generally, across all of these categories, the robustness 161

of a selected variable can be evaluated in light of the number of different 162

SPARTA runs that list it as significantly discriminant. 163

Overall, taxa and FAs are quantified on three different levels by SPARTA. 164

They are given: (i) A score based on their presence in each individual 165

sample, in the form of a matrix containing, per sample, the relative abun- 166

dances for taxa, or the scores for annotations (output ’SoFA table.tsv’), 167

(ii) A quantification of how discriminant they are between profiles of sam- 168

ples in the form of a vector of importance scores, (iii) An indicator of their 169

robustness as a discriminator, in the form of lists of variables affiliated to 170

the ”robust” and ”candidate” categories. 171

Differential analysis of taxonomic and functional results 172

Experimentation 173

We applied SPARTA to six publicly available datasets, previously explored 174

in articles such as MetAML [19] or DeepMicro [18]. These datasets contain 175

taxonomic abundance tables issued from sequenced microbiota samples 176

from cohorts of healthy controls and individuals diagnosed with Cirrhosis 177

(Cirrhosis dataset), Colorectal Cancer (Colorectal dataset), Obesity (Obe- 178

sity dataset), Type 2 Diabetes (T2D and WT2D datasets) or Inflammatory 179

Bowel Disease (IBD dataset). For further details, see Materials and Meth- 180

ods. SPARTA was launched with both RFs and Gini importance score [16] 181
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(default parameters), and with RFs and SHAP [27] importance score, for 182

10 runs, 5 selection iterations per run, and 20 trained models per iteration. 183

We also evaluated the classification performances of SVM classifiers on the 184

same datasets. 185

Machine Learning classification performances obtained from func- 186

tional profiles are similar to those from taxonomic profiles 187

Fig 3 illustrates the classification performances of the RFs [16] trained 188

by SPARTA to distinguish between patients and healthy individuals, per 189

profile and dataset. Classification on the taxonomic datasets prior to se- 190

lection is analogous to the classification without representation learning 191

method implemented in DeepMicro [18], with 20 RF (SPARTA) instead of 192

5 (DeepMicro) and dedicated test sets (SPARTA). For each RF trained by 193

SPARTA, the area under the receiver operating characteristic curve (AUC) 194

is calculated. Seeing as 20 RFs are trained within an iteration, the median 195

of these 20 AUCs is retained to represent the performances of the iteration 196

as a whole. The full iterative process is repeated 10 times, giving 10 me- 197

dian performance metrics per level of iterative selection (see Fig 2). The 198

amount of selections that leads to the highest median among these metrics 199

is deemed to be the optimal selection and is the one represented here for 200

the taxonomic and functional profiles. The number of selective iterations 201

corresponding to this selection are given in the ‘Optimal Selection’ column. 202

For each dataset, a Mann-Whitney U-test was conducted comparing the 203

performances based on the taxonomic and functional profiles at respective 204

optimal selection levels. The details of all of the obtained performances 205

are given in S1 File. We also performed the same process evaluation with 206

SVMs and showed that RFs consistently outperform SVMs on the datasets 207

presented in this paper (see S1 Fig), as well as RF with SHAP values as 208

importance scores (see S1 Fig, no significant difference compared to RF 209

and Gini importance scores). We also reported in S1 Table the classifica- 210

tion performances on validation sets. Those are usually higher than on the 211

test set. This is expected due to the iteration process where importance 212

scores are averaged over all RF to perform variable selection. 213

For example, the Colorectal dataset’s functional (purple) and taxo- 214

nomic (green) profiles have been tested over 10 runs by SPARTA. These 215

tests have allowed us to detect the level of variable selection that yields the 216

best median classification scores for each profile, which were then chosen 217

for this representation. In this case, as shown in the ’Optimal selection’ 218

column, the functional dataset gives its best performance after 2 iterations 219

of variable selection, whereas the taxonomic dataset gives its best perfor- 220

mance after just one. The performances of RFs trained on taxonomic and 221

functional profiles without selection are also represented, in red and blue 222

respectively. Each of the 10 runs of SPARTA yields an average classifica- 223

tion performance score, corresponding to the plotted dots. The boxplots 224

represent the associated distribution and notably show that the functional 225

profile has a median AUC of 0.85, against 0.86 for the taxonomic profile. 226

The difference between both distributions was not found to be significant 227

by a Mann-Whitney U-test, as shown by the absence of an asterisk symbol 228

on this row. 229

Overall, we can see that taxonomic profiles yield better median clas- 230

sification performances than their functional counterparts, with the T2D 231

dataset being the only exception. However, the difference in performance 232
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Fig 3. Classification performances of RF models trained on
taxonomic and functional profiles, and impact of the variable
selection on performance. Median classification performances (AUC)
for all types of profiles and each dataset, on the original datasets as well
as at the optimal level of selection over 10 full runs of the pipeline. Each
of these runs involved a different randomly selected test set of individuals,
which was used for both profiles. Performances and importance scores for
each run were computed and averaged over 20 distinctly trained RF
models. The amount of selection iterations required to obtain the best
average among these median AUCs are represented beside each plot.
Instances when the difference in performance between functional and
taxonomic profiles using SPARTA is significant for a same dataset (based
on a Mann-Whitney U-test) are signaled by a * symbol.
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between both profiles is only significant in the case of the WT2D dataset, 233

showing that though converting our data to the functional level comes at 234

the cost of some performance, both profiles perform comparably as a ba- 235

sis for classification. These results are in line with the previous works of 236

Douglas et al. [20] and Jones et al. [21]. However, the innovative potential 237

of functional profiles resides more in their prospective contribution to a 238

biological understanding of the diseases’ mechanisms than in their use for 239

automatic classification. 240

Of note is also the asymmetrical benefit of variable selection. Functional 241

profiles systematically benefit from a reduction of dimensionality, as their 242

median performances after iterative selection (purple) are always superior 243

to those obtained without variable selection (blue). For taxonomic profiles 244

however, variable selection leads to a decrease in median results for three 245

of the six datasets (Cirrhosis, WT2D, and IBD). 246

A comparative classification was made based on a functional profile 247

built from the raw reads of the IBD dataset with HuMAnN3 [7], using the 248

same parameters. The obtained results (S2 Fig) show that median classifi- 249

cation based on functional profiles built directly from the reads are on par 250

with those obtained using EsMeCaTa, as the differences in performance are 251

not significant based on a Mann-Whitney U-test (p-value = 0.45). Both 252

functional profiles’ performances are also non significantly different from 253

the performance obtained on the IBD taxonomic dataset (p-value = 0.73 254

for HuMAnN and 0.36 for EsMeCaTa). 255

We will now focus on propositions to optimize the differential functional 256

profiling of microbiotas in the context of a disease, as well as evaluate the 257

added value of functional information in comparison to taxa for under- 258

standing the underlying biological processes. 259

Robustness of SPARTA’s feature selection: comparative evalua- 260

tion 261

The datasets used in the previous section contained on average 484 taxa. 262

Through EsMeCaTa’s [10] pipeline and its interrogation of UniProt [24], 263

these taxa were linked to a total average of 10,510 FAs per dataset, re- 264

sulting in a 22-fold mean increase in the amount of information, as shown 265

in Table 1. For example: in total, the sequenced samples of the Cirrhosis 266

dataset covered 542 taxa, which were associated by EsMeCaTa to a to- 267

tal of 10,434 FAs. Following SPARTA’s application, 72 of these taxa and 268

33 of these annotations were included in the candidate sublists. Among 269

these, 32 taxa and 7 annotations were in the confident subset, and 23 taxa 270

and 4 annotations were in the robust subset. The sizes of the selections 271

obtained from selections based on SHAP importances are also available 272

in S3 Fig and S4 Fig. These results showcased that selections based on 273

SHAP importance scores were less robust than those based on Gini impor- 274

tance, as the sizes of the Robust selections obtained through this method 275

were consistently smaller than those obtained with Gini-based selection, for 276

both functional and taxonomic profiles. Three of the functional datasets 277

(WT2D, Obesity, and Colorectal) and one functional dataset (Colorectal) 278

even gave empty Robust selections from the first iteration with SHAP, 279

which does not happen on any dataset with Gini. As such, only results 280

based on Gini selections were presented here. This is however illustrative 281

of the impact of the ranking approach on the overall quality of SPARTA’s 282

analysis. 283
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Table 1. Application of the SPARTA selection process to
identify signature taxa and functions on 6 reference datasets.

Dataset Features
Initial

number of
taxa

Predicted
Functions

Robust
subset

Confident
subset

Candidate
subset

Cirrhosis Taxa 542 - 23 32 72
FAs - 10,434 4 7 33

Colorectal Taxa 503 - 24 37 109
FAs - 10,635 1 17 355

Obesity Taxa 465 - 136 154 188
FAs - 11,341 26 169 3,199

WT2D Taxa 381 - 27 51 136
FAs - 10,180 8 69 3,150

T2D Taxa 572 - 117 136 202
FAs - 10,275 139 307 1,575

IBD Taxa 443 - 22 29 100
FAs - 10,196 59 167 1,883

Total amount of features (taxa and FAs) in the original dataset (”Initial
Number” column) and in the robust, confident, and candidate selections
at the optimal SPARTA selection threshold (Calculated over 10 runs of
the pipeline).

To balance the increase in information when using FAs, SPARTA op- 284

erates a selection of variables based on the features’ importance scores. 285

These scores, when ordered from highest to lowest, display a kink-like 286

shape. SPARTA automatically operates a cut-off at the inflection point 287

of the kink and probes whether classification performances are improved 288

(see Materials and Methods). This selection aims to correct the redundan- 289

cies and the dimensionality of the original dataset for better classification. 290

It also generates one of the pipeline’s main outputs: a list of ranked fea- 291

tures (either taxa or FAs) based on their average importance scores [16], 292

and including an automatically computed cutoff that distinguishes signifi- 293

cant and non-significant information. SPARTA provides the user with the 294

list of important taxa and FAs for each iteration, the corresponding classi- 295

fication performance, and a focus on the best iteration after the first level 296

of selection. 297

The amount of information retained per SPARTA run for all func- 298

tional datasets is illustrated in Fig 4(A). The figure shows that the aver- 299

age amount of information to retain for optimal classification performance 300

varies depending on the dataset. For example, retaining the top 500 anno- 301

tations ranked by average Gini importance would give a selection similar to 302

SPARTA on the IBD dataset, whereas the Obesity dataset would require 303

the top 1,000 annotations to match the selection. This shows that an adap- 304

tive method like SPARTA, which makes a decision concerning the quantity 305

of information to be retained by the selection, has an advantage over a 306

selection based on a fixed threshold because it can adapt to the complexity 307

of the problem at hand, which is shown here to be variable. SPARTA’s se- 308

lection thresholds also do not match the more traditional thresholds, such 309

as the top 30 features explored in Jones et al. [21], and can be used to get 310

an estimate of the optimal amount of information to consider for discerning 311

microbiota profiles. 312

To explore whether SPARTA’s variable selection differs from classic 313

linear approaches, we compared our approach with a standard method de- 314

signed for continuous data [11] rather than for count data [28]. Specifically, 315

selections obtained from direct pairwise comparison of the profiles using 316

the limma tool [11] were compared. Variables were selected using a p-value 317
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Table 2. Sizes of the SPARTA and limma selections. Limma was applied
with an adjusted p-value threshold of 0.05. From left to right, the
columns present, for SPARTA and limma, the size of the robust,
confident, and candidate subsets issued by the concerned selection
method iterated 10 times with identical test subsets.

Total size of the robust subset Total size of the confident subset Total size of the candidate subset
SPARTA Limma SPARTA Limma SPARTA Limma

Cirrhosis 4 878 7 1,165 33 2,668
Colorectal 1 0 17 0 355 0
Obesity 26 0 169 0 3,199 0
WT2D 8 0 69 0 3,150 0
T2D 139 2 307 4 1,575 103
IBD 59 0 167 0 1,883 111

threshold of 0.05, a classic threshold value exploited in several other studies 318

that applied limma to metagenomic data [12–14]. Similarly to SPARTA, 319

the selection process was iterated 10 times with variation induced from 320

setting aside a subset of the samples, and variables were compiled into ’ro- 321

bust’, ’confident’, and ’candidate’ categories depending on how often they 322

were selected. Comparative results of this process are presented in Fig 4(A) 323

and Table 2. For example, Fig 4(A) shows that, when applied 10 times to 324

the Cirrhosis dataset, SPARTA selects a minimum of 6 annotations, and 325

a maximum of 21, with a median of 11. In the same conditions, limma 326

selects between 1,032 and 2,149 annotations, for a median of 1,642. These 327

distributions are plotted, respectively, in purple and gray. Table 2 shows 328

that with SPARTA’s selection, the Cirrhosis dataset outputs 4 robust an- 329

notations, 7 confidents, and 33 candidates, against a respective 878, 1,165 330

and 2,668 with limma. With these parameters, limma is a much more 331

stringent selector than SPARTA on all datasets aside from Cirrhosis. For 332

the Colorectal, WT2D and Obesity datasets in particular, all selections are 333

empty, leading to an empty candidate subset as described in Table 2. The 334

IBD dataset also proves to be unsuitable for this approach, yielding empty 335

robust and candidate subsets, and an empty robust subset. Only the T2D 336

and Cirrhosis datasets allow limma to yield a non-empty robust subset. 337

SPARTA, on the other hand, consistently yields non-empty robust and 338

confident selections, both of which are reasonably sized for interpretation 339

when compared to the candidate subsets, being close to 50 times smaller 340

in the case of the WT2D dataset’s confident and candidate subsets. 341

Among these datasets, Cirrhosis stands out as an outlier. Indeed, it 342

is by far the dataset on which limma selects the most information: in Fig 343

4(A), we can see that it selects 1550 annotations on average over 10 itera- 344

tions, whereas the second highest amount, obtained with the T2D dataset, 345

is only 26.1 on average. This also makes it the only case in which SPARTA 346

proves to be the most stringent of the two selectors, with an average of 347

12 selections per run, for a Robust selection of size 4 against limma’s 348

878 (see Table 2). The four annotations in question are: GO:0016984 349

(ribulose-bisphosphate carboxylase activity), GO:0003779 (actin binding), 350

GO:0004081 (bis(5’-nucleosyl)-tetraphosphatase (asymmetrical) activity) 351

and GO:0018112 (proline racemase activity). Actin binding (GO:0003779) 352

signals the participation of the gut in the maintenance of the intestinal 353

epithelia, which plays a role in the prevention of liver diseases such as 354

Cirrhosis [29]. The activity of proline racemase (GO:0018112) is also in- 355

dicative of proline metabolism in the gut, which has also been shown to be 356

upregulated in cases of Cirrhosis [30]. The activity of the bis(5’-nucleosyl)- 357

tetraphosphatase enzyme (GO:0004081) is involved in the metabolism of 358
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both purine and pyrimidine according to KEGG [31], which are disturbed 359

in mice gut during the development of Cirrhosis [32]. Finally, ribulose- 360

bisphosphate carboxylase (GO:0016984), though it is mostly known for 361

its role in photosynthesis, can also be involved in the salvage of methion- 362

ine [33], itself key in the development of liver disease [34]. 363

As such, in the case of Cirrhosis, SPARTA robustly highlights a small 364

subsection of biologically relevant annotations, themselves consistently high- 365

lighted by limma as linear indicators of the prevalence of the disease. This 366

could illustrate a case in which the dataset is ”too easy” to predict, due to 367

an abundance of features that linearly differentiate the profiles, and a small 368

sample of which is sufficient to be efficient in classification. This could lead 369

to an over-selection from SPARTA, as even when relevant features are re- 370

moved by the iterated selection, the remaining variables still allow for good 371

classification performance. In this case, it could be interesting to look at 372

the selections from iterations before the optimum. 373

We then focused on the T2D dataset, which is the only other dataset 374

on which limma i) extracts a non-empty robust selection with an adjusted 375

p-value threshold of 0.05 (see Table 2) and ii) consistently provides non- 376

empty FA selections. Fig 4(B) illustrates the overlap between limma’s and 377

SPARTA’s robust and candidate annotations. 378

T2D’s limma selection is smaller than SPARTA’s, englobing a total 379

of 103 annotations in its candidate subset against 1,575 for SPARTA, as 380

shown in Table 2. As shown by Fig 4(B), all of these annotations aside 381

from one are included in SPARTA’s candidate selection. Similarly, limma’s 382

robust subset is entirely included in SPARTA’s robust selection. 383

To put these results in perspective, there is no guarantee that a 0.05 p- 384

value threshold yields an ’optimal’ selection for this dataset when applying 385

limma. This choice of threshold is, however, a required external input for 386

the method, that SPARTA does not need as it automates the choice of 387

the selection’s size. As such, the chosen threshold could arguably be too 388

restrictive for the T2D dataset. As an illustration, a p-value threshold of 389

0.255, obtained to generate a limma candidate selection as close as possible 390

to the size of SPARTA’s, was applied, as illustrated by S5 Fig. This much 391

less restrictive threshold yields a limma selection that still largely overlaps 392

with SPARTA’s selection (74% of limma’s annotations being included in 393

SPARTA’s). 394

Overall, limma does not yield exploitable selections with a classic p- 395

value threshold on four of our six datasets. The examination of the remain- 396

ing two datasets allows us to illustrate how SPARTA and limma behave 397

comparatively in different situations. In T2D’s situation, the limma selec- 398

tion is smaller and largely overlaps SPARTA, with limma’s robust subset 399

notably being entirely included in the SPARTA selection. For the Cir- 400

rhosis dataset, the SPARTA selection is the smallest of the two, however, 401

it remains coherent with what limma selects, and yields information that 402

is coherent with the biological question at hand. RF classification perfor- 403

mances obtained on both selections and presented in S6 Fig, also show that 404

limma’s selections perform under SPARTA’s as basis for classification, as 405

neither of the recorded performances surpass their SPARTA counterparts. 406
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Fig 4. Comparison between SPARTA and limma functional
selections A: Number of important selected FAs for each run at
best iteration for the six datasets Amount of FAs selected by
SPARTA and limma, for all datasets. Limma selections were effectuated
with an adjusted p-value threshold of 0.05. Both selection methods were
repeated 10 times, with a common test subset set aside each time. B:
Comparison between robust and candidate FAs for T2D dataset
The limma subsets were obtained using the classic threshold of 0.05.
Values indicate the number of annotations in each intersection and do not
represent the size of a category as a whole. The white circle includes all
annotations from the full dataset.
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Exploiting biological knowledge from the paired robust 407

functions and taxa 408

For the following section, we will be relying on the robust outputs from the 409

IBD dataset as an example. These results come from the pipeline’s first 410

iteration, which are the best performing selective iterations for both profiles 411

(see Fig 3). The IBD dataset was chosen as an illustrative representative 412

of our results, as it is an outlier in neither classification performance, being 413

the third best-performing dataset out of six, nor in the selection of variables 414

by limma. 415

Visualization of the robust shortlists 416

An important output of SPARTA is the shortlist of robust variables that 417

are selected by the method, allowing for downstream interpretability. This 418

comes in the form of tables of robustly significant annotations and taxa, 419

as previously described. The annotation shortlist for the IBD dataset is 420

given in Table 3. It contains 59 FAs, alongside extra information that 421

SPARTA helps associate with them. For example, annotation GO:0006520, 422

corresponding to the amino acid metabolic process, is first in the table 423

because it has the highest average Gini importance score over all 200 forests 424

trained at this selection level, over 10 runs. It is on average 1.05 times 425

as present in the diseased profiles as it is in the controls, the negative 426

value of the ’Ponderated average ratio’ meaning that the annotation is 427

predominantly found in unhealthy samples. It is linked to a total of 358 428

taxa over all samples, of which 20 were found to be robust. The subsequent 429

bibliographic analysis of this list graded its relevance to the disease as a 430

1, meaning that there is a known direct link between the annotation and 431

IBD [35]. Detailed outputs are made available in S2 File. 432

A similar selection of robustly discriminant taxa is also available as an 433

output of the pipeline, with the IBD output given as an example in Table 434

4. The same information as the previous table is available for each taxon, 435

aside from the bibliographic categories. For instance, Alistipes finegoldii, 436

identified in our process as Organism 73, similarly ranks first because it has 437

the highest Gini importance score on average over all trained RFs. Its dif- 438

ferential expression shows that it is expressed on average 16 times as much 439

in control profiles as it is in the unhealthy samples. As previously, we can 440

establish which annotations are attached to each taxon, with A.finegoldii 441

expressing a total 1,220 FAs, 15 of which are robustly significant. The 442

details of these associations are available in S3 File. 443

Bibliographic exploration of the functional robust shortlist 444

Beyond the examples mentioned in this chapter, an in-depth bibliographic 445

analysis of these outputs has been conducted for the IBD dataset and is 446

available in S4 File. 447

The bibliographic examination was conducted on the integrality of the 448

robust annotations from the IBD dataset, as well as samples of 20 annota- 449

tions that were present in 50% of the significant sublists from SPARTA’s 450

runs, and 20 non-candidate annotations. The methodology was to research 451

the name of the annotation alongside the name of the disease on Google 452

Scholar (https://scholar.google.com/). If none of the research results 453

provided conclusive information linking this annotation to IBD, be it in 454

a host model or the microbiota, the chemical products of the annotation 455
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Table 3. Robust subset of annotations from the IBD dataset.
ID Names Average RF

importance
Ponderated average ratio
(Control/Unhealthy)

Number of linked taxa Bibliographic
categoryTotal Robust

GO:0006520 amino acid metabolic process 4.37E-03 -1.04801771712759 358 20 1
4.1.2.- Aldehyde Lyases 4.01E-03 -1.83063815612961 28 2 2

GO:0102545 phosphatidyl phospholipase B activity 3.53E-03 -4.59984365662854 15 1 1
GO:0004122 cystathionine beta-synthase activity 3.42E-03 -3.75076174596704 8 1 1
GO:0008744 L-xylulokinase activity 3.24E-03 -5.44424049313829 4 1 3
GO:0047419 N-acetylgalactosamine-6-phosphate deacetylase activity 2.57E-03 -1.19907351364782 78 4 1
GO:0008788 alpha,alpha-phosphotrehalase activity 2.44E-03 -2.30364417355582 19 1 3
GO:0032440 2-alkenal reductase [NAD(P)+] activity 2.43E-03 3.17446593793351 5 1 3
GO:0001510 RNA methylation 2.40E-03 1.05457228463169 249 17 1
GO:0015444 P-type magnesium transporter activity 2.34E-03 -1.65841492481138 66 2 2
GO:0016832 aldehyde-lyase activity 2.24E-03 -1.12570888096648 200 12 2
GO:0047605 acetolactate decarboxylase activity 2.23E-03 -1.56525594318597 48 1 3
GO:1901135 carbohydrate derivative metabolic process 2.18E-03 -1.10067892552244 271 14 1
GO:0017065 single-strand selective uracil DNA N-glycosylase activity 2.14E-03 3.15494616303483 4 1 1
GO:0009346 ATP-independent citrate lyase complex 2.10E-03 -1.6037562809426 52 1 2
GO:0016811 hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in linear amides 2.05E-03 -1.25265006865793 162 4 1
GO:0008815 citrate (pro-3S)-lyase activity 2.03E-03 -1.63749881151623 53 1 1
GO:0042121 alginic acid biosynthetic process 1.94E-03 1.14990181028563 127 12 1

4.1.3.6 citrate (pro-3S)-lyase. 1.94E-03 -1.60221767316624 52 1 1
GO:0047395 glycerophosphoinositol glycerophosphodiesterase activity 1.93E-03 -5.70423027266411 2 1 1
GO:0008092 cytoskeletal protein binding 1.90E-03 3.03923451098608 3 1 1
GO:0045151 acetoin biosynthetic process 1.90E-03 -1.56525594318597 48 1 3

4.1.1.5 acetolactate decarboxylase. 1.85E-03 -1.56525594318597 48 1 3
GO:0033711 4-phosphoerythronate dehydrogenase activity 1.79E-03 1.21622800529026 99 6 3
GO:0043130 ubiquitin binding 1.79E-03 2.84452978123873 6 1 1

2.8.3.10 citrate CoA-transferase. 1.78E-03 -1.57616213702899 52 1 1
GO:0008910 kanamycin kinase activity 1.78E-03 -1.58851951224173 11 1 1
GO:0046537 2,3-bisphosphoglycerate-independent phosphoglycerate mutase activity 1.78E-03 1.07286170037927 185 17 3
GO:0047356 CDP-ribitol ribitolphosphotransferase activity 1.72E-03 -6.7139421245469 1 1 2
GO:0000310 xanthine phosphoribosyltransferase activity 1.69E-03 -1.08340423243633 201 10 3
GO:0008814 citrate CoA-transferase activity 1.68E-03 -1.57775123389852 52 1 1
GO:0005727 extrachromosomal circular DNA 1.68E-03 -1.83727037420844 13 0 1
GO:0004792 thiosulfate sulfurtransferase activity 1.67E-03 -1.17227801781067 82 2 1
GO:0008707 4-phytase activity 1.67E-03 3.14255076857911 1 1 3
GO:0019677 NAD catabolic process 1.64E-03 1.30706123906711 32 1 1
GO:0008610 lipid biosynthetic process 1.64E-03 -1.47728727133267 87 2 1

2.4.2.22 xanthine phosphoribosyltransferase. 1.64E-03 -1.08534297116337 199 10 3
GO:0047330 polyphosphate-glucose phosphotransferase activity 1.59E-03 -3.53503053492603 5 1 1

2.7.1.23 NAD(+) kinase. 1.56E-03 -1.04348206094609 325 16 1
GO:0016746 acyltransferase activity 1.54E-03 1.10289112410377 347 18 2
GO:0071702 obsolete organic substance transport 1.54E-03 -1.20335282764238 103 4 3
GO:0006741 NADP biosynthetic process 1.53E-03 -1.04692108483062 329 16 1

4.2.1.- Hydro-Lyases 1.52E-03 -1.90522797851666 19 1 2
GO:0006144 purine nucleobase metabolic process 1.45E-03 -2.26707747018229 21 0 1
GO:0004135 amylo-alpha-1,6-glucosidase activity 1.45E-03 1.16316684039 73 7 3
GO:0032265 XMP salvage 1.40E-03 -1.08523959035346 199 10 2
GO:0008760 UDP-N-acetylglucosamine 1-carboxyvinyltransferase activity 1.40E-03 -1.06687124783542 361 17 3

2.1.1.195 cobalt-precorrin-5B (C(1))-methyltransferase. 1.33E-03 -1.11006222435079 89 5 4
3.5.3.6 arginine deiminase. 1.32E-03 -1.3947618868725 58 2 1

GO:0003953 NAD+ nucleosidase activity 1.31E-03 1.31930434489008 29 1 1
1.1.1.22 UDP-glucose 6-dehydrogenase. 1.30E-03 1.14909369105086 142 10 1

GO:0097056 obsolete selenocysteinyl-tRNA(Sec) biosynthetic process 1.29E-03 -1.23940120402784 214 5 1
GO:0016297 fatty acyl-[ACP] hydrolase activity 1.28E-03 1.09879874319015 122 11 3
GO:0006522 alanine metabolic process 1.24E-03 -2.03436740514923 17 1 1
GO:0008808 cardiolipin synthase activity 1.18E-03 1.0806848147406 239 15 3
GO:0009409 response to cold 1.13E-03 -1.9117942663824 35 0 1
GO:0008899 homoserine O-succinyltransferase activity 9.43E-04 -1.07852816252639 194 11 3
GO:0008276 protein methyltransferase activity 8.62E-04 -1.0433934172264 283 16 2

1.1.1.88 hydroxymethylglutaryl-CoA reductase. 6.52E-04 -1.48308851426957 50 0 1

Robust FAs of the IBD dataset, identified by their GO term or EC number, as well as their
current name. Annotations are classified by decreasing average Gini importance score, over all 200
RFs trained at the optimal selection level (20 per run, 10 runs). Extra information include: the
ratio between the average scores of the annotation in control and unhealthy profiles, ponderated
by -1 if the annotation is most present in the unhealthy profiles, the amount of taxa attached to
each FA, and the amount of robust taxa within them. Finally, the bibliographic category of each
annotation, as defined in a subsequent section, is given.

and eventual alternative names of the annotation were similarly tested, 456

followed by related (parent or child) annotations, and finally, the linked 457

pathways listed in the BRENDA database [36]. From this exploration, the 458

annotations were given a bibliographic relevance grade of 1 (most relevant 459

to the disease) to 4 (least relevant to the disease) based on the following 460

criteria: 461

Category 1: A direct link was established between the annotation, or a direct 462

product metabolite, and IBD. This can come in the form of an explicit 463

description of the metabolic mechanism’s involvement, or simply in 464

the form of measured differential presence between unhealthy and 465

control individuals. Note that conclusions derived from other ML- 466

based approaches were not considered to be sufficient evidence, as 467

they could suffer from biases similar to our approach. 468

16



Table 4. Robust subset of taxa from the IBD dataset.
ID Names Average RF

importance
Ponderated average ratio
(Control/Unhealthy)

Number of linked annotations
Total Robust

Organism 73 Alistipes finegoldii 2.84E-02 16.3964097691144 1220 15
Organism 224 Akkermansia muciniphila 2.12E-02 3.23501956449667 1452 18
Organism 12 Bifidobacterium bifidum 2.03E-02 -11.3214966525224 1307 28
Organism 144 Lachnospiraceae bacterium 2 1 58FAA 1.91E-02 -18.4267002012075 355 5
Organism 169 Ruminococcus lactaris 1.90E-02 3.04069705100761 431 5
Organism 127 Beubacterium ventriosum 1.51E-02 2.6429359268965 1388 20
Organism 156 Oscillibacter unclassified 1.42E-02 -1.89778568117644 724 16
Organism 134 Butyrivibrio unclassified 1.39E-02 -1.65319948992604 916 10
Organism 54 Odoribacter splanchnicus 1.33E-02 1.85573337062113 1595 19
Organism 75 Alistipes onderdonkii 1.33E-02 2.48594496944176 1391 15
Organism 78 Alistipes shahii 1.30E-02 1.65146163415684 935 8
Organism 171 Subdoligranulum unclassified 1.27E-02 1.5560202207333 627 5
Organism 152 Roseburia hominis 1.18E-02 1.7903389716571 1500 20
Organism 138 Coprococcus sp ART55 1 1.16E-02 2.2748823646463 701 8
Organism 163 Ruminococcaceae bacterium D16 1.12E-02 -4.30319855302151 1390 30
Organism 162 Faecalibacterium prausnitzii 9.80E-03 -1.57257090414346 1220 18
Organism 53 Coprobacter fastidiosus 9.67E-03 6.06805781620637 1503 19
Organism 40 Bacteroides massiliensis 9.49E-03 1.53976594131914 1602 20
Organism 136 Coprococcus comes 9.19E-03 -1.68577511310286 116 1
Organism 74 Alistipes indistinctus 8.46E-03 1.2651644466561 1447 19
Organism 20 Collinsella aerofaciens 8.42E-03 -1.82725111812987 1349 20
Organism 123 Eubacterium hallii 7.81E-03 1.07627573371101 144 3

Robust taxa of the IBD dataset, identified by their internal identifier, as well as their current
name. Taxa are classified by decreasing average Gini importance score, over all 200 RFs trained at
the optimal selection level (20 per run, 10 runs). Extra information include: the ratio between the
average abundances of the taxon in control and unhealthy profiles, ponderated by -1 if the taxon is
most present in the unhealthy profiles, the amount of FAs attached to each taxon, and the number
of robust annotations within them.

Category 2: A direct link was established between a similar metabolic function 469

and the disease. Were considered as similar: proteins or enzymes 470

from the same family as the one involved in the annotation (i.e.: ATP- 471

dependent and ATP-independent citrate lyases), and parent and child 472

annotations, signaling notably that the annotation is indeed relevant, 473

but at the wrong scale. 474

Category 3: An indirect correlation was established between the annotation and 475

the disease. This can mean that the annotation was not directly 476

linked to IBD, but that it is involved in a larger pathway or expressed 477

by a taxon that has significance. 478

Category 4: No leads were found, or the annotation was proven to be irrelevant. 479

Among the robust annotations, several were found through bibliogra- 480

phy to be relevant to the disease when expressed in the host organism as 481

opposed to the microbiota. We considered both cases as a link found be- 482

tween the annotation and the disease, following the idea of permeability 483

and interactions between the microbiota and its host [37]. 484

When available, we also retrieved the group, namely unhealthy or con- 485

trol, most likely to express these annotations according to the bibliography. 486

At the same time, SPARTA also retrieves the group that most expresses 487

each of these robust FAs (see Materials and Methods). We confirmed 488

these associations between FA and group with limma as well, for better 489

robustness. We found that bibliography predictions and prevalence in the 490

IBD dataset patients were in agreement in 47% of cases. FAs where dis- 491

agreement exists between bibliography and SPARTA/limma might point 492

towards the rescue of important functions in the host by the microbiota [38]. 493
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A complementary comparative analysis was conducted through a Chi² 494

contingency test with a 95% p-value threshold between the prevalences 495

of each bibliographic category in the robust selection and those of ran- 496

domly selected non-candidate annotations (see S2 Table for details). This 497

test established that the robust group significantly diverged from the non- 498

candidate group. This significant difference is notably driven, as seen in 499

S2 Table, by a comparatively increased proportion of Category 1, and a 500

decreased proportion of Category 4 annotations in the robust subset com- 501

pared to the non-candidate selection. These results support the notion that 502

SPARTA is a relevant selector of information. 503

Exploring the pairings between robust taxa and annotations high- 504

lights their non-redundancy 505

The usage of the EsMeCaTa pipeline [10] in building functional scores al- 506

lows us to make explicit and quantify the links between taxa and their 507

FAs, as this tool retrieves the annotations associated with a given taxon 508

in the UniProt database [24]. Applying the pipepline to the IBD dataset 509

(443 taxa and 10,196 FAs), the results show that annotations can be as- 510

sociated with 47.8 taxa on average. One annotation is associated with the 511

most taxa (437 taxa out of 443): GO:0016021, which is attached to the 512

cellular membrane component and is therefore expected to be extremely 513

widespread. Unique associations account for 37.5% of all annotations, thus 514

a majority of annotations are associated with more than one taxon. Over- 515

all, no function is perfectly ubiquitous, and the majority of functions are 516

linked to several different taxa. 517

To quantify functional redundancy among taxa, we used Jaccard prox- 518

imity to measure the similarity of their functional associations. Taxa with 519

a Jaccard proximity of 95% or more were considered functionally identical. 520

Our analysis showed that 77.2% of the taxa do not have such close neigh- 521

bors, indicating that they maintain distinct functional profiles from each 522

other, despite sharing many annotations with other taxa. Detailed results 523

are given in S5 File. 524

The observed disparities between taxonomic and functional profilings 525

prompt the question of whether these profiles equally provide valid de- 526

scriptions of a subject’s microbiota. A potential drawback of the taxo- 527

nomic scale is the cumulation effect, wherein individual taxa may have 528

little significance but contribute significantly to an essential metabolic pro- 529

cess when grouped. As a result, this collective impact might go unnoticed 530

when focusing solely on individual taxa. The dynamics in terms of speci- 531

ficity between annotations and taxa are illustrated in Fig 5, which plots 532

the amount of robust taxa associated with each annotation as a function of 533

the total amount of associated taxa. For illustration purposes, the repre- 534

sented annotations were assigned to four profiles based on their number of 535

associated taxa. We labeled the top 10% as ”Ubiquitous” (5 annotations, 536

top right in Fig 5), the bottom 10% as ’Specific’ (18 annotations, bottom 537

left of Fig 5), and all others were labeled ’In-Between’ (32 annotations). 538

Finally, a fourth category was drawn up, independently of the previous 539

criteria, containing 4 annotations that have no link to robust taxa, which 540

we labeled as ’Cumulative’. This representation shows that important an- 541

notations have differing relationships to their taxon counterparts and that 542

an annotation’s importance can stem from the influence of several taxa, as 543

is notably illustrated by the ’Cumulative’ class. 544
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Fig 5. Number of taxa associated to each robust annotation, as
a function of the number of associated robust taxa for the IBD
dataset. Four groups of annotations are represented, three of which were
determined based on the total amount of taxa attached to the
annotation: those within the top 10% of these values’ scale were labeled
’Ubiquitous’, those in the bottom 10% were labeled ’Specific’, and the
others were labeled ’In-between’. The final category corresponds to the
robust significant annotations with no relationship to the robust
significant taxa (’Cumulative’). The highlighted annotations are those
used as illustrative examples in Fig 6.
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A detailed illustration of annotations’ pairings with their taxon coun- 545

terparts, as well as the strength of these links determined as described in 546

Materials and Methods, is proposed in Fig 6. The represented annotations 547

were taken from each of the categories illustrated in Fig 5: GO:0006520 as 548

representative of the ’Ubiquitous’ class, 1.1.1.22 for the ’In-between’ class, 549

GO:0043130 for the ’Specific’ class, and GO:0006144 as a ’Cumulative’ 550

example. 551

From top to bottom in Fig 6, the first annotation (GO:0043130) is a case 552

in which the feature’s significance appears to be due to a strong associa- 553

tion to a single robust significant taxon, namely Akkermansia muciniphilia. 554

This taxon has an established impact on IBD remission, and is researched 555

as a potential probiotic treatment of the disease [39]. This is also in accor- 556

dance with the annotation’s differential expression between profiles, as seen 557

in Table 5, where the annotation is shown to be expressed in the control 558

samples almost 3 times as frequently on average as it is in the sick samples. 559

This kind of relationship could either indicate that this ’Specific’ annota- 560

tion derives its importance in our predictions from its strong and specific 561

attachment to an important taxon, or that its impact on the disease is an 562

important factor to explain this taxon’s beneficiary influence. GO:0043130 563

corresponds to ubiquitin binding, a mechanism that is known to regulate 564

the inflammation process of intestines via different signaling pathways [40], 565

and is categorized as a Category 1 annotation by our bibliographic research, 566

showing that in the case of our example, the effects of the annotation and 567

of its specifically associated robust taxon align. It should be noted that, 568

as mentioned in our earlier discussion around our bibliographic work, the 569

differential expression of a feature can be contradictory with its known ef- 570

fects, and should therefore be treated with caution. The second and third 571

annotations (1.1.1.22 and GO:0006520), respectively from the ’In-between 572

and ’Ubiquitous’ groups, are very widespread among robust taxa, without 573

any particularly strong link to any of them. In cases such as these, mean- 574

ing metabolic functionalities commonly expressed within taxa, the issue of 575

significance is shown to not be a purely binary question of expression or ab- 576

sence, as both annotations are consistently present in both unhealthy and 577

control profiles. Finally, the last annotation (GO:0006144) is exclusively 578

linked to non-robust taxa. All such annotations, from the ’Cumulative’ 579

group, are associated with several taxa (13 minimum), meaning that their 580

importance results from the cumulated influence of multiple, individually 581

non-significant taxa, that have a significant role when grouped function- 582

ally. The reverse associations, plotted in S7 Fig, show that this form of 583

cumulation is specific to FAs: the robustly significant taxon with the least 584

associations to robust significant annotations, Coprococcus comes, is still 585

shown to have a non-zero amount of correlations to robust annotations. 586

Discussion 587

Through the implementation of a new approach involving microbiota func- 588

tional profiling, classification and variable selection, we have shown that the 589

translation of the microbiota into functional profiles gives non-significantly 590

different performances when compared to microbial profiles on 5 of 6 datasets. 591

Through repetition, we also put forward a robust subset of discriminant 592

variables. These selections were shown to be more reliable than those 593

obtained by a state-of-the-art method, and their contents were validated 594
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Fig 6. Associations between robust functions and the associated
robust taxa predicted by SPARTA, for the best iteration on the
IBD dataset. Depicted annotations were selected to be representative
examples of the different categories highlighted in Fig 5, and are
presented with the same color scheme. Taxa are colored based on their
normalized average differential expression between Control (red) and
Unhealthy (blue) profiles. The width of the connections is proportional to
the importance of the association. The arrow between a given function
and the generic ’Non-robust’ node represents the contribution of
non-robust taxa to the considered function.
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through a manual bibliographic research on an example. The interconnec- 595

tions between selected taxa and functional annotations were also analyzed 596

and revealed that important annotations emerge from the cumulated in- 597

fluence of non-selected taxa. 598

From bacteria to functions 599

The first step of the SPARTA pipeline involves predicting annotations for 600

the input taxonomic affiliations. To do so, we chose to rely on the EsMe- 601

CaTa pipeline, for the ease of its direct application to microbial profiles, as 602

well as the presentation of its outputs which records the inter-associations 603

between taxonomic affiliations and FAs, making it more suitable for our 604

subsequent analyses. Though our manipulations were made on data de- 605

rived from MGS sequencing, EsMeCaTa is also capable of processing data 606

derived from 16S sequencing. 607

It is however not the only tool available with the purpose of predict- 608

ing functions, notably with the aforementioned PiCRUSt [8, 9] and HU- 609

MAnN [5–7] pipelines, which are widely exploited for 16S and MGS profiles, 610

respectively. The cited works of Jones et al. [21] and Douglas et al. [20] no- 611

tably rely on them. EsMeCaTa’s exploitation also comes with caveats, as 612

its reliance on UniProt means that any bias in the remote database would 613

impact the tool as well, such as the inclusion of proteomes not adapted to 614

the samples’ environment of origin. The use of taxonomic profiles as an 615

input makes the process lighter in terms of computational resources, but 616

also makes the tool reliant on the quality of the preprocessing steps, as 617

there is no referral to the original reads. Finally, it should be noted that 618

EsMeCaTa, being reference-based, does not provide a quantification of the 619

FAs within the sample itself, as SPARTA has to rely on its own manipula- 620

tion based on EsMeCaTa’s results to give an estimation of the abundance 621

of expression of these annotations. 622

A comparison of results from our EsMeCaTa-based approach to those 623

obtained from a profile obtained through HuMAnN3 [7], presented in S2 624

Fig, shows that both approaches give similar performances. However, pro- 625

cessing patients samples with HuMAnN3 resulted in an over four-fold in- 626

crease in terms of computation time, and required handling inputs of 442 627

GB, compared to EsMeCaTa’s 302 kB entry (see S3 Table). Generally, it 628

remains an open question to choose the right trade-off between computa- 629

tion time, classification performance, and interpretability when handling 630

microbiota data. The modular implementation of SPARTA, allowing the 631

user to directly specify functional profiles, aims at providing the corre- 632

sponding flexibility to adjust the pipeline to the type of raw data (MGS or 633

16S data) or the phenotype of interest. 634

Finally, the scores calculated by SPARTA presented in this article are 635

processed with the TF-IGM normalization [41], presented in Materials and 636

Methods. This manipulation exacerbates the scores of the most differen- 637

tially expressed annotations, heightening their highest scores, and lowering 638

their lowest, to facilitate classification. A caveat of this approach however 639

is that, as a cost for making the profiles more discriminating, it can enhance 640

biases inherited from the database or from the taxonomic profiling. 641
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Comparative analysis of different approaches 642

Microbial and functional profiles 643

A central discussion point of this study is the pros and cons of exploiting 644

the microbiome’s FA data as opposed to the explored taxonomic profiles 645

for classification and interpretation. It should first be noted that there 646

is an inherent bias to the exploitation of metagenomic data [42], notably 647

concerning the taxa of lower abundance which are susceptible of being false 648

positives. 649

In terms of classification performance, as shown in Fig 3 and discussed 650

in Results, the taxonomic profiles remain a better overall predictor of dis- 651

ease state, though the difference is not significant in most cases. These 652

results are in line with the findings of previous studies [20, 21], and can 653

be explained by the increase in the amount of features contained in the 654

functional profiles. Indeed, for a set amount of data, augmenting the num- 655

ber of variables past a certain point is known to be detrimental to model 656

performance [43], and the switch to functional profiles comes with 22 times 657

as many variables on average, without any additional samples to balance 658

this. This hypothesis is further supported by the fact that variable se- 659

lection increases the functional profiles’ classification performances more 660

consistently than the taxa. 661

The main benefit of the functional profiles is that they are more in line 662

with the current demands of the medical community [4] when it comes to 663

the required precision level for biological interpretation. A potential caveat 664

however would be the optimal amount of features retained by SPARTA, 665

which greatly varies between both profiles as seen in Table 1, with the 666

amount of annotations retained for optimal classification being often greater 667

than the equivalent for taxa. It seems intuitive that more metabolic func- 668

tions would characterize unhealthy and control profiles when compared to 669

taxa, however, the total amount of retained information in the case of FAs 670

appears to be too extensive for biological interpretation to be practical in 671

most of our examples. As such, we would recommend that interpretation 672

of the FAs be limited on the first approach to the robust subset outputs, 673

which are in more manageable numbers, though these lists are unlikely to 674

extensively cover all of the features relevant to the characterization of the 675

disease. 676

SPARTA feature selection 677

SPARTA exploits the feature importance rankings that are inherent to the 678

RF method to perform a selection of variables. This selection step impacts 679

classification performance, as discussed in Results, but is also important for 680

the interpretability of the outputs, by highlighting the important elements 681

within an otherwise overwhelmingly large list of features. 682

Our results highlight the need to perform at least one iteration and sev- 683

eral repeated runs to reduce the dimensionality of the functional datasets, 684

while maintaining the classification performance, and derive a list of robust 685

FAs. The number of required iterations depends on both the dataset and 686

the user needs in terms of classification performance and interpretability. 687

Concerning the number of iterations to perform, in this article, we pre- 688

sented results obtained over 10 runs, comprising 5 iterative selections each, 689

and implemented these values as default for SPARTA. These values were 690

chosen as a compromise between execution time and the robustness of the 691
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results. S4 Fig and S8 Fig illustrate the impact that a variation of these 692

parameters can have on the results. When it comes to iterative selection, 693

S4 Fig showcases that the first selection is always by far the most impor- 694

tant, and there is little variation in selection sizes past the second selection. 695

Therefore, 2 selections could also be perceived as the upper limit by some 696

users, though some of our datasets have shown better classification perfor- 697

mance beyond this level of selection. S7 Fig illustrates, in the case of the 698

IBD dataset, that the sizes of both the functional and taxonomic Robust 699

selections stabilize and hit a plateau after only a few runs. In both cases, 700

10 runs is sufficient to attain stable content for the Robust selection. This 701

conclusion could however only be attained a posteriori, once the results had 702

been obtained. A user may want to reduce the amount of runs operated by 703

SPARTA but should bear in mind that these results may vary depending on 704

the dataset. Generally speaking, SPARTA’s criterion for optimal variable 705

selection is to retain the subset that generates the best classification metric 706

after one variable selection. An automatic test is implemented to ensure 707

that classification performance after one iteration is not significantly lower 708

than the one obtained with the initial dataset. Though this constitutes 709

a strong basis for a first approach, previous works have also warned of it 710

being potentially deceptive and encouraged to investigate the significance 711

of the evolution in performance measurements [23]. As is, the exploration 712

of the Confident subset or the exploitation of a lower level of selection than 713

SPARTA’s proposal could be envisioned by the user if the content included 714

in the recommended Robust output is deemed insufficient. Similarly, a 715

higher level of selection can be exploited if the proposed amount of Robust 716

variables is still overwhelmingly large. Users should also be mindful that 717

the output list may not be as relevant if the classification performances are 718

low. 719

We also compared SPARTA’s selection to other approaches, as re- 720

ported notably in Fig 4(A). By relying on an automatically computed cut- 721

off threshold, our approach has proven to be more adaptative and robust 722

than selections based on common fixed thresholds. The relevancy of ex- 723

ploiting RFs to perform selection as opposed to a more direct statistical 724

comparison of unhealthy and control profiles was also highlighted when 725

SPARTA’s selections are compared to those obtained with limma, which 726

measures differential expression. While it proved itself to be an efficient 727

selector on datasets with clear distinguishing features, the latter tool did 728

not detect any candidate features at realistic adjusted p-value thresholds 729

when applied to half of our test datasets and did not have the internal co- 730

herence to generate a robust shortlist in two thirds of them. SPARTA on 731

the other hand provided a robust subset for all datasets, showing it to be 732

more consistent than limma when it comes to variable selection, especially 733

in complex problems. 734

RFs are known to be capable of finding non-linear solutions to a prob- 735

lem [44], which explains the fact that a large amount of the information 736

highlighted by SPARTA, including within the robust subset, remains unde- 737

tected by limma even when the p-value threshold is unrealistically high, as 738

shown by the results of S5 Fig. As such, the content of SPARTA’s selection 739

includes new information when compared to what can be extracted from 740

linear comparisons. 741
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Classification methods 742

Classification performances in the context of FAs have been reported to 743

be on par or slightly inferior to classification performances based on taxa 744

[20, 21]. This is also consistent with our observations. As a result, current 745

FA-based approaches might not be best used for direct diagnostic predic- 746

tion. The conditions in which a sample has been obtained, sequenced, and 747

processed most likely impact classification performances, even for the same 748

disease (see the differences in performance obtained on T2D and WT2D). 749

The main advantage of current FA-based pipelines, SPARTA included, lies 750

in the extraction of a robust list of important FAs, related to a dataset 751

of interest, rather than the production of a ML model that is generic and 752

directly reusable without need for retraining. 753

It should also be noted that in this article, only binary classification 754

tasks were tackled. However, the key methods on which SPARTA relies are 755

all compatible with multi-label classification tasks (SVM, RF, evaluation 756

and importance metrics). As such, the pipeline could be compatible with 757

such analyses. 758

Post-processed outputs 759

Output interpretability 760

SPARTA’s end output is a shortlist of interconnected features, illustrated 761

notably by the examples in Tables 3 and 4. The method emphasizes the 762

selection’s robustness, as it is derived from the consensus of several rep- 763

etitions, and adaptability, as the threshold for selection is based on an 764

automatic calculation rather than a fixed rank selection. Its content also 765

underwent bibliographic validation, in the case of the IBD dataset’s out- 766

put. Though the list is likely not exhaustive, SPARTA’s selection was 767

shown to be significantly enriched in bibliographically significant features. 768

This supports SPARTA’s efficacy when it comes to highlighting factors 769

that discriminate health profiles, though this should also be confirmed on 770

the outputs obtained on other diseases. 771

The previously reported mismatches between the differential score-based 772

profile attributions of SPARTA, which match those of limma, and the con- 773

clusions of bibliographic research show that, in all probability, the under- 774

lying biological mechanisms involving these pathways are complex enough 775

that a simple differential association is not sufficient to predict if an an- 776

notation is beneficial or detrimental to host health in the context of a 777

given disease. A compensation mechanism could also be at play, as the 778

gut microbiota is known to have the potential to compensate for metabolic 779

functions that are lacking in the host [38]. A finer analysis of the RF’s 780

trained decision trees could give more appropriate insight into this issue. 781

It should also be noted that several annotations couldn’t be directly 782

linked to IBD through bibliography (categories 3 and 4). These features 783

deserve special attention, as they could be the result of a weakness of the 784

method, or novel perspectives for research surrounding the disease. 785

The combination of SPARTA’s outputs with a visualization method 786

adapted for both of the employed nomenclatures, namely GO terms and EC 787

numbers, would also be a complement to our outputs, allowing for a more 788

intuitive exploration of their biological ramifications. A visualization such 789

as this one could be the basis for an interpretation module for SPARTA. 790
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Exploring links between taxa and functions 791

Through Fig 5 and Fig 6, we established the reality of a cumulation effect, 792

with taxa that are less prevalent ending up having a detected influence 793

on the microbiome’s metabolism through their combined contribution to 794

a functional niche. This observation further supports the importance of 795

exploiting microbiota information at the functional level rather than at 796

the taxonomic level. Annotation GO:0006144, which corresponds to the 797

purine metabolic process and is represented in orange in Fig 6, is a good il- 798

lustration of this approach’s advantages. SPARTA’s outputs show that this 799

annotation was not correlated to any robust taxon, and therefore would be 800

difficult to derive from a taxon-based approach. Indeed, the bibliography 801

shows that this annotation was linked to IBD through oriented research 802

following a first mechanistic study [45], where our approach was capable of 803

identifying it efficiently and without any pre-orientation. 804

Applicability of the SPARTA pipeline and perspectives 805

Though it was tested on gut microbiota data, this method’s generic appli- 806

cability can extend to other types of microbial communities. We focused 807

on method robustness, presenting consolidated and exhaustive shortlists 808

that showed agreement over 10 pipeline iterations without cherry-picking. 809

These first results present a proof of concept for highlighting differ- 810

entiating features in biological datasets through Machine Learning-based 811

classification and variable selection, and establishing that integrating inter- 812

associated taxa and functions for disease state classification with the gut 813

microbiota enhances interpretability and exposes a functional cumulation 814

effect. It also presents opportunities for improvement. Method-wise, al- 815

ternatives to the already implemented approaches could be envisioned, for 816

example using other hyperparameter tuning methods (Bayesian Hyperpa- 817

rameter Optimization [46] to replace GridSearch for example) or tree-based 818

approaches, such as XGBoost [47]. 819

Integrating more specific external knowledge, such as individual clinical 820

metadata, could enhance the interpretability of the questions for Machine 821

Learning models. The integration of this information could also help clas- 822

sification, especially when they lead to a rapid and significant change in 823

microbiota composition. For instance, the menstrual cycle [48], diet [49], 824

or antibiotic treatment [50] could be recognized and accounted for by the 825

models. To further the comprehensiveness of our outputs and filter poten- 826

tial redundancies within annotations, we could explore leveraging Semantic 827

Web information surrounding GO terms and EC numbers to aggregate or 828

expand the existing information from UniProt. This could be the subject 829

of future work. 830

Materials and Methods 831

Datasets 832

SPARTA was tested and benchmarked using publicly available species- 833

level abundance profile datasets from the MetAML repository [19] and 834

processed for DeepMicro [18], concerning subjects diagnosed with a variety 835

of diseases: Cirrhosis [51], Colorectal Cancer [52], IBD [53], Obesity [54], 836

and T2D on a Chinese [55] and a European [56] cohort. Each subject in 837
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these datasets had their gut microbiota sampled and sequenced with whole- 838

genome shotgun and Illumina paired-end sequencing. The results were 839

processed by the authors of the MetAML and DeepMicro tools [18, 19] as 840

per the standard procedure described by the Human Microbiome Project 841

[57], then converted to species-level relative abundance profiles via the 842

MetaPhlAn2 tool [58] with default parameters. Sub-species level features 843

were then filtered using the MetAML tool [19]. 844

Each cohort includes a portion of healthy control individuals, in addi- 845

tion to those who suffer from the disease in question. The proportions of 846

each group in our cohorts are detailed in Table 5. 847

Table 5. Distribution of samples within the datasets of
reference.

Disease Dataset Total sam-
ples

Control
samples

Patient
samples

Liver Cirrhosis Cirrhosis 232 114 118
Colorectal Cancer Colorectal 121 73 48
Inflammatory
Bowel Disease IBD 110 85 25

Obesity Obesity 253 89 164

Type 2 Diabetes
WT2D (European
Women Cohort) 96 43 53

T2D (Chinese Co-
hort) 344 174 170

The SPARTA pipeline: a Machine Learning-driven method848

for paired analysis of taxonomic assignations and FAs 849

An implementation of SPARTA in Python is available on github at https: 850

//github.com/baptisteruiz/SPARTA. The presented results were ob- 851

tained from running in a Conda (version: 23.11.0) [59] environment that 852

contains the EsMeCaTa pipeline (version 0.4.2) [10], as well as the follow- 853

ing Python packages: pandas (version: 1.4.3) [60], numpy (version: 1.21.2) 854

[61], scikit-learn (version: 1.1.1) [62], matplotlib (version: 3.5.1) [63], joblib 855

(version: 1.1.0) [64], seaborn (version: 0.12.2) [65], progress (version: 1.6) 856

[66], goatools (version: 1.2.3) [67], Biopython (version: 1.79) [68], requests 857

(version: 2.28.1) [69], kneebow (version: 1.0.1) [70] and SHAP (version 858

0.46.0) [27]. 859

The pipeline can be launched following two steps. The first can be called 860

with the sparta esmecata command, represented in Fig. 7. This com- 861

mand takes as input a taxonomic abundance table and launches a run of 862

the EsMeCaTa pipeline [10], preceded by formatting steps for the creation 863

and formalization of EsMeCaTa’s input from the given data. This step 864

exploits the pipeline as described in a following section. This is followed 865

by the calculation of the scores of the FAs obtained this way, following 866

the method described further down and using the list of associations be- 867

tween taxa and annotations, as well as the original microbial abundances. 868

This step can also involve data treatment, per the arguments parsed in 869

the command line. For example, the taxonomic abundance profile can be 870

forcefully converted to a relative abundance profile, with each value be- 871

ing recalculated as a percentage of the sample’s total before the functional 872

profile is calculated. Once we have the functional profile, its values can 873

also be scaled, either using sklearn’s [62] StandardScaler or TF-IGM, as 874

described further in the Methods section, depending on the user’s input. 875

The second part of the pipeline can be called with the sparta classification876
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Fig 7. Application of EsMeCaTa and calculation of Scores of
FAs in the context of the sparta esmecata step of the pipeline.
The inputs represented here are taxonomic units, potentially containing
several species. EsMeCaTa is compatible with this paradigm, but can
also process data directly on the species level. EsMeCaTa interrogates the
UniProt database to gather the proteomes of all species included in the
input taxon. A meta-proteome for the entire taxon is then calculated,
based on clustering using Mmseqs2 [71] followed by retention of clusters
with a 95% incidence in all proteomes. UniProt is then interrogated a
second time to retrieve the FAs of all of the kept protein clusters. A
weighted association between taxon and annotation can be established in
this manner. By combining this information with the taxon’s initial
abundance, a quantification of the FAs’ expression can be measured.
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command. It takes as input a file containing the labels associated with 877

each sample in the dataset, a functional and taxonomic description of the 878

samples, a description of each taxon’s affiliation, and a table indicating 879

the occurrence of functions in each organism. It is possible to only give 880

the functional table as input, in which case none of the latter three in- 881

puts would be required. The functional table given as input can be derived 882

from sparta esmecata or can be calculated using another tool of the user’s 883

preference. This step involves the training of 20 successive RF classifiers 884

to sort individuals according to their associated labels (i.e.: ’sick’ or ’con- 885

trol’), based on the relative abundance profiles of their microbiota or their 886

calculated mechanistic representation. 887

Once per run, before any training, a subsample of the full dataset, 888

is set aside as a test set. This set can be determined through the use 889

of sklearn’s [62] test train split function, or the user can also specify 890

their own, pre-conceived datasets. During training, the remaining data 891

is randomly split into a training set and a validation set, with a respec- 892

tive 80% / 20% distribution. To account for the disparity in representa- 893

tion between the unhealthy and control individuals within the datasets, all 894

classes were given weights proportional to their frequency, as implemented 895

by scikit-learn’s ’balanced’ class weight parameter [62]. The training in- 896

volves a Grid Search, as implemented by scikit-learn [62], to optimize the 897

estimator’s parameters in terms of the number of estimators per forest, the 898

number of leaves per estimator, and the amount of information to which 899

each tree has access. The split quality criterion is measured via the Gini 900

Impurity metric. Optimal models were selected by GridSearch based on 901

an internally conducted 5-fold cross-validation. This step exports a list of 902

each trained forest’s features’ Gini [16] or SHAP [27] importances depend- 903

ing on user input, as well as their classification performances (see Results) 904

on the validation and test datasets. The best performing model on the val- 905

idation set is also exported. The final step involves averaging all features’ 906

importance scores over 20 training iterations, and selecting which ones are 907

’Significant’ through a cutoff at the significance threshold, calculated as 908

described further on. The list of all features above the cutoff threshold, 909

listed by decreasing importance, is then given as output. 910

The user can require more than 1 iteration of the process, in which 911

case a subset of the original microbial and functional profile files is created 912

containing only the ’Significant’ data. In the case where a data treatment 913

method was given as input (’scaling’ or ’tf igm’), this step will be re-applied 914

to the subset. After this, the training and variable selection steps will be 915

repeated as many times as demanded, using the same test and validation 916

sets as the first iteration’s forests. 917

The entire process will be repeated, with the same parameters, as many 918

times as dictated by the user through the requested amount of runs. Each 919

of these runs will have a new subset of test individuals, and the user may 920

also request that only a specified subset of the input profiles’ variables be 921

taken into account for each run. For instance, it is possible to filter out 922

variables according to their abundance or prevalence. Once all requested 923

runs have been completed, the shortlists obtained by all runs for each itera- 924

tion are combined to categorize taxa and annotations as ’Robust’ (outlined 925

as significant by all predictors for a given iteration), ’Confident’ (outlined 926

as significant by at least 75 % of predictors for a given iteration) or ’Candi- 927

date’ (outlined as significant by at least one predictor for a given iteration). 928

If the best obtained median RF AUC is inferior to 0.6, a message warning 929
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that the selection may be unreliable will be passed to the user. 930

The pipeline’s main outputs are: the calculated functional profile, in 931

the form of a csv table, the classification performances obtained by the 932

pipeline through a graphical representation of the AUCs obtained at the 933

best iteration level, and the Robust, Confident, and Candidate selections 934

obtained for each iteration level in csv files. The details of the classification 935

performances and variable selections per run and iteration are also made 936

available to the user. 937

SPARTA’s implementation also allows the user to classify the input 938

data using a SVM [72] model instead of RFs. This option will however not 939

proceed with variable selection, and can therefore only be used in single- 940

iteration runs focused on performance. SVM parameters are also optimized 941

through GridSearch, notably the regularization parameter, which tunes the 942

impact of the loss function during training, and the classifier’s kernel, which 943

can be linear or Gaussian with Radial Basis (RBF), with a tuning of the 944

gamma parameter (radius of each sample’s area of influence) in the latter 945

case. 946

Shifting representations, from microbial to functional 947

profiles 948

The first step of SPARTA’s process is to transition from a representation 949

of the microbiota on the scale of taxonomic affiliations to that of biological 950

functions, by calculating the scores of the FAs linked to the input’s taxa. 951

In parallel, we are aiming to conserve the information linking together taxa 952

and annotations, to expand upon this information later on. We also used 953

the normalization of the annotation scores to introduce an a priori bias 954

to boost the profiles of the best differentiating variables, in anticipation of 955

the following classifying tasks. 956

Associating FAs to taxonomic affiliations: the EsMeCaTa pipeline 957

The EsMeCaTa pipeline follows three steps. The first step, ’proteomes’, 958

takes as input a tabular that associates a given name for all the studied 959

bacteria to their exact taxonomy. From this, EsMeCaTa interrogates the 960

UniProt database for proteomes associated with the taxon in question. If 961

none can be found, the step is re-iterated with the superior taxonomic rank, 962

until at least one proteome can be associated with the unit. If more than 963

99 proteomes are associated with a taxon, a random selection of around 964

99 proteomes will be made, with respect to the taxonomic diversity of the 965

initial proteomes set. The selected proteomes are then downloaded from 966

UniProt. 967

The second step, ’clustering’, selects protein clusters that are represen- 968

tative of the taxonomic unit within the downloaded proteomes. To do so, 969

the MMseqs2 tool [71] is used to create clusters of similar proteins from 970

the proteomes. If a protein cluster contains similar proteins from 95% of 971

the proteomes attributed to the taxonomic unit, it will be retained as part 972

of its meta-proteome. 973

The final step, ’annotation’, fetches the FAs (GO terms and EC num- 974

bers) of the retained protein clusters by interrogating the UniProt databases. 975

The final output is an ensemble of tabulars, one per taxonomic affiliation 976

in the input, that contains all of the protein clusters kept in the taxon’s 977

meta-proteome and their FAs. 978
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Calculating a functional representation of the patient’s micro- 979

biota from taxon-annotation pairings 980

To compute a representation of the gut microbiota on the scale of the FAs, 981

mixing information concerning its specific composition with the associated 982

metabolic mechanisms, we give each annotation (F) a score, labeled as 983

a Score of Functional Annotation (SoFA), within a subject sample (i), 984

similarly to [8], according to the following formula: 985

SoFAF,i =
∑

t

nt,i × xF,t (1)

where nt,i is the abundance value of taxon t within sample i, and xF,t 986

is the number of proteins within taxon t’s proteome that are linked to the 987

function F. 988

As such, each annotation’s SoFA is equal to the sum of the abundances 989

of all taxa that express it, weighted by the strength of said expressions, as 990

measured by EsMeCaTa [10]. 991

Normalizing and scaling data based on expected relevance with 992

TF-IGM 993

The TF-IGM method [41] is used to normalize the results presented in this 994

article. It was originally exploited in Natural Language Processing, as a 995

method to highlight terms in a corpus of texts that are significantly present 996

within a text while penalizing those that are too widespread. The formula 997

had to be re-adapted to fit our data and circumstances, and in our pipeline, 998

it is calculated based on the following two components: 999

• TF (Term Frequency): equivalent to the frequency of an annotation 1000

within the totality of a sample i: 1001

tff,i = SoFAf,i∑
j∈J SoFAj,i

(2)

where SoFAf,i is annotation f’s score within sample i, and J is the 1002

ensemble of the annotations recorded within sample i. 1003

• IGM (Inverse Gravity Moment): for each annotation f, the calcu- 1004

lated values for tff,i are ranked in decreasing order and noted as 1005

T (f)1,...,T (f)n, so that T (f)1 > T (f)2 > ... > T (f)n, n being the 1006

total number of samples. We then have: 1007

igm(f) = T (f)1∑n
r=1 T (f)r × r

(3)

where r is the rank of the T(f) score in the previously defined order. 1008

The total TF-IGM score of an annotation f within a sample i will then 1009

be: 1010

tf igm(f, i) =
√
tff,i × (1 + λ× igm(f)) (4)

where λ is a value between 5 and 9. As per Chin et al.’s [41] recom- 1011

mendation, its value was set to 7 by default. 1012
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SPARTA characterizes sample profiles with variables 1013

highlighted based on a non-linear approach 1014

Having established two types of profiling for microbiotas, we then explore 1015

their potential in differentiating classes, such as individuals based on their 1016

health status. To account for the complex interdependencies of biological 1017

pathways in impacting host health, we relied on ML classifiers rather than 1018

linear statistical approaches to establish the relevance of variables when 1019

it comes to distinguishing unhealthy individuals from controls. A method 1020

for robust selection is also proposed here, with an automated shortlist- 1021

ing of variables based on their importance, and a compilation of results 1022

accounting for consensus across multiple iterations of the method. The 1023

results presented in this article were obtained using 10 CPUs, and 100 GB 1024

of memory. Benchmarks of the classification process are available in S4 1025

Table and show that SPARTA’s execution time is linearly dependent on 1026

the number of requested runs. 1027

Training of RF models 1028

A RF [16] classifier is trained to sort individuals in two classes (here, pa- 1029

tients or controls), based on the relative abundance profiles of their micro- 1030

biota or their calculated mechanistic representation. Before any training, 1031

a subsample of 20% the size of the full dataset is set aside as a test set. 1032

During training, the remaining data is randomly split into a training set 1033

and a validation set, with a respective 80% / 20% distribution. To account 1034

for the disparity in representation between the unhealthy and control indi- 1035

viduals within the datasets, both classes were given weights proportional 1036

to their frequency, as implemented by scikit-learn’s ’balanced’ class weight 1037

parameter [62]. Therefore, SPARTA differs from DeepMicro [18] by iter- 1038

ating the variable selection process: it introduces a test set - to evaluate 1039

the final performance of the model - and validation sets - to compute the 1040

performance of the RFs and derive the variable ranking for selection. 1041

When measuring the performance of our classification algorithms, the 1042

metrics used were the Area Under the Receiver Operating Characteristic 1043

Curve (AUC) [73] averaged over 20 training iterations. All of the described 1044

operations related to the selection of test and validation sets, and the train- 1045

ing of RF classifiers in the context of a GridSearch algorithm, are seeded 1046

to ensure reproducibility. The initial seed can be changed at the user’s 1047

discretion. 1048

Extracting significant information from trained classifiers 1049

Following the classifier’s training, the resulting feature importances are ex- 1050

tracted. These importances can be based on one of two metrics, depending 1051

on the user’s input. The first option is the Gini Importance metric, cal- 1052

culating the mean accumulation of the impurity decrease within each tree, 1053

as implemented in the Scikit-learn Python library [62]. The other option 1054

is the SHAP importance [27], which calculates each variable’s contribution 1055

to a decision from the basis of a trained classifier. In our case, dealing with 1056

RFs, we relied on the SHAP package’s [27] implementation of the Tree- 1057

Explainer [74], which is an algorithm for the calculation of SHAP values 1058

optimized for RF models. If multiple iterations of the classifier’s training 1059

are made, the feature importances are averaged over all iterations. Fea- 1060

tures are then ranked based on this metric in decreasing order. In SHAP’s 1061
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case, this ranking is made based on the absolute value of the importance 1062

scores. 1063

Once ordered, we aim to distinguish a separation between the features 1064

that were essential to the clasifier’s functionality, and those with a lesser 1065

impact. We place this threshold at the inflection point of the curve repre- 1066

senting the decreasing importance scores, determined via an implementa- 1067

tion of the Kneebow method [70], with all features above this point being 1068

labeled as ”Significant”, and those below as ”Non Significant”. 1069

This process is iterated 5 times by default by SPARTA, and the optimal 1070

level of selection that is retained is the one that yields the highest median 1071

AUC during the classification process over 10 iterations of the pipeline. 1072

Repetition of the SPARTA pipeline 1073

To obtain robust results, the process of selecting a test subset, training 1074

classifiers, and extracting significant features for a set amount of itera- 1075

tions, was repeated over 10 runs in our manipulations. Variations in the 1076

training conditions, with different test subsets selected for each run, result 1077

in 10 different shortlists of significant features per iteration. We label as 1078

’Robust’ the features that constitute the intersection of these shortlists, as 1079

’Confident’ those that are present in 75% or more of them, and as ’Can- 1080

didate’ those that are present in at least one of them. The amount of 1081

times a variable is labeled as significant by the optimal level of selection 1082

is an indicator of how reliable it is for the distinction of the differentiated 1083

profiles. 1084

SPARTA lists and quantifies the pairings between sig- 1085

nificant variables 1086

Beyond significant shortlists, SPARTA also aims to illustrate the links be- 1087

tween taxa and FAs. EsMeCaTa’s outputs list all of the annotations all 1088

of the annotations estimated to be expressed by each taxonomic affiliation 1089

in the database, as discussed in a previous Methods section. From this, 1090

we can establish the reciprocal association, linking all annotations to the 1091

taxa that express them. To quantify the reciprocal impact of a taxon on 1092

an annotation’s score, we can calculate the following score: 1093

n̄M,i×xF,M∑
M∈A(M) n̄M,i×xF,M

1094

where xF,Mx
is the number of proteins within taxon x’s proteome that 1095

are linked to the function F, n̄M,i is the average of the abundances of a 1096

taxonomic affiliation within a dataset and A(M) is the ensemble of all taxa 1097

associated with the annotation. 1098

Assigning a feature to a profile 1099

SPARTA also involves associating taxonomic affiliations and FAs to either 1100

the unhealthy or control categories. To do so, the profiles (relative abun- 1101

dances for taxa, scores of FAs for annotations) of all individuals within the 1102

same category were averaged, and the features were associated with the 1103

profile where they were most prevalent on average. 1104
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Application of HuMAnN3 to the IBD dataset 1105

A functional profile was built from the raw reads of the IBD dataset, using 1106

the HuMAnN3 tool, in the context of a comparative evaluation of applica- 1107

tions of SPARTA’s classification approach to functional profiles from differ- 1108

ent sources. The process was conducted on the reads sequenced by Qin et 1109

al. [53], available at the European Bioinformatics Institute (EBI) website 1110

with accession code ERA000116. During the process, sample V1.UC-19 1111

could not be processed properly, resulting in a functional table devoid 1112

of this sample. As such, in S2 Fig, the performances obtained on this 1113

profile were compared to classification performances obtained by apply- 1114

ing SPARTA’s functional profiling method to the IBD profile without the 1115

sample in question. 1116

Supporting information 1117

S1 File. Detailed classification performances per dataset, SPARTA1118

run, and selection iteration. The first sheet contains the detailed infor- 1119

mation as plotted in Fig 3: the average AUC scores, per run, for the overall 1120

best iteration level, for each dataset (taxa and annotations). The median 1121

of the average values, and p-values of the Mann-Whitney U-test compar- 1122

isons between the taxon and FA average scores per disease are also given. 1123

P-values under the 0.05 threshold are considered significant and are high- 1124

lighted with a *. Other sheets contain the details of each RF trained per run 1125

and iteration for each dataset (read: [dataset] R [run number] It [iteration 1126

number], with iteration numbers initialized at 0). The information given 1127

per sheet is: for each of the 20 RFs trained in this iteration and run, the 1128

optimal parameters found through GridSearch, the optimal threshold for 1129

probability prediction, and the AUCs on the training, validation, and test 1130

subsets. 1131

S2 File. Detailed robust and candidate FA shortlists per dataset. 1132

Each annotation is identified by its GO term or EC number, as well as its 1133

name. The complementary information given includes: the annotation’s 1134

average Gini importance over all RF models (’Average importance’), the 1135

list of all taxa associated to the annotation (’Linked taxa’) and the sub- 1136

list of robustly significant taxa within them (’Significant linked taxa’), and 1137

the profile it is associated to (’Family’) supported by the average scores of 1138

the annotation in the patient and control samples. Outside of the robust 1139

shortlists, the number of SPARTA iterations that deem the annotation 1140

significant is also given (’Count’). 1141

S3 File. Detailed robust and candidate taxon shortlists per dataset.1142

Each taxon is identified by its internal identifier (’ID’), as well as its full tax- 1143

onomy. The complementary information given includes: the taxon’s aver- 1144

age Gini importance over all RF models (’Average importance’), the list of 1145

all annotations associated to the taxon (’Linked Reactions’) and the sublist 1146

of robustly significant annotations within them (’Significant linked Reactions’),1147

and the profile it is associated to (’Family’) supported by the average abun- 1148

dances of the taxon in the patient and control samples. Outside of the 1149

robust shortlists, the number of SPARTA iterations that deem the taxon 1150

significant is also given (’Count’). 1151
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S4 File. Bibliographic exploration of the IBD dataset’s short- 1152

lists. The detailed conclusions of the bibliographic research on IBD’s whole 1153

robust output, as well as random selections of 20 annotations that were 1154

non-candidates, and significant in 50% of SPARTA’s runs. Bibliographic 1155

categories are as presented in Results. The categorizations are justified by 1156

quoted sources. 1157

S5 File. Details of the pairwise Jaccard distance measurements 1158

between taxa based on their associated annotations. Pairwise Jac- 1159

card distances between taxa, calculated based on their functional profiles 1160

as detailed in the ’Detail of taxon to annot links’ sheet. The final column, 1161

’Sum of close neighbors’, counts the number of taxa with a distance of 0.05 1162

or less from the one concerned. A value of 1 in this column means that the 1163

taxon in question only has itself for a neighbor. 1164

S1 Table. Evolution of the average median AUC scores per 1165

dataset, on the validation and test sets, at increasing levels of 1166

variable selection, for taxonomic and functional (SoFA) profiles. 1167

The top-performing selection levels on the test sets are highlighted in bold. 1168

S2 Table. Counts of the different bibliographic categories per 1169

researched selection, and p-values of a Chi² contingency test com- 1170

pared to the robust subset. 1171

S3 Table. Comparative benchmarks of the execution time, sizes 1172

of input and output in applying HuMAnN3 and EsMeCaTa to 1173

the IBD dataset, with 10 CPUs and 150 GB of memory. 1174

S4 Table. Execution time benchmarks for the SPARTA classifi- 1175

cation runs executed in the context of this study, with selection 1176

based on Gini and SHAP. 1177

S1 Fig. Classification performances obtained with SPARTA on 1178

all datasets, using RF-based selections based on Gini and SHAP, 1179

and using SVM classifiers on the full dataset and the best-performing1180

selection in terms of classification for Gini-based RFs. Perfor- 1181

mances at the top were obtained on the taxonomic profiles, those at the 1182

bottom were obtained on functional profiles obtained via EsMeCaTa. Simi- 1183

larly to Fig. 2, the represented performances for the SPARTA (Gini, green 1184

for taxonomic and purple for functional, and SHAP, red) classifications 1185

are the median classification performances (AUC) for all types of profiles 1186

and each dataset, at the optimal level of selection over 10 full runs of the 1187

pipeline. SVM performances were obtained over a single run and were 1188

applied to the entire dataset (orange) or to the variable selections that cor- 1189

respond to the best performances for SPARTA Gini (blue). Performances 1190

obtained with SPARTA SHAP and SVMs were compared to those obtained 1191

with SPARTA Gini with a Mann-Whitney U-test. Those marked with a * 1192

showed a significant difference in distribution (p-value < 0.05). Consistent 1193

test and validation sets were used between all profiles for the classification 1194

tasks. 1195
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S2 Fig. Classification performances obtained on the IBD dataset 1196

(minus sample V1.UC-19), annotated with EsMeCaTa (orange) 1197

and HuMAnN3 (blue), as well as on the taxonomic dataset (green). 1198

Consistent test and validation sets were used for between all profiles for 1199

the classification tasks. 1200

S3 Fig. Sizes of the Robust, Confident, and Candidate selections 1201

obtained on each dataset over 5 iterations of SPARTA, using 1202

Gini and SHAP. Top left: functional selections with Gini. Top right: 1203

functional selections with SHAP. Bottom left: taxonomic selections with 1204

Gini. Bottom right: taxonomic selections with SHAP. 1205

S4 Fig. Sizes and similarity of the individual Gini-based and 1206

SHAP-based SPARTA selections. Top: sizes of the functional and 1207

taxonomic selections obtained by SPARTA with Gini and SHAP over 10 1208

runs with 5 selective iterations, for all datasets. Bottom: similarity per- 1209

centage between the individual Gini and SHAP selections, for functional 1210

and taxonomic profiles. 1211

S5 Fig. Robust, confident, and candidate shortlist overlaps for 1212

SPARTA and limma selections of comparable sizes on the T2D 1213

dataset. The limma subsets were obtained with an adjusted p-value 1214

threshold of 0.255, chosen to obtain comparably sized candidate sublists 1215

between SPARTA and limma. 1216

S6 Fig. Classification performances obtained on the functional 1217

T2D and Cirrhosis datasets, selected by SPARTA (best perform- 1218

ing selection) and by limma (alpha = 0.05). 1219

S7 Fig. Associations between robust taxa and the associated 1220

robust functions predicted by SPARTA, for the best iteration on 1221

the IBD dataset. Similarly to Fig 6, the color scale for the taxa is based 1222

on their differential expression between control and unhealthy profiles, and 1223

arrow width is proportional to the strength of the taxon’s connection to the 1224

annotation. Relationships to non-robust annotations were not represented 1225

here for reasons pertaining to the readability of the figure. Represented 1226

taxa were chosen to showcase control and healthy representatives with high 1227

and low numbers of connections to robust annotations. 1228

S8 Fig. Sizes of the Robust selections obtained at each iteration 1229

level on the IBD dataset. 1230
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Cunff 1245

Software: Baptiste Ruiz, Arnaud Belcour 1246

Supervision: Anne Siegel, Yann Le Cunff 1247

Validation: Baptiste Ruiz, Yann Le Cunff 1248

Visualization: Baptiste Ruiz, Sylvie Buffet-Bataillon, Isabelle Le 1249
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