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Abstract:
In this research, we explore the utilization of the time-delayed feedback method to stabilize
unstable steady states and aperiodic orbits within the chaotic fractional-order Rössler Oscillator.
Employing the time-delay feedback control algorithm, we identify specific parameter ranges
enabling the successful stabilization of unstable equilibria, considering variations in both
feedback gain and time delay. Unlike previous research works where Caputo and Riemann-
Liouville characterization of fractional derivatives are used, we are using Grünwald-Letnikov
(GL) characterization because of its simplicity and ease of implementation and demonstrating
the stability using the analytical and numerical analysis and plots of eigenvalues. Additionally,
our analysis highlight the effectiveness of a sinusoidally modulated time delay in the control
law, significantly expanding the stability region of steady states beyond the capabilities of
the traditional time-delayed feedback scheme with a constant delay. Furthermore, the analysis
of eigenvalues before and after applying the control strategy offers tangible insights into the
system’s stability dynamics.

Keywords: Chaotic fractional-order Rössler Oscillator, Grünwald-Letnikov Characterization,
Stabilization, Eigenvalues, Feedback gain, Time-delay.

1. INTRODUCTION

Fractional-order dynamical systems, such as Rössler,
Chua, Lü, Chen, Duffing, and Lorenz, offer rich variabil-
ity by incorporating memory and non-local interactions
(Lovoie et al. (1976)). Fractional derivatives, characterized
by methods like Caputo or Grünwald-Letnikov, enable
control over past states’ impact by adjusting the fractional
derivative parameter (α) (Oliveira et al. (2014)). Varying
α allows analysis of chaotic and hyperchaotic behavior
(Yousefpour et al. (2020)). The Caputo derivative and
Grünwald–Letnikov are often approximated by finite dif-
ferences of fractional order for their numerical application
(Scherer et al. (2011)). The choice between Caputo and
Grünwald–Letnikov (GL) characterizations for fractional
derivatives in numerical applications varies. While Ca-
puto is favored in some studies like (Gjurchinovski et al.
(2010)) for its theoretical advantages, practical consid-
erations often favor GL.(Betancur-Herrera and Muñoz-
Galeano (2020)) demonstrated that GL significantly out-
performs Caputo in terms of computational efficiency.
The idea in this work is to investigate a time-delayed
feedback method, partially based on (Pyragas (2002)),

to regulate unstable equilibria and periodic orbits within
the chaotic fractional-order Rössler system. Employing
Grünwald-Letnikov characterization for fractional deriva-
tives reduced time complexity and enhanced precision.
The LevenbergMarquardt algorithm to analyze the char-
acteristic equation post-control application is known to
be efficient in solving nonlinear problems (Ranganathan
(2004)), to ensures rapid convergence, adapting step sizes
based on curvature, dampening noise-induced oscillations,
and optimizing chaotic systems.
This paper is organized as follows. In section 2, a brief
overview of Grünwald-Letnikov characterization for frac-
tional derivatives is explained. In section 3, a short de-
scription of fractional Rössler Oscillator is explained. In
section 4, time-delay control for constant time-delay and
variable time delay is explained and necessary equations
are demonstrated. In section 5, corresponding plots are
shown and explained to demonstrate the chaos control and
stabilization. In section 6, a summary of provided results
are written and the open problems are also discussed.
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2. FRACTIONAL DERIVATIVE
CHARACTERIZATION

Fractional derivatives are mathematical operators that
extend the concept of differentiation beyond integer or-
ders. Unlike traditional derivatives, which indicate the rate
of change of a function concerning a specific variable,
fractional derivatives introduce the notion of fractional
orders of differentiation, allowing for more in-depth and
intricate analyses. In our study, the Grünwald-Letnikov
(GL) characterization of fractional derivatives is utilized
for comprehensive analysis.
The analytical formula for the Grünwald-Letnikov frac-
tional derivative of a function f(t) at a point ti with
fractional order α can be written as:

Dα
GLf(ti) = lim

∆t→0

1

∆tα

i−1∑
n=0

(−1)n
(
α

n

)
f(ti − n∆t) (1)

where
(
α
n

)
is the generalized binomial coefficient Owolabi

and Atangana (2019). It is further approximated by using
a finite sum and a finite time step ∆t = dt:

Dα
GLf(ti) ≈

1

dtα

i−1∑
n=0

(−1)n
(
α

n

)
f(ti − ndt) (2)

The Grünwald-Letnikov characterization, an extension of
the Euler method, incorporates fractional order binomial
coefficients that are non-negative and defined recursively,
enhancing its stability properties and computational ef-
ficiency. These coefficients serve as damping factors, en-
suring the method’s stability throughout computations
(Scherer et al. (2011)). This approach, straightforward to
implement numerically, proves accessible for analysis and
computations.

3. FRACTIONAL CHAOTIC RÖSSLER OSCILLATOR

The Fractional Chaotic Rössler system is represented as
follows:

Dα
GLx = −y − z

Dα
GLy = x+ ay

Dα
GLz = b+ z(x− c)

(3)

Here, 0 < α < 1 represents a real number, and Dα
0 denotes

the fractional derivative, as per the Grünwald-Letnikov
definition shown in equation (1). This dynamic system,
characterized by the real parameters a, b, c, and α serves as
a fundamental model for investigating chaos phenomena,
including bifurcations, control mechanisms, synchroniza-
tion, and related studies (Čermák and Nechvátal (2018)).
The traditional Rössler system, in its native state, displays
chaotic and diverse dynamic behaviors. The introduction
of fractional derivatives in the Rössler attractor results
in even more intricate and complex dynamics. Exploring
these dynamics provides profound insights into nonlinear
systems and chaos theory.
Singular points are values of x, y, and z for which the time
derivatives mentioned in either the classical or fractional
Rössler oscillator are all equal to zero.

Hence, after setting the RHS of equation (3) to zero and
checking the feasibility, we obtain the fixed points f±

p as:
(
xf±

p
, yf±

p
, zf±

p

)
=(

c±
√
c2 − 4ab

2
,−−c±

√
c2 − 4ab

2a
,
c±

√
c2 − 4ab

2a

)
.

The jacobian matrix (J) corresponding to equations (3)
when they are equated to zero, can be expressed as:

J =

[
0 −1 −1
1 a 0
z 0 x− c

]

This matrix is used for the analysis of the eigenvalues
before applying any control. For a = 0.5, b = 2, c = 4,
and α = 0.9, the eigenvalues for f−

p are 0.1802 + 0.9653i,
0.1802− 0.9653i, and −3.5924. The eigenvalues for f+

p are
−0.0901 + 2.8976i, −0.0901− 2.8976i, and 0.4122.

4. TIME-DELAY CONTROL

We examine a nonlinear fractional-order dynamical system
of n dimensions, employing a delayed feedback control
method:

Dα1

GLx1(t) = f1(x(t)) + F1(t)

Dα2

GLx2(t) = f2(x(t)) + F2(t)

...
Dαn

GLxn(t) = fn(x(t)) + Fn(t)

(4)

Here,

Fi(t) =

n∑
j=1

Kij [xj(t)− xj(t− τ)] (5)

is the a delayed feedback component applied to the ith

component of the system, encompassing contributions
from all system components (Gjurchinovski et al. (2010)).
The feedback terms are characterized by gain factors Kij

and the system experiences a constant time delay denoted
as τ . Here, x = (x1, x2, . . . , xn) represents the state vector,
while f = (f1, f2, . . . , fn) signifies the nonlinear vector
field governing the dynamics of the unperturbed system.
The notation Dα

GL indicates the time fractional derivative
according to the GL definition.
In this study, we have experimented three scenarios by ap-
plying the delayed feedback component with x component,
y component and both x & y components of equation (3)
and observed the effects. We did not consider to implement
the control on the z component as dynamics of z is subject
to the evolution of x and z comes to play a role only when
x exceeds c.
By applying the feedback components on both x & y
components of equation (3), we obtain:

Dα
GLx(t) = −y(t)− z(t) +K[x(t)− x(t− τ)]

Dα
GLy(t) = x(t) + (a+K)y(t)−Ky(t− τ)

Dα
GLz(t) = b+ z(t)[x(t)− c]

(6)
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By applying the Laplace transform, the characteristic
matrix (∆s) can be expressed as:


(s

α −K +Ke−τs) 1 1
1 V 0
z 0 −(sα − (x− c))


 (7)

Here, V = (−sα + a+K(1− e−τs).
Similarly, the characteristic matrix (∆s) when feedback
components applied separately on x component can be
expressed as:


(s

α −K +Ke−τs) 1 1
1 a− sα 0
−z 0 (sα − (x− c))


 (8)

The characteristic matrix (∆s) when feedback components
applied separately on y component can be expressed as:



(sα 1 1
−1 (−sα − a−K(1− e−τs) 0
−z 0 (sα − (x− c))


 (9)

Theorem 1. The equilibrium point fP of the system de-
scribed by equations (4) and (5) achieves local asymptotic
stability if and only if all the roots s of the characteris-
tic equation det(∆s) = 0 satisfy the following Matignon
Criterion: |arg(s)| ≥ απ

2 . Here, s is the eigenvalue of the
characteristic equation of the fractional order system. The
matrix ∆s is evaluated at the fixed point f−

p which is
shown as in (3).

The Matignon Stability Criterion provides a means to
evaluate the stability of fractional-order systems without
computing matrix eigenvalues, essential where traditional
integer-order criteria are inapplicable (Matignon (1996)).
Nonetheless, the stability criterion can also be verified
through eigenvalue calculations following the analysis of
the characteristic equation. In this context, the charac-
teristic equation before applying the control algortihm
and after applying the control algorithm are verified using
the Matignon criterion. If all eigenvalues fall outside the
closed angular sector defined by |arg(λi)| ≤ απ

2 (where
λi is the ith eigenvalue before applying the control) and
|arg(s)| ≤ απ

2 (where s is the eigenvalue after applying the
control), the stability is assured (Matignon (1996)).
Theorem 2. Let’s consider an unstable equilibrium point
f+
p within the fractional-order system (4) when no control

is applied (Kij = 0), and let J represent the Jacobian
matrix at f+

p . If J possesses an odd count of positive real
eigenvalues, the Time-Delayed Feedback Control (TDFC)
method is incapable of stabilizing the unstable equilibrium
f+
p , regardless of the values assigned to the control param-

eters Kij and τ .

After applying the control algorithm, modified eigenvalues
are evaluated by setting the determinants of matrices
to zero with the Levenberg-Marquardt algorithm. In the
absence of control, equilibrium point f+

p has one positive
real eigenvalue, rendering it unstabilizable by the TDFC

method due to the Matignon stability criterion. This con-
clusion is supported by a numerical analysis showing no
stability domain in the (K, τ) parameter plane, confirmed
by simulations. Conversely, f−

p can be effectively con-
trolled with TDFC, as evidenced by a stability domain
delineated in Section 5. Here, black regions indicate stable
combinations of control parameters K and τ , ensuring
successful control.
In Variable Delay Feedback Control (VDFC), a sinu-
soidally modulated signal F (t) = T0 + ϵ sin(ωt) is utilized,
with T0, ϵ, and ω as user-defined constants and control pa-
rameters. VDFC adapts to changing conditions by varying
the time delay in the feedback loop, enhancing stability
and performance. The modulation introduces variability,
enabling the system to counteract uncertainties and dis-
turbances effectively. By dynamically adjusting the delay,
undesired oscillations can be suppressed. The stability do-
main in the parameter plane (K,T0) is determined by vary-
ing K and T0, offering insights into control system behav-
ior under different parameter combinations. On the other
hand, F (t) is the feedback for both VDFC and TDFC. In
VDFC, F (t) = K[y(t − T (t)) − y(t)], whereT (t) = T0 +
ϵsin(ωt). If the feedback is applied to only y-component,
the equation becomes,

Dαy(t) = x(t) + ay(t) +K[y(t− T (t))− y(t)] (10)

Dαy(t) = x(t)+ay(t)+K[y(t−T0+ϵsin(ωt))−y(t)] (11)
Dαx(t) and Dαz(t) will remain identical.

5. RESULTS AND ANALYSIS

In this section, the plots of the fractional Rössler oscillator
when feedback are applied to both x and y components are
shown. Here the parameters are considered as: a = 0.5,
b = 2, c = 4, and α = 0.9 for which the system is chaotic.
In this context, delay (τ) is considered as lag as shown in
the figures.

Fig. 1. Plot of chaotic oscillator for a = 0.5, b = 2, c = 4
(without control action)

It is observed from fig. (1) that the phase plot is chaotic.
This observation is confirmed by the Maximum Lyapunov
Exponent shown later in this section.
It is observed from figures (2) and (3) that after applying
the constant and variable time-delay feedback controls
simultaneously, the phase plots become non-chaotic and
these display periodicity. The results can be confirmed
with the time responses of x and the Maximum Lyapunov
Exponent shown later in this section.
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By applying the Laplace transform, the characteristic
matrix (∆s) can be expressed as:


(s

α −K +Ke−τs) 1 1
1 V 0
z 0 −(sα − (x− c))


 (7)

Here, V = (−sα + a+K(1− e−τs).
Similarly, the characteristic matrix (∆s) when feedback
components applied separately on x component can be
expressed as:


(s

α −K +Ke−τs) 1 1
1 a− sα 0
−z 0 (sα − (x− c))


 (8)

The characteristic matrix (∆s) when feedback components
applied separately on y component can be expressed as:



(sα 1 1
−1 (−sα − a−K(1− e−τs) 0
−z 0 (sα − (x− c))


 (9)

Theorem 1. The equilibrium point fP of the system de-
scribed by equations (4) and (5) achieves local asymptotic
stability if and only if all the roots s of the characteris-
tic equation det(∆s) = 0 satisfy the following Matignon
Criterion: |arg(s)| ≥ απ

2 . Here, s is the eigenvalue of the
characteristic equation of the fractional order system. The
matrix ∆s is evaluated at the fixed point f−

p which is
shown as in (3).

The Matignon Stability Criterion provides a means to
evaluate the stability of fractional-order systems without
computing matrix eigenvalues, essential where traditional
integer-order criteria are inapplicable (Matignon (1996)).
Nonetheless, the stability criterion can also be verified
through eigenvalue calculations following the analysis of
the characteristic equation. In this context, the charac-
teristic equation before applying the control algortihm
and after applying the control algorithm are verified using
the Matignon criterion. If all eigenvalues fall outside the
closed angular sector defined by |arg(λi)| ≤ απ

2 (where
λi is the ith eigenvalue before applying the control) and
|arg(s)| ≤ απ

2 (where s is the eigenvalue after applying the
control), the stability is assured (Matignon (1996)).
Theorem 2. Let’s consider an unstable equilibrium point
f+
p within the fractional-order system (4) when no control

is applied (Kij = 0), and let J represent the Jacobian
matrix at f+

p . If J possesses an odd count of positive real
eigenvalues, the Time-Delayed Feedback Control (TDFC)
method is incapable of stabilizing the unstable equilibrium
f+
p , regardless of the values assigned to the control param-

eters Kij and τ .

After applying the control algorithm, modified eigenvalues
are evaluated by setting the determinants of matrices
to zero with the Levenberg-Marquardt algorithm. In the
absence of control, equilibrium point f+

p has one positive
real eigenvalue, rendering it unstabilizable by the TDFC

method due to the Matignon stability criterion. This con-
clusion is supported by a numerical analysis showing no
stability domain in the (K, τ) parameter plane, confirmed
by simulations. Conversely, f−

p can be effectively con-
trolled with TDFC, as evidenced by a stability domain
delineated in Section 5. Here, black regions indicate stable
combinations of control parameters K and τ , ensuring
successful control.
In Variable Delay Feedback Control (VDFC), a sinu-
soidally modulated signal F (t) = T0 + ϵ sin(ωt) is utilized,
with T0, ϵ, and ω as user-defined constants and control pa-
rameters. VDFC adapts to changing conditions by varying
the time delay in the feedback loop, enhancing stability
and performance. The modulation introduces variability,
enabling the system to counteract uncertainties and dis-
turbances effectively. By dynamically adjusting the delay,
undesired oscillations can be suppressed. The stability do-
main in the parameter plane (K,T0) is determined by vary-
ing K and T0, offering insights into control system behav-
ior under different parameter combinations. On the other
hand, F (t) is the feedback for both VDFC and TDFC. In
VDFC, F (t) = K[y(t − T (t)) − y(t)], whereT (t) = T0 +
ϵsin(ωt). If the feedback is applied to only y-component,
the equation becomes,

Dαy(t) = x(t) + ay(t) +K[y(t− T (t))− y(t)] (10)

Dαy(t) = x(t)+ay(t)+K[y(t−T0+ϵsin(ωt))−y(t)] (11)
Dαx(t) and Dαz(t) will remain identical.

5. RESULTS AND ANALYSIS

In this section, the plots of the fractional Rössler oscillator
when feedback are applied to both x and y components are
shown. Here the parameters are considered as: a = 0.5,
b = 2, c = 4, and α = 0.9 for which the system is chaotic.
In this context, delay (τ) is considered as lag as shown in
the figures.

Fig. 1. Plot of chaotic oscillator for a = 0.5, b = 2, c = 4
(without control action)

It is observed from fig. (1) that the phase plot is chaotic.
This observation is confirmed by the Maximum Lyapunov
Exponent shown later in this section.
It is observed from figures (2) and (3) that after applying
the constant and variable time-delay feedback controls
simultaneously, the phase plots become non-chaotic and
these display periodicity. The results can be confirmed
with the time responses of x and the Maximum Lyapunov
Exponent shown later in this section.

Fig. 2. Plot of oscillator for a = 0.5, b = 2, c = 4, α = 0.9,
K = −2 and τ = 4

Fig. 3. Plot of oscillator for a = 0.5, b = 2, c = 4, α = 0.9,
K = −2, ϵ = 0.1, ω = 10 and T0 = 4

Fig. 4. Plot of chaotic time response for a = 0.5, b = 2,
c = 4, α = 0.9

From the figure (4), chaoticity is observed as there is
no definite period and Maximum Lyapunov Exponent is
positive.

Fig. 5. Plot of periodic time response for a = 0.5, b = 2,
c = 4, α = 0.9, K = −2 and τ = 4

From the fig. (5), it is observed that the phase plot
is oscillating periodically and the control (TDFC) have
suppressed the chaos. This similar sceanrio happens in case
of the VDFC control too.
In this context, one bifurcation diagram (shown in fig. (6
computed for 0.3 < α < 1 and −0.2 ≤ a < 1. In this figure,
until α ≈ 0.378, the fixed point f−

p is stable, but after
crossing that value, a Hopf bifurcation takes place, giving
rise to a limit cycle. After α > 0.73, other bifurcations
lead to a chaotic attractor which is confirmed from fig.

Fig. 6. Bifurcation Diagram of Fractional Rössler Oscilla-
tor for a = 0.5, b = 2, c = 4, α = 0.9

(1). After analysing in detail the behaviour for
alpha, we have observed that there is no significant
alteration during 0.6 ≤ α ≤ 0.7.

Fig. 7. Plot of the eigenvalues corresponding to the fixed
point fp− before and after applying the TDFC (while
K = −2 and τ = 4)

This fig. (7) shows that the chaos is taking place due to
α = 0.9 and two complex conjugate eigenvalues (shown
in blue) are not satisfying Matignon criterion. Thus, we
need to use the time-delay feedback control to suppress the
chaos and this is demonstrated by the black eigenvalues.
The the black eigenvalues are outside of the conic region
and satisfying the Matignon criterion after applying the
TDFC.

Fig. 8. Plot of the eigenvalues corresponding to the fixed
point fp− before and after applying the VDFC (while
K = −3, ϵ = 1, ω = 0.5 and T0 = 5)

The fig. (8) is generated before applying the VDFC and
it shows that the chaos is taking place due to α = 0.9
and two complex conjugate eigenvalues (shown in blue) are
not satisfying Matignon criterion. Thus, we have used the
variable time-delay feedback control to suppress the chaos
and this is demonstrated here. The black eigenvalues are
outside of the conic region and satisfying the Matignon
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criterion after applying the VDFC. Eigenvalues’ locations
pre and post-control provide confirmation of algorithm
efficacy. Varying feedback gain and time delay parameters
demonstrated stability regions.

Fig. 9. The stability domain in the parameter plane (K
vs τ) where the range of K and τ are (−5 → 5) and
(1 → 6)

It is observed in fig. (9) that due to applying the feedback
component to both x and y components, the region of
stability is large. However, due to the constant time delay,
the white stability region is separated by an unstable black
region.

Fig. 10. The stability domain in the parameter plane (K
vs τ) when feedback component is applied to the
x component only and the range of K and τ are
(−5 → 5) and (1 → 6)

It is observed in fig. (10) that due to applying the feedback
component to only x component, the region of stability is
quite small.

Fig. 11. The stability domain in the parameter plane (K
vs τ) when feedback component is applied to the
y component only and the range of K and τ are
(−5 → 5) and (1 → 6)

It is observed in fig. (11) that due to applying the feedback
component to only x component, the region of stability is
also quite small.

Fig. 12. The stability domain in the parameter plane (K
vs T0) where the range of K and T0 are (−5 → 5) and
(0 → 6)

It is observed in fig. (12) that due to applying the feedback
component to both x and y components, the region of
stability is large. However, due to the variable time delay,
the white stability region is increased as compared to the
region of stability shown in fig. (9).

Fig. 13. The stability domain in the parameter plane (K
vs T0) when feedback component is applied to the
x component only and the range of K and T0 are
(−5 → 5) and (0 → 6)

It is observed in fig. (13) that due to applying the feedback
component to x and component, the region of stability is
smaller but it is still larger than in fig. (10).

Fig. 14. The stability domain in the parameter plane (K
vs T0) when feedback component is applied to the
y component only and the range of K and T0 are
(−5 → 5) and (0 → 6)



 D. Das  et al. / IFAC PapersOnLine 58-5 (2024) 90–95 95

criterion after applying the VDFC. Eigenvalues’ locations
pre and post-control provide confirmation of algorithm
efficacy. Varying feedback gain and time delay parameters
demonstrated stability regions.

Fig. 9. The stability domain in the parameter plane (K
vs τ) where the range of K and τ are (−5 → 5) and
(1 → 6)

It is observed in fig. (9) that due to applying the feedback
component to both x and y components, the region of
stability is large. However, due to the constant time delay,
the white stability region is separated by an unstable black
region.

Fig. 10. The stability domain in the parameter plane (K
vs τ) when feedback component is applied to the
x component only and the range of K and τ are
(−5 → 5) and (1 → 6)

It is observed in fig. (10) that due to applying the feedback
component to only x component, the region of stability is
quite small.

Fig. 11. The stability domain in the parameter plane (K
vs τ) when feedback component is applied to the
y component only and the range of K and τ are
(−5 → 5) and (1 → 6)

It is observed in fig. (11) that due to applying the feedback
component to only x component, the region of stability is
also quite small.

Fig. 12. The stability domain in the parameter plane (K
vs T0) where the range of K and T0 are (−5 → 5) and
(0 → 6)

It is observed in fig. (12) that due to applying the feedback
component to both x and y components, the region of
stability is large. However, due to the variable time delay,
the white stability region is increased as compared to the
region of stability shown in fig. (9).

Fig. 13. The stability domain in the parameter plane (K
vs T0) when feedback component is applied to the
x component only and the range of K and T0 are
(−5 → 5) and (0 → 6)

It is observed in fig. (13) that due to applying the feedback
component to x and component, the region of stability is
smaller but it is still larger than in fig. (10).

Fig. 14. The stability domain in the parameter plane (K
vs T0) when feedback component is applied to the
y component only and the range of K and T0 are
(−5 → 5) and (0 → 6)

It is observed in fig. (14) that due to applying the feedback
component to x and component, the region of stability is
quite smaller but it is still larger than in fig. (11).
In all the cases, the periodicity of the obtained orbits is
verified with Fast Fourier Transform (FFT) and Maximum
Lyapunov Exponent (MLE).. It turns out that after apply-
ing the time-delay control (both constant and variable),
the stabilized orbits become periodic. For instance, after
applying the variable time-delay control on y-component
(while K = −2, ϵ = 1, ω = 0.5 and T0 = 5), MLE
= −0.56359 which indicates stability. Similarly, after ap-
plying the constant time-delay control on y-component
(while K = −2 and τ = 4), MLE = −0.74028 which
indicates stability. However, without applying this control
algorithm on y-component, MLE = 0.702 which indicates
chaoticity. The result is confirmed from the figures (11)
and (14) where first red point (while K = −2 and τ = 4)
and second red point (while K = −2, ϵ = 1, ω = 0.5 and
T0 = 5) confirm the stability simulatenously as they are
in the white stability region. Contrarily, the blue point
in both the figures (11) and (14) in the black region,
confirms instability because of the positive MLE. As the
fractional order (α) decreases below 0.9, the complex-
conjugate eigenvalues associated with equilibrium point
gradually move outside the instability region defined by
the Matignon criterion. Consequently, equilibrium stabi-
lizes naturally, even without any control intervention. The
critical threshold, marking the point where these eigenval-
ues cross the boundary of the conic surface separating dis-
tinct stability regions, can be precisely determined using
criterion (1). In this specific scenario, the calculated value
for α is 0.8825.
Using Windows Home 11 OS, intel Core-i5 9300H proces-
sor and Matlab R2023b, we have found that Caputo-based
method took 43 minutes to solve TDFC without calculat-
ing eigenvalues and stability zones, while GL achieved the
same task in 1 second. The complexity of implementing
Caputo algorithms mentioned by (Betancur-Herrera and
Muñoz-Galeano (2020)) further tips the scales towards
GL. This simplicity in implementation, especially evident
in systems like the Fractional Rossler System, makes GL
the preferred choice. Its efficiency not only reduces compu-
tational burden but also simplifies analysis and modeling,
promoting precision in research efforts.
To summarize, in contrast to (Gjurchinovski et al. (2010)),
this study focuses on GL characterization, and the calcu-
lation of fractional derivatives is performed according to
equation (2). The phase phase and bifurcation diagrams
are qualitatively similar, but the computational time is
shorter and zone of stability has been altered. We have
also considered variable frequency in order to investigate
its impact on the stability performances and regions of
stability. In VDFC, if T0, ω or ϵ is varied, we can observe
that the delay is varied dynamically. For example, if ω
is increased from values 1 → 5, the eigenvalues on the
complex s-plane become more clustered and also the zone
of stability (white region) decreases.

6. CONCLUSION AND FUTURE SCOPE

In conclusion, this study explored the control and stabi-
lization of chaotic fractional-order Rössler systems using

Constant Time-Delayed Feedback Control (TDFC) and
Variable Delay Feedback Control (VDFC) methods. By
applying these techniques to the system’s x and y compo-
nents (and also only on x component), stability analysis
was conducted using the Matignon Stability Criterion. For
the TDFC method, a stability domain in the parameter
plane (K, τ) was determined, indicating regions where
chaotic behavior was effectively controlled. The VDFC
method, incorporating sinusoidal modulation in time de-
lay, demonstrated an expanded stability domain compared
to TDFC, enhancing the system’s controllability using a
stability domain in the parameter plane (K,T0). This re-
search provides valuable insights into controlling complex
fractional-order systems, emphasizing the significance of
fractional derivatives and modern control techniques in
understanding and managing chaotic dynamics.
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