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Abstract—In this research work, a model reference
adaptive control design is introduced in order to deal
with a class of fractional order systems of commensu-
rate order with time delay. By using a Smith predictor
(SP) design, slightly different from the conventional SP
based on a fractional order inner model. The strategy
for adjusting the controller parameters is the MIT rule.
Two simulation examples are provided to show the
efficiency of the proposed control configuration for this
class of fractional-order systems.

Index Terms—delayed linear fractional system of
commensurate order, direct model reference adaptive
control, fractional Smith predictor, MIT rule.

I. Introduction
Fractional order control is attracting great interest

nowadays [1]–[4]. The main reason is that fractional order
models are able to describe physical systems better than
integer order ones. Examples of such models are numerous:
dielectric polarization, semi-infinite transmission lines, vis-
coelasticity...etc [5], [6]. In the the field of control theory
and applications, a great interest is directed to the synthe-
sis and implementation of fractional order regulators with
a growing number of control schemes and case studies [7],
[8].
In the last decades, a the number of research works dealing
with the stability analysis of fractional order time-delay
systems took an exponential trend [9]. An investigation
of Finite-time stability has been proposed in [10], while
different stability criteria for this class of systems have
been intensively discussed in literature [11]. In the field
of control engineering, the introduction of fractional op-
erators and systems has proven certain ability for per-
formance enhancement. Podlubny was the first in 1999,
who has proposed a generalized form for PID controllers
to fractional order PIλDµ, which involves an integrator of
order λ and a differentiator of order µ [12]. He demon-
strated the superiority of the fractional order PID control
in termes of control system performance because of the
extra adjustment parameters λ and µ.
The problem of parameter and gains adjustment in control
has found many solutions in literature, many of them do

not require any model of the process to control. Generally,
the only needed information is the time response of the
system. One can cite among these rules the method of
Ziegler and Nichols, Cohen and Coon, and the Kappa-Tau
rules. The most popular technique is the Ziegler-Nichols
method that is widely used by engineers in industry. One
modern technique that is taking a good place in the
designers documents is based on the relay auto-tuning [13].
In this work, a fractional order adaptive control scheme
based on MRAC configuration and associated with a
fractional order Smith Predictor is designed in order to
control a class of fractional order commensurate systems
with time delays.

This paper is organized as follows: In Section II, Basic
definitions and properties of fractional order systems are
presented. The direct MRAC control configuration based
on MIT rule is introduced in Section III, whereas the
Smith Predictor for fractional order systems with delay is
given in section IV. In section V, the proposed fractional
order adaptive control design for fractional order commen-
surate systems is presennted. Two simulation examples are
given in Section VI. Finally, concluding remarks are given
in Section VII.

II. Preliminaries on fractional order systems

A. Definitions
1) Caputo fractional derivative: There are various ways

to define fractional order systems, the most often used in
the control field is the Caputo fractional derivative, and
it’s usually written as [12]:

C
t0

Dµ
t f(t) = 1

Γ(n − µ)

∫ t

t0

f (n)(τ)
(t − τ)µ−n+1 dτ , (1)

C
t0

Dµ
t f(t) denotes the fractional derivative of order µ, of

a real function f , where t0 is the initial time and µ is
an arbitrary real number, satisfies n − 1 < µ < n, n
is a natural number, and Γ stands for the Euler gamma
function and can be defined by the folowing mathematical
formula: Γ(x) :=

∫ ∞
0 tx−1e−t dt.



2) Laplace transform of Caputo fractional derivative: In
order to find the Laplace transform formula for the Caputo
fractional derivative, another definition of the operator 1
is given as:

C
t0

Dµ
t f(t) = C

t0
D

−(n−µ)
t g(t) (2)

where g(t) = f (n)(t), and µ being any real number in the
range (n − 1, n].
Computing the Laplace transform to both sides of 2, then
using the formula (2.242) from ( [12], p.104), we obtain:

L
{

C
t0

Dµ
t f(t)

}
= s−(n−µ).G(s) (3)

where, G(s) = L {g(t)} = L {fn(t)}.
According to the property given by equation (2.239) from
( [12], p.104), we derive the following:

G(s) = sn.F (s) −
n−1∑
k=0

sn−k−1 f (k)(0) (4)

Substituting the equation 4 in 3, gives:

L
{

C
t0

Dµ
t (f(t))

}
= sµ−n

[
sn F (s) −

n−1∑
k=0

sn−k−1 f (k)(0)
]
(5)

Rearranging equation 5 we get the standard formula:

L
{

C
t0

Dµ
t (f(t))

}
= sµ F (s) −

n−1∑
k=0

sµ−k−1 f (k)(0) (6)

B. Fundamental linear fractional system of commensurate
order

The fundamental linear time-invariant (LTI), single in-
put single output (SISO) fractional system of commen-
surate order is represented by a linear fractional order
differential equation of the following form (see [14]):

y(t) + aDµy(t) = bu(t) , (7)

where y(t) is the output of the system, u(t) is its input,
and µ being any real number in the range (0, 1) and is
of commensurate order, a and b are constant parameters
of real numbers. Suppose that, Dµy(t) is a fractional
order derivative in the sence of Caupto. Then, applying
the Laplace transforms (see section II-A2), and with zero
initial conditions (t0 = 0), the transfer of the system takes
the form:

T (s) = Y (s)
U(s) = P (sµ)

Q(sµ) = b

asµ + 1 , (8)

We denote P (sµ) its numerator and Q(sµ) its denomina-
tor.

C. Oustaloup recursive approximation

The use of fractional, in more general terms non-integer,
differentiation in real time operations, such as in physics
and engineering sciences, requires an approximation
of the fractional operator. Among nemerous methods,
Oustaloup approximation ( [15]) is commonly used
in fractional calculus. It consists of synthesizing the
fractional derivative by a recursive distribution of zeros
and poles. In what follows, we give a brief discription of a
generalized Oustaloup filter, which will be used later on
in this paper.

The generalized Oustaloup filter can be configured in
such a manner:

F (s) = K
N∏

k=1

s + zk

s + pk
, (9)

where zk are the zeros of rank k, pk are the poles of rank k
and K is the gain of the transmittance F (s). These poles
and zeros, in a given frequency range of interest (wb, wh),
are distributed geometrically around the gain frequency
wu, and can be determined based on the following calculus:

zk = wbw(2k−1−µ)/N
u ,

pk = wbw(2k−1+µ)/N
u ,

and

K = wµ
h ,

where wb and wh are the low-and-high transitional fre-
quences, wu =

√
wh/wb and µ refers to fractional order

derivative.
The designation of this filter, comes from the fact that the
order of the filter say N , here, can be either odd or even
integers.

III. Model reference adaptive control based on
MIT rule

A. Structure and principle of the conventional MRAC

The model reference adaptive control (MRAC) system,
is one of the fundamental approaches to adaptive control.
The MRAC technique consists on expressing the desired
performances in terms of a reference model, while the
structure of the plant is assumed to be known, with
unknwon parameters. Then, on the basis of the output
error (the error between the output of the system and that
of the model) the controller parameters can be adjusted
using an appropriate adaptation law. The closed loop
system under the model reference adaptive control can be
represented by Fig. 1 [16].



Fig. 1. Block diagram of a model reference adaptive control system.

B. MIT rule
There are multiple ways to determine the adjustment

mechanism, the method used in this paper is the MIT rule.
The algorithm is as follows. The first step is to determine
the tracking error, that is the output error, say e, as
expressed in equation (10)

e(t) = yp(t) − ym(t) , (10)

where yp and ym are the output of the plant and the model
respectively. e, yp and ym are variables of the real time.
The next step is to define the cost function, denoted by J
which depends on the parameter to be updated identified
by φ. The standard cost function of the variable φ can be
expressed as:

J(φ) = 1
2e2 . (11)

Based on this function, the adaptation law is that:
J(dφ)

dt
= −γ

∂J

∂φ
= −γe

∂e

∂φ
, (12)

where the components ∂e
∂φ are the sensitivity derivatives

of the error with respect to φ, and γ is the adaptation
gain. As it can be seen from equation (12), this mechanism
allows changing the parameters in the direction of the
negative gradient of J . This is what we call MIT rule.
In order to outline the algorihtm, let us take an example
of a first order system.

dyp

dt
+ apyp = bpu , (13)

where yp is the output of the system and u is its input, ap

and bp are unknown constants parameters of the system.
For this plant, we propose the following model reference:

dym

dt
+ amym = bmr , (14)

where r is the reference input signal of the reference
model, ym is its output, and am and bm are known
constants. Perfect model-following can be achieved using
the following control law:

u(t) = φ1r(t) − φ2yp(t) , (15)

and the MIT rule can applied using the following equations
[17]:

dφ1

dt
= −γ

(
1

p + am

)
re , (16)

and
dφ2

dt
= γ

(
1

p + am

)
ype , (17)

where p = d/dt.
Finally, the parameters φ1 and φ2 in the frequency domain
are obtained by an integration as follows:

φ1(t) = −γ

s

(
1

s + am

)
re , (18)

and
φ2(t) = γ

s

(
1

s + am

)
ype , (19)

IV. Smith-Predictor for fractional order
systems with time delay

A. Conventional Smith predictor
When analysing most of industrial and non-industrial

plants, one finds dead times in their dynamic behavior.
This make them difficult to stabilize and control using
classical feedback control techniques. In this case, a pre-
dictor structure allows the improvement of the closed-loop
system performance. These controllers based on prediction
are the dead-time compensators (DTC). One of the most
popular compensating techniques is the Smith Predictor
(SP). This algorithm is widely used in industry.

Fig. 2. Closed loop system based on Smith predictor scheme.

1) Smith predictor structure: As it can be seen in Fig.
2, the structure of the SP is devided in two parts: the con-
troller C(s) and the predictor structure [18]. The predictor
is composed of the model of the plant without dead time
Tm0(s) and a model of a dead time e−θs. Therefore, the
complete process model is:

Tm(s) = Tm0(s)e−θs . (20)

r and u correspond to the set point reference and the
system input respectively. yp, yc and ydf

are the system
output, model output and delay-free output of the model



respectively. ε is the modeling error, that is, ε = yp − yc.
If there are no modeling error, ε = 0, then the predictor
output signal yc will be the dead-time free output of the
system.

2) Smith predictor principle: The Smith predictor uses
an internal model Tm0 to predict the delay-free response
ydf

of the process. It then compares this prediction ydf

with the desired reference r. In order to decide what
adjustments are needed for the control law. The Smith
predictor, also, compares the actual process output with
a prediction yc, that takes the dead time into account, to
prevent instabilities and reject external disturbances if the
latter are presented. The gap ε is fed back to contributes
to the overall error signal.

B. Smith predictor for fractional order systems
For a fractional system of commensurate order (8) with

time delay, the structure of the Smith predictor is similar
to that of the conventional one (2) [19]. Nevertheless,
the dead-time-free model of the plant has a fractional
order transfer, which can be represented by the following
equation:

Tm0(s) = bc

acsµ + 1 , (21)

where ac and bc are constants parameters of the model,
and µ being any real number in the range (0, 1).

V. Adaptive control design for a fractional
order system with time delay

A. Statement of the problem
Consider the open-loop plant represented by the frac-

tional delay system with commensurate order transfer
below:

Td(s) = b

asµ + 1e−θ , (22)

where a and b are real constants parameters of the sys-
tem, µ the fractional commensurate order which is a real
number in the range (0, 1), an θ is the pure time delay.
Suppose we have a reference model of the form:

M(s) = bm

amsµ + 1e−θ , (23)

where am, bm are real constants parameters of the model
reference, µ is a real number such that 0 < µ1, and θ is
the pure time delay.
Therefore, the objective is to make the output of the plant
follows the output of the reference model.

B. Control using conventional MRAC
In order to achieve our objective, that is, the system

output tracks the desired reference model output we use
a conventional MRAC design as is shown in Fig. 1. Then,
a control law of the form (15) is applied to the dead-time-
free process (22). The adjustment mechanism to be used
is the MIT rule previously discussed in section (III-B).

C. SP-MRAC design for a fractional system of commen-
surate order with time delay

In section (V-B) the control law is adjusted in a absence
of the time delay. Then, in the presence of dead-time,
a dead-time compensator, that is, a Smith predictor, is
added to the loop. Because we are dealing with a fractional
system of commensurate order, a fractional inner model of
the form (21) is used. A compensation of the time delay
of the whole process can be accomplished by the present
design.

VI. Simulation example
This section presents two numerical simulation examples

to prove the the efficiency of the proposed control solution
configured as direct MRAC and applied to the special class
of fractional order commensurate systems with delay.

A. Example 1
We consider a fractional system of commensurate order

with time delay of the form:

T1(s) = 26
16.2s0.3 e−0.5s . (24)

We propose the model reference to be as follows:

M1(s) = 1
10s + 1e−0.5s . (25)

The Oustaloup approximation values are: the approxima-
tion order N = 10, wb = 10−5 and wh = 105.
With the proposed SP-MRAC scheme to the class of
system (24), simulation results are given in Fig. (3).

Fig. 3. Simulation results for the proposed control design

Fig. 3-(a) shows the step response, where the system
output tracks the model output. Fig. 3-(b), the tracking
error, while Fig.3-(c) and (3,d) present the evolution of the



control signal and the adaptation parameters respectively.
From the above results, it can be seen that the tracking
error tends to zero.

B. Example 2
In this second case study, we consider the following

fractional system of commensurate order with time delay:

T2(s) = 25
s2.61 + 6s1.74 + 30s0.87 + 25e−0.5s . (26)

The model reference proposed in this section is as follows:

M2(s) = 1
10s2 + 10s + 1e−0.5s . (27)

The Oustaloup approximation values are: the approxima-
tion order N = 4, wb = 10−4 and wh = 104.
Simulation results with a similar control design for a plant
given by (26) are given by Fig. 4.

Fig. 4. Simulation results for the proposed control design

Fig. 4-(a) shows the step response, where the system
output tracks the model output. Fig. 4-(b), the tracking
error, while Fig. 4-(c) and (4,d) present the evolution of the
control signal and the adaptation parameters respectively.
From the above results, it can be seen that the tracking
error tends to zero.

VII. Conclusion
In this study, a fractional order SP-based MRAC control

design is proposed for dead-time compensation of a class of
fractional systems of commensurate orders and time delay.
The structure of the FSP, is similar to the conventional
one, the difference lies in the inner model of the dead-
time compensator. Using a conventional MRAC design to
control the system, the adaptation law is obtained based
on the MIT rule. Two numerical simulations examples have
been presented to outline the efficiency of the proposed

FSP-MRAC design. Hence, a perfect model following of
the plant is achieved.
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