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Abstract. White blood cell classification plays a key role in the diagnosis of 

hematologic diseases. Models can perform classification either from images or 
based on morphological features. Image-based classification generally yields higher 

performance, but feature-based classification is more interpretable for clinicians. In 

this study, we employed a Multimodal neural network to classify white blood cells, 
utilizing a combination of images and morphological features. We compared this 

approach with image-only and feature-only training. While the highest performance 

was achieved with image-only training, the Multimodal model provided enhanced 
interpretability by the computation of SHAP values, and revealed crucial 

morphological features for biological characterization of the cells.   

Keywords. Multimodal Classification, Deep Learning, Machine Learning, White 

Blood Cells 

1. Introduction 

The classification of white blood cells (WBC) is an essential step in diagnosing scans 

derived from bone marrow or peripheral blood. On one hand, Deep Learning methods 

excel in image classification and eliminate the necessity for hand-crafted features [1], 

however they lack of explainability and require a substantial number of samples for 

effective training [2,3]. On the other hand, morphological characteristics hold importance 

in the final diagnosis, and therefore bring clinical value [4,5]. In this article, we proposed 

a Multimodal model that seeks to make the most of both approaches. This model 

combines very high performance with the ability to explain results, which is essential if 

these tools are to be accepted by experts. We compared this approach with SVM and 

CNN models which provided predictions based solely on features and images, 

respectively. 
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2. Material and Methods 

This study utilized images from three different datasets: Tianjin [6], Rabin [7], and 

Barcelona [8]. The Barcelona dataset consisted of 17,092 images of individual normal 

blood cells. The Rabin-WBC dataset included 40,000 white blood cell images with 1,145 

segmentation ground-truths for nuclei and cytoplasm segmentation. The Tianjin dataset 

comprised 6,273 images. Additionally, for this dataset, the bounding boxes of each white 

blood cell were provided with the images. In total, the datasets contained 1,821 basophils, 

5,281 eosinophils, 6,024 lymphocytes, 14,191 neutrophils and 978 monocytes. Each 

dataset was split into 80/20 for train and test respectively. 

2.1. Segmentation 

In order to extract morphological features and characterize every part of the cell, we 

segmented the cytoplasm and the nucleus in every image. For the segmentation of cells 

in the Rabin dataset, we utilized Unet architecture [9], which was trained on ground truths 

provided with the dataset. The model was trained to label each pixel of the image as 

background, cytoplasm, or nucleus. The same architecture was employed for the 

Barcelona dataset. As segmentation ground truths were not provided with this dataset, 

they were manually annotated by our experts. Regarding the Tianjin dataset, we 

leveraged the bounding boxes to extract segmentation ground truths; we used 

SegmentAnything Model [10] to segment cell cytoplasm, and then applied the km-ms 

nucleus segmentation method as described in [11]. 

2.2. Feature Extraction 

To describe the cell, morphological features such as shape, color and texture were 

extracted. Each feature was computed for both the cytoplasm and the nucleus, as well as 

for the entire cell. In total, we obtained 243 features describing every part of the cell in 

terms of shape, texture, and color. The resulting table was normalized by column for each 

dataset. 

Shape Features: The cell’s shape was characterized using area, perimeter, convex hull 

area, eccentricity, aspect ratio, roundness, circularity, solidity.  

Color Features: Color features were computed from images in RGB, HSV, and CMYK 

spaces. Each color space was characterized by the mean, standard deviation, skewness, 

kurtosis, uniformity and entropy of the pixel distribution per channel. The average of 

these values over all channels was also calculated.  

Texture Features: Texture features were computed from Gray-Level Co-Occurrence 

Matrix (GLCM) and Local Binary Patterns (LBP). For GLCM, we computed 

homogeneity, contrast, angular second moment, and energy. For LBP, we calculated 

energy, contrast, entropy, mean, and variance. 

A Multimodal neural network was developed to classify cells using both images and 

morphological features. The image modality was input to a convolutional neural network 

based on the EfficientNet-B0 architecture. For the tabular modality, two fully connected 

layers were employed. The two parts of the model were eventually fused by 

concatenating the output layer of each branch, and the classification was performed on 

the concatenated vector (see Figure 1). This model was compared with two others: SVM 

for classifying cells based the tabular data only, and EfficientNet-B0 for classifying cells 

M. Chossegros et al. / Improving Interpretability of Leucocyte Classification 1099



based on images only. We conducted all experiments on a cluster SLURM node with 12 

CPUs, 132 GB RAM, and two NVIDIA RTX 3080 GPUs with 10 GB each.

Figure 1. Architecture of the Multimodal network. The network comprises two branches, one for each 

modality. They are fused through concatenation before the final dense layer, which gives the class prediction. 

Computations were performed using Pytorch Library.

To understand the importance of each morphological feature in the Multimodal neural 

network, SHAP values were computed as described in [12]; by looking at the 

modification of the output by the model with all possible combination of features, and 

determining the contribution of the feature when it is added to the combination. Hence, 

they indicate whether the feature contributes to an increase or decrease in the output 

probability for each class.

3. Results and Discussion

Table 1. Classification results for every different model (Multimodal Network, SVM and EfficientNet-B0) on 

each dataset. Accuracy is defined as the overall accuracy; it is the proportion of all rightly classified images.

Source Training Acc Recall Precision

Bas Eos Lym Mon Neu Bas Eos Lym Mon Neu

Multimodal 98.49 100 98.98 98.63 84.51 99.66 100 92.38 98.29 95.24 99.66

Rabin Features Only 98.16 100 95.41 97.77 92.25 99.19 98.11 94.44 98.27 91.61 99.25

Images Only 99.39 100 99.0 98.52 96.51 99.93 100 100 99.30 95.16 99.77

Multimodal 98.41 98.64 99.49 99.53 99.13 97.37 97.75 99.83 94.64 93.47 100

Barcelona Features Only 98.45 97.73 99.32 97.65 98.7 97.86 99.08 98.65 98.11 95.8 99.17

Images Only 99.81 100 100 99.5 100 99.75 99.54 99.82 99.54 99.61 100

Multimodal 98.18 95.52 100 95.45 97.56 99.31 100 99.1 98.75 90.91 99.72

Tianjin Features Only 97.86 95.52 99.54 97.88 94.63 98.47 91.43 96.89 97.88 95.57 99.44

Images Only 98.76 95.58 99.59 98.59 98.59 96.61 100 99.18 97.95 95.74 99.71
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For each dataset, the reported accuracy in Table 1 aligns with the state-of-the art 

standards [6,8,7]. Notably, the highest accuracy scores are achieved when the model is 

trained with images only, while the lowest accuracy scores are observed for models 

trained with features only. However, the average accuracies being very close, it is 

challenging to conclude an improvement from feature-only training to image-only 

training. Reasonably, we can infer that the main advantage of utilizing features lies in the 

enhanced interpretability and clinical relevance of the morphological cell description. 

3.1. SHAP Values 

We investigated the importance of each morphological feature in the Multimodal 

network by computing SHAP values. In Figure 2, we showed the main features involved 

in lymphocyte and eosinophil classification in the Tianjin dataset. Each point represents 

a cell. Positive SHAP values reveal that the feature increases the likelihood of the class 

prediction, and reciprocally for negative SHAP value. The color of the dot indicates 

whether it is a high or a low value of the feature that impacts the probability of the class. 

 

a) SHAP values for lymphocyte predictions: high 

roundness and low perimeter of the nucleus lead 

to higher chance of the cell being a lymphocyte.                                

b) SHAP values for eosinophil predictions. 

Magenta and Yellow components of the image 

considerably impact the probability of the cell 

being an eosinophil.

Figure 2. SHAP values obtained from the Multimodal neural network trained on the Tianjin dataset. For 

different color spaces (RGB, HSV and CMYK) we represented metrics by channel, _R for red, G for green, 

_M for Magenta, _Y for Yellow etc. 

 

Features such as color standard deviation or entropy of colors have a substantial impact 

on the final prediction. These features are linked with the diversity and the heterogeneity 

of pixel colors in the image, which, in turn, can be linked to the density of chromatin in 

the nucleus or the granulation level in the cytoplasm - crucial clinical elements for cell 

identification. In Figure 2a we observe that a high roundness or a low perimeter of the 

nucleus increase the likelihood of the cell being a lymphocyte, which aligns with the 
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characteristics of this cell. Additionally, in Figure 2b, magenta and yellow color features 

(such as nucleus_std_M or cyto_entropy_Y) were prominent in eosinophil’s SHAP values, 

and eosinophils are characterized by their orange shade. 

4. Conclusions 

In this study, we compared the performances of three types of models for the 

classification of white blood cells across different datasets. The objective was to 

understand the influence of the input modality on the final prediction, whether it was 

morphological features or cell images. The comparison was made between an SVM, a 

CNN and a Multimodal neural network combining these two modalities. The results of 

the classification were very high for the three models. Furthermore, the inclusion of 

morphological features provided a valuable interpretability benefit; enabling experts to 

better understand the main features for prediction and link them with clinically relevant 

properties of the cell. The analysis of the impact of each feature was performed by 

computing SHAP values on the Multimodal neural network predictions.  
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