
HAL Id: hal-04815862
https://hal.science/hal-04815862v1

Preprint submitted on 3 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Solving the On-Demand Bus Routing Problem
Jorge Mortes, Martin Cousineau, Fabien Lehuédé, Jorge E Mendoza, María I

Restrepo

To cite this version:
Jorge Mortes, Martin Cousineau, Fabien Lehuédé, Jorge E Mendoza, María I Restrepo. Solving the
On-Demand Bus Routing Problem. 2024. �hal-04815862�

https://hal.science/hal-04815862v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Solving the On-Demand Bus Routing Problem

Jorge Mortesa,b,∗, Martin Cousineaub, Fabien Lehuédéa, Jorge E. Mendozab, Maŕıa I.
Restrepoa

aIMT Atlantique, LS2N, UMR CNRS 6004, 4 Rue Alfred Kastler, Nantes, 44000, France
bHEC Montréal, 3000 chemin de la Côte-Sainte-Catherine, Montréal, H3T 2A7, Canada

Abstract

This article investigates a static on-demand transportation problem in which users are

picked up and dropped off at existing bus stops. Specifically, we assume that the selection

of bus stops for each request, along with the bus routes, is determined by the booking

system using an optimization algorithm. We focus on service quality by lexicographically

minimizing passenger travel time (including both walking time and time spent on the

bus) and the total route length. We introduce a new matheuristic algorithm based on

small and large neighborhood search, incorporating state-of-the-art operators and a set

covering component. This algorithm outperforms previous approaches by over 24% and

shows good performance on related problems benchmarks. The algorithm is tested on

a new set of instances, based on real data from New York City, which we propose as a

future benchmark. Additionally, we discuss implementation details for decision-makers

and practitioners.

Keywords: on-demand transportation problem, public bus system, stop assignment,

small and large neighborhood search, set covering

1. Introduction

Fixed-line buses are known for their efficiency in densely populated areas, where buses

are often full during peak hours and operational costs can be offset by passenger fares.

However, they become underutilized when demand decreases (Estrada et al., 2021). As

a result, operators may reduce bus frequency, discontinue certain lines, or increase fares,

ultimately leading to a decline in service quality (Brooks, 2023). In urban areas, the

lack of nighttime service often forces people to walk long distances to bus stops and

wait for buses, which may be unsafe (Plyushteva & Boussauw, 2020). In rural areas,

passengers may spend significant time on nearly empty buses that make multiple stops

without picking up or dropping off anyone. As stated by Estrada et al. (2021), these

challenges can be addressed through on-demand transportation systems, typically with

∗Corresponding author
E-mail address: jorge.mortes-alcaraz@imt-atlantique.fr

1

door-to-door services, which allow bus routes to be adjusted daily based on demand. This

approach enables the design of routes that avoid empty stops, resulting in lower operational

costs, reduced pollution, and improved service quality. Two examples of existing on-

demand systems are Via Transportation (2024) and Padam Mobility (2024).

Operating door-to-door on-demand transportation systems brings up several chal-

lenges. First, the presence of many one-way streets in cities can result in significant

detours for picking up and dropping off passengers, leading to increased operating costs

and pollution (Stiglic et al., 2018). Additionally, buses cannot stop anywhere on the road,

as doing so could block traffic. These issues can be addressed by assigning each request a

pick-up and drop-off point, chosen from a limited but convenient set of options for both

the operator and the passenger, during the route design process. To our knowledge, Melis

& Sörensen (2022) were the first to study this problem, which they referred to as the

on-demand bus routing problem (ODBRP). In their study, they suggest utilizing stops

already existing in the city’s transit network, allowing buses to stop in designated areas,

and eliminating the need for investment in new infrastructure. While this approach results

in many advantages, it also has some inconveniences. For instance, it requires passengers

to walk to the stops and adds complexity to the planning process, as it involves not only

creating routes but also assigning passengers to appropriate bus stops. Figure 1 shows

a simplified example of the ODBRP. Figure 1a shows an instance with two customers,

each with three potential pick-up and drop-off locations. The icons and * represent

the origin and destination for User 1, while the icons and + represent the origin and

destination for User 2. The icon Õ denotes the depot. Figure 1b shows a solution to this

instance, where specific pick-up and drop-off locations have been selected for each request,

and a route has been created that starts and ends at the depot.

Õ

*

+

(a) ODBRP instance.

Õ

*

+

(b) ODBRP route.

Figure 1: Example of an ODBRP route with two users and 3 potential bus stops per origin and destination.

In this paper, we revisit the ODBRP and expand the toolbox to solve it. Our contribu-

tions are fourfold. First, we introduce a new matheuristic for solving the ODBRP, which

2

utilizes small and large neighborhood search (SLNS) combined with a set covering (SCP)

component. Second, we show that existing stop assignment operators in the ODBRP

literature exhibit limited performance and propose efficient request insertion and bus as-

signment strategies that improve up to 24% the users’ time spent inside the bus upon

previous results. Third, we introduce a new set of realistic instances for benchmarking

algorithms developed for the ODBRP, as no publicly available instances previously ex-

isted for this problem. These instances are based on actual taxi trips from New York City,

real bus stop locations, and realistic distance and travel time matrices. Fourth, we pro-

vide managerial insights that are valuable to decision-makers addressing the ODBRP: We

compare different objective functions and demonstrate that minimizing passenger travel

time (i.e., a user-focused objective) leads to different solutions than minimizing total route

length (i.e., an operator-focused objective); we evaluate the ODBRP in comparison to a

door-to-door policy, showing significant reductions in fleet size and total route length; and

we assess the impact of adding more potential pick-up and drop-off bus stops, finding no

significant difference when more than five stops are included.

The remainder of the manuscript is organized as follows: Section 2 provides a literature

review on the ODBRP and related problems; Section 3 formally defines the ODBRP and

presents a mixed-integer linear formulation; Section 4 details the proposed matheuristic;

Section 5 introduces the new instance sets; and Section 6 discusses the computational

experiments and managerial insights. Finally, Section 7 concludes the manuscript with a

summary and some important remarks.

2. Literature review

According to the survey by Vansteenwegen et al. (2022), on-demand or demand-

responsive bus systems have been extensively studied over the years and can be classified

based on their level of responsiveness and flexibility. The least responsive on-demand sys-

tems are those that utilize static bus routes, which complete their route planning before

the service begins and are therefore unable to make adjustments afterward. An example

of a static bus system is presented by Stiglic et al. (2018), where the authors utilize an

on-demand system to connect passengers to public transit options, such as train stations

in suburban areas. In contrast, a dynamic online on-demand bus system can modify its

routes at any point during the service period. An example of this type of system is provided

by Archetti et al. (2018), where the authors use a simulator to compare an on-demand

door-to-door bus service with more traditional options like fixed bus lines or walking.

Users choose the option with the shortest travel time, and if none of the systems meet the

user’s requirements, they opt to use a private car. The two examples mentioned above are

also classified as fully flexible on-demand systems, where the routes are determined solely

by the demand. However, the literature has also explored semi-flexible systems, in which

3

the routes must visit some mandatory locations, and optional locations can be added to

the route based on the demand. An example of a semi-flexible system is provided by Pei

et al. (2019), where the authors consider a set of mandatory fixed locations and another

set of locations that are only visited if sufficient demand exists. For a more comprehen-

sive overview of on-demand bus systems, we refer the readers to the survey conducted by

Vansteenwegen et al. (2022).

Many static fully flexible on-demand bus routing systems, such as the ODBRP, have

been modeled as pickup and delivery problem with time windows (PDPTW) (Dumas et al.,

1991) or as the dial-a-ride problem (DARP) (Cordeau & Laporte, 2003), as the three prob-

lems involve precedence (i.e., all requests must be picked up before being dropped off),

coupling (i.e., a request should be picked up and dropped off by the same bus), and time

window constraints (i.e., pick-ups and drop-offs must be done within the specified time

windows). However, in the PDPTW and DARP, customers typically provide separate time

windows for pickup and delivery, while in the ODBRP, a single time window is specified

for the entire trip. The PDPTW has been successfully solved for instances up to 100 re-

quests using exact methods, with the branch-and-price-and-cut approaches from Ropke &

Cordeau (2009) and Baldacci et al. (2011) being particularly effective. For larger instances,

researchers have developed several metaheuristic algorithms, with the LNS algorithms of

Curtois et al. (2018), Sartori & Buriol (2020), and Christiaens & Vanden Berghe (2020)

considered state-of-the-art. Those three works apply their algorithms to the Li & Lim

(2001) benchmark with up to 500 requests, letting the algorithm run for up to 60 min-

utes in the case of Curtois et al. (2018), up to 226 minutes in the case of Christiaens &

Vanden Berghe (2020). Sartori & Buriol (2020) aimed to match the previous two works’

computing times. Additionally, Sartori & Buriol (2020) introduced a new benchmark with

up to 2,500 requests, allowing the algorithm to run on these instances for up to 60 minutes.

In addition to the mentioned constraints, the DARP also has constraints on maximum

route duration and maximum trip time per user. In terms of exact solution methods, the

most widely used algorithms for the DARP are based on the branch-and-bound framework

(Cordeau, 2006; Braekers et al., 2014). The branch-and-cut-and-price method developed

by Gschwind & Irnich (2015) is considered state-of-the-art, having solved instances with

up to 96 customers to optimality in under 15 minutes. For larger instances, numerous

metaheuristics have been proposed, with the most popular being variable neighborhood

search (Parragh et al., 2010) and hybrid methods (Gschwind & Drexl, 2019). The latter is

considered the most efficient algorithm for solving the DARP due to its constant feasibility

checks and the hybridization of LNS and dynamic programming.

The bus stop assignment in the ODBRP relates to the generalized vehicle routing

problem (GVRP) (Ghiani & Improta, 2000). In this problem, each customer is associated

with a cluster of nodes, but only one node within each cluster needs to be visited to

4

service the customer. Similarly, in the ODBRP, the potential pick-up and drop-off bus

stops can be viewed as clusters, with each request containing two sets of clusters (one

for pick-up and another for drop-off), and only one node from each cluster needs to be

visited. Numerous exact algorithms have been developed to solve the GVRP, with branch-

and-cut, branch-and-price, and branch-and-cut-and-price being the most commonly used

approaches (Bektaş et al., 2011; Bulhões et al., 2018; Reihaneh & Ghoniem, 2018). Among

metaheuristic algorithms for the GVRP, ant colony optimization, genetic algorithms, and

variable neighborhood search have been particularly popular (Bautista et al., 2008; Bulhões

et al., 2018; Sadati et al., 2022). For a more comprehensive overview of the GVRP, we

direct the readers to the survey by Jolfaei et al. (2023).

As mentioned above, the ODBRP presented in Melis & Sörensen (2022) falls into the

categories of static and fully flexible on-demand bus systems. However, unlike previous

studies that typically employ door-to-door transportation or assign requests to the nearest

bus stops, the ODBRP offers multiple bus stops for each customer’s pick-up and drop-

off. This results in more flexibility to optimize routes at the cost of an increase in the

problem’s complexity. The authors solve a problem where all requests must be served,

and the objective function is to minimize the user ride time (URT). They use a large

neighborhood search (LNS) algorithm paired with a local search operator. Their LNS

incorporates two destroy-repair operators: one aimed at minimizing URT and the other at

restoring feasibility. The authors created artificial grid-based instances to benchmark their

approach against a conventional fixed-line bus system and to assess their LNS performance

against LocalSolver (Hexaly, 2024).

In contrast to the work in Melis & Sörensen (2022), we propose a realistic set of in-

stances based on New York City taxi trip data to benchmark our algorithm. Furthermore,

our SLNS incorporates state-of-the-art operators, combining small and large destruction

operators that increase the number of iterations per run, along with an SCP component

that aids the algorithm when it stalls. While Melis & Sörensen (2022) focused on min-

imizing URT to enhance service quality, we opted for a lexicographic objective function

that prioritizes minimizing passenger travel time (PTT) as the primary objective and to-

tal route length as the secondary objective. PTT, as defined in Melis & Sörensen (2022),

includes both URT and users’ walking time. We selected this objective function because

walking time is naturally linked to service quality. Additionally, we found that many

equivalent solutions in terms of PTT or URT exist. Therefore, selecting the solution with

the shortest route length among them is logical. In addition, this also helps reduce costs.

3. Problem description

We consider a known set of transportation requests, denoted as R. Each request r ∈ R

is defined by an origin, a destination, a time window [er, lr], a number of passengers, a

5

set of potential pick-up bus stops Pr, and a set of potential drop-off bus stops Dr. We

define P =
⋃

r∈R Pr and D =
⋃

r∈R Dr as the sets of all potential pick-up and drop-off

stops, respectively. Note that if a bus stop can be used by multiple requests (also referred

to as a bus stop covering several requests), it is replicated in sets P or D for each request

listing it as a potential pick-up or drop-off stop. Note also that sets Pr and Dr can be

constructed based on various criteria, such as proximity within walking distance or user

preferences. Lastly, the time window [er, lr] represents the earliest time the passengers are

willing to be picked up and the latest time they are willing to be dropped off.

The ODBRP is formulated on a complete directed graph G = (N,A), where N repre-

sents the set of nodes and A = {(i, j) : i, j ∈ N} represents the set of directed arcs. Let 0+

and 0− denote two copies of the depot, defining the start and end of the bus routes. The

set N includes all bus stops, along with nodes 0+ and 0− (i.e., N = P ∪ D ∪ {0+, 0−}).
Let K represent the set of vehicles, with each vehicle k ∈ K having a passenger capacity

of Qk. Each node i ∈ N is associated with a passenger load qi, where q0− = q0+ = 0 and

qi = −qi′ , ∀i ∈ Pr, i′ ∈ Dr, r ∈ R. Additionally, each node is associated with a time

window [ei, li] and a walking time wi. The latter is the walking time from the origin of the

request to a pick-up stop (if i ∈ P) or from a drop-off stop to the destination (if i ∈ D).

We refer the reader to Section 5 for more detail on the nodes’ time window computation.

Let dij be the length of the arc (i, j) ∈ A. Note that dij = 0 if nodes i and j represent the

same physical bus stop. Lastly, let σ be the service time spent picking up or dropping off

a passenger. Given these definitions, the ODBRP involves constructing a set of bus routes

that minimizes PTT, accommodates all requests, assigns a single pick-up and drop-off stop

for each request within the same vehicle, respects vehicle capacity limits, serves requests

within the time windows, and does not exceed the fleet size. For clarity, we have included

a table in Appendix A that contains all the notation used throughout the document.

Let xkij be a binary variable that equals 1 if and only if vehicle k ∈ K travels directly

from node i to node j. Let Ak
i and Qk

i ≥ 0 represent the arrival time and departure load

at node i ∈ N , respectively, for vehicle k ∈ K. Finally, let Tr ≥ 0 denote the travel time

for request r ∈ R. The following is the three-index formulation for the ODBRP:

6

lexmin
∑
r∈R

Tr,
∑
k∈K

∑
i∈N

∑
j∈N

dijx
k
ij (1)

s.t.
∑
k∈K

∑
i∈Pr

∑
j∈N

xk
ij = 1 ∀r ∈ R (2)

∑
i∈Pr

∑
j∈N

xk
ij −

∑
i∈Dr

∑
j∈N

xk
ij = 0 ∀r ∈ R, k ∈ K (3)

∑
j∈N

xk
0+j = 1 ∀k ∈ K (4)

∑
i∈N

xk
i,0− = 1 ∀k ∈ K (5)

∑
j∈N

xk
ji −

∑
j∈N

xk
ij = 0 ∀i ∈ P ∪D, k ∈ K (6)

Ak
j ≥ Ak

i + σ + tij −Mk
ij

(
1− xk

ij

)
∀i ∈ N, j ∈ N, k ∈ K (7)

Qk
j ≥ Qk

i + qj −W k
ij

(
1− xk

ij

)
∀i ∈ N, j ∈ N, k ∈ K (8)

ei ≤ Ak
i ≤ li ∀i ∈ N, k ∈ K (9)

max {0, qi} ≤ Qk
i ≤ min {Qk, Qk + qi} ∀i ∈ N, k ∈ K (10)

Ak
i′ ≥ Ak

i + σ + tii′ ∀r ∈ R, i ∈ Pr, i′ ∈ Dr, k ∈ K (11)

Tr ≥ Ak
i′ −Ak

i + wi′ + wi −

[
2−

∑
j∈N

(
xk
ji′ + xk

ji

)]
Hii′ ∀r ∈ R, i ∈ Pr, i′ ∈ Dr, k ∈ K (12)

xk
ij ∈ {0, 1} ∀i ∈ N, j ∈ N, k ∈ K (13)

Ak
i , Qk

i ≥ 0 ∀i ∈ N, k ∈ K (14)

Tr ≥ 0 ∀r ∈ R (15)

Equation (1) lexicographically minimizes the PTT and total route length. Constraints

(2) and (3) make sure that all the requests are picked up and dropped off once and the

pick-up and drop-off of each request are made by the same bus. Constraints (4)-(5) ensure

that every route starts and finishes at the depot. Constraints (6) ensure flow conservation

at each node. Constraints (7), (8) together with (9), (10) impose time windows and ca-

pacity constraints, where Mk
ij = max {0, li + σ + tij − ej} and W k

ij = min {Qk, Qk + qi}.
Constraints (11) ensure that each pick-up is done before the corresponding drop-off. Con-

straints (12) define the requests’ travel time, where Hk
j′j = lj′ − ej + wj + wj′ . Lastly,

constraints (13)-(15) define the variables’ domain.

4. Solution method

Since the ODBRP is a generalization of the PDPTW, which is known to be NP-hard,
it is unlikely that an exact algorithm will scale well for real-world ODBRP instances.

Furthermore, we implemented Model (1)-(15) in a commercial solver, and after 3 hours of

computation the optimality gap was still larger than 50% for instances with 50 customers,

even when using the best solution found by the matheuristic, explained below, as a warm-

up solution. Consequently, to solve the ODBRP, we propose a matheuristic that combines

7

SLNS with SCP.

SLNS is a recent adaptation of the well-known LNS meta-heuristic. As initially pro-

posed by Shaw (1998), LNS is a meta-heuristic algorithm where a solution is partially

destroyed and recreated over many iterations to improve its quality. Several years later,

Ropke & Pisinger (2006a) popularized LNS by introducing the use of multiple heuristics

to destroy and repair solutions (referred to as operators), along with an adaptive layer to

guide the selection of these operators across different iterations. However, the adaptive

layer was found to have limited impact in several studies Turkeš et al. (2021). More re-

cently, Christiaens & Vanden Berghe (2020) introduced a variation of LNS that employs

small removals and greedy insertions (list heuristics). This approach allows for a larger

number of iterations compared to earlier LNS metaheuristics and achieves high-quality

results across many vehicle routing applications. Following this idea, Le Colleter et al.

(2023) introduced SLNS. This method differs from traditional LNS in its use of destroy

and repair operators: it uses small, fast operators to intensify search, and large destroy and

repair operators to diversify it. For further reading on LNS, we recommend the surveys

by Pisinger & Ropke (2019) and Mara et al. (2022).

The combination of heuristic methods with exact optimization components is well-

established in the vehicle routing field. An early work by Foster & Ryan (1976) explores

this approach for the vehicle routing problem, utilizing a constructive heuristic to generate

routes alongside a set partitioning problem (SPP) to select the best routes created by

the heuristic. More specifically, the integration of LNS and SPP has been successfully

implemented in complex vehicle routing problems, such as the vehicle routing problem

with cross-docking (Grangier et al., 2017) or the fleet size and mix dial-a-ride problem

with reconfigurable vehicle capacity (Tellez et al., 2018). These algorithms fall under the

category of what Archetti & Speranza (2014) denote restricted master heuristics, where

heuristics function as a column generation method (i.e., creating routes), and an SPP or

SCP is employed to select the optimal columns. Within this category, we observe two

types of algorithms: those that generate routes for a period and solve an SPP or SCP at

the end to improve the best solution found by the LNS, as in Gschwind & Drexl (2019),

and those that solve the SPP or SCP after a certain number of LNS iterations to better

guide the LNS, as in Dumez et al. (2021a). For a more detailed discussion on restricted

master heuristics and other matheuristics applied to vehicle routing problems, readers are

encouraged to consult the survey by Archetti & Speranza (2014).

The remainder of this section is organized as follows: Section 4.1 presents the algo-

rithm’s framework. Sections 4.2 and 4.3 provide specific implementation details of the

SLNS and SCP for the ODBRP. Finally, Section 4.4 introduces two bus stop selection

policies.

8

4.1. Matheuristic framework

Before detailing the main pipeline, we introduce the following definitions. A feasible

solution Sol for the ODBRP is a set of routes that satisfies constraints (2)-(15). As is

common in LNS algorithms for routing problems, the algorithm works with a specific class

of infeasible solutions known as partial solutions. A partial solution does not include all

requests but still adheres to the other constraints. We define the request bank B(Sol) of a

solution Sol as the set of unserved requests of a solution Sol. Consequently, B(Sol) = ∅ if

Sol represents a feasible solution. To penalize partial solutions, the largest back-and-forth

route needed to cover a single request is calculated and multiplied by a factor, which is then

added to the solution’s PTT for each request in B(Sol). Additionally, given two feasible

routes ρ1 and ρ2, we say that ρ1 dominates ρ2 if both routes serve the same customers

(though not necessarily using the same bus stops) and ρ1 has a lower PTT than ρ2.

As in Le Colleter et al. (2023), we define a set of large destroy operators Σ−
large, a

set of small destroy operators Σ−
small, and a set of repair operators Σ+ (details about the

operators in each set are provided in Section 4.2). To construct the initial solution, we

select a repair operator o+init ∈ Σ+. Each set of destroy operators has predefined bounds

on the number of bus stops to be removed: [δmin
small, δ

max
small] for the small destroy operators

and [δmin
large, δ

max
large] for the large destroy operators. Additionally, we define ωsmall as the

maximum number of iterations allowed between small and large destructions without

improvement, and ωworse as the minimum number of iterations without improvement

before triggering the SCP.

Every time the SLNS generates a new solution, we add the routes to the so-called

pool of routes Ω, checking dominance with the routes already in the set. We define β

as the minimum number of routes in Ω to launch the SCP. To prevent excessive time

consumption by the SCP, we define ωtime as the time limit for each SCP run, meaning

that the SCP may not be solved to optimality at every launch. Lastly, as explained in

Dumez et al. (2021b) we dynamically adjust β in the following way: If the SCP has been

solved to optimality twice in a row, we increase β. Otherwise, if the SCP cannot prove

optimality twice in a row, we decrease β. We define τ ∈ [0, 1] as the ratio that increases

or decreases β. This dynamic adjustment of β helps prevent initiating the SCP with an

excessive number of routes, which could result in wasted time in solving a complex SCP,

or with too few routes, which could result in not improving the best solution.

Algorithm 1 summarizes the main pipeline of the matheuristic. In this pseudo-code,

Solbest is the best solution found by the algorithm, Solcurr is the current solution, and

Solnew is a copy of the current solution that is destroyed and repaired. The variables

itworse and itsmall count the number of iterations without solution improvement and using

small destructions, respectively. Additionally, opt and optprev keep track of when the SCP

has been solved to optimality. After the algorithm’s initialization in Line 1, Line 2 builds

9

Algorithm 1 SLNS with SCP

Input: parameters: [δmin
small, δ

max
small], [δ

min
large, δ

max
large], ωsmall, ωworse, ωtime, β, τ ; operators:

Σ−
small, Σ

−
large, Σ

+, o+init
Output: Solbest

1: Solcurr ← ∅, Ω← ∅, itworse ← 0, itsmall ← 0, opt← 0, optprev ← 0
2: Build an initial solution Solcurr ← o+init (Sol

curr)
3: Add routes of Solcurr to Ω, Solbest ← Solcurr

4: while termination criterion not met do
5: if itsmall < ωsmall then
6: Select a destroy operator o− ∈ Σ−

small

7: Select a destroy size δ ∈ [δmin
small, δ

max
small]

8: itsmall ← itsmall + 1
9: else

10: Select a destroy operator o− ∈ Σ−
large

11: Select a destroy size δ ∈ [δmin
large, δ

max
large]

12: end if
13: Select a repair operator o+ ∈ Σ+

14: Solnew ← o+ (o− (Solcurr, δ))
15: Update Ω with the non-dominated routes of Solnew

16: if Solnew is better than Solbest then
17: Solbest ← Solnew, Ω← ∅, itworse ← 0, itsmall ← 0
18: else
19: itworse ← itworse + 1
20: end if
21: if Solnew meets the record-to-record or (itsmall = ωsmall and Solnew feasible) then
22: Solcurr ← Solnew

23: if itsmall = ωsmall then
24: itsmall ← 0
25: end if
26: end if
27: if itworse ≥ ωworse and |Ω| ≥ β then
28: Improve Solbest with the SCP for ωtime seconds
29: if SCP solution is optimal then
30: opt← 1
31: end if
32: Solcurr ← Solbest, Ω← ∅, itworse ← 0
33: if opt = 1 and optprev = 1 then
34: β ← (1 + τ)β
35: end if
36: if opt = 0 and optprev = 0 then
37: β ← (1− τ)β
38: end if
39: optprev ← opt, opt← 0
40: end if
41: end while

a first current solution Solcurr using o+init. Line 3 saves the first solution as the best-found

solution and adds the new routes to Ω. The main loop of the matheuristic is found in lines

10

4 to 41, which finishes once the termination criterion is met (i.e., a maximum number of

iterations or a time limit is reached). Line 5 verifies whether the current iteration should

be large or small. Based on this, a destroy operator and a corresponding destroy size are

randomly selected (lines 6 to 12). Line 13 randomly selects a repair operator. Line 14

applies the destroy and repair operators to Solcurr to create Solnew. Line 15 updates Ω

with the non-dominated routes of Solnew, if any. Line 16 checks if Solnew should become

the best-found solution Solbest by checking the following criteria: 1) Solnew has fewer

requests in the request bank than Solbest; 2) Solnew has the same number of requests in

the request bank but has a lower PTT; or 3) Solnew has the same number of requests in the

request bank, same PTT, and Solnew has a shorter total route length. If so, Ω is emptied

and the iteration counters itsmall and itworse are reset. Otherwise, we increase itworse.

Line 21 checks if Solnew should become the current solution Solcurr. This happens if

Solnew meets the record-to-record criterion (i.e., if Solnew’s PTT is within α% of Solbest’s

PTT (Dueck, 1993)) or Solnew is a feasible solution with a large destroy operator in this

iteration. In the second case, the value of itsmall is reset. We note that, unlike Le Colleter

et al. (2023), if a large destroy operator does not find a feasible solution, the algorithm

keeps doing large destruction iterations until a feasible solution is found (see Section 6.1.3

for more details). Line 27 checks if the SCP should be launched (i.e., Solbest has not

changed for at least ωworse iterations and the pool has at least β routes). If so, the SCP

tries to improve Solbest, Ω is emptied, and itworse is reset in Lines 28 to 32. Lastly, lines

33 to 39 are devoted to the dynamic adaptation of β.

From a PTT perspective, an efficient route would involve serving requests consecu-

tively, ensuring that the bus serves only one request at any given time. However, this

approach often results in long, but compact routes, where adding additional customers

would risk violating the time windows of those already on the route. As a result, con-

structing an initial feasible solution can be challenging, particularly when the bus fleet

is limited. To address this issue and ensure that the PTT minimization begins with a

feasible solution, we allocate 10% of the algorithm’s time budget to minimizing total route

length. As discussed in Section 6.3.1, while minimizing total route length leads to routes

with significantly higher PTT, it facilitates the generation of feasible solutions. We refer

to this as a warm-up phase.

4.2. SLNS

In this section, we describe the operators implemented in the SLNS to solve the

ODBRP and give some implementation hints. We first describe the destroy operators:

- Random destroy: Introduced in Ropke & Pisinger (2006a), this operator chooses

δ requests at random and removes them from the existing solution.

11

- Historical node-pair destroy: Introduced in Ropke & Pisinger (2006b) as neigh-

bor graph removal and renamed in Pisinger & Ropke (2007), this operator removes

δ requests from the current solution that were “better placed” in earlier solutions.

To do so, the operator keeps track of a score for each arc (i, j) ∈ A. The operator

initializes these scores to infinity and updates the score of an arc (i, j) ∈ A when-

ever a solution using this arc has a lower PTT than the previous score, replacing

it with the new solution’s PTT. Afterward, the operator determines each request’s

cost by summing the arcs’ scores connected to its pickup and delivery nodes. Lastly,

δ requests are selected using a sampling method biased towards requests with the

highest costs.

- String removal and split string removal: Introduced in Christiaens & Van-

den Berghe (2020), the string removal operator randomly selects a seed node v∗ and

removes several sequences of nodes close to v∗ from different routes. In the case of

split string removal, the sequence of nodes to remove can be split in two sub-strings,

leaving nodes in between the sub-strings. In the ODBRP case, when a pick-up (resp.

drop-off) node is selected to be removed, the related drop-off (resp. pick-up) node

is also deleted.

For the random and historical node-pair operators, when a request is selected to be

removed, the pick-up and drop-off nodes related to the request are removed from the route

and placed in the request bank. All destroy operators have a uniform probability of being

selected. As the destruction size of the String Removal and Split String Removal operators

is intentionally kept small in Christiaens & Vanden Berghe (2020), the set Σ−
small includes

all three operators, while the set Σ−
large comprises only the Random and Historical Node-

Pair Destroy operators. However, during small destroy iterations, the destruction size for

the Random and Historical Node-Pair Destroy operators is reduced. Lastly, since δmax
small

and δmax
large depend on the number of requests, we define ∆small and ∆large as upper bounds

on the number of removed requests for small and large destroy operators, respectively.

This prevents excessively large destruction sizes when R is large, which would otherwise

lead to increased diversification and slow down the algorithm.

All the implemented repair operators follow the idea of fast insertion heuristics, also

called list heuristics (Christiaens & Vanden Berghe, 2020). In this type of repair operator,

a list with all the non-inserted requests is made and, following a specific criterion, the list is

sorted. Lastly, a greedy insertion algorithm is used to insert all the requests following the

order in the list. For each non-inserted request r, the insertion heuristic tries all possible

combinations of stops in Pr and Dr in all possible pick-up and drop-off positions of the

different routes. After checking all combinations, the request is inserted in the route and

positions that increase the objective functions the least. We use the following criteria to

12

sort the lists:

- Time window width: As commonly used in VRP problems with time windows,

inserting first the requests with the tightest time windows increases the chances of

finding feasible solutions. We use the request’s time window [er, lr] width.

- Pick-up and drop-off times: We use two operators based on the pick-up and

drop-off times: The first one sorts the customers by pick-up time (increasing) and

the second one sorts the customers by drop-off time (decreasing).

- Passengers per request: In the same line as the time window width, inserting first

requests with a larger number of customers increases the chances of finding feasible

solutions.

- Distance from the depot: We use two operators using the request’s distance from

the origin location to the depot: The first operator sorts the requests in ascending

order, while the second sorts them in descending order.

- Random: Sort the customers at random.

As this algorithm spends a lot of time checking insertion feasibility (i.e., all the com-

binations of pick-ups and drop-offs), we adapted the forward time slacks proposed in

Savelsbergh (1992) to make them work with pick-up and drop-off nodes. We have also im-

plemented blinks at insertions, proposed by Christiaens & Vanden Berghe (2020). Blinks

at insertions mean that every time a combination of pick-up and drop-off is checked for

insertion, it can be skipped with a certain probability Π. This adds a probability of devi-

ating from the greedy insertion. All repair operators have a uniform probability of being

selected and we choose the increasing distance from the depot list heuristic as the initial

repair operator.

4.3. Set covering

As mentioned above, using a SCP formulation on top of a metaheuristic can be seen

as a heuristic column generation where the metaheuristic generates columns and the SCP

chooses the best column combination. In the specific case of the ODBRP, the SLNS creates

routes (i.e., columns) at each iteration and, whenever the algorithm gets stuck, it solves

the SCP formulation to assemble the generated routes and improve the current solution.

Additionally, the solutions found by the SCP lead to diversification as the SCP selects

unexplored combinations of routes found by the SLNS.

Let Tρ be the PTT of route ρ ∈ Ω. Let arρ ∈ {0, 1} be a constant indicating if the

request r ∈ R is served by route ρ ∈ Ω. Let λρ be a binary variable that takes the value 1

if and only if route ρ ∈ Ω is used in the solution. We state the following SCP formulation

for the ODBRP:

13

minimize
∑
ρ∈Ω

Tρλρ (16)

s.t.
∑
ρ∈Ω

arρλρ ≥ 1 ∀r ∈ R (17)

∑
ρ∈Ω

λρ ≤ |K| (18)

λρ ∈ {0, 1} ∀ρ ∈ Ω. (19)

Equation (16) minimizes the PTT of the routes. Constraints (17) ensure that every

request is covered at least once, and Constraint (18) bounds the maximum number of

routes by the fleet’s size. Lastly, constraints (19) define the variables’ domain.

We considered working with a SPP formulation; however, as it has been mentioned

in past studies (Costa et al., 2019), if the triangular inequality holds for travel times or

distance matrices, using a SCP formulation might lead to a faster solution convergence,

as the dual variables associated with the set covering constraints are positive instead of

free. However, the model might find solutions that serve customers in two or more routes.

In that case, any request served in two or more different routes can be removed from

the extra routes following a simple heuristic rule and this further decreases the objective

function. In preliminary experiments, we observed that using a SCP formulation helps

at the beginning of the algorithm to find solutions with a better value for the objective

function than the solutions found with the SPP formulation.

4.4. Bus stop selection policy

Several methods for selecting appropriate bus stops can be considered, with the sim-

plest being the selection of the bus stop nearest to the requests’ origins and destinations.

The presented algorithm evaluates each request’s potential pick-up and drop-off bus stops

to select those that minimize the objective functions. This approach is referred to as

the optimized bus stop selection policy. Although this policy identifies the most suitable

insertion at each step, it requires a significant computational effort. Consequently, we

introduce an alternative policy termed the sampled policy. The sampled policy divides

a single ODBRP instance into multiple sub-instances, or samples. To generate a sample

from an ODBRP instance, we randomly select one pick-up and one drop-off bus stop per

request, disregarding all other bus stops in the instance. Figure 2 illustrates an exam-

ple of an ODBRP instance with two users and three potential bus stops per origin and

destination, along with a sample derived from the instance.

Solving a sample is simpler than the original instance, as the problem is reduced to

the routing component. Therefore, several samples of one instance may be solved in the

14

Õ

*

+

(a) ODBRP instance.

Õ

*q

q

 q

q

+q

q

qq

(b) ODBRP sample.

Figure 2: Example of an ODBRP instance and a sample obtained from the instance.

same amount of time as the original instance. Therefore, the sampled bus stops selection

policy consists of solving several samples of the same instance and, then, selecting the

best solution from all the samples. To further increase the number of solved samples, we

modified Algorithm 1 to solve it in parallel. The parallelization of this algorithm is rather

simple: as the samples of one instance can be considered independent from each other,

we solve the different samples in parallel at the same time while collecting in a route pool

the routes belonging to the best 100 solutions of each sample; once all samples have been

solved, we solve the SCP (16)-(19) using the route pool and letting the algorithm assemble

routes from different samples.

5. Instances description

To generate the instances used in this study, we utilize two publicly available datasets

from the city of New York. The first is the New York City Taxi Trip dataset (New York

City Taxi and Limousine Commission, 2024), which provides detailed information about

taxi trips recorded over previous years. The second is the New York City Bus Stops

dataset (GIS Lab, 2019), containing the bus stops locations for MTA NYC Transit bus

routes, as compiled by the GIS Lab at Newman Library, Baruch CUNY, in December

2019. We restrict both datasets to the Manhattan area. Figure 3 depicts the taxi zones

in Manhattan, with all MTA NYC bus stops indicated by blue dots. All instances are

available at our Git repository1.

Before describing the instance generation process, we define the instance parameters.

Each request is limited to a maximum of 10 bus stops, with up to 5 stops for pick-up and

1Note that the repository is currently private. It will be made public as the manuscript progresses
through the review process. https://github.com/Jormoral/ODBRP instances

15

Figure 3: Manhattan map divided into taxi zones and with MTA NYC bus stops.

5 for drop-off. Additionally, the maximum walk time per request is set at 10 minutes:

5 minutes walking to the pick-up stop and 5 minutes from the drop-off stop. Therefore,

for each request, we select the 5 closest bus stops within a 5-minute walking radius of

the origin and the destination. To simulate the low-density conditions that are favorable

for on-demand shared transportation, we sample taxi trips occurring between midnight

and 6 AM on weekdays. The time horizon for the buses is established between 11:30 PM

and 7 AM, allowing sufficient time for buses to reach early requests and return to the

depot. The depot corresponds to an MTA NYC bus depot2. We use the original taxi

trip pick-up and drop-off times, subtracting 20 minutes from the pick-up time and adding

20 minutes to the drop-off time to simulate when each request is willing to be picked

up and dropped off [er, lr]. The number of passengers per request is randomly drawn

from a discrete distribution with support [1,2,3,4,5] and probabilities [0.7, 0.13, 0.07, 0.06,

0.04]. Each request is assumed to have a service time σ = 1 minute and a maximum bus

capacity of nine passengers, as smaller vehicles are preferred for on-demand transportation

in low-demand areas (Estrada et al., 2021).

Due to data protection regulations, the taxi trip dataset does not provide the exact

origin and destination coordinates for each request; instead, it provides the correspond-

ing origin and destination taxi zones. To address this, we randomly sample coordinates

2Located at coordinates (40.788202965040774, -73.94955970193467).

16

within the specified taxi zones to determine precise origin and destination locations. Any

sampled request where the origin and destination are less than a 10-minute walk apart

(i.e., the maximum allowed walking time) is discarded, as we assume these users could

walk directly to their destination. For each remaining request, we identify the five nearest

bus stops within a 5-minute walking radius of both the origin and destination. A request

is also discarded if it has no bus stops within this 5-minute radius at either the origin or

destination (e.g., a request located within the Central Park taxi zone).

Once all requests have been sampled and the corresponding bus stops identified, we

calculate realistic distances and travel times using the openrouteservice backend (open-

routeservice, 2024). Finally, we round down the distance and travel time matrices and

enforce the triangular inequality.

As the final step, we calculate the time windows for each request at the bus stops

[ei, li],∀i ∈ P ∪ D as follows: First, we account for the walking time to determine the

earliest possible arrival time at the pick-up bus stop and the latest possible arrival time

at the drop-off bus stop. Specifically, the earliest time a bus can pick up request r at node

i is calculated as ei = er + wi, and the latest time it can drop off request r at node i is

li = lr−wi. Then, using these calculations, along with the distances between pick-up and

drop-off bus stops, we determine for each request the latest possible departure time from

each pick-up stop that allows the bus to reach all of its drop-off stops on time, as well as the

earliest possible arrival time at each drop-off stop from all of its pick-up stops. Specifically,

the latest time a bus can pick up request r at node i is calculated as li = max
j∈Dr

{lj − dij},

and the earliest time it can drop off request r at node i is ei = min
j∈Pr

{ej + dij}. Figure 4

illustrates an example of this calculation. In the example, the icons and + indicate the

request’s origin and destination, respectively. Dashed and solid arrows represent walking

and driving paths, with the time required to traverse each arc noted on the arcs.

[12,]

[15,]

er = 10

10 + 2 = 12

10 + 5 = 15

[, 48]

[, 45]

+

lr = 50

50 − 2 = 48

50 − 5 = 45

2

5

2

5

(a) First step

[12, 38]

[15, 40]

er = 10

max{48 − 10, 45 − 8} = 38

max{45 − 8, 45 − 6} = 40

[22, 48]

[20, 45]

+

lr = 50

min{12 + 10, 15 + 8} = 22

min{12 + 8, 15 + 6} = 20

6

10

8

8

(b) Second step

Figure 4: Bus stop time windows calculation example.

Following this procedure, we create 40 instances split into four 10-instance groups

containing 50, 100, 250, and 500 requests (up to 500, 1,000, 2,500, and 5,000 bus stops

17

respectively) and we name them M50, M100, M250, and M500. Figure 5 presents an

instance from the M100 set, where the origins of requests and pick-up bus stops are

marked respectively with green crosses and gray dots in Figure 5a, and destinations and

drop-off bus stops with red x’s and gray dots in Figure 5b.

(a) Origins and pick-up bus stops. (b) Destinations and drop-off bus stops.

Figure 5: Instance example on the M100 set.

To determine a reasonable fleet size for the instances, we solved each instance using the

best version of our algorithms (as described in Section 6.1), setting the total route length

as the objective function and imposing the time limit specified in Section 6. Assuming

that bus operators cannot hire and fire drivers based on daily demand fluctuations and

would prefer to maintain a consistent number of drivers, we selected the largest fleet size

obtained across all instances of each group. Accordingly, the chosen fleet sizes are 5, 8,

15, and 26 buses for the M50, M100, M250, and M500 sets, respectively.

6. Computational experiments

The algorithms presented in this work are implemented in C++ and executed on an

Intel E5-2683 v4 Broadwell CPU @ 2.1GHz. The exact components are solved using the

commercial solver CPLEX 22.1.1.0, operating on a single thread. The parameters for the

matheuristic have been tuned using the IRACE package (López-Ibáñez et al., 2016), with

the exception of those related to the string and split string removal destroy operators

18

(Christiaens & Vanden Berghe, 2020), for which we used the recommended parameters

for the PDPTW. Table 1 lists the algorithm’s parameters and their corresponding values.

Each instance is solved 10 times, with runtime limits of 15, 45, 90, and 180 minutes for

instance sizes of 50, 100, 250, and 500, respectively. In the sampled method, we create 25

samples for each run, and solve them in parallel over 5 threads, allocating one-fifth of the

total time specified above to each sample.

Parameter Value

Π 1%
δmin
small ⌊0.01× |R|⌋ requests
δmax
small min {⌊0.1× |R|⌋ ,∆small} requests
∆small 5 requests
δmin
large ⌊0.15× |R|⌋ requests
δmax
large min {⌊0.2× |R|⌋ ,∆large} requests
∆large 50 requests
ωsmall 6,000 iterations
ωworse 10,000 iterations
α 1%
ωtime 15 seconds
τ 60%
β 2,000 routes

Table 1: Algorithm’s parameters and their values.

We compare our algorithm against a lower bound for each instance, as an optimal

solution could not be obtained. We calculate this lower bound on the assumption that

there are enough vehicles to serve all requests without overlapping requests in the same bus

(e.g., one vehicle per request in the worst-case scenario). For each request, we determine

a lower bound by selecting the bus stops that minimizes PTT for a direct trip. The sum

of these individual lower bounds constitutes the total lower bound. Figure 6a illustrates

an example of this calculation. In the example, the same notations as in Figure 4 is used.

By choosing the two top bus stops, a minimum PTT of 14 minutes is achieved.

Additionally, we compute a URT lower bound for some experiments where we minimize

URT. We do this by applying the same method explained above for calculating the PTT

lower bound, but focusing solely on the request’s time spent inside the bus. Figure 6b

continues from the earlier example, showing that selecting the two bottom bus stops results

in a minimum URT of 6 minutes.

These two lower bounds correspond to the optimal solution value when enough vehicles

are available. However, as the fleet size is limited in our instances, the lower bound may

not be reachable and, therefore, this may not be the optimal solution value anymore.

To maintain brevity, only averaged values are presented in the following sections. For

future comparisons, the best solutions identified by our algorithm are available in our Git

19

PTT = 14, URT = 10

 +
2

5

2

56

10

8

8

(a) PTT

PTT = 16, URT = 6

 +
2

5

2

56

10

8

8

(b) URT

Figure 6: Lower bounds calculation example.

repository3.

The remainder of this section is organized as follows: Section 6.1 compares different

versions of our algorithm. Section 6.2 assesses the algorithm’s performance with previous

literature. Lastly, Section 6.3 introduces managerial insights.

6.1. Algorithm components and policies

We devote this section to establishing what is the best version of our algorithm. This

means checking whether SLNS outperforms LNS both with and without the SCP, finding

the best policy to select bus stops, and choosing when to accept large destroy iterations

to escape local optima.

6.1.1. Algorithm components

Tables 2 and 3 present the experimental results comparing SLNS and LNS, both with

and without the SCP (i.e., LNS, SLNS, LNS+SCP, and SLNS+SCP). We evaluate the

algorithms based on the following indicators: PTT (averaged per request in minutes),

length of the routes (in kilometers), and ∆LB (percentage deviation from the lower bound

of the PTT). We average the values for these indicators across all instances and algorithm

runs for each instance set. The table indicates that all four algorithms exhibit similar

performance on the two smallest instance sets, SLNS being slightly ahead. However, when

examining the two bottom rows (representing the largest instance sets), we observe that

both SLNS and SLNS+SCP achieve solutions with lower PTT (closer to the lower bound)

and shorter routes than their LNS counterparts. Furthermore, the algorithms incorporat-

ing the SCP (i.e., LNS+SCP and SLNS+SCP) show superior performance compared to

their versions without the SCP component. Consequently, it can be concluded that our

SLNS implementation outperforms our LNS implementation for the ODBRP and that the

addition of the SCP component contributes to finding better solutions.

To further analyze the differences between the algorithms, Figure 7 illustrates the

search profile of the four algorithms over all M500 instances and runs, depicting how the

3Note that the repository is currently private. It will be made public as the manuscript progresses
through the review process. https://github.com/Jormoral/ODBRP instances

20

LNS SLNS
Set LB PTT Length ∆LB PTT Length ∆LB

M50 11.615 11.631 339.738 0.131% 11.630 337.490 0.128%
M100 11.663 11.696 664.314 0.276% 11.693 655.815 0.250%
M250 11.596 12.105 1,442.760 4.376% 12.000 1,418.641 3.478%
M500 11.595 12.523 2,667.895 8.001% 12.355 2,621.367 6.550%

Table 2: Algorithm components without SCP comparison summarized by instance set.

LNS+SCP SLNS+SCP
Set LB PTT Length ∆LB PTT Length ∆LB

M50 11.615 11.631 339.026 0.131% 11.633 338.480 0.150%
M100 11.663 11.694 658.133 0.265% 11.697 652.934 0.289%
M250 11.596 12.053 1,443.645 3.932% 11.999 1,407.924 3.462%
M500 11.595 12.456 2,675.313 7.422% 12.334 2,611.683 6.366%

Table 3: Algorithm components with SCP comparison summarized by instance set.

algorithms approach the lower bound (y-axis) over time (x-axis). This figure reveals that

the SLNS variants not only perform better after 3 hours, but also find better solutions more

quickly. We can also see that the SCP enhances solution quality when the algorithms begin

to get stuck at the cost of reduced performance at the beginning of the experiment. The

horizontal red dash-dotted line (BKS) depicts the averaged best solution found on each

instance (always found by the SLNS+SCP). We can see that the SLNS+SCP algorithm

is consistent in each instance run as its search profile line ends less than 0.6% away from

the BKS. In summary, tables 2 and 3, along with Figure 7, demonstrate that SLNS+SCP

outperforms the other three algorithms. We emphasize that, although the SLNS+SCP

algorithm does not appear to have fully converged in Figure 3, we conducted an additional

experiment in which the algorithm was run for one additional hour. In this extended

run, the algorithm maintained a similar decreasing trend and still showed no signs of

convergence. However, after the extra hour, the algorithm only reduced the gap to the

lower bound by 0.15% (i.e., still 0.45% away from the BKS). Therefore, we conclude that

the additional computational effort is not justified by the marginal improvement in solution

quality. Finally, it is important to note that, for the sake of brevity, the results presented

in this section utilize the best bus selection policy and large iteration criterion, which are

chosen in the subsequent sections.

6.1.2. Bus stop selection policy

Table 4 compares the algorithm SLNS+SCP with three different bus stop assignment

policies: Nearest, which assigns the closest bus stop to both the origin and destination;

Sampled, which evaluates multiple samples; and Optimized, which allows the algorithm

to select the most suitable bus stops. Note that in this experiment, one of the samples

considered per instance corresponds to the nearest bus stop policy, as it provides routes

21

0 2000 4000 6000 8000 10000
Computation time (s)

5

6

7

8

9

10

11

12

13

14
De

vi
at
io
n
fro

m
 L
B
(%

)

SLNS
SLNS+SCP
LNS
LNS+SCP
BKS

Figure 7: Algorithm components search profile over the M500 instances.

where walking time is minimized. However, since the runtimes per sample are shorter than

the runtimes per instance, the Sampled policy is not equivalent to the Nearest policy.

We average the values of the previously introduced indicators across all instances and

algorithm runs for each instance set. The table clearly shows that allowing the algorithm

to select the most suitable bus stops is the most effective policy across all instance sets,

as it reduces both PTT and route length.

Nearest Sampled Optimized
Set LB PTT Length ∆LB PTT Length ∆LB PTT Length ∆LB
M50 11.62 11.86 345.42 2.09% 11.86 347.91 2.14% 11.63 338.48 0.15%
M100 11.66 11.94 667.98 2.38% 11.99 676.75 2.79% 11.70 652.93 0.29%
M250 11.60 12.49 1,416.46 7.64% 13.08 1,433.93 12.74% 12.00 1,407.92 3.46%
M500 11.60 13.05 2,634.27 12.54% 13.56 2,666.30 16.93% 12.33 2,611.68 6.37%

Table 4: Bus stop assignment methods comparison summarized by instance set.

6.1.3. Large iteration acceptance

In the work of Dumez et al. (2021b), the authors accept every solution generated from

a large destroy iteration as the new current solution. The rationale behind this approach

is to escape local optima by significantly altering the current solution. Following this

22

strategy, a solution is accepted even if it has a poor objective function value. However,

we encountered challenges in restoring feasibility after an infeasible large destroy iteration

when dealing with highly constrained problems, such as minimizing PTT with a limited

fleet and time windows in the ODBRP. To address this issue, we adopted the strategy

proposed by Soleilhac (2022), where infeasible solutions are not accepted after a large

destroy iteration. Instead, large destroy iterations are repeated until a feasible solution

is obtained. This approach allows for escaping local optima without sacrificing feasibility.

We refer to this strategy as the rolling large iteration acceptance.

Figure 8 illustrates the search profile of SLNS and SLNS+SCP with (and without)

the rolling strategy applied across all M500 instances and runs. The figure shows that

SLNS (represented by a solid green line) tended to become stuck after early large destroy

iterations, unable to regain feasibility. This results in approximately a 5% performance

loss compared to the same algorithm with the rolling strategy (represented by a solid

blue line). The case of SLNS+SCP is somewhat different, as the algorithm can recover

feasibility through the SCP. However, there is still a notable performance improvement

when the rolling strategy is applied to SLNS+SCP (depicted by a dashed orange line)

compared to the version without the rolling strategy (depicted by a dashed red line).

0 2000 4000 6000 8000 10000
Computation time (s)

5

6

7

8

9

10

11

12

13

14

De
vi
at
io
n
fro

m
 L
B
(%

)

SLNS Rolling
SLNS+SCP Rolling
SLNS
SLNS+SCP
BKS

Figure 8: Algorithm search profile with and without the rolling large destroy acceptance over the M500
instances.

For the rest of the paper, we focus on the best version of the algorithm: SLNS+SCP

23

with the optimized bus selection policy and rolling large destroy acceptance. From here

on, we refer to this version simply as SLNS+SCP.

6.2. Algorithm’s performance

We devote this section to checking our algorithm’s performance against known algo-

rithms from the literature both specific to the ODBRP or related problems.

6.2.1. Comparison to a previous ODBRP algorithm

As discussed in Section 2, Melis & Sörensen (2022) introduced the ODBRP and pro-

posed an LNS algorithm to solve it. Since the instances used in Melis & Sörensen (2022)

were not publicly available, we implemented their LNS algorithm based on the description

provided in the original article and tested it on our instances. For detailed information

on the LNS algorithm, we refer the reader to the original article, and for the specific

implementation choices we made, please refer to Appendix B. Additionally, the authors

designed their algorithm with URT as the objective function and with a number of vehicles

as an input parameter. Consequently, we have adapted our algorithm to minimize URT

instead of PTT.

Table 5 compares the LNS of Melis & Sörensen (2022) to our SLNS+SCP. In this

experiment, we compare the indicator URT (averaged per request in minutes), and, for

simplicity, the columns ∆URT and ∆Length show our algorithm’s deviation from theirs.

Note that the ∆LB column in Table 5 refers to the URT lower bound explained in Section

6. We average the values for these indicators across all instances and algorithm runs for

each instance set. These results show that our algorithm outperforms previous literature

with a URT value of up to 24% less on average in the largest set of instances and with

a shorter route length. In the ∆URT column, it is clear that our algorithm increasingly

outperforms the algorithm of Melis & Sörensen (2022) as the instance size grows. However,

the opposite trend is observed in the ∆Length column. As will be discussed in Section

6.3.1, minimizing URT tends to result in longer routes. Thus, SLNS+SCP sacrifices some

route length to achieve better URT outcomes. Nevertheless, due to our lexicographic

objective function, we still obtain shorter routes than those produced by Melis & Sörensen

(2022).

Melis & Sörensen (2022) SLNS+SCP
Set LB URT Length ∆LB URT ∆URT Length ∆Length ∆LB

M50 7.91 8.11 383.65 2.47% 7.92 -2.35% 323.83 -15.59% 0.09%
M100 7.96 8.24 721.12 3.49% 7.98 -3.17% 619.69 -14.07% 0.21%
M250 7.90 8.97 1,533.25 13.48% 8.15 -9.15% 1,359.17 -11.35% 3.21%
M500 7.91 11.21 2,611.83 41.73% 8.48 -24.38% 2,523.71 -3.37% 7.17%

Table 5: Comparison of SLNS+SCP with a previous ODBRP algorithm.

24

To conclude this experiment, we note that when the maximum fleet size constraint is

removed, SLNS+SCP consistently reaches the lower bound. In contrast, the algorithm

proposed by Melis & Sörensen (2022), provided with the same number of vehicles used by

SLNS+SCP, is unable to achieve the lower bound.

6.2.2. Comparison on PDPTW intances

Since the ODBRP is a generalization of the PDPTW, we tested our algorithm on the

PDPTW instances proposed by Li & Lim (2001). As the PDPTW literature typically

focuses on minimizing distance, we adapted our algorithm to this objective function and

compared its performance to the known optimal solutions identified by Ropke & Cordeau

(2009) and Baldacci et al. (2011).

Table 6 presents the performance of SLNS+SCP on the Li & Lim (2001) benchmark.

In this table, the column Set indicates the instance set, the column #Instances shows

the number of instances in each set, the column Known optimal indicates the number of

instances with a proven optimal solution, the column Found optimal shows how many of

these optimal solutions the SLNS+SCP finds, and the column Deviation represents the

average deviation from optimality for the instances where SLNS+SCP does not find the

known optimal solution. The results show that SLNS+SCP finds 74 out of 75 known

optimal solutions, and in the one instance where the algorithm does not find the optimal

solution, the best solution identified by SLNS+SCP is only 0.14% above the optimal value.

Set #Instances Known optimal Found Optimal Deviation

50 56 39 39 —
100 60 23 22 0.14%
200 60 4 4 —
300 60 3 3 —
400 60 3 3 —
500 58 3 3 —

Total 354 75 74

Table 6: Comparison to the optimal solutions of Li & Lim (2001) instances.

6.3. Managerial insights

In this section, we highlight key aspects of our research that may be of interest to

managers and decision-makers when addressing the ODBRP.

6.3.1. Impact of optimizing different objective functions

This study addresses the ODBRP from a public service perspective, assuming the

operator is a public entity aiming to maximize service quality. Accordingly, we focus on a

lexicographic minimization of the PTT and the total route length. However, alternative

objectives may also be considered: Previous studies have focused on minimizing URT, and

25

a common objective for private operators is minimizing the total cost, which is directly

related to the distance traveled by vehicles (i.e., total route length). In this section, we

will compare all three objectives.

Figure 9 presents a comparison of the best solutions found by SLNS+SCP, averaged

across all instance sets and runs. This chart displays the average PTT per request when

minimizing PTT, URT, and total route length. The PTT (shown with green labels) is

divided into URT (represented by orange bars) and walk time (represented by blue bars).

The results indicate that when minimizing total route length, the URT nearly doubles

compared to minimizing PTT and URT, with passengers spending over 17 minutes on the

bus, compared to around 8 to 9 minutes when PTT or URT is minimized. This outcome

is likely due to routes involving multiple customers being on the bus simultaneously when

total route length is minimized. While this reduces route length and improves vehicle

capacity efficiency, it negatively impacts URT, as having more requests onboard increases

ride times. When comparing the columns for minimizing PTT and URT, as expected,

URT is lower when it is the objective function, and similarly, PTT is lower when it is

the objective function. However, while the URT per request is relatively similar when

minimizing URT and PTT, there is a more significant difference in walk time. Because

walking speed is slower than bus speed, bus stops closer to origins and destinations are

chosen when minimizing PTT. In this work, we opted for minimizing PTT over URT, as

we assume that users would prefer walking as little as possible and having shorter travel

times at nighttime. Lastly, we notice that there is a consistent trend in PTT, URT, and

walk time values across all sets of instances.

Similarly to Figure 9, Figure 10 presents a chart comparing the minimization of PTT,

URT, and total route length, this time focusing on the total route length measure. In the

same line as the previous figure, the total route length is significantly shorter when the

distance is minimized, reducing route lengths by half compared to when PTT or URT is

minimized. This is because solutions that minimize URT and PTT tend to serve requests

consecutively, minimizing overlap but resulting in longer routes. The slight difference

between PTT and URT is directly related to the URT variations observed in the previous

figure. Additionally, it is worth noting that when minimizing URT and PTT, multiple

solutions may exist with varying distances for the same URT or PTT value. Therefore, we

chose to minimize distance as a secondary objective. Without this secondary objective,

the disparity in route length between PTT/URT minimization and distance minimization

could be even larger.

From a practical perspective, the choice of objective function will depend on the op-

erator’s priorities. However, it is important to recognize that minimizing PTT or URT is

inefficient for reducing total route length, and vice versa. Therefore, aiming for a balance

between these objectives could be a valuable consideration for future optimization efforts.

26

8.6 7.9

17.0

8.7 8.0

18.1

8.9 8.2

18.6

9.2 8.5

18.7
3.0 5.3

4.6

3.0 5.3

4.7

3.1 5.2

4.6

3.1 5.2

4.6

11.6
13.2

21.6

11.7
13.3

22.7

12.0
13.4

23.2

12.3
13.7

23.3

0

5

10

15

20

25

Min.
PTT

Min.
URT

Min.
Len.

Min.
PTT

Min.
URT

Min.
Len.

Min.
PTT

Min.
URT

Min.
Len.

Min.
PTT

Min.
URT

Min.
Len.

M50 M100 M250 M500

Av
er

ag
e

tim
e

pe
r r

eq
ue

st
 (m

in
)

Instance set

Walk time URT PTT

Figure 9: URT and walk time comparison when minimizing URT, PTT, and total route length.

6.3.2. Comparison to a door-to-door policy

It is reasonable to compare the ODBRP with a more traditional door-to-door policy.

As the name suggests, in a door-to-door approach, requests are picked up directly from

their origins and dropped off at their destinations, traveling from door to door. These

policies are often designed for people with reduced mobility. As expected, while door-

to-door policies offer a lower PTT (i.e., users do not need to walk), they tend to be less

efficient from a cost and operational standpoint.

Table 7 compares our algorithm’s performance on the ODBRP with its application

to the door-to-door bus routing problem (denoted D2DBRP for this comparison), where

pickups occur directly at the origins and drop-offs at the destinations. In this experiment,

we compare the maximum number of vehicles used |K|, and, for the ODBRP we added the

walking time averaged per request in minutes Walk. For simplicity, the columns ∆PTT

and ∆Length show our algorithm’s deviation from the D2DBRP policy. We average the

values for these indicators across all instances and algorithm runs for each instance set.

Note that the Walk and URT columns are omitted for the D2DBRP, as users do not walk,

making the PTT identical to the URT. The first notable observation is that to obtain

feasible solutions for the D2DBRP, we had to increase the fleet size by one vehicle for

the M250 instance set and by two vehicles for the M500 instance set. This is a direct

consequence of the longer origin-to-destination routes for each request. Similarly, while

the ODBRP was able to find solutions using four vehicles in the M50 instance set, this was

not the case for the D2DBRP. As a result, the URT per passenger (shown as PTT in the

27

338 324
215

653 620

350

1,408
1,359

670

2,612 2,524

1,147

0

500

1000

1500

2000

2500

3000

Min.
PTT

Min.
URT

Min.
Len.

Min.
PTT

Min.
URT

Min.
Len.

Min.
PTT

Min.
URT

Min.
Len.

Min.
PTT

Min.
URT

Min.
Len.

M50 M100 M250 M500

To
ta

l r
ou

te
 le

ng
th

 (k
m

)

Instance set

Figure 10: Total route length comparison when minimizing URT, PTT, and total route length.

door-to-door policy) is larger when not using bus stops. However, this increase in URT is

mitigated when adding the walk time, having up to 23% more PTT per request. We also

observe a clear decreasing trend in PTT deviation as the instance size grows. Similarly,

total route length is shorter in the ODBRP, with a higher deviation as the instance size

increases.

D2DBRP ODBRP
Set |K| PTT Length |K| PTT ∆PTT Walk URT Length ∆Length

M50 5 9.42 363.78 4.99 11.63 23.51% 3.03 8.60 338.48 -6.96%
M100 8 9.57 701.28 8 11.70 22.25% 3.03 8.67 652.93 -6.89%
M250 16 9.98 1,516.87 15 12.00 20.17% 3.10 8.90 1,407.92 -7.18%
M500 28 10.65 2,835.20 26 12.33 15.85% 3.13 9.20 2,611.68 -7.88%

Table 7: Comparison of the ODBRP with a door-to-door bus routing service.

In conclusion, from a cost perspective and when minimizing PTT, it is more efficient for

the operator to slightly reduce service quality (i.e., increase users’ PTT) while reducing

the fleet size and cutting the total route length by approximately 8%. Moreover, this

advantage over the D2DBRP is likely to increase as the number of requests become larger.

From an operational standpoint, it is more practical to have passengers walk to existing

bus stops, rather than stopping the bus at arbitrary points along the streets, which could

temporarily obstruct traffic.

28

6.3.3. Impact of the bus stop options number

From a managerial point of view it is also worth considering whether increasing or de-

creasing the number of potential bus stops for each request would lead to an improvement

in solution quality. To investigate this, we generated a set of instances in which up to the

10 nearest bus stops within a 5-minute walking distance were considered. We then solved

these instances using the SLNS+SCP algorithm and compared the results with instances

that limited the number of bus stops to 5 and 1 (i.e., the same instances as in the nearest

bus stop selection policy). Lastly, all instances have the same runtime limits defined at

the beginning of Section 6.

Figure 11 presents a comparison of the best solutions found by SLNS+SCP when

minimizing PTT, averaged across all instance sets and runs. The chart displays the average

PTT per request with 1, 5, and 10 bus stops. The PTT (shown with green labels) is

divided into URT (represented by orange bars) and walk time (represented by blue bars).

The results reveal very similar solutions when using either 5 or 10 bus stops, with only

a slight difference in the largest instance set, which may be attributable to the increased

computational effort. However, compared to using the nearest bus stop, while a shorter

walking time is achieved, the increase in URT results in a worse PTT, as shown in Section

6.1.2.

8.99 8.60 8.59 9.08 8.67 8.66
9.63 8.90 8.86

10.21
9.20 9.17

2.87 3.03 3.03
2.86 3.03 3.03

2.86
3.10 3.12

2.84
3.13 3.19

11.86 11.63 11.62 11.94 11.70 11.69
12.49

12.00 11.98

13.05
12.33 12.36

0

2

4

6

8

10

12

14

1 5 10 1 5 10 1 5 10 1 5 10

M50 M100 M250 M500

Av
er

ag
e

tim
e

pe
r r

eq
ue

st
 (m

in
)

Instance set

Walk time URT PTT

Figure 11: URT and walk time comparison with 1, 5, and 10 bus stops per pick-up and drop-off.

29

7. Conclusions

We presented a novel matheuristic algorithm, called SLNS+SCP, for solving the ODBRP.

The SLNS improves over the LNS at the beginning of the runs by focusing on doing small

iterations. Additionally, the SCP component aids in improving performance when the

SLNS stalls. An implementation analysis of SLNS’s large iterations revealed that SLNS

struggles to restore feasibility in highly constrained problems, but accepting only feasible

solutions after large destruction iterations helps to address this issue.

The SLNS+SCP was able to outperform a previous algorithm from the literature, not

only in terms of service quality (URT) but also by generating shorter (and therefore more

cost-effective) routes. This success is attributed to our selected lexicographic objective

function, which prioritizes finding the solution with the shortest route length among those

with equivalent URT or PTT values, as many equivalent solutions might exist.

A new set of realistic instances, based on data from New York City, was developed

and utilized for the computational experiments. This dataset incorporates historical taxi

trips, actual bus stop locations, and realistic time and distance matrices.

Our analyses revealed that minimizing URT or PTT results in solutions with entirely

different structures. Specifically, minimizing service quality (i.e., URT or PTT) tends to

produce more costly solutions, characterized by longer routes, and vice versa. Additionally,

a comparison with a door-to-door policy showed that using bus stops results in lower

service quality but requires a smaller fleet and shorter route lengths, leading to a more

cost-effective bus system. Furthermore, no significant difference was observed in PTT

minimization when additional bus stops were included.

We propose two future work streams: first, the development of an exact algorithm

that would provide a more accurate benchmark for evaluating the algorithm performance,

tightening the proposed lower bound; and second, the integration of this algorithm into a

simulator for handling real-time requests.

References

Archetti, C., & Speranza, M. G. (2014). A survey on matheuristics for routing problems.

EURO Journal on Computational Optimization, 2 , 223–246.

Archetti, C., Speranza, M. G., & Weyland, D. (2018). A simulation study of an on-

demand transportation system. International Transactions in Operational Research,

25 , 1137–1161.

Baldacci, R., Bartolini, E., & Mingozzi, A. (2011). An exact algorithm for the pickup and

delivery problem with time windows. Operations Research, 59 , 414–426.

30

Bautista, J., Fernández, E., & Pereira, J. (2008). Solving an urban waste collection

problem using ants heuristics. Computers & Operations Research, 35 , 3020–3033.

Bektaş, T., Erdoğan, G., & Røpke, S. (2011). Formulations and branch-and-cut algorithms

for the generalized vehicle routing problem. Transportation Science, 45 , 299–316.

Braekers, K., Caris, A., & Janssens, G. K. (2014). Exact and meta-heuristic approach

for a general heterogeneous dial-a-ride problem with multiple depots. Transportation

Research Part B: Methodological , 67 , 166–186.

Brooks, L. (2023). Decision to scrap Glasgow night bus service prompts out-

cry. The Guardian, . URL: https://www.theguardian.com/uk-news/2023/jul/

11/decision-to-scrap-glasgow-night-bus-service-prompts-outcry. [Online; ac-

cessed 29-August-2024].

Bulhões, T., Ha, M. H., Martinelli, R., & Vidal, T. (2018). The vehicle routing problem

with service level constraints. European Journal of Operational Research, 265 , 544–558.

Christiaens, J., & Vanden Berghe, G. (2020). Slack induction by string removals for vehicle

routing problems. Transportation Science, 54 , 417–433.

Cordeau, J.-F. (2006). A branch-and-cut algorithm for the dial-a-ride problem. Operations

research, 54 , 573–586.

Cordeau, J.-F., & Laporte, G. (2003). A tabu search heuristic for the static multi-vehicle

dial-a-ride problem. Transportation Research Part B: Methodological , 37 , 579–594.

Costa, L., Contardo, C., & Desaulniers, G. (2019). Exact branch-price-and-cut algorithms

for vehicle routing. Transportation Science, 53 , 946–985.

Curtois, T., Landa-Silva, D., Qu, Y., & Laesanklang, W. (2018). Large neighbourhood

search with adaptive guided ejection search for the pickup and delivery problem with

time windows. EURO Journal on Transportation and Logistics, 7 , 151–192.

Dueck, G. (1993). New optimization heuristics: The great deluge algorithm and the

record-to-record travel. Journal of Computational Physics, 104 , 86–92.

Dumas, Y., Desrosiers, J., & Soumis, F. (1991). The pickup and delivery problem with

time windows. European Journal of Operational Research, 54 , 7–22.

Dumez, D., Lehuédé, F., & Péton, O. (2021a). A large neighborhood search approach

to the vehicle routing problem with delivery options. Transportation Research Part B:

Methodological , 144 , 103–132.

31

https://www.theguardian.com/uk-news/2023/jul/11/decision-to-scrap-glasgow-night-bus-service-prompts-outcry
https://www.theguardian.com/uk-news/2023/jul/11/decision-to-scrap-glasgow-night-bus-service-prompts-outcry

Dumez, D., Tilk, C., Irnich, S., Lehuédé, F., & Péton, O. (2021b). Hybridizing large

neighborhood search and exact methods for generalized vehicle routing problems with

time windows. EURO Journal on Transportation and Logistics, 10 , 100040.

Estrada, M., Salanova, J. M., Medina-Tapia, M., & Robusté, F. (2021). Operational

cost and user performance analysis of on-demand bus and taxi systems. Transportation

Letters, 13 , 229–242.

Foster, B. A., & Ryan, D. M. (1976). An integer programming approach to the vehicle

scheduling problem. Journal of the Operational Research Society , 27 , 367–384.

Ghiani, G., & Improta, G. (2000). An efficient transformation of the generalized vehicle

routing problem. European Journal of Operational Research, 122 , 11–17.

GIS Lab (2019). New York City Bus Stops. URL: https://archive.nyu.edu/handle/

2451/60059/ [Online; retrieved 25-September-2023].

Grangier, P., Gendreau, M., Lehuédé, F., & Rousseau, L.-M. (2017). A matheuristic

based on large neighborhood search for the vehicle routing problem with cross-docking.

Computers & Operations Research, 84 , 116–126.

Gschwind, T., & Drexl, M. (2019). Adaptive large neighborhood search with a constant-

time feasibility test for the dial-a-ride problem. Transportation Science, 53 , 480–491.

Gschwind, T., & Irnich, S. (2015). Effective handling of dynamic time windows and its

application to solving the dial-a-ride problem. Transportation Science, 49 , 335–354.

Hexaly (2024). Optimization solver and services. URL: https://www.hexaly.com/ [On-

line; accessed 29-August-2024].

Jolfaei, A. A., Alinaghian, M., Bahrami, R., & Tirkolaee, E. B. (2023). Generalized vehicle

routing problem: Contemporary trends and research directions. Heliyon, 9 , e22733.

Le Colleter, T., Dumez, D., Lehuédé, F., & Péton, O. (2023). Small and large neighborhood

search for the park-and-loop routing problem with parking selection. European Journal

of Operational Research, 308 , 1233–1248.

Li, H., & Lim, A. (2001). A metaheuristic for the pickup and delivery problem with time

windows. In Proceedings 13th IEEE International Conference on Tools with Artificial

Intelligence. ICTAI 2001 (pp. 160–167).

López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L. P., Birattari, M., & Stützle, T. (2016).

The irace package: Iterated racing for automatic algorithm configuration. Operations

Research Perspectives, 3 , 43–58.

32

https://archive.nyu.edu/handle/2451/60059/
https://archive.nyu.edu/handle/2451/60059/
https://www.hexaly.com/

Mara, S. T. W., Norcahyo, R., Jodiawan, P., Lusiantoro, L., & Rifai, A. P. (2022). A

survey of adaptive large neighborhood search algorithms and applications. Computers

& Operations Research, 146 , 105903.

Melis, L., & Sörensen, K. (2022). The static on-demand bus routing problem: large

neighborhood search for a dial-a-ride problem with bus station assignment. International

Transactions in Operational Research, 29 , 1417–1453.

New York City Taxi and Limousine Commission (2024). TLC Trip Record Data. URL:

https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page/ [Online; re-

trieved 25-September-2023].

openrouteservice (2024). Smart Mobility made easy! URL: https://openrouteservice.

org/ [Online; accessed 29-August-2024].

Padam Mobility (2024). Demand-responsive transport reinvented. URL: https://www.

padam-mobility.com/ [Online; accessed 29-August-2024].

Parragh, S. N., Doerner, K. F., & Hartl, R. F. (2010). Variable neighborhood search for

the dial-a-ride problem. Computers & Operations Research, 37 , 1129–1138.

Pei, M., Lin, P., Du, J., & Li, X. (2019). Operational design for a real-time flexible

transit system considering passenger demand and willingness to pay. IEEE Access, 7 ,

180305–180315.

Pisinger, D., & Ropke, S. (2007). A general heuristic for vehicle routing problems. Com-

puters & Operations Research, 34 , 2403–2435.

Pisinger, D., & Ropke, S. (2019). Large neighborhood search. Handbook of metaheuristics,

(pp. 99–127).

Plyushteva, A., & Boussauw, K. (2020). Does night-time public transport contribute to

inclusive night mobility? Exploring Sofia’s night bus network from a gender perspective.

Transport Policy , 87 , 41–50.

Reihaneh, M., & Ghoniem, A. (2018). A branch-cut-and-price algorithm for the generalized

vehicle routing problem. Journal of the Operational Research Society , 69 , 307–318.

Ropke, S., & Cordeau, J.-F. (2009). Branch and cut and price for the pickup and delivery

problem with time windows. Transportation Science, 43 , 267–286.

Ropke, S., & Pisinger, D. (2006a). An adaptive large neighborhood search heuristic for the

pickup and delivery problem with time windows. Transportation Science, 40 , 455–472.

33

https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page/
https://openrouteservice.org/
https://openrouteservice.org/
https://www.padam-mobility.com/
https://www.padam-mobility.com/

Ropke, S., & Pisinger, D. (2006b). A unified heuristic for a large class of vehicle routing

problems with backhauls. European Journal of Operational Research, 171 , 750–775.

Sadati, M. E. H., Akbari, V., & Çatay, B. (2022). Electric vehicle routing problem with

flexible deliveries. International Journal of Production Research, 60 , 4268–4294.

Sartori, C. S., & Buriol, L. S. (2020). A study on the pickup and delivery problem with

time windows: Matheuristics and new instances. Computers & Operations Research,

124 , 105065.

Savelsbergh, M. W. (1992). The vehicle routing problem with time windows: Minimizing

route duration. ORSA Journal on Computing , 4 , 146–154.

Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle

routing problems. In International Conference on Principles and Practice of Constraint

Programming (pp. 417–431). Springer.

Soleilhac, G. (2022). Optimisation de la distribution de marchandises avec sous-traitance

du transport : une problématique chargeur . Ph.D. Thesis Ecole nationale supérieure

Mines-Télécom Atlantique.

Stiglic, M., Agatz, N., Savelsbergh, M., & Gradisar, M. (2018). Enhancing urban mobility:

Integrating ride-sharing and public transit. Computers & Operations Research, 90 , 12–

21.

Tellez, O., Vercraene, S., Lehuédé, F., Péton, O., & Monteiro, T. (2018). The fleet size and

mix dial-a-ride problem with reconfigurable vehicle capacity. Transportation Research

Part C: Emerging Technologies, 91 , 99–123.

Turkeš, R., Sörensen, K., & Hvattum, L. M. (2021). Meta-analysis of metaheuristics:

Quantifying the effect of adaptiveness in adaptive large neighborhood search. European

Journal of Operational Research, 292 , 423–442.

Vansteenwegen, P., Melis, L., Aktaş, D., Montenegro, B. D. G., Vieira, F. S., & Sörensen,

K. (2022). A survey on demand-responsive public bus systems. Transportation Research

Part C: Emerging Technologies, 137 , 103573.

Via Transportation (2024). Software and operations for flexible public transit. URL:

https://ridewithvia.com/ [Online; accessed 29-August-2024].

34

https://ridewithvia.com/

Appendix A. Notation

Symbol Meaning Section

R Transportation requests set 3

r Transportation request in R 3

Pr Set of potential pick-up bus stops of request r 3

Pr Set of potential drop-off bus stops of request r 3

er Earliest time request r wants to be picked up 3

lr Latest time request r wants to be dropped off 3

P Set including all potential pick-up bus stops of all

requests

3

D Set including all potential drop-off bus stops of all

requests

3

N Set of nodes containing P , D, and the two copies of

the depot

3

A Set of arcs connecting all the nodes in N 3

G Graph defined by the set of nodes N and the set of

arcs A

3

K Fleet of vehicles 3

Qk Capacity of vehicle k 3

qi Passenger load of visiting node i 3

ei Earliest time node i can be visited 3

li Latest time node i can be visited 3

wi Walking time from the origin towards node i or from

node i towards the destination

3

dij Length of the arc (i, j) ∈ A 3

σ Service duration of visiting a node 3

xkij Binary variable that takes the value 1 if and only if

the vehicle k uses the arc (i, j)

3

Ak
i Non-negative variable defining arrival time at node i

of vehicle k

3

Qk
i Non-negative variable defining load at node i of

vehicle k

3

Tr Non-negative variable defining the travel time of

request r

3

Mk
ij Big constant where Mk

ij = max {0, li + σ + tij − ej} 3

W k
ij Big constant where W k

ij = min {Qk, Qk + qi} 3

Hk
j′j Big constant where Hk

j′j = lj′ − ej + wj + wj′ 3

35

Table A.8 continued from previous page

Symbol Meaning Section

Sol Solution of the ODBRP 4.1

B(Sol) Request bank (i.e., non-served requests) of Sol 4.1

ρ Route serving some requests 4.1

Σ−
large Set of large destroy operators 4.1

Σ−
small Set of small destroy operators 4.1

Σ+ Set of repair operators 4.1

o+init Initial repair operator 4.1

δmin
small Minimum number of customers to be removed by a

small destroy operators

4.1

δmax
small Maximum number of customers to be removed by a

small destroy operators

4.1

δmin
large Minimum number of customers to be removed by a

large destroy operators

4.1

δmax
large Maximum number of customers to be removed by a

large destroy operators

4.1

ωsmall Maximum number of iterations without improvement

between small and large destroy operators

4.1

ωworse Minimum number of iterations without improvement

before launching the exact component

4.1

Ω Pool of routes 4.1

β Minimum number of routes in Ω before launching the

exact component

4.1

ωtime Maximum time we spend in the exact component

every time it is called

4.1

τ Ratio to increase or decrease β dynamically 4.1

Solbest Best solution found by the algorithm 4.1

Solcurr Current solution in the algorithm to modify 4.1

Solnew Solution obtained by modifying Scurrent 4.1

itworse Counter of iterations without improvement before

launching the SCP

4.1

itsmall Counter of iterations without improvement between

small and large destroy operators

4.1

α Record-to-record threshold for accepting a new

solution as the current solution

4.1

∆small Maximum number of removed customers by a small

destroy operator

4.2

36

Table A.8 continued from previous page

Symbol Meaning Section

∆large Maximum number of removed customers by a large

destroy operator

4.2

Π Probability of blinking in a certain insertion of a

request r in a route ρ

4.2

Tρ Total PTT of route ρ 4.3

arρ Constant indicating if the request r is visited in route

ρ

4.3

λrρ Binary variable indicating if route ρ is used in the

solution

4.3

Appendix B. Implementation choices on the LNS

Re-implementing algorithms from the literature can be challenging, as certain imple-

mentation details are often omitted for the sake of brevity. Consequently, we made some

implementation choices that might differ slightly from those made by Melis & Sörensen

(2022). For the sake of transparency, we report those choices here.

When determining which bus stop should be used for picking up or dropping off a

request, our algorithm evaluates all potential bus stops, while their algorithm pre-selects

the stop that “causes the smallest increase in route duration”. In their synthetic instances,

trip length is linearly related to trip duration; however, this is not necessarily the case in

our real-world instances. Therefore, to also minimize total route length, our implementa-

tion of their algorithm selects the bus stop that results in the smallest increase in route

length. Additionally, their algorithm uses a penalty factor when constructing the initial

routes in spite of finding feasible solutions. This penalty is also based on the increase in

route duration when a request is inserted. For the same reasons as mentioned earlier, we

have instead based the penalty on the increase in route length.

Their algorithm does not account for the presence of a depot for starting and finish-

ing routes. Therefore, as there is a depot in our instances, our implementation of their

algorithm enforces that all routes begin and end at the depot.

Since no acceptance criterion is specified for accepting new solutions as the current

solution, we adopt the following approach: when minimizing URT (intensification), we

accept any solution that improves the penalized objective function value. This means

either the solution is feasible, or, if infeasible, a penalty is added to the objective function.

However, when minimizing distance (aiming to restore feasibility), we only accept solutions

that either serve more requests or, if the same number of requests is served, have a lower

penalized objective function. This last decision was made as it helps to recover feasibility.

37

To enhance intensification, the authors incorporated a local search mechanism. While

the number of local search iterations is specified after recovering feasibility, it is not detailed

for the URT minimization phase. In this case, we have assumed that the local search is

only called once.

38

	Introduction
	Literature review
	Problem description
	Solution method
	Matheuristic framework
	SLNS
	Set covering
	Bus stop selection policy

	Instances description
	Computational experiments
	Algorithm components and policies
	Algorithm components
	Bus stop selection policy
	Large iteration acceptance

	Algorithm's performance
	Comparison to a previous ODBRP algorithm
	Comparison on PDPTW intances

	Managerial insights
	Impact of optimizing different objective functions
	Comparison to a door-to-door policy
	Impact of the bus stop options number

	Conclusions
	Notation
	Implementation choices on the LNS

