
HAL Id: hal-04816901
https://hal.science/hal-04816901v1

Submitted on 3 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Metric learning with multi-relational data
Jiajun Pan, Hoel Le Capitaine

To cite this version:
Jiajun Pan, Hoel Le Capitaine. Metric learning with multi-relational data. International journal of
machine learning and cybernetics, 2024, �10.1007/s13042-024-02430-x�. �hal-04816901�

https://hal.science/hal-04816901v1
https://hal.archives-ouvertes.fr

Metric Learning with Multi-Relational Data

Jiajun Pan1 and Hoel Le Capitaine2*

1Université de Lorraine, LORIA UMR 7503, Vandoeuvre les Nancy,
France.

2Nantes Université, LS2N UMR 6004, Nantes, France.

*Corresponding author(s). E-mail(s): hoel.lecapitaine@ls2n.fr;
Contributing authors: jiajun.pan@inria.fr;

Abstract

Over the past decades, there has been a growing interest in metric learning, a
type of representation learning that aims to learn a distance metric that can fit
to the data being analyzed. Many metric learning algorithms have been designed
for data lying in Euclidean spaces, where a parametric Mahalanobis metric can
be learned. However, such algorithms are often unable to handle relational data,
that is not independent and identically distributed (i.i.d.), or can only be used
at an entity level. In contrast, relational data allows for the discovery of complex
interactions between features and entities, which can lead to better models. In
this paper, we introduce two novel metric learning algorithms tailored to handle
relational data, that preserve the structural information of the graph and use the
features of the nodes as well. The first one is supervised and makes full use of both
the graph structure and node labels with a carefully designed loss function, while
the second is unsupervised and only uses the graph structure. Our experimental
results show that both methods outperform state-of-the-art learning algorithms.
Interestingly, we also find that the proposed unsupervised method often performs
better than traditional supervised metric learning approaches.

Keywords: Metric Learning, Multi-Relational Learning

1 Introduction

Currently, machine learning is extensively employed in many real-world domains,
such as financial services, marketing forecasting, healthcare, and government analysis,
among others. It is also used in several related artificial intelligence domains, including

1

natural language processing, machine vision, and pattern recognition [1]. Irrespective
of the type of machine learning method employed, the evaluation and comparison of
sample entities are typically required.

The effectiveness of machine learning algorithms is significantly influenced by the
quality of the distance metric used to describe the dissimilarities between entities,
also known as observations. The Euclidean metric is the most commonly used dis-
tance metric, although numerous other techniques are used to quantify the differences
between feature vectors, as discussed in the study [2].

In real-world applications, no distance metric is capable of perfectly fitting com-
plex data distributions. Thus, there is a need for an algorithm that can automatically
learn a data-adapted metric. This is known as the metric learning problem [3], which
is a subfield of machine learning and, like deep learning, falls under the category of
representation learning approaches. Representation learning [4], encompasses a set of
techniques for transforming raw data into features that can be employed by machine
learning algorithms or to convert data into more efficiently learned features. It elimi-
nates the need for manual feature extraction and enables computers to learn how to
extract and use features simultaneously, thereby learning to learn.

The output of metric distance learning is not a model that is directly utilized for
prediction, but rather a new metric that adapts to the task at hand. This metric
can be regarded as a representation of the data in a new latent feature space or a
self-adaptive feature space.

Metric distance learning has undergone several advancements in recent years, and
there have been numerous interactions and combinations with transfer learning, deep
learning, and other related fields, as presented in [3, 5].

However, there exist various types of data in real-world applications that do not
conform to the standard flat structure, which are commonly referred to as non-flat
data. These include strings, time-series, trees, graphs, and relational databases, among
others. The majority of existing models for non-flat data are based on the correspond-
ing non-structural data type of distance metric (e.g., Hamming distance for strings [6],
dynamic time warping distance for time series [7], and edit tree distance for trees [8]).
Once defined, conventional distance metric learning algorithms are typically employed.
However, to the best of our knowledge, there are currently no metric learning algo-
rithms specifically designed for relational data, which is where our proposals come in.
More specifically, the key problem to be solved is the lack of a formal metric between
entities in a relational dataset, where entities are described by individual features and
by links to each others.

The purpose of our paper is to formalize and learn a metric that specifically takes
into account multi-relational data [9]. Specifically, we aim to develop a proposed metric
that provides an embedding space for classification or visualization. In other terms,
we propose a representation learning process consisting in learning node embeddings
of multi-relational data, which incorporates both edge and node label constraints.
Compared to [9], we propose the following additional elements:

• we propose an unsupervised alternative approach to our proposition, where learning
constraints are only obtained through the graph structure, hence facilitating its use
in much broader applications,

2

• we modify and extend the link-strength based approach presented in [10], which is
restricted to bipartite graph data, to multiple and valued edges between nodes,

• we provide an extensive experimental analysis with a) more results, b) more other
recent deep approaches included into the study, and c) more datasets,

• we analyse the trade-off on the degree of supervision, and discuss the relative
conditions under which methods perform better than existing ones.

2 Metric learning and classical algorithms for flat
datasets

Metric learning is a field of study in machine learning that aims to create effective
representations of entities by mapping them into spaces [11]. The resulting metric is
tailored to the underlying data distribution and can be applied to various machine
learning methods. The key to this representation is the ability to accurately capture
the similarities and differences between entities. The most commonly used metric is
the Mahalanobis distance:

d2M (xi, xj) = (xi − xj)
TM(xi − xj), (1)

with a learned square matrix M of size p× p, where p denotes the feature dimension
and xi is a point in Rp.

A popular formulation of metric learning using the Mahalanobis distance d2M is to
find M such that it minimizes L(M) = ℓ(M, C) + λr(M), where ℓ is a loss function
which penalizes unsatisfied constraints, with C the set of constraints, controlled by a
trade-off parameter λ between the regularization term r(M) and the loss. If feasible,
this model is generally cast as a constrained optimization problem

min r(M) (2)

s.t. ℓ(M, i) ≤ 0,∀i ∈ C

There are different types of constraints that can be used in metric learning, depend-
ing on the specific approach being employed. Two commonly used types of constraints
are pairwise constraints and relative constraints. Pairwise constraints involve setting
a maximum margin for the distance between two samples xi and xj sharing the same
class label. Additionally, if a third sample xk with a different label is considered, the
distance between xk and the first sample xi should be greater than the margin. Rela-
tive constraints, on the other hand, involve comparing the distances between pairs of
samples. Specifically, if two samples have the same class label, the distance between
them should be lower than the distance between one of those samples and another
sample with a different label.

Metric learning is a well-studied topic with a vast literature. Some of the seminal
works include LMNN (Large Margin Nearest Neighbor)[12], ITML (Information-
Theoretic Metric Learning)[13], and their various extensions. The field has progressed
to recent deep metric learning approaches. Readers interested in an in-depth review
can refer to [14] and [15], respectively.

3

Most linear metric learning algorithms use the Mahalanobis distance model, but
recently, there has been interest in other measures such as similarity functions that
are also parameterized by a matrix M . The difference is that M does not have to be
positive semi-definite (PSD), which avoids the need to repeatedly project the matrix
onto the PSD cone while learning M . Nonlinear metric distance learning algorithms
have also evolved in recent years. The general idea for the nonlinear case is to use
an embedding function ϕ before the linear projection, which can be any nonlinear
function, a kernel being a popular choice. Consequently, some linear metric learning
methods have been extended with kernelization, and GB-LMNN [16] is an example
of LMNN where a non-linear projection is used. Gradient-boosting is applied to learn
nonlinear mappings directly in a function space. Additionally, there are several kernel-
based metric learning approaches based on KPCA [17], a nonlinear extension of PCA.
KPCA projects the data into an induced nonlinear feature space and performs dimen-
sion reduction in this feature space. For example, the authors of [18] use linear metric
learning algorithms based on Mahalanobis distance in the KPCA feature space.

Nonlinear machine learning algorithms frequently use neural networks, which also
make them an appropriate choice for nonlinear metric learning. Among the first nonlin-
ear metric learning method, LSMD (Learning Similarity Metric Discriminatively) [19],
introduces a model that learns a nonlinear projection ϕW (x) parameterized by a vec-
tor W , with relative constraints in the latent space. It is worth noting that most deep
metric learning methods rely on a two-step process, i.e., embedding and linear metric
learning in the projected space. The learned metric is not deep in itself; rather, the
embedding is.

Recently, another metric that does not depend on the Mahalanobis distance has
been proposed. This distance is defined using the Lovasz extension and allows for
learning weights on coalitions of features [20].

3 Learning with non-flat data

Most metric learning approaches are designed to work with data represented as feature
vectors, where constraints are generated based on target labels or other supervised
information. However, such distances are not well-suited for complex and/or structured
non-iid data, which are prevalent in real-world datasets. Such data can take many
forms, including string sequences, time series, trees, and graphs. These types of data
are commonly referred to as non-flat data.

To address this issue, several metric learning algorithms have been proposed specif-
ically for non-flat data in the past decades. One benefit of applying metric learning
to non-iid data is that it can serve as a proxy for any metric-based algorithm that
accesses data as if it were represented as feature vectors, without the need to handle
these complex objects directly. Additionally, there are already many existing struc-
tural metrics associated with representing structured objects, such as edit distances
and alignment indices. These metrics can be learned using metric learning strategies,
just like learning metrics from feature vectors.

There are a variety of metrics available for comparing complex data. The simplest
ones are based on an extension of Euclidean distance or alignment-based measures.

4

For example, the Needleman-Wunsch score [21] and the Smith-Waterman score [22])
are used for string sequences.

Edit distance is also a versatile tool for metric learning algorithms that is useful
for non-flat datasets, including string sequences and other structured datasets such as
tree or graph datasets [23]. Learning such a distance basically consists into learning
an adapted cost function for each action. More recently, the authors of [24] proposed
a variant based on the use of node embeddings on which the Euclidean distance can
be used for classification.

Another metric learning method focuses on representing structural information for
trees and groups [25]. In this approach, the authors propose a new graphical represen-
tation method for solving functional brain connection problems. They use a Siamese
graph convolutional neural network (GCN [26]) to learn a graph similarity metric. The
authors transfer the training set to a bipartite graph as the training pairs, and the
inputs of Siamese GCN are the training pairs. The outputs are combined by an inner
product layer followed by a single fully connected layer as the similarity estimate. The
model is driven by the hinge loss of matching and non-matching graphs.

The authors of [27] propose a metric learning algorithm based on the adjacency
matrix A of a network, SPML (Structure Preserving Metric Learning). SPML aims to
learn a Mahalanobis distance metric by transforming the matrix M while maintaining
the inherent connectivity structure of the network. The authors impose supervised
constraints on the algorithm by requiring that the distances to all disconnected nodes
xj must be greater than the distance to the farthest connected neighbor of all neighbor
nodes xl. However, to alleviate the issue of considering every connected neighbor, they
suggest introducing an additional input parameter K to limit the number of visited
connected neighbor nodes xl.

Recently, new embedding methods have been developed for graph structures that
share the same objective as Word2Vec. These methods, such as Node2Vec, Struc2Vec,
and Variational Graph Autoencoder, are discussed in a recent review [28]. They all
begin by embedding a graph, or its nodes, into a feature vector that can be used for
metric learning. While they give very interesting results, they share the same caveats
of the vast majority of neural models : they are by essence black boxes that are not
easy to interpret, and barely explainable.

While the objective is learning a metric, one may take advantage of the relations
(or edges in graphs) existing between the samples. Relational learning, as described
in [29], involves learning the uncertain relationships between target samples or inter-
nal associations within complex sample structures. These relationships can be either
external or internal.

Different theories distinguish these two types of relationships, but the fundamen-
tal approach to learning relationships is essentially the same. Unlike other machine
learning techniques, relational learning treats relationships as an additional source of
information, in addition to the features of the samples themselves. The learning tasks
of relational learning are focused on relationship information or predictive relationship
information, and include collective classification, logical interpretations, link-based
clustering, and link prediction.

5

Statistical relational learning (SRL) or probabilistic logic learning is the founda-
tional theory of relational learning, and aims to learn the probability distribution of
the uncertainty of relationships [30]. Probabilistic Relational Models (PRMs) are an
extension of Bayesian Networks to relational data [31], and use the Entity-Relationship
Model to represent the relationships between entities. Another well-known graphi-
cal model for relational learning is the Markov Logical Network (MLN) [32], which
is defined as a set of weighted first-order logic formulas that constrain logical
interpretations.

As an additional layer of information, one can consider to multi-relational data
which can be described as a hyper-graph or a set of different graphs with the same
batch of nodes. Entities may have several types of relations with same class entities,
as well as different class entities. Graph-based data mining tends to focus more on
the structure of graphs than on the properties of individual nodes or the expression of
a single relational rule. For example, [33] focuses on sub-graph representation infor-
mation, while [34] uses a graph embedding method to map the structure of a partial
graph into the features of each sample.

The authors of [35] propose metric learning on graphs for domain adaptation.
Their proposed method involves an iterative algorithm on the graph, where a new
metric is learned from labeled nodes in the resource domain and then applied to the
unlabeled nodes in the target domain. The graph is updated based on the learned
distance, and low-entropy instances are chosen as constraints for the next iteration.

Several metric learning algorithms have been proposed to deal with relational data
represented as heterogeneous networks. For example, in [36], a heterogeneous metric
learning algorithm is presented that integrates the structure of different graphs into
joint graph regularization. This algorithm uses two mapping functions for the feature
space of the object entities and subject entities in one relation and introduces a joint
graph regularization for iterative optimization of the loss function. Similarly, [37] uses
meta-path-based random walks to incorporate heterogeneous network structures into
skip-gram vectors for dealing with the relational graph.

In the last few years, embedding using methods have flourished. A number of them
are using the concept of sequences obtained from random walks or variant of [38].
Inevitably, it has been applied to node embedding of graphs, entities of knowledge
graphs [39] and tuple embeddings in databases [40]. In [41], the authors propose to
encode the structural information of a multi-relational graph into a tree, on which
unsupervised clustering algorithms are used, but without directly considering node
features.

While these algorithms perform well in considering the structure information in
the relational dataset, they do not take into account the side information carried by
the links and the node features at the same time. They process the edge variables
in the same way as the entities, but do not distinguish entity tables and association
tables, which limit their scope of application and their performances. In contrast,
our proposed method includes the value of different variables in the relationship and
distinguishes them from entities. Furthermore, it has been shown that many node
embedding methods based on random walk change considerably, even with constant
parameter settings [42].

6

Note that we restrict in this study to metric measures, i.e. measures holding the
four usual distance properties: symmetry, identity of indiscernibles, positivity and
triangular inequality. It is worth noting that alleviating one of these properties may
facilitate the learning process. Furthermore, the usefulness of each of these properties
has been discussed, and some works show their flaws in practical situations [43]. Other
approaches may use a non-metric definition of proximity, see [44] for details.

4 Metric learning for multi-relational data

The goal of this paper is to propose a metric learning algorithm that can be applied to
a relational database with multiple entity tables and multiple relationships between
entity tables. We first present different frameworks dealing with learning models
adapted to relational data, and then describe our scientific proposal.

4.1 Learning with multi-relational data

Real-world datasets often contain multi-relational links between entities as the primary
source of information, rather than just the structure or topological information. Social
network analysis, for example, focuses on the relationships between users. Typically,
such relational datasets have only one entity table with multiple relationships between
them.

The authors of [45] present various relational frameworks, including first-order
logic, relational database model, and set theory. An nr-array relation R is defined as
a subset of the Cartesian product of nr sets, denoted by ×, see [31] :

R ⊆ V1 × · · · × Vnr

= {(v1, · · · , vnr
)|v1 ∈ V1 ∧ · · · ∧ vnr

∈ Vnr
}. (3)

The domain of R, dom(R), which also denotes the Cartesian product V1×· · ·×Vnr
,

is the set of all possible relationships over the entities in their domains. For a set X
and a subset Xsub ⊆ X, the characteristic function of Xsub is a boolean-valued function
fcha|Xsub

: X → {0, 1} which indicates for all elements in X, whether they are also an
element of the subset Xsub:

∀x ∈ X : fcha|Xsub
(x) =

{
1 if x ∈ Xsub

0 otherwise
(4)

For a relation R, its characteristic function is a function fcha|R : V1 × · · · × Vn →
{0, 1}

fcha|R =

{
1 if a relation exists
0 otherwise

(5)

The focus of this work is on binary-valued (dyadic) relational data, where each
relationship Rk is a subset of Vi × Vj. The subject and object of the relationship

7

are denoted by a and b respectively, following the RDF convention [46]. To formalize
relational data, relational tensors are used, and combine nr-tuples and set theory.
Specifically, relational tensors rely on nr-array relations, which are defined as sets of nr-
tuples. Relational learning is concerned with predicting the existence of a relationship
between two individuals by learning the characteristic function of the relation from
supervised information. In this context, a relational tensor stores the relationships of
relational data with the characteristic function fcha|R. For modelling dyadic relational
data, a labelled directed graph is used, where nodes represent entities and labelled
directed edges denote relationships between them. The relational tensor is then the
union of the characteristic function of the relations.

Given a multi-relational graph, a relational tensor T with n entities (nodes) and nr

different relations (edges) can be written as an extension of the square affinity matrix
to the nr relations, T ∈ Rn×n×nr :

tijr =

{
1 if R(i, j)
0 otherwise.

(6)

The relational learning process in this work is based on a third-order tensor that
includes the characteristic function of relationships between entities, as depicted in
Figure 1. It is worth noting that this work focuses on a binary tensor, which indicates
the presence or absence of a relationship, but it is also possible to consider valued
relations (such as movie ratings by users) or vector-valued relations (such as actor
ratings in a movie).

E
n
ti
ti
es

i

j
r

Tijr
R
el
at
io
ns

Entities

Fig. 1: Relation between entities seen as a third-order tensor T , e.g. Tijr may denote
that the user i and the movie j are related with the concept r.

Various relational learning approaches using relational tensors have been proposed
in literature. The authors of [47] focus on existing link prediction models and extend

8

matrix factorization to use side information to overcome imbalance. They use the
Tucker Decomposition (TD) model on a user-tag-item relational tensor to provide
high-quality tag recommendations. Another approach is presented in [48], where they
improve TD to PITF (Pairwise Interaction Tensor Factorization) using an adaptation
of the Bayesian Personalized Ranking (BPR) criterion. PITF factors the tensor to a
fixed diagonal core tensor, user matrix, item matrix, and pairwise tag matrix.

The authors of [49] and [50] propose RESCAL factorization, which decomposes
the relational tensor T ∈ Rn×n×nr into a core tensor R ∈ Ra×a×nr and a matrix
A ∈ Rn×a, where a is a user-given positive integer parameter with 0 < a < n. The
matrix A can be seen as an embedding of the entities into an a-dimensional latent
space. Each slice k of the matrix R quantifies the similarity of the k-th relationships
between entities and can be seen as a new latent feature space.

However, the matrix A only considers the relational information and not the origi-
nal features, as mentioned in [50], [49] and [51], The use of a larger tensor that includes
the original features during tensor factorization may cause a loss. Therefore, this work
proposes using only the relational information for RESCAL factorization to obtain a
latent space that represents the relational information and use it as a new ”relational
feature” for entities. Time and space complexity of RESCAL prevents it to be used
on large scale data.

Relational Graph Convolutional Network (R-GCN) is a graph neural network archi-
tecture that is specifically designed to handle data with complex relationships between
entities [52]. The novelty in R-GCN is the incorporation of relation-specific weights
into the convolution operation, allowing the model to learn different weights for each
type of relation in the graph. While the R-GCN model has the capability to capture
more nuanced information about the relationships between nodes in a graph by incor-
porating relation-specific weights into the convolution operation, it does not take into
account entity-specific features that could further enhance its ability to represent the
graph data.

As there are few existing approaches, this work proposes a baseline approach that
learns a metric in the embedding space, which is composed of the latent relational
feature obtained through tensor factorization and the original feature space.

4.2 Metric learning with multi-relations

In this section, we formulate the problem of learning with multi-relational data under
a metric learning framework, where we fit a metric in the entity space. The proposed
method is called MRML, standing for Multi-Relational Metric Learning.

The goal of our approach is to take into account the three types of information
available in the dataset, namely features, links, and labels. To achieve this, we use the
Mahalanobis distance as the metric definition and incorporate relational constraints
into the objective function. In essence, our objective function follows the same general
model as other metric learning algorithms, but with specific modifications to account
for these relational constraints.

L(M) =
∑

(i,j,k)∈CS

ℓM (i, j, k) + λr(M) (7)

9

where CS = {CR ∪ CL}, i.e. the union of constraints obtained from links or edges, CR,
and constraints obtained from labels, CL.

Two popular approaches are used for incorporating label information constraints:
similar/dissimilar constraints and relative constraints, as described in [53]. In this
work, we focus on relative constraints, given by the inequality:

d2M (xi, xj) + γ ≤ d2M (xi, xk), ∀(i, j, k) ∈ CL,

where CL contains (i, j, k) triples of data, where (xi, xj) share the same label and
(xi, xk) have different labels, and γ is a margin. The relative constraints ensure that
entities with different labels are farther apart, with a margin, than entities with the
same labels. We choose γ = 1 based on common usage in the literature [12].

The loss function ℓM (i, j, k) from Eq. (7) can be divided into two separate losses:
ℓL for label constraints and ℓR for relational constraints. A hinge-loss functino is used
to define the ℓL loss, which takes into account the label constraints and is defined as:

ℓL =
1

|CL|
∑

(i,j,k)∈CL

max(d2M (xi, xj)− d2M (xi, xk) + γ, 0) (8)

On the other hand, for the relational constraints, we propose to use a multi-
relationship tensor in place of the adjacency matrix. Each slice of the tensor represents
an adjacency matrix, allowing for the consideration of all relational links. Thus, every
slice provides a specific sum of loss functions, and adding up all slices leads to con-
straints from all relational links. We specifically focus on the connected neighbor
constraints, which can be expressed as follows:

∀(i, j), d2M (xi, xj) > (1−Rr(i, j))×max
l

(
Rr(i, l)d

2
M (xi, xl)

)
,

where the matrix Rr is the slice r of the tensor T .
Summing up over all slices, and using a hinge loss, gives

ℓR =
1

nr

nr∑
z=1

1

|Cz|
×

∑
(i,j,k)∈Cz

max(d2M (xi, xj)− d2M (xi, xk) + γ, 0), (9)

where Cz is the set of constraints obtained through the z-th relation r of the tensor
cube T . More precisely,

Cz = {(i, j, k)|rz(i, j) = 1, rz(i, k) = 0}.

Note also that
⋃nr

z=1 Cz = CR.
Taking the squared Frobenius norm as regularization term on M , the objective

function becomes

L(M) =
λ

2
∥M∥2 + λ′ℓR + (1− λ′)ℓL (10)

10

x6

x5

x4 x3

x2

x1

CL = {(1, 2, 4), (4, 5, 3), (2, 3, 6), · · · }
C1 = {(4, 5, 6), (2, 4, 3), · · · }
C2 = {(2, 3, 1), (5, 6, 2), · · · }
C3 = {(3, 4, 6), (2, 3, 4), · · · }

Fig. 2: A multi-relational graph with binary labeled nodes (• and •) and three different
relations between nodes : r1, r2 , r3 (left). Corresponding constraints drawn from the
multi-relational graph (right).

where the introduced parameter λ′ balances the importance of relational constraints
and label constraints in the proposed approach. A value of 0 for λ′ would mean that
only label constraints are considered, while a value of 1 would mean that only relational
constraints are used. It is worth noting that by applying an L1 norm onM , the sparsity
of the model could be promoted (such as in Lasso regularization) or a combination
of L1 and L2 norms could be used (such as in elastic net regularization). However,
exploring these different options is beyond the scope of this paper.

We adopt a stochastic sub-gradient descent with mini-batches to optimize the loss
function of MRML, which has the benefit of making the complexity independent of
the number of constraints. Using a convenient notation, we can express the difference
between the two distances in the loss function using a sparse matrix S as follows:

d2M (xi, xj)− d2M (xi, xk) = S(i,j,k)XTMX, (11)

where the different S are sparse matrices storing the parameters:

S
(i,j,k)
jj = 1, S

(i,j,k)
ik = 1, S

(i,j,k)
ki = 1, S

(i,j,k)
kk = −1, S

(i,j,k)
ij = −1 and S

(i,j,k)
ji = −1.

Otherwise, S(i,j,k) = 0. The matrices S are used to encode constraints directly into
the loss function, whether to encode structural information (i.e. a link between nodes)
or labels. In that case, a positive entry denotes the same node label, while a negative
entry corresponds to a different node label. By design, the sparse matrix S(i,j,k) indexes
the elements related to nodes i, j, and k, such that tr(S(i,j,k)XTMX) is equal to
d2M (xi, xj)− d2M (xi, xk).

The sub-gradient of the objective function can then be written as:

∇L(M) = λM +
1− λ′

|CL|
∑

(i,j,k)∈CL+

XS(i,j,k)XT +
λ′

nr

nr∑
z=1

1

|Cz|
∑

(i,j,k)∈C+
z

XS(i,j,k),zXT

(12)

11

where CL
+ and C+

z are subset of CL and Cz, respectively, for which d2M (xi, xj)−
d2M (xi, xk) + 1 > 0. Note that for each relation r, a corresponding sparse constraint
matrix S(i,j,k),r is constructed.

Algorithm 1 Metric learning based on relational tensor with stochastic sub-gradient
descent

Input: X,CL, CR and parameters λ, nc ≤ |C|, λ′,t
Output: M
1: M0 = Im
2: for ti from 1 to t− 1 do
3: S = 0n,n, S

z = 0n,n, ∀z ∈ {1, · · · , nr}
4: nL = 0, nR = 0
5: for b from 1 to nc do
6: sample (i, j, k) from CL with probability λ′

7: if d2M (xi, xj)− d2M (xi, xk) + 1 > 0 then
8: nL+ = 1
9: Sjj+ = 1, Sik+ = 1, Ski+ = 1,

10: Skk+ = −1, Sij+ = −1, Sji+ = −1.
11: end if
12: sample (i, j, k) from CR with probability 1− λ′

13: for r from 1 to nr do
14: if d2M (xi, xj)− d2M (xi, xk) + 1 > 0 then
15: nR+ = 1
16: Sr

jj+ = 1, Sr
ik+ = 1, Sr

ki+ = 1,
17: Sr

kk+ = −1, Sr
ij+ = −1, Sr

ji+ = −1.
18: end if
19: end for
20: end for
21: ∇ti =

1−λ′

nL
XSXT + λ′

nRnr

∑
z XSzXT + λMti

22: Mti+1/2
= Mti −

∇ti
tiλ

23: Mti+1 = ProjS+m(Mti+1/2
) // projection to the closest PSD matrix on closed convex

cone of Sm, space of symmetric m-by-m matrices see [54].
24: end for
25: return Mt

Algorithm 1, also pictured in the flowchart of Figure 3, provides a detailed descrip-
tion of MRML with stochastic sub-gradient descent. A projection onto the PSD cone
ensures the matrix M defines a true metric.

This algorithm is a variation of the PEGASOS algorithm [55] without projection,
similar to the approach taken in [27]. Therefore, the running time does not scale with
the input size n and the number |T | of edges but with the dimensionality p.

With a probability of 1− δ, it provides a bound on the optimization error ε, which

is given by
84R2 ln(t/δ)

λt
, where t is the number of iterations, δ is a constant, and the

norm of any input x is at most R. Consequently, the necessary number of iterations

12

Metric
initial-
ization

M

Structural
initial-
ization

S

Label
constraint

Relational
constraint

Structural
update S

Update
M with
Eq. (12)

λ′

1 − λ′

loop until convergence

Fig. 3: A simple flow process of the proposed algorithm where M can be used in any
metric based classification process.

to reach an error ε is O(1
λε). The size of the data, in terms of entities, does not play

a role in the running time, because each iteration is O(p2).
It is worth noting that the algorithm can be terminated at any time and still

produce a valid metric, thanks to the projection onto the convex cone of M in line 23.

5 Experiments, results and discussions

The evaluation of the proposition is done by comparing the effect of the learned
metric withK-nearest neighbor (KNN) classification. More precisely, using the learned
metric, we are able to compute a distance between any entities, so that the KNN
algorithm allows to predict entity labels by majority vote of the k nearest entities.

We used K equal to 5 and score the performance with accuracy rate via randomly
shuffled 3-fold cross-validation. Note that we tried different values for K (in particular
3, 5, 7 and 9), without notably different results. For each experiment, the number of
constraints ranges from 100 to 500, and the average value of each set is taken as the
final result. All the experiments were performed on an 8 cores Apple M1 chip, with
16 Go LPDDR4 as memory. The code is available online for research reproducibility1.
We also give results obtained without learning a metric, i.e. using a Euclidean distance
for the KNN algorithm (Euc).

5.1 Datasets

In this study, we use 6 real-world relational databases as benchmarks, whose properties
are given in Table 1. n is the number of instances, nr is the number of types of relations
and m is the number of features.

• Elite: DutchElite dataset [56] contains the relational information of administrative
elite in The Netherlands. The label distinguishes if the elite is top200 or not.

• Mondial: Mondial dataset [57], is the relational version of the geographical Web
data sources. The labels are the classes of entities.

1https://gitlab.univ-nantes.fr/lecapitaine-h/relational-metric-learning/

13

Dataset Entities n Relations nr Features m Edges Classes

Elite 4747 41 7 5 221 2
Mondial 185 23 4 12 889 2
Movie 1804 26 5 1 237 18
UW 278 4 3 711 2
MG 4893 6 2 60 294 3

Wiki-CS 11701 1 300 297 110 10

Table 1: Dataset characteristics.

• Movie: Movie-Remark dataset [58] describes relations across several files of movie
information, the labels are the genres of the movies.

• UW: The UW-CSE dataset, as presented in the standard version by the University
of Washington (UW-std), describes the connections among professors and students
in the Computer Science and Engineering Department at the university. The labels
assigned to the data points are based on the academic stage of the individuals
involved [59].

• MG: Mutagenesis dataset [60], describes trials of molecules for mutagenicity on
Salmonella typhimurium. We use the atom and the bond between them as the
relationship. The labels are the types of atom.

• Wiki-CS: The Wikipedia-Computer Science dataset [61] is built from Wikipedia
categories, where the ten classes correspond to branches of computer science. Each
node is an article whose features are pretrained with GloVe word embeddings.

Although the number of instances might appear quite low, it is worth noting that the
number of relations between instances multiplies this number of instances, resulting
in a much larger volume of data.

In the introduction, it was noted that traditional metric learning methods only
utilize features and fail to account for the relationships between observations. To
address this, we propose embedding the data into a space that accurately reflects the
data’s relationships to facilitate fair metric learning algorithms comparison.

For Rescal factorization-based metrics, the latent feature space is created using
matrix Al, which is generated by T ≈ R×1 Al ×2 Al, where Al is a factor matrix with
dimensions n× a, and R is a core tensor with dimensions a× a×m. The values of Al

and R depend on the chosen positive integer parameter a. By increasing the value of
a, we can reduce the approximation error; however, this comes at the cost of increased
complexity. Our experiments indicate that increasing the dimensionality of Al leads
to better factorization, while increasing the rank results in a larger core tensor R and
more arduous calculations.

5.2 Unsupervised learning

In this section, we compare the performance of different metrics related on different
combination of features information and relational information without using labels,
but only relational constraints. More precisely, we consider the following loss function

14

L(M) =
λ

2
∥M∥2 + ℓR (13)

The sub-gradient of the objective function then simplifies to:

∇L(M) = λM +
1

nr

nr∑
z=1

1

|Cz|
∑

(i,j,k)∈C+
z

XS(i,j,k),zXT (14)

In Table 2, cross-validation accuracy, and their standard deviations, using the K-
nearest-neighbour algorithm with different metrics are given. Euc. stands for the usual
Euclidean distance in the feature space (i.e. M = Id). Res corresponds to the usual
Euclidean distance in the latent space Al obtained using RESCAL factorization, as
described before. Finally, Agg corresponds to the use of the joint space of RESCAL
embeddings Al and the original feature space X, given by (X,Al). Each observation
i is described by (xi1, · · · , xin, ali1, · · · , alir).

In order to provide a comparison with metric learning algorithms in a unsupervised
setting, we adapt and extend the method proposed in [10], called LSCS (Link-strength
Constraints Selection), which is restricted to relations formalized by bipartite graphs.
In this method, instead of randomly selecting the constraints from labels, the proba-
bility of selecting a pair of nodes is a function of the structure of the relations. The
strength of the link increase the probability of being selected for the corresponding
pair.

The link-strength function is extended to multi-relational datasets by summing the
link-strength for each relation. We also extend from the reference relation Rr to Re,
considering the group structures as every edge between nodes is the side-information
of common parents, but as a binary value. In that case, the link-strength function
consider the additional term

ℓkij∑
k

Pk(i, j), (15)

where Pk(i, j) is the parent adjacency matrix of the k-relation in the group structure.
Considering a simple binary adjacency matrix gives Pk(i, j) = 1 if xi and xj have
common parents in relation rk, and 0 otherwise. The term ℓkij is the number of common
parents of xi and xj in the relation rk.

LSCS-ITML and LSCS-LSML are using the classical metric learning algorithm
ITML [13] and LSML (Least Squares Metric Learning) [62] respectively, together with
LSCS, but only selecting constraints with relational side-information, as explained
above. MRML is our proposed approach in a restricted unsupervised setting where it
uses only relational constraints and no target labels. Best values are indicated in bold
font. From Table 2, one can see that MRML no-label consistently performs better
than the other approaches, except for the Elite dataset.

15

Dataset Euc Res Agg LSCS-ITML LSCS-LSML MRML

Elite 87.60±12.08 91.14±0.80 89.59±0.85 84.56±12.46 88.25±1.28 88.80±5.67
Mondial 68.66±7.99 61.31±7.83 58.59±5.30 64.66±8.81 59.57±5.97 69.40±1.33
Movie 38.56±1.86 33.31±7.84 39.56±2.25 38.21±1.21 39.42±1.52 40.07±2.07
UW 96.40±0.03 81.08±0.28 87.91±0.84 96.55±0.81 95.73±0.19 98.27±0.35
MG 83.92±0.79 62.22±1.04 75.39±2.19 79.06±19.96 82.94±9.33 86.16±1.17

Wiki-CS 76.50 ±0.15 71.01±0.29 77.59±0.21 77.89±0.17 77.12±0.09 79.91±0.14

Table 2: Cross-validation accuracy of KNN with different metrics without label infor-
mation.

5.3 Fully supervised learning

Our focus now shifts to the full potential of our proposal by using both constraints and
labels. To investigate the impact of λ′ on the loss function L(M) = λ

2 |M |2+λ′ℓR+(1−
λ′)ℓL in MRML, we examine how it regulates the significance of relations and labels
on the learned metric and performance. Consequently, we assess the learned metric for
each dataset by varying λ′ from 0 (no relations) to 1 (no labels), as shown in Figure 4.
As can be seen, the optimal precision for all datasets is attained between these two
extremes, indicating that both pieces of information are beneficial, as expected. It is
worth noting that four datasets (Elite, Movie, UW, and MG) have similar performance
whether there are no relationships or no labels. However, the experimental results
suggest that the node classification in Mondial is more dependent on relationships,
while Wiki-CS has more information in the labels. For each dataset, the optimum λ′

is chosen according to this preliminary analysis.
We first consider two algorithms that directly incorporate relational information:

an MLN (Markov Logic network) as the baseline, with default discrimination param-
eters [32], and SPML for structural preservation of the graph [27]. We also include
the results of a graph neural network dedicated to relational data, R-GCN [52]. We
use a 2-layer model with 16 hidden units, as in the original paper. Then, we con-
sider state-of-the-art metric learning: ITML [13], LSML [62] and LFDA (Local Fisher
Discriminant Analysis) [63]. The three algorithms are used on the latent space pro-
vided by RESCAL in order to take into account relationships between entities. We
also provide results with ITML and LSML using the proposed LSCS process.

Dataset MLN SPML R-GCN ITML LSML LFDA LSCS-ITML LSCS-LSML MRML

Elite NT 86.71±1.99 89.07±2.17 89.28±0.33 90.76±0.87 90.20±.54 89.18±0.64 88.66±00.80 91.19±1.33
Mondial 67.71±4.82 57.16±9.45 69.63±1.89 61.29±4.64 58.54±9.28 59.46±7.11 64.66±5.90 59.35±6.90 71.23±3.27
Movie 40.84±0.84 38.64±1.63 41.67±1.67 39.16±2.76 38.54±1.81 39.86±1.53 38.16±1.25 39.38±1.62 40.80±1.26
UW 77.12±6.12 87.43±4.27 98.87±2.36 96.83±0.27 92.44±0.50 90.63±0.28 97.09±2.45 94.68±2.84 99.28±0.22
MG 81.45±2.71 84.88±5.86 83.28±2.25 79.74±1.48 70.61±1.58 72.03±1.27 82.98±10.10 84.51±5.17 86.16±1.26

Wiki-CS NT 79.04± 0.56 79.07±1.00 77.58 ±0.20 77.34 ±0.11 74.56 ±0.34 78.67 ±0.45 74.89 ±0.13 80.98±0.24

Table 3: Cross-validation accuracy of KNN with different metric learning methods
with both relational information and target labels.

Results are given in Table 3. NT means that the running of the algorithm is out
of the time limit due to memory explosion. As can be observed in Table 3, MRML

16

0.0 0.5 1.0

89.0

90.0

91.0

λ′

A
cc
u
ra
cy

Elite

0.0 0.5 1.0

60.0

65.0

70.0

λ′

A
cc
u
ra
cy

Mondial

0.0 0.5 1.0

40.0
40.2
40.4
40.6
40.8

λ′

A
cc
u
ra
cy

Movie

0.0 0.5 1.0

98.5

99.0

λ′

A
cc
u
ra
cy

UW

0.0 0.5 1.0
78.0
80.0
82.0
84.0
86.0

λ′

A
cc
u
ra
cy

MG

0.0 0.5 1.0

80.0

80.5

81.0

λ′

A
cc
u
ra
cy

Wiki-CS

Fig. 4: Performance of the proposed MRML with respect to various levels of super-
vision, controlled by λ′. Best trade-offs are generally found with in-between values.

performs better than other approaches, and the Movie dataset on which R-GCN and
MLN are better (although both of them are closely followed by MRML). It is worth
noting that the unsupervised method proposed in the previous section performs better
than the supervised algorithms in 5 out of 6 datasets, closely followed by R-GCN.

More precisely, the Mondial, Movie and UW datasets seem to give better results
when the labels are prioritized, without the structure. Conversely, Elite seems to favor
structure. This is also confirmed by the performance of SPML, an algorithm based
solely on structure. Conversely, the ITML and LSML algorithms, inheriting the pro-
jection of attributes from RESCAL, behave better on data where the structure is less
important. We can categorize the datasets considered: {Mondial, Movie, UW} where
the label has great importance, {Elite} where the structure has great importance,
and {MG , Wiki-CS} where the two aspects are more balanced. Interestingly, R-GCN
seems to perform better for the first group (labels), and less for data where structure
matters.

17

6 Conclusion, discussion and perspectives

Our paper introduces a novel approach to metric learning, named MRML, that lever-
ages both features and relationships among entities in multi-relational data. We extend
the standard adjacency matrix of a network to a relational tensor where entities are
represented by feature vectors. Additionally, we utilize labels to generate extra con-
straints, similar to traditional metric learning techniques. We then present a stochastic
sub-gradient descent algorithm to learn this metric, which includes a parameter λ′ to
regulate the degree of supervision, ranging from no use of labels to no use of rela-
tions. Our experimental results demonstrate that a trade-off between the two extremes
produces the best outcomes.

Furthermore, we propose a baseline for relational metric learning utilizing tensor
factorization. The resulting embedded space serves as the foundation for typical met-
ric learning algorithms, where relations are encoded. Real-world dataset experiments
demonstrate the efficacy of our approach concerning both accuracy and complexity,
compared to state-of-the-art metric learning techniques.

Usual relational models, from statistical relational learning to graph-based rela-
tional mining, aims to learn a probability distribution of relationships or the structure
of the graph, forgetting the characteristics of the nodes. Our method diverge from this
approach, but could use the learned probability distribution on uncertain relationships
in order to generate constraints related to the structure instead of randomly drawing
them during the learning algorithm.

As future directions, we plan to extend our approach to non-binary relations, such
as the user-movie rating relation, which can be a valued feature. Additionally, we aim
to incorporate vector-valued relations into our approach. The current approach only
uses binary relations in order to set relational constraints CR, so that we may propose
two alternatives to enhance the handling of information links. The first would be to
use a mapping from Rk → [0, 1] where k is the dimension of the edge vector, using
e.g. a distance. Alternatively, one could use recent works on edge embeddings [64] to
get more interesting constraint sets.

As an additional perspective, we would like to mention the use of local metrics
within the graphs. Promising works have been proposed in this area, but generally
restricted to flat data [65]. Defining locally adapted metrics for graphs, where the
notion of proximity in the graph can be defined through the neighborhood of nodes,
would be of great interest.

Finally, testing the proposed method on larger graphs, with millions of nodes and
links would demonstrate the real potency of application.

References

[1] Mitchell, T.M., et al.: Machine learning. 1997. Burr Ridge, IL: McGraw Hill
45(37), 870–877 (1997)

[2] Lenz, H.-J.: Proximities in statistics: Similarity and distance. Preferences and
Similarities, 161–177 (2008)

18

[3] Kulis, B.: Metric learning: A survey. Foundations and Trends in Machine Learning
5(4), 287–364 (2012)

[4] Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and
new perspectives. IEEE transactions on pattern analysis and machine intelligence
35(8), 1798–1828 (2013)

[5] Kaya, M., Bilge, H.Ş.: Deep metric learning: A survey. Symmetry 11(9), 1066
(2019)

[6] Hamming, R.W.: Error detecting and error correcting codes. The Bell system
technical journal 29(2), 147–160 (1950)

[7] Kruskall, J.B.: The symmetric time warping algorithm: From continuous to
discrete. Time warps, string edits and macromolecules (1983)

[8] Bernard, M., Habrard, A., Sebban, M.: Learning stochastic tree edit distance. In:
European Conference on Machine Learning, pp. 42–53 (2006). Springer

[9] Pan, J., Le Capitaine, H.: Metric learning with relational data. In: 27th Euro-
pean Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning, pp. 367–372 (2019)

[10] Pan, J., Le Capitaine, H., Leray, P.: Relational constraints for metric learning
on relational data. In: 8th International Workshop on Statistical Relational AI @
ICML (2018)

[11] Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning with
application to clustering with side-information. Advances in neural information
processing systems 15, 505–512 (2003)

[12] Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest
neighbor classification. JMLR 10(Feb), 207–244 (2009)

[13] Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic met-
ric learning. In: Proceedings of the 24th International Conference on Machine
Learning, pp. 209–216 (2007). ACM

[14] Bellet, A., Habrard, A., Sebban, M.: A survey on metric learning for feature
vectors and structured data. arXiv preprint arXiv:1306.6709 (2013)

[15] Ghojogh, B., Ghodsi, A., Karray, F., Crowley, M.: Spectral, probabilistic, and
deep metric learning: Tutorial and survey. arXiv preprint arXiv:2201.09267
(2022)

[16] Kedem, D., Tyree, S., Sha, F., Lanckriet, G.R., Weinberger, K.Q.: Non-linear
metric learning. In: Advances in Neural Information Processing Systems, pp.
2573–2581 (2012)

19

[17] Schölkopf, B., Smola, A., Müller, K.-R.: Nonlinear component analysis as a kernel
eigenvalue problem. Neural computation 10(5), 1299–1319 (1998)

[18] Chatpatanasiri, R., Korsrilabutr, T., Tangchanachaianan, P., Kijsirikul, B.:
A new kernelization framework for mahalanobis distance learning algorithms.
Neurocomputing 73(10-12), 1570–1579 (2010)

[19] Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively,
with application to face verification. In: Computer Vision and Pattern Recog-
nition, 2005. CVPR 2005. IEEE Computer Society Conference On, vol. 1, pp.
539–546 (2005). IEEE

[20] Pan, J., Le Capitaine, H.: Metric learning with submodular functions. Neurocom-
puting 416, 328–339 (2020)

[21] Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of molecular
biology 48(3), 443–453 (1970)

[22] Smith, T.F., Waterman, M.S., et al.: Identification of common molecular subse-
quences. Journal of molecular biology 147(1), 195–197 (1981)

[23] Ristad, E.S., Yianilos, P.N.: Learning string-edit distance. IEEE Transactions on
Pattern Analysis and Machine Intelligence 20(5), 522–532 (1998)

[24] Paaßen, B., Gallicchio, C., Micheli, A., Hammer, B.: Tree edit distance learn-
ing via adaptive symbol embeddings. In: International Conference on Machine
Learning, pp. 3976–3985 (2018). PMLR

[25] Ktena, S.I., Parisot, S., Ferrante, E., Rajchl, M., Lee, M., Glocker, B., Rueck-
ert, D.: Metric learning with spectral graph convolutions on brain connectivity
networks. NeuroImage 169, 431–442 (2018)

[26] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: International Conference on Representation Learning (2017)

[27] Shaw, B., Huang, B., Jebara, T.: Learning a distance metric from a network. In:
Advances in Neural Information Processing Systems, pp. 1899–1907 (2011)

[28] Hamilton, W.L.: Graph representation learning. Synthesis Lectures on Artifical
Intelligence and Machine Learning 14(3), 1–159 (2020)

[29] Struyf, J., Blockeel, H.: Relational learning. Encyclopedia of Machine Learning
and Data Mining, 1090–1096 (2017)

[30] Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT press,
1st edition (2007)

20

[31] Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: IJCAI, vol. 99, pp. 1300–1309 (1999)

[32] Richardson, M., Domingos, P.: Markov logic networks. Machine learning 62(1-2),
107–136 (2006)

[33] Horváth, T., Ramon, J., Wrobel, S.: Frequent subgraph mining in outerplanar
graphs. Data Mining and Knowledge Discovery 21(3), 472–508 (2010)

[34] Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and perfor-
mance: A survey. Knowledge-Based Systems 151, 78–94 (2018)

[35] Dhillon, P., Talukdar, P., Crammer, K.: Metric learning for graph-based domain
adaptation. In: Proceedings of COLING 2012: Posters, pp. 255–264. The COLING
2012 Organizing Committee, Mumbai, India (2012)

[36] Zhai, X., Peng, Y., Xiao, J.: Heterogeneous metric learning with joint graph
regularization for cross-media retrieval. In: Twenty-seventh AAAI Conference on
Artificial Intelligence (2013)

[37] Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: Scalable representation learn-
ing for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 135–144
(2017). ACM

[38] Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710 (2014)

[39] Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Trans-
lating embeddings for modeling multi-relational data. Advances in neural
information processing systems 26 (2013)

[40] Lubarsky, Y.L., Tönshof, J., Grohe, M., Kimelfeld, B.: Selecting walk schemes for
database embedding. In: Proceedings of the 32nd ACM International Conference
on Information and Knowledge Management, pp. 1677–1686 (2023)

[41] Peng, H., Zhang, J., Huang, X., Hao, Z., Li, A., Yu, Z., Yu, P.S.: Unsuper-
vised social bot detection via structural information theory. ACM Transactions
on Information Systems 42, 1–42 (2024)

[42] Schumacher, T., Wolf, H., Ritzert, M., Lemmerich, F., Grohe, M., Strohmaier, M.:
The effects of randomness on the stability of node embeddings. In: Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pp.
197–215 (2021). Springer

21

[43] Duin, R.P., Pekalska, E.: Non-euclidean dissimilarities: Causes and informative-
ness. In: Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR
International Workshop, SSPR&SPR 2010, Cesme, Izmir, Turkey, August 18-20,
2010. Proceedings, pp. 324–333 (2010). Springer

[44] Schleif, F.-M., Tino, P.: Indefinite proximity learning: A review. Neural compu-
tation 27(10), 2039–2096 (2015)

[45] Džeroski, S.: Relational data mining. Data Mining and Knowledge Discovery
Handbook, 887–911 (2010)

[46] Antoniou, G., Van Harmelen, F.: A Semantic Web Primer. MIT press, 1st edition
(2004)

[47] Menon, A.K., Elkan, C.: Link prediction via matrix factorization. In: ECML-
PKDD, pp. 437–452 (2011). Springer

[48] Rendle, S., Schmidt-Thieme, L.: Pairwise interaction tensor factorization for per-
sonalized tag recommendation. In: Proceedings of the Third ACM International
Conference on Web Search and Data Mining, pp. 81–90 (2010). ACM

[49] Nickel, M., Tresp, V.: Tensor factorization for multi-relational learning. In:
ECML-PKDD, pp. 617–621 (2013). Springer

[50] Nickel, M., Tresp, V., Kriegel, H.-P.: A three-way model for collective learning on
multi-relational data. In: ICML, vol. 11, pp. 809–816 (2011)

[51] Nickel, M., Tresp, V., Kriegel, H.-P.: Factorizing yago: scalable machine learning
for linked data. In: Proceedings of the 21st International Conference on World
Wide Web, pp. 271–280 (2012). ACM

[52] Schlichtkrull, M., Kipf, T.N., Bloem, P., Van Den Berg, R., Titov, I., Welling, M.:
Modeling relational data with graph convolutional networks. In: The Semantic
Web: 15th International Conference, ESWC 2018, Heraklion, Crete, Greece, June
3–7, 2018, Proceedings 15, pp. 593–607 (2018). Springer

[53] Le Capitaine, H.: Constraint selection in metric learning. Knowledge-Based
Systems 146, 91–103 (2018)

[54] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix.
Linear algebra and its applications 103, 103–118 (1988)

[55] Shalev-Shwartz, S., Singer, Y., Srebro, N., Cotter, A.: Pegasos: Primal estimated
sub-gradient solver for svm. Mathematical programming 127(1), 3–30 (2011)

[56] Nooy, W.D.: The network data on the administrative elite in the netherlands in
April- June 2006. De Volkskrant (2008)

22

[57] May, W.: Information extraction and integration with florid: The mondial case
study. Technical Report 131, Universität Freiburg, Institut für Informatik (1999)

[58] Lichman, M.: UCI Machine Learning Repository (2013)

[59] Khosravi, H., Schulte, O., Hu, J., Gao, T.: Learning compact Markov logic
networks with decision trees. Machine Learning 89(3), 257–277 (2012)

[60] Debnath, A.K., Lopez de Compadre, R.L., Debnath, G., Shusterman, A.J., Han-
sch, C.: Structure-activity relationship of mutagenic aromatic and heteroaromatic
nitro compounds. Correlation with molecular orbital energies and hydrophobicity.
Journal of medicinal chemistry 34(2), 786–797 (1991)

[61] Mernyei, P., Cangea, C.: Wiki-cs: A wikipedia-based benchmark for graph neural
networks. arXiv preprint arXiv:2007.02901 (2020)

[62] Liu, E.Y., Guo, Z., Zhang, X., Jojic, V., Wang, W.: Metric learning from rela-
tive comparisons by minimizing squared residual. In: Data Mining (ICDM), 2012
IEEE 12th International Conference On, pp. 978–983 (2012). IEEE

[63] Sugiyama, M.: Local fisher discriminant analysis for supervised dimensional-
ity reduction. In: Proceedings of the 23rd International Conference on Machine
Learning, pp. 905–912 (2006). ACM

[64] Jo, J., Baek, J., Lee, S., Kim, D., Kang, M., Hwang, S.J.: Edge representation
learning with hypergraphs. Advances in Neural Information Processing Systems
34, 7534–7546 (2021)

[65] Wang, J., Kalousis, A., Woznica, A.: Parametric local metric learning for nearest
neighbor classification. Advances in Neural Information Processing Systems 25
(2012)

23

	Introduction
	Metric learning and classical algorithms for flat datasets
	Learning with non-flat data
	Metric learning for multi-relational data
	Learning with multi-relational data
	Metric learning with multi-relations

	Experiments, results and discussions
	Datasets
	Unsupervised learning
	Fully supervised learning

	Conclusion, discussion and perspectives

