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Abstract

Graphs are commonly used to model interactions between elements of
a set, but computing the Graph Edit Distance between two graphs is an
NP-complete problem that is particularly challenging for large graphs. To
address this problem, we propose a supervised metric learning approach
that combines Graph Neural Networks and optimal transport to learn an
approximation of the GED in an end-to-end fashion. Our model consists
of two siamese GNNs and a comparison block. Each graph pair’s nodes are
augmented by positional encoding and embedded by multiple Graph Iso-
morphism Network layers. The obtained embeddings are then compared
through a Multi-Layer Perceptron and Linear Sum Assignement Problem
solver applied on a node-wise Euclidean metric defined in the embedding
space. We show that our approach achieves state-of-the-art results on
benchmark datasets and outperforms other similar works in the domain.
Our approach also provides explainability through the extraction of an
edit path from one graph to another and guarantees metric properties
conservation during training and inference.

1 Introduction

Many real-world situations can be described by interactions between entities
within a structure. Typical examples include interactions between individuals
in a social network, between atoms in a molecule, or between pages on a website.
Graphs are a versatile and powerful formalism for encoding such interactions
through a set of entities called nodes (or vertices) connected by edges (or arcs)
that represent the interactions.

From a Pattern Recognition perspective, a key but computationally challeng-
ing task is to define a distance between a pair of graph instances. Applications
involving such a distance include the task of retrieving a set of similar graphs
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from a database given a user query, or classification/regression tasks on graphs
using a distance-based machine learning algorithm (e.g. k-Nearest Neighbors).

The most commonly used measure of dissimilarity between graphs in the
literature is the Graph Edit Distance (GED). In general, GED is defined as the
minimum ”amount of distortion” required to transform one graph into another
using substitutions, insertions, and deletions of nodes/edges. More formally, the
graph edit distance d(., .) is a function given by :

d : G × G → R+

(G1, G2) 7→ d(G1, G2) = min
(o1,...,ok)∈Γ(G1,G2)

k∑
i=1

c(oi)

where Γ(G1, G2) is the set of all edit paths o = (o1, . . . , ok) that allow trans-
forming G1 to G2. An elementary edit operation oi is one of vertex substitution
(v1 → v2), edge substitution (e1 → e2), vertex deletion (v1 → ε), edge deletion
(e1 → ε), vertex insertion (ε → v2) and edge insertion (ε → e2). ε is a dummy
vertex or edge used to model insertions or deletions. c(.) is a function that
associates a cost to each elementary edit operation oi. These edit operations
define an edit path, which can be useful in explaining the distance value from a
practitioner’s point of view. If each elementary operation satisfies the criteria of
a distance (separability, symmetry, and triangular inequality), the GED defines
a metric between graphs [1].

Despite these important properties, it is well known that computing a GED
is an instance of the NP-hard Quadratic Assignment Problem (QAP)[2]. As a
consequence, it is not possible to compute a GED for a pair of graphs whose
size is greater than a few tens of vertices. To overcome this problem, many
approximations of the GED have been proposed in the literature by transforming
the initial problem into a relaxed one [3, 4] or by introducing heuristics based
on deep learning into a combinatorial algorithm [5, 6]. These approaches speed
up the computation at the cost of a loss of precision, as shown in [7, 8].

Very recently, the GED computation has been tackled using strategies based
entirely on deep learning [9, 10, 11, 12, 13, 14, 15, 16, 17, 6, 18] to overcome the
computational burden of algorithmic approaches. Such approaches aim to learn
a statistical model from a dataset of graph pairs labeled with their GED. Once
learned, the model is able to predict the distance for unseen graph pairs in the
inference phase. Existing models are generally based on two main steps. The
first takes advantage of recent advances in Graph Neural Networks (GNNs),
which have been shown to be an efficient class of models for learning graph
representations. Through a Siamese GNN architecture, this step embeds each
graph of the pair into vector data, either at the node level or at the graph level.
The second step infers graph similarity by comparing the obtained embeddings.

In this paper, we follow the same general architecture and present GNOME
(Graph NOde Matching for Edit distance), a new Siamese architecture that
targets the learning of a graph similarity function. Our proposal differs from
existing ones by simultaneously reaching three main goals. The first is to ad-
dress the necessary trade-off between the expressiveness of the model and its
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efficiency. We achieve this objective through a linear-time GNN, taking as in-
put the node features enriched with positional encodings to improve the model
expressivity. The second objective is the explicability of the obtained distance,
i.e. the ability to provide an edit path associated with the distance value. We
achieve this goal by using a node-level dissimilarity measure provided by a Lin-
ear Sum Assignment Problem (LSAP) between node embeddings, rather than
computing a metric between graph embeddings. The third objective is to ensure
that the theoretical properties of a distance are preserved by the model. We
prove that the GNOME output respects the properties of a distance and we
show the impact on a query-answering downstream task.

The paper is organized as follows. Section 2 reviews recent learning-based
approaches for graph similarity computation. Section 3 describes the proposed
GNOME model, with an emphasis on the three objectives mentioned below.
Finally, section 4 presents experimental results obtained on reference datasets,
showing that GNOME equals or even outperforms existing models w.r.t. the
aforementioned objectives.

2 Related work

As mentioned above, deep learning strategies for computing distances between
graphs have recently been investigated. To the best of our knowledge, a pioneer-
ing paper under this paradigm is the one presenting the SimGNN architecture[16].
SimGNN computes graph similarity by combining two strategies. The first one
relies on a Neural Tensor Network (NTN) that takes as input an embedding
of each graph, obtained through siamese Graph Convolutional Network (GCN)
layers [19] and an attention-based readout function. The output of the NTN
is a similarity vector. The second strategy operates at the node level, by com-
puting a histogram of the pairwise dot product similarities between GCN node
embeddings. The outputs of each strategy, used alone or concatenated, are
fed as input of an MLP to produce the similarity. SimGNN obtains very com-
petitive results w.r.t. non-learning-based models and is frequently used as a
comparison baseline. However, it does not provide any matching between the
nodes (i.e. the explicability target) nor theoretical metric properties. Never-
theless, SimGNN and more particularly its Siamese-based architecture inspire
many subsequent works that can be distinguished according to the embedding
level used for matching.

Graph-level matching This category corresponds to the first strategy of
SimGNN. It consists of using a siamese graph encoder that combines GNN layers
and an invariant readout function to extract a graph embedding. The reference
method for this technique is GREED [9] which embeds graphs into vectors
through GIN layers. GREED provides good metrics properties conservation
but has no explicability about the matching since it does not rely on the GED
definition. MGMN [14] uses the same kind of encoding block but with a siamese
GCN. It also computes a node-graph interaction with an attention mechanism
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and Bi-LSTM layers in order to obtain a multi-level description of the graph
pair. In the same spirit, GMN [13] improves the classical siamese network by
adding a cross-graph matching vector in the message propagation. Such models
are particularly efficient for retrieval tasks thanks to their metric properties that
enable linear time query-answering.

Node-level matching As for the second strategy of SimGNN, another way to
compute the similarity between two graphs is to perform matching at the node
level. Such architectures are still based on a GNN encoder block but do not
include readout functions. The encoder produces a set of node representations
of the graph which can be seen as a distribution of the graph. Then, different
strategies take place to infer the similarity between these distributions. For
example, GraphSim [11] computes a pairwise matching node cost matrix with
a dot product between all nodes’ representation vectors obtained through a
siamese GCN pipeline. Those cost matrices are processed as images by learning
the similarity between graph pairs with a Convolutional Neural Network(CNN).
Although the CNN allows inferring similarity, there is no explainability in the
matching performed. Moreover, there is no metrics properties conservation
during training. GMN [13] tackles the problem differently by modifying the in-
ternal aggregation function of the GNN. The node matching is included directly
through a cross-graph aggregation which considers the neighborhood of a node
but also a cross-graph matching vector quantifying how well a node in one graph
can be matched to nodes in the other. More recently GotSIM [10] uses multiple
discrete optimal transport blocks at each layer to match nodes distribution with
cosine similarity. Each matching result is contained in a vector given as input
to an MLP to learn the GED. This latter doesn’t grant any of the basic metric
properties during training. Very recently, GEDGNN[18] proposes an original
strategy to learn the optimal matching using the GED permutation matrix as
learning data in addition to the GED value. To obtain a valid edit path, they
perform a costly k-best matching on the learned matrix.

Subgraph-level matching These techniques are at an intermediary level.
They aim to match sets of nodes or subgraphs with other sets or sub-graphs.
For example, PSimGNN [12] uses matching between a partition of the nodes and
pooling of the graphs. More recently, H2MN [15] integrates subgraph matching
in the similarity computation through an innovative hypergraph-based strategy.
Each graph of a pair is firstly transformed into hypergraphs, before being trans-
formed through dedicated convolution, pooling, and subgraph matching layers.
Then the similarity is inferred from the hypergraphs with a readout function
and an MLP. Being at an intermediate level, such approaches have interesting
properties but suffer from many choices to be made, such as the choice of the
pooling technique or the decomposition of the graph into sub-graphs. More-
over, these methods are generally more expensive in terms of processing time
and memory usage.

4



3 GNOME architecture presentation

Figure 1: Overview of the GNOME architecture. The Graph encoding block
preprocesses the data by adding RW positional encoding (3.1). The Embedding
block computes the set of node representations through GIN layers (3.2). The
Matching block infers GED values and outputs the corresponding graph match-
ing (3.3).

In this section, we describe the proposed GNOME architecture. As shown by
Figure 1, GNOME is composed of three main blocks. The first block consists in
enriching the input nodes’ representation (features) by a positional encoding, in
order to improve the structural expressive power of the model. Then, following
the same paradigm as approaches described in section 2, the second block relies
on Siamese GNNs. It performs an embedding at the node level, in order to
better fit the GED problem definition and to allow explicability of the output.
The third block is a distance computing one that processes a matching between
the node representation sets of both graphs. This matching is performed by a
LSAP solver, in order to keep distance theoretical properties.

3.1 Inputs and positional encoding

In the models reviewed in section 2, Siamese GNNs are classically fed by both
the adjacency matrices and the node/edge feature matrices of the graphs. In
GNOME-RW, node features are augmented by a vector that encodes the posi-
tion of the node in the graph. This positional encoding is implemented with the
Random-Walk (RW) descriptor [20], defined for a node i by :

RW
(k)
i = [(D−1A)(i,i), (D

−1A)2(i,i), ..., (D
−1A)k−1

(i,i) , (D
−1A)k(i,i)] (1)

where A (resp. D) is the adjacency (resp. degree) matrix. (D−1A)j(i,i) gives

the probability of a random walk of length j from i to itself. RW
(k)
i gathers all

these probabilities for random walks of length j with j ∈ {1, . . . , k}. Depending
on the value of j, (D−1A)j(i,i) gives some structural information related to node

i. For example, (D−1A)2(i,i) is related to the degree of i. For greater values

of j, (D−1A)j(i,i) is related to the number of walks of length j (including cy-

cles) starting and ending on node i. Finally, RW
(k)
i brings a k-hop structural
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Figure 2: Illustration of RW descriptor (see Eq.1) of length 3 applied on two
graphs. The blue vector corresponds to the RW descriptor of blue nodes (the
same occurs for other colors). These descriptors allow to distinguish the two
graphs while 1-WL test cannot.

description of the neighborhood of i. As illustrated in Figure 2, the proposed
Random-Walk positional encoding is able to distinguish nodes that can not be
discriminated by the first-order Weisfler-Lehman test [21]. Hence, adding RW
to the nodes features helps the matching by improving the ability of the GNN
to output different node embeddings despite symmetries in the graph. The
dimension k of RW is a hyper-parameter of the model.

The impact of this positional encoding on the performance of the model is
assessed in the experimental evaluation (4.3.).

3.2 The embedding block: Siamese Graph Isomorphism
Networks

The embedding block aims to provide a node representation set for each graph
before these representations are matched to compute the graph distance. Both
graphs must be processed in a similar way in order to ensure symmetry. For this
purpose, the graphs are submitted to Siamese GNNs. The Siamese mechanism
is implemented by using two GNNs whose learned weights are shared. We
chose the Graph Isomorphism Network(GIN) model[?] since GIN is one of the
most expressive Messages Passing Neural Networks (MPNNs) with a linear time
complexity[22]. The GIN model uses the following equation:

h(l+1)
v = MLP (l)

(
1 + ϵ(l)

)
.h(l)

v +
∑

u∈N (v)

h(l)
u

 (2)

where h(l)
v is the node representation of node v at layer l, MLP (l) is a Multi-

Layer Perceptron (MLP) with at least two layers and ϵ is a parameter which is
either fixed or learned.
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As shown in eq.2, each layer of GIN updates the representation of node v
by aggregating the hidden representation of its neighborhood N (v) with a non-
linear weighting throughMLP . That allows, at layer l, to aggregate a structural
l-hop information into the node representation. To have better stability and less
training time, skip connections are added between layers of the model, if the
number of layers exceeds three. The final embedding of each node is then ob-
tained by applying MLP (End) to the concatenation of the node representations
at each layer:

Hv = MLP (End)
(
h(1)
v ||h(2)

v ||...||h(L−1)
v ||h(L)

v

)
(3)

where || is the concatenation operator. This corresponds to a multi-granular
view of the evolution of the node representation following the 1-WL procedure.
At this stage, each graph is embedded as a set (or distribution) H of node
representations in an Euclidean space.

When graph edges are attributed, the GINE architecture[23] (see. Eq. 4) is
used instead of GIN, in order to integrate edge features in the computation of
node representations.

h(l+1)
v = MLP (l)

(
1 + ϵ(l)

)
.h(l)

v +
∑

u∈N (v)

ReLU(h(l)
u +Eu,v)

 (4)

In this equation, Eu,v is an embedding of the feature vector associated with
edge (u, v) denoted e(u,v). Eu,v is obtained with a linear layer applied to e(u,v)
whose output has the same dimension as the one of h(l)

v .

Eu,v = linear(e(u,v)) (5)

3.3 The matching block: Linear Sum Assignment Prob-
lem Solver

At the output of the embedding block, each graph is encoded by a set of node
vectors. A matching between the two node sets is performed using Linear Sum
Assignment Problem (LSAP) solver in order to infer the distance between the
two graphs. It is a node-based mapping method that has commonly been used in
several works such as [24, 25, 26, 27, 28, 29]. This ensures injective matching and
also provides explainability. Moreover, LSAP can be used with a differentiable
loss function and has O(N3) complexity where N is the number of matching
performed.

For graphs with the same size, LSAP formulation is equivalent to Monge’s
problem of discrete optimal transport theory:

LSAP(C) = min
P∈PN

N∑
i=1

N∑
j=1

ci,jpi,j (6)
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where C is a square matrix of size N filled with the costs ci,j of matching node
i of the first set to node j of the second one and P = (pi,j) is a permutation
matrix of size N . PN is the set of all possible permutations of N elements. To
compute the ci,j , one can use any distance function or dissimilarity. However,
the choice of this comparison function is important regarding global metrics
properties conservation.

To adapt LSAP to different sizes of graphs, we use the same strategy than
[24] and [30]. For two graphsG1, G2 of sizeN1, N2, a square cost matrixC(G1,G2)

of size N1 + N2 is defined, by adding dummy nodes ε to guarantee that the
matching is still injective, i.e. that an element is sent to only one element. This
extension is meaningful as it corresponds to insertion and deletion operations
of the GED.

C can be written as the concatenation of four matrices as follows:

C =

(
S D
I 0

)
, (7)

where S matrix of size N1 ×N2 corresponds to substitution costs, D matrix of
size N1 ×N1 to the deletion costs and I matrix of size N2 ×N2 to the insertion
costs.
For substitution cost inferior to the sum of insertion and deletion costs, one can
observe that if N1 ≥ N2 there will never be an insertion in N1 since that will
necessarily result in a supplementary deletion. In this case, substitutions are
always favored in the matching provided by the LSAP. As a consequence, C can
be reduced to a square matrix C̃ of size max(N1, N2). In this new matrix, the
substitution block remains unchanged, but either the insertion or deletion block
is kept and adapted. That reflects the fact we can order the matching problem
by going from the larger set to the smaller (or the opposite). An illustration of
the matching, in this case, is illustrated in Figure 3.

The cost matrix C̃ finally becomes:

C̃ =
(
S D̃

)
, (8)

with D̃ the deletion cost matrix of size N1×(N1−N2). This simplification allows
for reducing space and time complexity with the same level of performance as
shown and proved in [30].

For substitution, we define the S matrix by:

S =

 s1,1 · · · s1,N2

...
. . .

...
sN1,1 · · · sN1,N2

 , si,j = ∥H1,i −H2,j∥2, (9)

where each si,j represents the cost to match the embedding H1,i of the i-th
node of G1 with the embedding H2,j of the j-th node of G2 using the Euclidean
distance. Note that the MLP layers of the embedding block play a metric
learning role, thus mitigating the effects of the norm choice. The choice of a
norm-induced distance is important compared to similarities, for which metric
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Figure 3: LSAP Bipartite matching applied on two graphs G1, G2 with the cost
matrix reduction scheme C̃ (see Eq.8).

properties are not guaranteed.

In order to keep metric properties in the reduced formulation, D̃ is defined
by:

D̃ =

 d̃1,1 · · · d̃1,N1−N2

...
. . .

...

d̃N1,1 · · · d̃N1,N1−N2

 , d̃i,j = ∥H1,i∥2 , (10)

The triangle inequality of the Euclidean distance:

∥H1,i −H2,j∥2 ≤ ∥H1,i∥2 + ∥H2,j∥2 (11)

allows us to be consistent with the simplification performed.

3.4 Output and Loss

Given the C̃ cost matrix describing all possible ordered edit operations between
both graphs distributions, LSAP is solved to obtain a similarity value s :

s(G1, G2) = LSAP(C̃) (12)

The whole architecture is fully differentiable and allows end-to-end learning.
Mean Squared Error (MSE) is the loss function since the approximation of the
GED is a regression task.

MSELoss =
1

|T |
∑

(G1,G2)∈T

∥s(G1, G2)−GED(G1, G2)∥22 (13)

with T the set of all training pairs of graphs and s(G1, G2) the output cost
prediction of eq.12.
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Figure 4: Illustration of graph matching obtained on LINUX dataset. The r
value is the cost of the reconstructed edit path. Cases (a) and (b) correspond to
isomorphic graphs. In (b) LSAP matching can not deal with symmetric nodes
because their embeddings are the same. In (d) only two nodes are mismatched.
For (b) and (d), this leads to an extra cost due to edge mismatches, and r
largely overestimates the GED. (c) and (e) are cases of node deletion and edge
deletion.

The model also outputs the matching obtained by LSAP minimization as
presented in Figure 4. This matching is given by the indices of the 1 values in
the permutation matrix solution of the LSAP. The edge matching can then be
deduced from the node matching to recover an edit path [3]. When computing
the cost of this recovered edit path (called r on figure 4), its precision w.r.t.
the true GED depends on properties such as node features, graph densities and
symmetries. Even a small number of node matching errors will result in a large
number of incorrect arc matches, resulting in a large gap between r and the true
GED (please see examples (b) and (d) on figure 4).

3.5 Metrics property conservation

We prove in this section that the LSAP has good metrics property conservation
when used with a distance function. Formally, GED is a distance thus satisfying
the following axioms for all graphs x, y, z ∈ G.

1. (Positivity) If x ̸= y, then ged(x, y) > 0.

2. ged(x, x) = 0.

3. (Symmetry) ged(x, y) = ged(y, x). This property is true if and only if the
costs of deletion and insertion are equal for nodes and for edges.

4. (Triangle inequality) ged(x, z) ≤ ged(x, y) + ged(y, z).
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The approximation of GED by a deep neural architecture does not guarantee
positivity since the embedding block can generate similar node embedding sets
for different graphs, resulting in a null comparison. However, all the other
properties hold.

For the second property, the two sets of embedded nodes to compare are the
same. In this case, the cost matrix will have at least a zero value in each row
and column. Since LSAP is permutation invariant, the matching chosen by the
LSAP will have a null cost. Concerning the third property, the LSAP formu-
lation is symmetric by construction. For the triangle inequality, the property
holds if a distance is used for the cost matrix computation.

Demonstration of triangle inequality Let X , Y and Z be three graphs.
Without loss of generality let’s assume |X | > |Y| > |Z|. There exist two permu-

tation matrices P ∗
X ,Y and P ∗

Y,Z solutions of LSAP
(
C̃X ,Y

)
and LSAP

(
C̃Y,Z

)
.

Like in eq. 8 both matrices can be decomposed as:

P ∗
X ,Y =

(
SX ,Y D̃X ,Y

)
, P ∗

Y,Z =
(
SY,Z D̃Y,Z

)
.

Let’s construct P̃ , the following permutation matrix

P̃ =
(
SX ,YSY,Z D̃X ,Y ||SX ,YD̃Y,Z

)
We will now show that

|X |∑
i=1

|X |∑
j=1

(
C̃X ,Z

)
i,j

(
P̃
)
i,j

⩽ LSAP
(
C̃X ,Y

)
+ LSAP

(
C̃Y,Z

)
.

By using a distance for the cost matrices construction, for all k in |Y|, we have:(
C̃X ,Z

)
i,j

≤
(
C̃X ,Y

)
i,k

+
(
C̃Y,Z

)
k,j

.

As P̃ is a permutation matrix, if
(
P̃
)
i,j

= 0 then for all k in |Y|

(
C̃X ,Z

)
i,j

(
P̃
)
i,j

≤
(
C̃X ,Y

)
i,k

(
P ∗
X ,Y

)
i,k

+
(
C̃Y,Z

)
k,j

(
P ∗
Y,Z

)
k,j

If
(
P̃
)
i,j

= 1, by construction of P̃ , it means that a unique index k in |Y|
exists such that(

C̃X ,Z

)
i,j

(
P̃
)
i,j

≤
(
C̃X ,Y

)
i,k

(
P ∗
X ,Y

)
i,k

+
(
C̃Y,Z

)
k,j

(
P ∗
Y,Z

)
k,j

where k corresponds to
(
P ∗
X ,Y

)
i,k

= 1 and
(
P ∗
Y,Z

)
k,j

= 1 for the substitution

cases. By construction of P̃ , deletion cases from X to Z correspond also to a
deletion either from X to Y or from Y to Z so the inequality also stands. Doing
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Table 1: Main features of the datasets used in the experimental evaluation
Dataset #graphs #features #nodes #edges

AIDS 700 29 ∼8.9 ∼17.6
LINUX 1000 0 ∼7.6 ∼13.9
IMDB 1500 0 ∼13.0 ∼131.9

the sum on all indexes we obtain:

|X |∑
i,j=1

(
C̃X ,Z

)
i,j

(
P̃
)
i,j

⩽
|X |+|Y|∑

i=1

(
C̃X ,Y

)
i,ki

(
P ∗
X ,Y

)
i,ki

+

|Y|+|Z|∑
j=1

(
C̃Y,Z

)
kj ,j

(
P ∗
Y,Z

)
kj ,j

.

By definition of the LSAP, as the left term is greater than the LSAP solution,

we can then conclude that LSAP
(
C̃X ,Z

)
⩽ LSAP

(
C̃X ,Y

)
+ LSAP

(
C̃Y,Z

)
.

4 Experimental Results

In this section, we describe the datasets and the experimental protocol that has
been used to assess GNOME and we discuss the results obtained in comparison
to state-of-the-art methods.

4.1 Dataset presentation

Three datasets are used in our main experiments. Their description is given in
Table 1. AIDS and IMDB-MULTI come from TUdataset [31]. AIDS consists of
graphs representing molecular compounds that are constructed from the AIDS
Antiviral Screen Database of Active Compounds. IMDB-MULTI is a relational
dataset that consists of ego networks of actors or actresses in IMDB movies. A
node represents an actor, and an edge connects two nodes if the corresponding
actors appear in the same movie. The LINUX dataset comes from [32]. The
three datasets are all freely available on Pytorch Geometric[33] and were first
adapted to the GED problem by [16].

4.2 Experimental protocol

The experimental study consists in evaluating the GNOME architecture on a
regression task where the value to be predicted is the GED between a pair
of graphs provided as input. GNOME-RW is the same model as GNOME
but with an additional RW feature vector concatenated to graph node features.
Ground-truth values are computed thanks to the ILP F2 method [34] for LINUX
and AIDS. For IMDB, the size of the graphs makes the GED costly and even
untractable. The ground-truth value associated with each pair is the minimum
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between three well-known upper bounds of the GED: Beam, Hungarian, and
VJ as described in [16]. Elementary edition costs are set to 1. To assess an
information retrieval downstream task and evaluate GNOME ranking abilities,
we also compute the Spearman’s rank correlation coefficient ρ and the Kendall’s
rank correlation coefficient τ which evaluate the global ranking preservation
of GNOME output compared to the GED. The precision p@10 (resp. p@20)
evaluates for each ”query” graph in the test database the rate of relevant graphs
among the 10 (resp. 20) first predictions given by GNOME.

For both the validation and test sets, we use 200 different graphs for LINUX,
140 for AIDS, and 300 for IMDB. The remaining graphs are used for training.
Graph pairs are generated following the protocol defined in [16][33]. Indepen-
dently of the dataset, the depth of GNOME architecture is fixed to eight GIN
layers. A starting learning rate of 10−4 is used with a cosine adaptive strategy.
The random-walk feature vector results from 12 aggregation steps. The loss
function used for training is the Mean Square Error (MSE) and the data are
processed in batches of 200.

4.3 Experimental results and discussion

Table 2 gives the results obtained by GNOME and several methods from the
literature [10, 5, 9, 15, 16, 18, 17, 6] on the three datasets according to numerous
error metrics (the Mean Absolute Error (MAE), Mean Squared Error (MSE),
normalized MSE (MSE(10−3))) and ranking metrics (ρ, τ, p@10, p@20)). Among
all the evaluated methods, only GENN-A∗ [5] and Noah [6] are hybrid methods
that use deep learning to drive the A∗ search. These methods face scaling
issues, resulting in prohibitive execution time (Noah) or even failure (GENN-
A∗) on IMDB datasets even though they are effective on datasets with smaller
graphs. Other methods use deep learning strategies described in section 2. The
results obtained by TaGSim are far worse than for other methods. This can
be explained by the fact that this method learns a vector of numbers of GED
operation instead of approximating the GED value. GEDGNN [18] did not
provide the results for the whole IMDB dataset, so the corresponding entry is
empty in the table.

As shown in Table 2, GNOME or GNOME-RW results are always in the top-
3 methods and achieve good performance among all deep neural architectures.
Note that for the IMDB dataset, the task of predicting the GED is difficult
since all graphs are cliques or unions of cliques via a central node. Cliques
are strongly regular graphs and GNNs have difficulties in embedding and dis-
criminating nodes of such graphs. This impacts the performance of GNN-based
prediction methods but also the matching choice of the LSAP because of the
symmetries. Thanks to their ability to preserve the triangle inequality, GNOME
and GNOME-RW show good performance on the ranking metrics. The use of
GNOME is then relevant for a search in a graph database or in a work like Nass
[35].

The effect of the Random-Walk descriptor is not the same for all
datasets. Results on AIDS and LINUX corroborate our choice to include RW
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Table 2: Results obtained by several methods on benchmark datasets. The re-
sults on GED regression are expressed in terms of MSE, MAE, and MSE(10−3)
as in [16] (lower is better). Spearman’s (ρ) and Kendall’s (τ) rank correlation,
and precision (p@10 and p@20) are given to measure the ranking preservation
(higher is better). For each metric the best result appears in bold. The experi-
mental protocol is the one followed in [9]. Inference times for GNOME and other
models are provided in the last column. Results for other models are reported
from original papers.

GED Ranking Time
Dataset Metrics MAE MSE MSE(10−3) ρ τ p@10 p@20 (s/100 p)

Linux

SimGNN 0.489 0.443 2.172 0.939 0.830 94.2% 93.3% 0.244
GREED 0.318 0.172 0.914 - - - - 0.007
GotSIM - 0.329 4.25 0.92 0.89 86% - -
H2MN 0.534 0.538 1.630 0.984 - 95.3% - 0.087
GEDGNN 0.094 - - 0.963 0.903 96.2% 97.6% 0.380
TaGSim 0.391 - 5.278 0.941 0.834 81.6% 86.7% 0.117
Noah 1.747 - - 0.874 0.802 90.9% 93.6% 77.237
GENN-A∗ - 0.071 0.324 0.991 - 96.2% - 217.7
GNOME 0.214±0.011 0.104±0.015 0.572±0.075 0.987 0.932 98.3% 99.1% 0.2653
GNOME-RW 0.195±0.006 0.077±0.004 0.423±0.089 0.989 0.936 98.1% 99.3% 0.2653

AIDS

SimGNN 0.816 1.075 2.238 0.843 0.690 42.1% 51.4% 0.283
GREED 0.629 0.634 1.334 - - - - 0.005
GotSIM - 0.992 2.36 0.86 0.72 87% - -
H2MN 0.777 0.988 1.913 0.877 - 51.7% - 0.095
GEDGNN 0.773 - - 0.876 0.751 71.6% 77.9% 0.408
TaGSim 0.841 - 9.827 0.688 0.527 64.6% 32.2% 0.123
Noah 1.542 4.675 - 0.734 0.560 80.9% 81.2% 168.390
GENN-A∗ - 0.823 0.635 0.959 - 87.1% - 1332.3
GNOME 0.555±0.009 0.490±0.017 0.990±0.023 0.949 0.846 80.4% 84.5% 0.265
GNOME-RW 0.508±0.008 0.407±0.014 0.849±0.032 0.959 0.863 81.3% 86.7% 0.265

IMDB

SimGNN 28.082 4389.06 5.618 0.878 0.770 75.9% 77.7% 0.258
GREED 3.612 45.347 1.243 - - - - 0.006
GotSIM - 4424.9 5.92 0.85 0.80 73% - -
H2MN 28.486 7409.25 0.744 0.912 - 86.1% - 0.083
GEDGNN - - - - - - - -
TaGSim - - 35.69 0.958 0.926 - 98.6% 0.113
Noah 3.755 55.636 - 0.810 0.716 35.4% 40.5% 5201.6
GENN-A∗ - - - - - - - -
GNOME 2.976±0.004 33.433±0.054 0.831±0.021 0.994 0.953 87.7% 87.8% 0.272
GNOME-RW 2.920±0.007 33.769±0.072 0.722±0.053 0.995 0.955 88.2% 88.6% 0.272

positional encoding to improve the expressivity of the embedding block. The
GIN layers can produce different embeddings for symmetric nodes. For the
IMDB dataset, since every node in a clique has the same RW descriptor, RW
has no impact, and so, GNOME-RW does not outperform GNOME. The choice
of the descriptor length depends on the data, but a common observation is that
beyond a moderate value (11 for AIDS and Linux), increasing the descriptor
length does not lead to better performance.

Runtime : GNOME has the same runtime order of magnitude as other
deep approaches, except for GREED, which is linear since it does not perform
matching at the node level, and A∗-based methods (Noah, GENN-A∗) which
are much slower since they depend on tree exploration.

4.4 Ablative study on MAO dataset

This ablative study aims to measure the influence of edge encoding and RW posi-
tional encoding on the performance of GNOME. In such a context, experiments
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Table 3: Ablative study on MAO dataset, results expressed in MSE.
Cost vanilla RW Edge Edge + RW
(4,2,1,1) 1.12 ± .11 0.72 ± .10 0.27 ± .08 0.11 ± .03
(4,2,2,1) 2.39 ± .23 1.09 ± .19 0.85 ± .16 0.45 ± .14
(2,6,1,3) 2.37 ± .29 1.81 ± .25 0.24 ± .06 0.12 ± .03

Cost = cn ins/n del, cn sub, ce del/e ins, ce sub

are conducted on the Mono-amide oxidase dataset (MAO) from the GREYC
challenge [7]. MAO is a small dataset composed of 67 molecule graphs of mean
size 17, with nodes and edges features. The task consists of predicting the GED
of the 4489 pairs. The study is performed with a 5-fold cross-validation.

Table 3 presents the results obtained for different cost settings configurations
and how the model performs with such costs. As one can see, GNOME adapts
well to different costs even with the third ones which are defined by inverted
triangle inequality between operations. In this case, the inference of the cost is
good but the matching should not be as accurate. As expected, using GINE to
take edge features into account improves performance. The results also show
that the RW positional encoding provides better node representations and thus
better matching.

5 Conclusion

The paper presents the GNOME architecture which learns an approximation of
the GED. The architecture uses GIN layers to embed graphs and LSAP on node
distribution to operate matching. This linear relaxation of QAP is compensated
by the representation power of GNNs. GNOME keeps the explainability of GED
since node embedding is closer to the initial problem than graph-level represen-
tation. Moreover GNOME conserves the GED metric properties. Experimen-
tal results show that GNOME outperforms all existing machine learning-based
models. GNOME is not dedicated to the GED problem. It could also learn
any other distance between graphs for example task-dependent metrics. In this
case, the distance will be task-driven but the graph embedding will also benefit
from GNOME’s good metrics properties and explainability. Another direction
is toward the expressivity of the embedding block and the possibility to take
into account edges and edges matching to have a finer prediction and better edit
path output.
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