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Abstract—A novel extract-transform-load methodology apply-
ing computer vision to build electrically equivalent models of
electricity grids (i.e., digital twins of smart grids) is proposed.
Here, we standardise information from electricity grids in various
formats into a single visual input for object and text recognition,
transformation and loading into a computer simulator. The
proposed method is tested using state of the art computer vision
algorithms: YOLOv8 for object detection (re-trained using two
generic datasets of geometric figures) and PaddleOCR for text
recognition. Validation is performed using two real electricity
distribution networks in the centre-south region of Colombia,
with a global object detection accuracy of up to 80.4%. Initial
results suggest that the proposed method significantly reduces
human effort compared to two classic approaches. The benefits
and shortcomings of the proposed method are discussed together
with future work opportunities.

Index Terms—smart grids, computer vision, extract transform
load, digital twins, distribution networks

I. INTRODUCTION

As a paramount strategy for sustainability, a transforma-
tion is underway for electrical grids to become smart grids
(SG), this mostly is to facilitate the massive integration of
renewable energies and distributed energy resources (DER)
[1]. The intelligent operation of these small-scale resources
connected to the low voltage and medium voltage electricity
networks (i.e., distribution networks) has immense technical
potential: reducing energy prices, optimising the use of the
infrastructure, reducing losses, delaying otherwise necessary
infrastructure upgrades, etc. [2].

A notable challenge associated to SG deployment is network
supervision: the electrical infrastructure has technical limits
(e.g., voltage and current values) that must be always re-
spected to prevent a blackout. Electricity networks historically
are operated with limited observability, this means that the
distribution system operator (DSO) installed a few measuring
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devices with low latency on critical points of the grid to verify
off-line (i.e., a posteriori, with batches of measurements) if
voltage and current are within the safety limits.

With the emergence of SGs, the supervision task has be-
come unmanageable through low-latency measurements be-
cause the introduction of DER means voltages and currents
are more variable and stochastic in smaller time steps [1].
Moreover, while advanced metering infrastructure has been
proposed [3], just installing additional measuring devices
everywhere in the grid is not feasible due to cost concerns, and
latency issues from existing telecommunications infrastructure
(e.g., most DSOs use power-line communication (PLC) [4])
for which latency, and data quality and management are
reportedly significant issues.

DSOs require now high observability of their networks,
and computer models (i.e., digital twins) of the network that
can simulate the state of the grid have been proposed [5].
However, these require full knowledge of the topology of the
grid (i.e., the geographical location of each node, the length
and specifications of each cable, the size and location of each
transformer, etc.). To this date, computer models for electricity
networks are being built manually, which represents significant
human effort. Collecting information in the field, measuring
line resistances, transcribing without error quantities into a
format understandable for the computer simulator, testing,
etc. This paper offers an alternative: instead of allocating
significant human resources to build computer models of
electricity networks, some tasks can be automated through
computer vision [6]. This article reports on the development
of an extract-transform-load (ETL) tool for SG supervision, its
challenges and limitations, and future perspectives. The main
contributions of this paper are as follows.

• Presenting and testing the application of state of the
art computer vision algorithms for object detection and
text recognition to build computer models of electri-
cal distribution grids from archived electrical design
plans/documents.



Fig. 1: Proposed ETL-based approach

• Contrast the accuracy of the proposed model against two
human approaches: manual transformation from archived
electrical plans/documents, and information collection in
the field.

The remainder of this article is structured as follows. Section
II presents the methodology, together with its challenges and
limitations, section III presents the selected case studies and
briefly describes the physical nuances of computer models
for SGs, and section IV presents the results of the pro-
posed method and the two alternatives for comparison. This
is followed by the conclusions and discussion on lessons
learned from two perspectives: computer intelligence, and SG
deployment in section V.

II. ETL METHODOLOGY

DSOs have significant information on their networks in
digital and paper format (i.e., visual representation of the
geographical distribution of customers, poles and lines, trans-
formers, etc.) but the human task of transforming these is not
trivial. Fig. 1 presents the layout of the proposed methodology
with references to the different subsections in this article
addressing each step of the process.

ETL approaches have gained attention over recent years
when it comes to data accumulation from multiple sources
for analysis and research in industry [7]. Databases can be
populated using a sequential process in which data is (1)
extracted from various sources/forms, (2) integrated, cleaned
and transformed into a common form and (3) loaded into the
database. Correct implementation and execution of ETL pro-
cesses reportedly leads to the effective analysis and research
of different study cases and allows for replicability [8].

A. Input data standardisation

Information from DSOs on their networks come in different
shapes and forms, from old electrical maps that were drawn
by designers decades ago to build the electricity network, to
more recent surveys in digital computer-aided design (CAD)
format (e.g., portable document format .pdf, digital drawings
in AutoCAD’s .dwg format, etc.). These various sources of in-
formation make the task of the computer modeller particularly
complicated, as it would be virtually impossible to design a
script that can generalise well enough for different formats and
versions. To overcome this, the first step of this ETL approach
is to normalise the data into a format that can be managed with
better generalisation.

One advantage from design practices in electrical engi-
neering comes from standardisation of drawings. While the
formats, templates and document sizes vary, visual representa-
tions of circuit elements are standard, as registered in electrical
codes (e.g., in [9]). The objects are generic in their visual
format (e.g., an electrical transformer is drawn as a triangle,
an electrical pole as a circle, etc.), and this can be leveraged
to standardise input data in visual form. It is proposed to
transform all possible representations of the networks (i.e.,
printed and digital) to a single digital format for image (e.g.,
.jpg, .png, .bmp, etc.) with sufficient resolution to allow for
the identification of objects and text, this way generalisation
is made on input images and classification objects.

B. Object detection

Advances in computer vision allow for the abstraction of
information from images [6]: features can be used by machine
learning - notably convolutional neural networks - to teach
computers and systems to recognise elements. The accuracy
of computer vision entails the use of models that have been
trained with large amounts of labelled data [10]. Moreover,
a notable limitation for the development of computer vision
approaches is the important computational effort it takes to
calculate the weights of the model (i.e., it is computationally
heavy to train for computer vision). In contrast, state of the
art computer vision algorithms allow for the use of pre-trained
models that with a marginal amount of additional training with
special datasets, can reach good performances [11].

Computer vision models that allow re-training are spe-
cialised in recognising predefined categories of objects (e.g.,
human, bicycle, car, traffic sign, etc.) and these are not partic-
ularly useful for the application proposed. The selection of the
re-training dataset must therefore include new categories that
represent the objects to be identified. Although the assigned
categories may vary for different electricity grid codes, the
consensus is the use of basic geometric figures (e.g., trian-
gles, circles, hexagons, line segments, etc.). The appropriate
selection of objects and their correct labelling derived from the
applicable grid code is necessary for three categories of ele-
ments: buses/nodes, cables/lines, and substations/transformers
[9]. Aside from the classification of the geometric figure, its
position is required to represent the geographical distribution
of the elements and how they are connected. For this, the
output of the computer vision model must also include the
coordinates of the bounding boxes.

1) Small object detection: an important challenge for this
study is the relatively small size of the objects to identify,
compared to the size of the image. As an example, an
electricity grid printed on A0-sized paper has 9,933 x 14,043
pixels at a resolution of 300 pixels per inch (ppi), and it can
include circuit elements that do not exceed 50 by 50 pixels.
A real anonymised electricity network is presented in Fig. 2,
showing the relatively small size of the elements to identify.

It has been reported that even if the computer vision model
is trained using small-sized objects too, its recognition ability
is largely limited by this ratio [12]. It is proposed to segment



Fig. 2: Electricity grid and inset showing the relatively small
size of elements. Privacy-sensitive information deleted.

the input image into four out-of-phase overlapping pixel-grids
(i.e., two horizontally and two vertically) of N smaller images
that will be processed separately for object detection. Instead
of one, four pixel-grids are proposed because it is not possible
to avoid an object being in the frontier of a pixel grid, not
allowing its identification. Ultimately, the objects recognised in
all pixel-grids will be cross-referenced to eliminate duplicates.

C. Text recognition

Electrical diagrams contain additional information required
to build the electrical models: the cross-section and material
of the cables, the specifications of the electrical transformers,
information on customer installations, etc. It is therefore
necessary to also identify text and its position. Text can be
recognised through computer vision because characters are
in essence not different from objects in an image. However,
one model only is not good at generalising classification of
geometric figures and text recognition simultaneously [10].
It is proposed then to use a different specialised model in
a second stage to recognise text and its bounding boxes for
further processing and labelling of the circuit elements.

D. From geometric to geographic representations

Calculating electrical parameters for the computer model
requires the estimation of cable distances; notably, resistance
and reactance values that depend on how long these cables are.
This could be done in theory through computer vision, but it
is particularly challenging because of how easy it would be to
mislabel other elements as lines (e.g., an electrical substation
normally represented as a triangle, could be mislabelled as
three cables). To overcome this, the proposition is to identify
the centre of each line using an alternative visual queue.

Standard networks can carry electrical energy using two,
three, four and up to five cables, and according to grid
codes, electrical diagrams must include short transversal line
segments (i.e., slash symbols, “ / ” as seen in Fig. 3) in the
middle of a line to indicate how many cables are installed

Fig. 3: Identification of elements connected by a cable using
the same inset from Fig. 2.

(e.g., instead of actually drawing three cables between two
electrical poles, one line is drawn with three slashes in the
middle): this is an easier object to recognise with computer
vision.

Identifying the existence of a line does not yet indicate
which elements it is connecting: as a two-terminal element it
is also necessary to identify which buses/nodes are associated
through the cable. It is proposed to identify these elements by
verifying if the pixel space between their respective bounding
boxes contains the geometrical centre of the line, as shown in
Fig. 3 where the bounding boxes of two bus elements form a
grey region that encloses the geometrical centre of a cable
element. This process is repeated for all potential pairs of
elements with the goal of identifying all possible connections.
While unlikely, it is possible for a cable object’s geometrical
centre to be located in the pixel-space of more than one pair
of elements. If this conflict arises, the line object closer to
the mid-point between the geometric centres of the conflicting
pairs of elements will be privileged.

The next step is then to convert this to real distances
using a scaling factor. Electrical diagrams include scale from
centimetres in the printed paper to meters in real life. This can
in theory be abstracted using computer vision, but will be left
for future work: for the purpose of this article the pixel-meter
scale will be set up manually.

E. Data labelling

After identifying the bounding boxes of elements and text in
the entire studied image, the next challenge is matching them
together. The intuitive way of doing this is by matching the
nearest elements with text, but in some portions of the image
the text and elements may be clumped. To solve this it is
proposed to do the neighbour matching leveraging additional
information from the labels in text. As shown in Fig. 3 the
labels of the elements start with a letter followed by a number,
the letter corresponds to the type of element (e.g., for Fig. 3
“M” is a “medium voltage bus”, and “T” is a substation or a



“transformer”). Data labelling will be done by category: bus,
cable, and substation elements independently.

F. Building electrical models

With the elements’ locations, bounding boxes, and their
labels, it is trivial to write a script that transforms information
into a format that is readable for the computer simulator
of electricity grids. As an additional check, a human must
supervise the model produced for connectivity and assignment
of elements (i.e., are all buses connected?, are lines connected
to two elements only?, are all transformers assigned to a
bus?, etc.). The interface with the simulation tool is therefore
a transformation script that takes in tabular data from the
computer vision module, and outputs files that are readable
for the electrical simulator. Algorithm 1 presents the detailed
steps to follow in the proposed ETL method.

III. CASE STUDIES

A. Computer vision models

For this application, two state of the art computer vi-
sion models were selected. YOLOv8 is a computer vision
model with object detection, classification, and segmentation
capabilities, it is accessible through a Python package and
was selected for its good performance and ability to re-train.
The weights of an existing model were retrained with two
datasets for geometric figure classification containing 98 and
525 labelled training images in [13] and [14] respectively.
This produced two element recognition models that will be
compared in this work, namely ETL small and ETL large. The
labels originally representing geometric figures (e.g., “circle”,
“triangle”, “square”) were renamed as the electrical element
represented (e.g., “bus”, “substation”, “customer”). For text
recognition, PaddleOCR (practical ultra lightweight optical
character recognition) was selected for its reported good per-
formance and easiness of use through a Python package [15].
Re-training of the models and simulations were all performed
using a personal computer running 64-bit Windows, with an
Intel Core i5 (10th gen) processor, and 8 GB of RAM. For
completeness, re-training was also performed using an Nvidia
Tesla T4 with GPU memory of 16GB, Cuda v7.5 from Google
Colab [16]. Training time using CPU for small and large
datasets were 2.21 h and 25.14 h, while using GPU this was
greatly reduced to 0.085 h and 0.344 h respectively.

B. Electrical networks

Two anonymised electricity networks in the centre-south
region of Colombia were selected to test the model.

• Rural network: with 223 domestic and 73 agricultural
electricity customers, this medium voltage electricity grid
has 3,437 buses at a voltage level of 13.8 kV, 187
substations and approximately 74 km of cables.

• Urban network: this relatively smaller medium voltage
grid serves only 178 domestic customers with 32 sub-
stations and roughly 8.31 km of cables connecting 838
nodes also at a voltage level of 13.8 kV.

Algorithm 1 Proposed ETL algorithm

Input data:
1: Get Network ▷ In visual format
2: Get N ▷ Partitions for small object identification
3: Get Scale ▷ Pixel/meter ratio
4: Get ElementRecog, TextRecog ▷ Re-trained models

Object detection and text recognition:
5: Images← f(Network, N) ▷ Partition image
6: for i← 1 to Images do ▷ for each small image
7: Elem, BoundBoxElem ← ElementRecog(i)
8: Label, BoundBoxLabel ← TextRecog(i)
9: end for

10: for e← 1 to Elem do ▷ for each element calc. position
11: PosElem(e)← Centre(BoundBoxElem(e))
12: end for
13: for l← 1 to Label do ▷ for each label calc. position
14: PosLabel(l)← Centre(BoundBoxElem(l)
15: end for

From geometric to geographic information:
16: for c← 1 to Elem ∈ Cables do ▷ for each cable
17: for {bx, by} ← 1 to Elem ∈ Buses do ▷ for pairs
18: if PosElem(c) ∈ PixSpace(bx, by) then
19: Con(c)← [bx, by] ▷ Assign connected buses
20: Len(c)← |PosElem(bx)− PosElem(by)|]
21: end if
22: end for
23: end for
24: BoundBoxElem ← BoundBoxElem/Scale ▷ Re-scale
25: BoundBoxLabel ← BoundBoxLabel/Scale ▷ Re-scale
26: PosElem ← PosElem/Scale ▷ Re-scale elem. position
27: PosLabel ← PosLabel/Scale ▷ Re-scale label position
28: Len← Len/Scale ▷ Re-scale cable lengths

Data labelling for subsets of elements:
29: for b← 1 to Elem ∈ Buses do ▷ for each bus
30: LabelElem(b)← min

l∈Label
|PosElem(b)− PosLabel(l)|

31: end for
32: for c← 1 to Elem ∈ Cables do ▷ for each cable
33: LabelElem(c)← min

l∈Label
|PosElem(c)− PosLabel(l)|

34: end for
35: for s← 1 to Elem ∈ Subs do ▷ for each substation
36: LabelElem(s)← min

l∈Label
|PosElem(s)− PosLabel(l)|

37: end for
Interface with electric simulator:

38: Bus.dss← TranScript(Pos, Label) ∀ Buses
39: Cable.dss← TranScript(Con,Label, Len) ∀ Cables
40: Sub.dss← TranScript(Pos, Label) ∀ Subs
41: Save Bus.dss, Cable.dss, Sub.dss

The electrical designs are available in visual format (i.e.,
.PDF that was subsequently transformed to high resolution
.jpg files). Input images were then manually altered to delete
background information (e.g., template, trees, roads, rivers,
etc.). The following challenges were identified in coordination
with the regional DSO when discussing this application:



Fig. 4: Classification of different elements for the two test
networks using small and large re-training datasets.

1) Phase unbalance: the inset in Fig. 3 shows two buses
connected through three cables (i.e., three small lines drawn
parallel to the cable, one for each electrical phase). An impor-
tant limitation of the proposed model is phase identification.
Phases are not interchangeable, and the visual representation
of the model is not clear on which phase is connected in single-
phased portions of the network. Among other reasons, the two
networks were selected for this study because they only have
three-phase connections, leaving this issue for future work.

2) Neighbouring networks: it is often the case that two or
more networks are neighbouring each other and have a shared
connection point that is normally open (i.e., disconnected).
This is done for redundancy purposes: if there is a fault causing
a blackout in one network, this normally open connection
point can be closed, restoring service from the other. This
is a challenge for computer vision because there is no way to
identify these normally open points, or to differentiate where
the frontiers of the networks are. The studied networks indeed
present this issue, therefore as part of the pre-processing clean-
ing step the neighbouring networks were manually deleted.
The authors acknowledge this to be an important limitation, a
future work opportunity is to add visual queues for “frontier
elements” between neighbouring networks that can also be
identified through computer vision.

C. Comparing model builders

To validate the usefulness and effectiveness of the ETL
method proposed, two human approaches are compared. While
it is subjective to quantify the time it takes for a human to
complete a task, the orders of magnitude are representative
of the task and are therefore useful for comparison with the
computer vision model. The reader is advised to consider
this subjectivity when analysing the human performance. To
standardise, the same human with previous experience building
computer models of electricity networks was allocated the
same task as the ETL computer vision model using two
approaches:

1) Office human: this is the common procedure to develop
computer models of electricity grids. A human must read the
documentation in visual and other formats available, transcribe
it into tabular form, to then transform it to a format understand-
able for the computer simulator. The resulting model will be
called the office method.

Fig. 5: Scatter plot with estimated and real cable distances on
the rural network (left), for cables shorter than 50m (right).

2) Field human: an alternative approach is sending a human
to “visit” the electricity grid, and to register the GPS location
of elements, their electrical ratings, cable configurations, etc.
This approach guarantees having the most up-to-date infor-
mation for the electricity model, but it comes a great human
effort and economic cost (note that the times registered do
not include transportation to the site). A third electrical model
using this on the field method was built for comparison.

IV. RESULTS AND VALIDATION

The classification results can be found in Fig. 4. While the
model fails to recognise elements in all categories regardless
of the dataset used for training, note that using a large dataset
results in a considerably better performance (85.7% and 30.7%
improvement for urban and rural networks respectively). It
is suggested for future work to build larger custom training
datasets: using labelled elements from actual electrical designs
is expected to boost performance. An important remark is that
at this early stage, human supervision is required to fix and
complete the ETL models (i.e., labelling the missing elements
and re-labelling those that were given the wrong category as
an extra step between instructions 9 and 10 in Algorithm 1).
In contrast, the performance of the text recognition module
is perfect, with 100% of text labels correctly identified and
assigned in the second recognition stage.

A. Comparison of models

While this is not a regression problem, the cable distances
estimated are of great importance for the development of the
computer models. A scatter plot showing the estimated and
real distances (i.e., from GPS data) for the rural network is
presented in Fig. 5. There are more cables with a distance less
than 50m, for which the mean square error (MSE) is smaller
than for larger distances. The rural network has 3,436 cable
elements out of which 3,272 are shorter than 50m, for these
an MSE of 2.3 was calculated; and for the remaining 163 long
cables the MSE is 5.8. These errors are within acceptable mar-
gins if we consider that the visual representation used as input
does not include the vertical axis of our three-dimensional
world. Using GPS information to calculate distances does
capture that extra axis, explaining these differences.

The comparison of models is shown in Table I, where the
global classification accuracy, computational and human times
are presented. Note that the ETL models also require human



TABLE I: Results for different models.

Case Classif. Re-train Human Total
Study Model acc. [%] time* [h] time** [h] time [h]

Urban ETL (small) 42.9 0.085 56 56.1
ETL (large) 79.6 0.344 20 20.3
Office human 100 - 104 104
Field human 100 - 124 124

Rural ETL (small) 55.6 0.085 92 92.1
ETL (large) 80.4 0.344 26 26.3
Office human 100 - 160 160
Field human 100 - 188 188

* Re-training with GPU. Note that it is only necessary to re-train once
** Values are indicative and should be interpreted as an estimation.

time associated to supervision to fix and complete the models
with missing elements.

The re-training time for the large dataset is four times
larger than for the smaller dataset, but this is associated to an
increase in classification accuracy. The latter is then associated
with a big reduction in human effort spent in supervision.
Building the computer models using human approaches takes
significantly more time, especially when considering that the
computer vision model must be re-trained only once, after
which there is a negligible computational cost (i.e., less than
one second to evaluate all images from the four pixel-grids).

1) Electrical comparison of models: Using a simple script,
the models were ultimately transformed to .DSS format, to
proceed with simulation work using the state of the art open
source distribution system simulator (OpenDSS) developed
by the Electric Power Research Institute (EPRI) [17]. This
allowed us to conduct simulations to estimate the voltage and
current values in all portions of the grid using each model
(i.e., ETL small, large, Office and Field human). Taking Field
human as the “ground truth”, Table II presents the mean
average percentage error (MAPE) in cable resistance, voltages
and currents in the studied networks. These error values
suggest a good accuracy compared to electrical measuring
devices (i.e., in the order of 0.1%).

TABLE II: Electrical network model errors

Case Resistance Voltage Current
Study Model MAPE [%] MAPE [%] MAPE [%]

Urban ETL (small) 0.0845 0.0023 0.0246
ETL (large) 0.0882 0.0063 0.0277
Office human 0.0877 0.0036 0.0494

Rural ETL (small) 0.1258 0.0564 0.0235
ETL (large) 0.1211 0.0475 0.0716
Office human 0.1630 0.0221 0.0461

V. CONCLUSIONS

This article presents a novel ETL method leveraging com-
puter vision to develop electrically equivalent models of SGs
(i.e., digital twins). While numerous shortcomings are noted
(e.g., human supervision required, measuring 3d distances in a
2d image, etc.), the potential for human time reductions is rep-
resentative. At the early stages of this work, the accuracy in the
physical measurements from the electrically equivalent model
are within acceptable tolerances, and further developments

suggest improvements. The potential applications of this work
cover the simulation-based branch of electrical engineering:
renewable energy penetration, expansion planning, resiliency,
security assessment studies, etc. A future work opportunity is
to complement the proposed ETL model with other geographic
information systems and data science to obtain the most up-
to-date electrical models without field visits. This can be
ultimately complemented with the use of natural language
processing in the extraction phase to digest written reports
and specifications before/in place of computer vision.
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