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Patients with severe West Nile virus and SARS-CoV-2 infections 
deserve accurate diagnosis of underlying diseases, determining 
possible anti-interferon autoantibody production, since they 
must receive antiviral and immunological therapies to enhance 
antiviral response.

The current study aimed to investigate determinants of severity 
in a previously healthy patient who experienced 2 life-threatening 
infections, from West Nile Virus (WNV) and severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV2). During 
coronavirus disease 2019 (COVID-19) hospitalization he was 
diagnosed with a thymoma, retrospectively identified as already 
present at the time of WNV infection. Heterozygosity for 
p.Pro554Ser in the TLR3 gene, which increases susceptibility to 
severe COVID-19, and homozygosity for CCR5 c.554_585del, 
associated with severe WNV infection, were found. Neutralizing 

anti-interferon (IFN)-α and anti-IFN-ω autoantibodies were 
detected, likely induced by the underlying thymoma and 
increasing susceptibility to both severe COVID-19 pneumonia 
and West Nile encephalitis.

Keywords. COVID-19; West Nile virus; anti-IFN 
autoantibodies; thymoma; TLR3; CCR5.

The first line of defense against pathogens relies on innate im
munity. Interferons (IFNs) play a key role in the initial antiviral 
immune response, binding to cell surface receptors and activat
ing the expression of IFN-stimulated genes. Many inborn er
rors of immunity with an altered type I IFN-related response 
are associated with severe viral diseases [1].

Patients with severe coronavirus disease 2019 (COVID-19) have 
reduced IFN-mediated antiviral response, along with massive 
proinflammatory cytokine production [2]. Moreover, some germ
line loss-of-function variants in the type I IFN signaling pathway 
have been described in 2%–3% of severe life-threatening severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infec
tions [3]. Moreover, about 15% of life-threatening cases of 
COVID-19 infection have been related to neutralizing autoanti
bodies against IFN-ω and/or IFN-α. They can neutralize low 
(100 pg/mL), intermediate (1 ng/mL), or high (10 ng/mL) concen
trations of type I IFNs, impairing their ability to block 
SARS-CoV-2 infection [4]. Autoantibodies neutralizing type I 
IFNs have been found in patients with systemic lupus erythemato
sus, in nearly all patients with autoimmune polyendocrinopathy- 
candidiasis-ectodermal dystrophy, and in almost 60% of patients 
with thymoma and myasthenia gravis [5]. Moreover, these autoan
tibodies are found in a minority of uninfected people aged 
>70 years (∼4%) but can also be found in younger people 
from the general population (0.18% between 18 and 69 years 
of age) [6]. Therefore, they should be investigated when an 
atypical infectious history is present even in patients without 
an underlying pathology.

West Nile virus (WNV) is an RNA virus causing a neuroin
vasive disease in <1% of patients. Variants impairing the IFN 
signaling or chemokine receptors were hypothesized as possi
ble risk factors [7], and a recent meta-analysis confirmed the 
role of CCR5Δ32 variant in severe WNV infection [8].

We describe a peculiar combination of genetic background 
and acquired autoantibody production predisposing to both se
vere West Nile and SARS-CoV-2 infections, suggesting crucial 
clinical implications in the identification and management of 
these patients.

MATERIALS AND METHODS

The research immunological and genetic studies were performed 
in line with the principles of the Declaration of Helsinki.
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Genomic DNA Extraction From Peripheral Blood

Genomic DNA was extracted using Maxwell DNA blood kit 
(Promega) following the manufacturer’s instructions on a 
Maxwell automatic platform.

Genomic DNA Extraction From Formalin-Fixed, Paraffin-Embedded 
Thymoma Tissue

Genomic DNA extraction from formalin-fixed, paraffin- 
embedded (FFPE) tissue sections of thymoma after slide 
scraping of FFPE-selected tumoral areas (100%) was performed 
using Maxwell RSC DNA FFPE Kit (Promega) following the 
manufacturer’s instructions.

Quantification of Extracted DNA

DNA quantification were assessed using a Qubit Fluorometer 
with double-stranded DNA (dsDNA) HS Assay Kit for 
Qubit and dsDNA BR Assay Kit for Qubit (Thermo Fisher 
Scientific, Wilmington, Delaware).

Next-Generation Sequencing

Whole exome sequencing was performed starting from 100 ng 
of genomic DNA. Library preparation was performed using 
SureSelect XT Low Input kit (Agilent). Target enrichment 
was performed through SureSelect Human All Exon V7 probes 
(Agilent). The libraries were sequenced on the NovaSeq 6000 
platform, 2 × 150 bp (Illumina). Reads alignment and variant 
calling were performed by Dynamic Read Analysis for 
GENomics (DRAGEN) on BaseSpace Sequence Hub (Illumina) 
pipelines. BAM files were visualized with Integrative Genome 
Viewer software (Broad Institute). Variant annotation and pri
oritization were conducted using the eVai (EnGenome) tool al
lowing manually filtered variants, based on different sets of 
filters with variable stringency: high-quality (pass all quality fil
ters) nonsynonymous variants, population frequency (minor 
allele frequency <2% or <1%), in silico gene panels, conse
quence/effect, and inheritance mechanism. The remaining var
iants were classified according to the American College of 
Medical Genetics (ACMG) standard, in silico predictions, 
and experimental data in the literature. Candidate variants 
with unknown significance (class 3), likely pathogenetic (class 
4), or pathogenetic (class 5) were included in the study.

Proliferative Response Assays

Peripheral blood mononuclear cells isolated by Ficoll gradient 
were cultured in X-VIVO 15 (Lonza) at 5% of human sera 
(EuroClone S.p.A.) alone or in the presence of polyclonal or an
tigenic stimuli. Tritiated thymidine was added to the medium 
16–18 hours before the end of the culture. The proliferation 
of the activated lymphocytes was measured as count per minute 
by MicroBeta Counter (Trilux Perkin Elmer Life Sciences) 
and reported as stimulation index ratio between cells stimulat
ed versus the cells cultured without stimuli. Evaluation of 

proliferative response to spike SARS-CoV-2 protein was per
formed with SARS-CoV-2 PepTivator peptide pools Prot_S 
(Miltenyi Biotec).

SARS-CoV-2 Receptor-Binding Domain Antibody Luciferase 
Immunoprecipitation System Assay

IgG binding to the Wuhan SARS-CoV-2 spike protein 
receptor-binding domain (RBD) was measured by luciferase 
immunoprecipitation system using a NanoLuc (Promega) 
nanoluciferase-tagged recombinant antigen expressed in 
Expi293F (Thermo Fisher Scientific) eukaryotic cells. In brief, 
patient serum (1 μL) was incubated with nanoluciferase-RBD 
(2 million light units equivalents of luciferase activity) in 
Tris-buffered saline pH7.4 0.5% Tween (TBST) for 1 hour at 
room temperature in a 96-well plate. Immune complexes 
were then recovered by adding protein-A sepharose beads 
(Cytiva) and incubating with shaking for 1 hour at 4°C. To re
move unbound antigen, sepharose beads were then washed 
5 times by sequential centrifugation, TBST aspiration, and 
dispensing. After washing, the NanoLuc luciferase substrate 
(Promega) was added to the plate wells and light emission 
(single photon counting light units [LUs]) measured over a 
2-second time span in a luminometer (Berthold GmbH). Raw 
data LUs were then converted into arbitrary units using a 
strongly immunized serum as reference. The assay threshold 
for positivity was placed at the 99th percentile of values mea
sured in prepandemic control samples (n = 384).

Luciferase Reporter Assay

The plasma blocking activity against type I IFNs (13 IFN-α sub
types, IFN-β, and IFN-ω) was determined with a luciferase re
porter assay. HEK293T cells, cultured in Dulbecco’s modified 
Eagle medium (DMEM; Thermo Fisher Scientific) with 10% 
fetal bovine serum (FBS), were transfected in the presence of 
X-tremeGene9 transfection reagent (Sigma-Aldrich) for 
24 hours with a human interferon-stimulated response 
element-luciferase plasmid in the pGL4.45 backbone and a 
plasmid constitutively expressing Renilla luciferase for normal
ization (pRL-SV40). Then, cells were left unstimulated or were 
stimulated with IFNs (IFN-α subtypes [PBL Assay Science], 
IFN-ω [Peprotech], or IFN-β [Peprotech]) at 1 ng/mL for 16 
hours at 37°C in the presence of 10% of healthy control or pa
tient plasma diluted in DMEM with 2% FBS. Luciferase activity 
was assessed in the Dual-Luciferase Reporter 1000 assay system. 
Raw luciferase induction was calculated as firefly luciferase activ
ity normalized against Renilla luciferase activity, and this raw lu
ciferase induction was normalized against the median induction 
of healthy controls without neutralizing autoantibodies.

RESULTS

A 63-year-old man admitted with severe COVID-19 infection, 
requiring mechanical ventilation, subsequently complicated 
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with sepsis and pulmonary embolism. He slowly recovered 
after multiple nonspecific therapies (steroids, anakinra, 
antibiotics). His clinical history was characterized by infectious 
mononucleosis at 18 years of age, uncomplicated measles at 
30 years of age, and chickenpox at 45 years of age (Figure 1A).

Remarkably, his past history revealed a life-threatening West 
Nile encephalitis at age 58 years. During this hospitalization, 
thorax CT scan identified a 3-cm paracardiac mass, which 
had increased up to 5 cm at the time of COVID-19 pneumonia 
(Figure 1B–D).

Considering the severe evolution of both infections (WNV 
and SARS-CoV-2) in the absence of other clear predisposing 
factors, despite age, genetic analysis was performed for the pa
tient (I.1).

Whole exome sequencing (WES) analysis revealed the pres
ence of 2 variants, both confirmed by Sanger sequencing—a 
heterozygous c.1660C > T rare variant on TLR3 (NM_003265.2; 
rs121434431), with a 0.007 frequency in the European 
non-Finnish (gnomAD v2.1.1) and causing the missense chan
ge p.Pro554Ser (Figure 2A), classified as “likely pathogenic” ac
cording to ACMG. This specific TLR3 variant has already been 
described in literature to be biochemically deleterious in the 
heterozygous state [3].

TLR3 is a nucleic acid sensor that recognizes viral dsRNA 
and induces the activation of the innate immune response 
and the production of type I interferons. On the other hand, 
the patient also displayed the homozygous c.554_585del vari
ant in CCR5 (NM_000579.3; rs333) with a 1.09% frequency 
in the European non-Finnish population (gnomAD v2.1.1), 
causing the frameshift p.Ser185IlefsTer32 (Figure 2A). The 
ClinVar database defines the variant as benign because it is pro
tective for human immunodeficiency virus (HIV) infection, but 
it is also reported as a risk factor affecting the clinical course of 
WNV infection [9], and the Leiden Open Variation Database 
classifies it as “pathogenic” because it affects the function of 
the gene.

Thus, the genetic study was extended to the patient’s daugh
ter (II.1) and wife (I.2), who experienced COVID-19 in a milder 
form. Only the daughter was found as a carrier for the CCR5 
deletion and the p.Pro554Ser variant on TLR3 (Figure 2A).

Both I.1 and II.1 did not display major immunological ab
normalities: Plasma immunoglobulins and specific antibody 
responses to previous infections/vaccinations, lymphocyte 
subsets on peripheral blood, and proliferative response in vitro 
to mitogens and antigens (alloantigens, Candida, tetanus 
toxoid, herpes simplex virus, cytomegalovirus) were normal. 

Figure 1. Patient’s clinical history and imaging. A, Timeline of viral infections and identification of the mediastinal mass, then diagnosed as thymoma. B, High-resolution 
chest computed tomography (CT) scan showing coronavirus disease 2019 (COVID-19) pneumonia, characterized by bilateral ground-glass areas associated with interstitial 
thickening, most extensively in the upper lung lobes and areas of pulmonary consolidation with dense streaks in the lower lobes bilaterally. C, CT scan showing right para
cardiac mass with maximum transverse diameter of 5 cm (arrow). D, Low-dose positron emission tomography/CT scan with [18F]fluorodeoxyglucose showing medium ac
cumulation in the right paracardiac mediastinal mass (arrow).
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The patient (I.1) showed only mild reduction of total B-cell 
count (90 cells/μL [normal range, 110–570 cells/μL) and inver
sion of CD4:CD8 ratio (Supplementary Table 1). Moreover, 
both I.1 and II.1 developed adequate T-cell proliferative re
sponse in vitro (Figure 2B) and specific antibodies (anti-RBD) 
(Figure 2C) toward SARS-CoV-2.

Due to the absence of molecular etiology for severe 
COVID-19, we questioned whether other factors could induce 
such a severe clinical evolution. The answer came from the me
diastinal mass, histologically diagnosed as type AB thymoma, 
which was metabolically active (Figure 1D).

The genomic profile of the tumor was analyzed through 
WES, and no candidate variants were identified. Considering 
the risk of autoantibody production related to thymoma, 
we demonstrated the presence of autoantibodies neutralizing 
1 ng/mL IFN-α and anti-IFN-ω autoantibodies in the patient 
(not in the daughter), even 6 months after thymectomy 

(Figure 2D). Thus, these autoantibodies represented for the pa
tient an additional risk factor for both severe COVID-19 and 
invasive WNV infections. Although they are more commonly 
found in older people, in this case the patient was respectively 
58 and 63 years old when he suffered from these conditions, 
emphasizing the importance of the detection of these autoanti
bodies in this setting.

DISCUSSION

The reported clinical case represents a unique example of 
combined genetic and acquired risk factors for severe 
COVID-19 and WNV infection. Indeed, our patient harbors 
the heterozygous (p.Pro554Ser) missense variant in the 
TLR3 gene and is homozygous for the CCR5Δ32 deletion, 
but he was also affected by a thymoma causing production 
of anticytokine antibodies.

Figure 2. Genetics and immunological response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of the patient and family. A, Pedigree and segregation of 
the TLR3 variant c.2660C > T, p.P554S and of the CCR5 variant c.554_585del, p.Ser185IlefsTer32 (CCR5Δ32). Proliferative response to SARS-CoV-2 spike protein peptides (B) 
and Wuhan spike receptor-binding domain immunoglobulin G levels (C ) in the probands (I.1 and II.2) and 2 control cohorts; the assay cut-off is shown as a dashed line. 
D, Anti–type I interferon (IFN) autoantibodies: neutralization of type I IFNs (1 ng/mL of IFNs) detected in a luciferase-based cell reporter assay, in the patient plasma/serum 
(I.1) at different time points after coronavirus disease 2019 infection, before and after thymectomy, in the daughter (II.1) and in control groups (autoantibody-positive patients 
and healthy control without autoantibodies). Abbreviations: AAB, autoantibody; AU, arbitrary units; COVID-19, coronavirus disease 2019; IFN, interferon; IgG, immunoglobulin G; 
ISRE, interferon-stimulated response element; NS, not stimulated; RBD, receptor-binding domain; RLA, relative luciferase activity; SARS-CoV-2, severe acute respiratory 
syndrome coronavirus 2; SI, stimulation index; wt, wild type.
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TLR3 deficiency due to the p.Pro554Ser variant confers an 
autosomal dominant predisposition to herpes simplex virus en
cephalitis and to COVID-19 infection, with incomplete clinical 
penetrance [3]. The TLR3–IFN-α pathway is recognized to be 
relevant also for the response to WNV encephalitis. Indeed, 
NS1 protein of WNV inhibits TLR3 signal transduction to fa
cilitate viral expansion [10]. TLR3 knockout mice have in
creased viral burden into the brain, compared to wild type 
[11]. Additionally, in humans, downregulation of TLR3 on 
macrophages in elderly persons seems to be related to an in
creased risk of impaired response to WNV [12].

The genetic analysis identified the TLR3 p.Pro554Ser variant 
in the patient, who experienced severe WNV encephalitis and 
severe COVID-19, and in his daughter, who had a mild 
COVID-19 infection, supporting an incomplete clinical 
penetrance.

The patient was even homozygous for the CCR5Δ32 variant, 
which is known to confer resistance to HIV infection and is as
sociated with severe course of WNV infection [8]. Similarly, 
Ccr5–/– WNV-infected mice display impaired leukocyte traf
ficking toward the brain, reduced capacity of viral control, 
increased disease severity, and higher mortality rates than 
Ccr5 wild-type mice [13]. These data support the role of 
CCR5 as a protective factor against WNV infection. However, 
CCR5Δ32’s contribution to the risk of contracting SARS-CoV-2 
infection and its severe evolution remains still elusive in litera
ture [14, 15]. Thus, lack of CCR5 expression may have different 
roles depending on the pathogen.

Our patient’s genotype is a combination of factors without a 
certain predisposing effect toward the viruses causing the 2 life- 
threatening infections experienced (Supplementary Table 1).

A possible explanation arose from the mediastinal mass 
already identified at the time of WNV infection and later diag
nosed as a thymoma. Indeed, thymoma can induce the produc
tion of several autoantibodies due to impaired AIRE expression 
and central tolerance within the lesion [16], and WNV infec
tion has been reported in the setting of Good syndrome [17].

Despite the absence of other autoimmune manifestation, 
typical of thymoma (eg, myasthenia gravis), the patient pro
duced anti-IFN-α and anti-IFN-ω autoantibodies, which con
tributed to the severe evolution of SARS-CoV-2 infection and 
might have favored invasive WNV infection. The odds ratio 
for WNV disease in individuals with these autoantibodies 
relative to those without them in the general population is 
much higher when both anti-IFN-α and anti-IFN-ω are pre
sent, even if at low concentration [18]. Moreover, the odds ratio 
for critical COVID-19 was similarly higher in the subset of pa
tients with positivity for both autoantibodies [19].

This case suggests that autoantibodies neutralizing type I 
IFNs should be investigated in patients with thymoma and in 
individuals with severe viral diseases known to be associated 
with these autoantibodies (eg, varicella zoster virus disease 

[20], critical influenza pneumonia [21], Middle East respiratory 
syndrome [22]) in order to ensure an early diagnosis and 
targeted treatment favoring better outcomes. These autoanti
bodies represent acquired risk factors that, importantly, do 
not fade after thymectomy (Figure 2D). Hence, this should be 
considered a permanent vulnerability, despite competent adap
tive immunity and full immunization against SARS-CoV-2. 
Interestingly, in a mouse model of WNV infection, administra
tion of neutralizing antibody to anti-IFN receptor before viral 
challenge resulted in enhanced susceptibility to WNV [23]. 
Moreover, a recent large international cohort study showed 
that 40% of patients with WNV encephalitis carry autoantibod
ies neutralizing IFN-α and/or IFN-ω [18].

Overall, this is an example of how genetic and acquired fac
tors may increase susceptibility and severity of specific infec
tions, as similarly described for a patient affected by severe 
COVID-19 with both TLR7 deficiency and anti-IFN autoanti
bodies [24]. Indeed, the association of the heterozygous mis
sense TLR3 variant, the homozygous CCR5Δ32 deletion, and 
the production of anti-IFN type I antibodies likely contributed 
to the severe course of COVID-19 and WNV infection in this 
patient.

In conclusion, patients with such an immunological back
ground deserve dedicated management due to their high risk 
of poor outcome related to a delayed clearance of the virus. 
This observation may pave the way to the application, in similar 
cases, of therapies with antivirals or IFNs not targeted by auto
antibodies. Further cohort studies are needed to elucidate the 
effectiveness of these therapeutic approaches in anticipating 
the viral clearance.
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