

First record of larval Caeculisoma (Acari: Erythraeidae) from Iran with description of a new species

Mahnaz Kohansal, Javad Noei, Sara Ramroodi, Ehsan Rakhshani

▶ To cite this version:

Mahnaz Kohansal, Javad Noei, Sara Ramroodi, Ehsan Rakhshani. First record of larval Caeculisoma (Acari: Erythraeidae) from Iran with description of a new species. Acarologia, 2024, 64 (4), pp.1182-1190. 10.24349/j8kk-8r4k . hal-04815733

HAL Id: hal-04815733 https://hal.science/hal-04815733v1

Submitted on 3 Dec 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Acarologia

Open Science in Acarology

First record of larval *Caeculisoma* (Acari: Erythraeidae) from Iran with description of a new species

Mahnaz Kohansal \mathbb{D}^a , Javad Noei \mathbb{D}^b , Sara Ramroodi \mathbb{D}^a , Ehsan Rakhshani \mathbb{D}^a

^a Department of Plant Protection, College of Agriculture, University of Zabol, Zabol, Iran.

^b Department of Plant Protection, Faculty of Agriculture, University of Birjand, Birjand, Iran.

Original research

ABSTRACT

Caeculisoma pouyani Noei & Kohansal **sp. nov.** (Trombidiformes: Erythraeidae) ectoparasitic on *Sphodromerus luteipes* Uvarov (Orthoptera: Acrididae), an unidentified Cicadellidae nymph (Hemiptera: Auchenorrhyncha) and an unidentified species of Miridae (Hemiptera: Heteroptera) in Chahkandan and Zahan villages, Birjand, South Khorasan province, Iran, is described and illustrated. The newly described species is the first representative of the genus *Caeculisoma* Berlese in Iran. A key to the larval species of *Caeculisoma* of the world is updated.

KeywordsAcrididae; Callidosomatinae; Cicadellidae; Miridae; South KhorasanZoobankhttp://zoobank.org/A900454F-50E3-4C8E-AE71-39B61E4F020D

Introduction

The subfamily Callidosomatinae Southcott, 1957 (Trombidiformes: Erythraeidae) comprises 10 genera described based on the larvae (five genera), post-larval forms (two genera) or both (three genera) (Hakimitabar and Saboori 2022; Noei et al. 2024). A key to world genera (larva) of Callidosomatinae was presented by Noei et al. (2024). The genus Caeculisoma Berlese (Erythraeidae: Callidosomatinae) consists of 26 species with 12 based on larvae (L), or postlarval forms and larvae (P, L) (Saboori et al. 2023; Noei et al. 2024). The members of this genus are known as parasites of Hemiptera, Lepidoptera and Orthoptera: 1. Caeculisoma carmenae Haitlinger, 2008 (L) on herbaceous plants, South Africa; 2. C. cooremani Southcott, 1972 (L) from Urnisiella sp. (Orthoptera: Acrididae), Australia; 3. C. darwiniense Southcott, 1961 (P, L) from Goniaea sp. aff. hyaline, Austracris guttulosa (Walker, 1870), Austroicetes tricolor (Sjöstedt, 1920), Macrazelota cervina (Walker, 1870), Peakesia vitripennis Sjöstedt, 1921 and Macrotona sp. (misspelling of the original generic name in Southcott 1972: 28) (Orthoptera: Acrididae), Australia; 4. C. hunanica Zheng, 2002 (L) picked from the alcoholic pot of the Malaise trap, China; 5. C. huxleyi Southcott, 1972 (L) from Xanthorhoe sp. (misspelling of the original generic name in Southcott 1972: 32) (Lepidoptera: Geometridae), New Zealand; 6. C. mouldsi Southcott, 1988 (L) from Chlorocysta suffusa (Distant, 1907), Psaltoda fumipennis Ashton, 1912, Tamasa doddi (Goding & Froggatt, 1904) (misspelling of original generic name in Stroiński et al. 2013: 197) and Venustria superba Goding & Froggatt, 1904 (Hemiptera: Auchenorrhyncha: Cicadidae), Australia; 7. C. nestori Haitlinger, 2004 (L) from plants, Brazil; 8. C. sparnoni Southcott, 1972 (L) has been collected on shoes of collector when standing on graveled suburban path with light vegetation (Cynodon sp.), Australia; 9. C. penlineatus Xu & Jin, 2019 (L) from unidentified Issidae (Hemiptera: Auchenorrhyncha), Mileewa margheritae Distant, 1908 (Hemiptera: Cicadellidae), unidentified Alebrini (Hemiptera:

Received 13 September 2024 Accepted 05 November 2024 Published 19 November 2024

Corresponding author Javad Noei^(D): noei.javad@birjand.ac.ir

Academic editor Mąkol, Joanna

https://doi.org/10.24349/j8kk-8r4k

ISSN 0044-586X (print) ISSN 2107-7207 (electronic)

©_♀ Kohansal M. *et al*.

Licensed under Creative Commons CC-BY 4.0

Cicadellidae), unidentified Delphacinae (Hemiptera: Delphacidae), *Neuterthron hamuliferum* Ding, 2006 (Hemiptera: Delphacidae), China; 10. *C. semispinus* Xu & Jin, 2019 (L) from *Shaddai* sp. (Hemiptera: Cicadellidae) and unidentified Zyginellini (Hemiptera: Cicadellidae), China; 11. *C. allopenlineatus* Xu & Jin, 2020 (L) from unidentified Cicadellinae (Hemiptera: Cicadellidae), China; 12. *C. brazilensis* Noei & Šundić, 2024 (L) has been collected during biological inventory in caves, Brazil (Southcott 1961, 1972, 1988; Zheng 2002; Haitlinger 2004, 2008; Mąkol and Wohltmann 2012, 2013; Stroiński *et al.* 2013; Xu *et al.* 2019a, b, 2020; Noei *et al.* 2024). In this paper, the genus *Caeculisoma* is recorded for the first time from Iran ectoparasitic on Hemiptera and Orthoptera, represented by a new species which is here described and illustrated. A key to the world species (larvae) of the genus *Caeculisoma* is also provided.

Material and methods

Three specimens of *Caeculisoma* were detached from their hosts, *Sphodromerus luteipes* Uvarov, 1933 (Orthoptera: Acrididae) (attached to a cross-vein of the hind wing), an unidentified Cicadellidae nymph (attached to the head) and Miridae (attached to the distal membranous area of forewing) with an insect pin under a stereomicroscope. Three other specimens were found in the vials, containing many different insects collected by a sweep net, hence it is not possible to identify the true host of the larvae. The host insects were collected by a light trap (*S. luteipes*) or sweep net (Cicadellidae and Miridae). Mites were cleared in lactophenol fluid and mounted on glass microscope slides using Hoyer's medium (Walter and Krantz 2009). Measurements (given in micrometers, μ m) were calculated using a CH30 Olympus microscope and illustrations were drawn by a BX51 Olympus microscope equipped with a drawing tube. Lengths of leg tarsi were measured without the pretarsus. The terminology and abbreviations are adapted from Wohltmann *et al.* (2006) and Wohltmann and Mąkol (2012).

Results

Erythraeidae Robineau-Desvoidy, 1828

Callidosomatinae Southcott, 1957

Genus Caeculisoma Berlese, 1888

Caeculisoma pouyani Noei & Kohansal sp. nov. (Figs 1A-D, 2A-L)

Zoobank: 9D9FEBA3-7FB5-4829-AB0A-7B6383FAD1C5

Diagnosis

ASens posterior to the level of ML (closer to ML than PL); scutum longer than wide (SD/W 1.09–1.16), SD 82–96, ISD 50–57, PW 62–70, Ti III 115–130.

Description (n=6)

Dorsum — (Figures 1A, 1B). Dorsum of idiosoma with 30 (in all specimens) barbed setae. All dorsal setae with fine barbs. Scutum rectangular in shape, punctate, with two pairs of sensilla (ASens and PSens) and three pairs of normal setae (AL, ML and PL). Anterior border of scutum straight or very slightly wavy, lateral borders slightly convex and posterior border convex with two close bases of posterior sensillary setae. ASens posterior to the level of ML. PSens longer (1.92–2.2x) than ASens, barbed at distal half and ASens with few barbs at distal part. Setae AL, ML and PL barbed. One eye (diameter 12–17) and one seta posterolaterally, on each side of the scutum.

Venter — (Figure 1B). Idiosoma ventrally with three pairs of sternal setae (*la*, *2a*, *3a*); 12 barbed setae (11 in one paratype, ARS-20240410-2c) behind coxae III, all ventral setae with

Figure 1 *Caeculisoma pouyani* Noei and Kohansal **sp. nov.** (larva); A – Dorsal view of idiosoma; B – Ventral view of idiosoma; C – Dorsal view (right) and ventral view of gnathosoma (left) (excluding setae on palptarsus); D – Ventral view of palpal tarsus.

fine barbs. Coxa I with one barbed seta (*1b*), coxa II ($2b_1$, $2b_2$) and III ($3b_1$, $3b_2$) each with two barbed setae. A peg-like supracoxal seta (*elc I*) present on coxa I, 5 long. NDV= 30 + 12 = 42 (41 in paratype, ARS-20240410-2c).

Gnathosoma — (Figures 1C and 1D). Cheliceral bases punctate dorsally (except anterior part), cheliceral base 95–102 long; cheliceral blade curved, 13–17 long, with a subterminal tooth. Subcapitulum with barbed galealae (*cs*) and two barbed hypostomalae, posterior hypostomalae (*bs*) longer than anterior (*as*); palptrochanter 21–25 long, palpfemur 30–37 long, with one barbed dorsal seta, palpgenu 22–25 long, with one barbed dorsal seta. Palptibia 17–22 long, with three barbed setae (one of the dorsal seta with coarse barbs); odontus bifurcate, 22–25; palptarsus 10–11 with five finely barbed setae, one solenidion and one eupathidium; fPp= 0-B-B-BBB₂-5B ω ζ. Palpal supracoxal seta (*elcP*) peg-like, 6 long.

Legs — (Figures 2A–2L). Leg segmentation formula 7-7-7. Leg setal formula is given in Table 1. Each leg tarsus with lateral falciform claws and claw-like empodium. Posterior tarsal

Figure 2 Caeculisoma pouyani Noei and Kohansal **sp. nov.** (larva), Leg I–III: A – Tr–TF I; B – Tr–TF II; C – Tr–TF III; D – Ge I; E – Ge II; F – Ge III; G – Ti I; H – Ti II; I – Ti III; J – Ta I – K – Ta II; L – Ta III.

claws pulvilliform with ventrally directed hook. Basifemur I and II each with one finely barbed, thin seta that is much longer than other normal setae, (40–45 and 40–47 respectively). Metric data are given in Table 2.

Etymology

The species is named in honor of Mr. Mohsen Pouyan (Head of Medicinal Plants Research Complex, Academic Center for Education, Culture and Research, South Khorasan Province, Birjand, Iran) in appreciation of his valuable efforts on the Medicinal Plants.

Type material

Holotype larva (ARS-20240410-2a) — The holotype larva was collected ectoparasitic on *Sphodromerus luteipes* (Orthoptera: Acrididae), IRAN: South Khorasan province, Birjand county, Chahkandan village, 32°15′27.29″ N, 59°43′50.03″ E, 1928 m a.s.l., 31 May 2021 coll. Mahnaz Kohansal; two paratype larvae (ARS-20240410-2b, 2d) same data as holotype, ectoparasitic on an unidentified Cicadellidae nymph and an unidentified Miridae respectively; two paratype larvae (ARS-20240410-2e, 2f), same data as holotype, were removed from a vial containing insects and one paratype larva (ARS-20240410-2c), same data as holotype, was removed from a vial containing insects collected by sweep net, Zirkouh county, Zahan village, 32°15′27.29″ N, 59°43′50.03″ E, 1928 m a.s.l.

Type deposition — The holotype (ARS-20240410-2a) and paratype larvae (ARS-20240410-2b, 2c, 2d, 2e, 2f) are deposited in the Acarological Collection, Jalal Afshar Zoological Museum, Department of Plant Protection, Faculty of Agriculture, University of Tehran, Karaj, Iran.

Differential diagnosis

The new species belongs to the species group of *Caeculisoma* with ASens bases set posterior to ML bases. *Caeculisoma pouyani* **sp. nov.** is close to *C. darwiniense* Southcott, 1961, *C. sparnoni* Southcott, 1972 and *C. mouldsi* Southcott, 1988 in SD < 100, ISD < 66, PW < 80, AL < 56, ML < 64 based on the present identification key. The new species differs from *C. darwiniense* in scutum longer than wide (vs. wider than long in *C. darwiniense*), shape of scutum (rectangular vs. triangular), the shorter AW (52–61 vs. 83–85), MW (60–70 vs. 87–90), PW (62–70 vs. 77–78) and fV (12 vs. 17); from *C. sparnoni* in scutum longer than wide (vs. subequal in length and width in *C. sparnoni*), shape of scutum (rectangular vs. square), shorter AP (40–45 vs. 56), longer PSens (50–55 vs. 42), *1b* (40–46 vs. 28), *2a* (32–35 vs. 16), Ta I (97–107 vs. 77), Ta III (95–110 vs. 79), Ti III (115–130 vs. 100); from *C. mouldsi* in scutum longer than wide (vs. subequal in length and width in *C. mouldsi*), the shorter DS Min (25–27 vs. 47), DS Max (40–42 vs. 64), Ta I (97–107 vs. 129–155), Ti I (85–95 vs. 175–206), Ge I (70–77 vs. 131–153), Ta III (95–110 vs. 137–164), Ti III (115–130 vs. 240–279). Comparison of larval measurements in species of *Caeculisoma* is given in Table 3.

Table 1 Leg chaetotaxy of Caeculisoma pouyani Noei and Kohansal sp. nov. (larva). 2a, holotype; and 2b-2f paratypes.

Charaotor	20	21-	2.	24	2.	26
T	2a	20	20	2u	26	21
181	10, 18, 25, 12, 28n	1ω, 1ε, 2ς, 1z, 28/29h	1ω, 1ε, 2ς, 1z, 28/29h	1ω , 1ε , 2ζ , $1z$, $29n$	10, 18, 25, 12, 29h	10, 18, 25, 12, 291
Ti I	2φ, 1z, 1κ, 17n	2φ, 1z, 1κ, 17n	2φ, 1z, 1κ, 17n	2φ, 1z, 1κ, 17n	2φ, 1z, 1κ, 17n	2φ, 1z, 1κ, 17n
Ge I	1σ, 1κ, 12n	1σ, 1κ, 12n	1σ, 1κ, 12n	1σ, 1κ, 12n	1σ, 1κ, 11/12n	1σ, 1κ, 12n
TFe I	5n	5n	5n	5n	5n	5n
BFe I	4n	4n	4n	4n	4n	4n
Tr I	1n	1n	1n	1n	1n	1n
Cx I	1n	1n	1n	1n	1n	1n
Ta II	1ω, 1ζ, 29/30n	1ω, 1ζ, 29n	1ω, 1ζ, 29/30n	1ω, 1ζ, 30/31n	1ω, 1ζ, 30n	1ω, 1ζ, 30n
Ti II	2φ, 17n	2φ, 18n	2φ, 17/18n	2φ, 18n	2φ, 17/18n	2φ, 17/18n
Ge II	1ĸ, 12n	1ĸ, 12n	1ĸ, 12n	1ĸ, 12n	1ĸ, 12n	1ĸ, 12n
TFe II	5n	5n	5n	5n	5n	5n
BFe II	4n	4n	4n	5/4n	4n	4n
Tr II	1n	1n	1n	1n	1n	1n
Cx II	2n	2n	2n	2n	2n	2n
Ta III	1ζ, 30/29n	1ζ, 30/29n	1ζ, 30/29n	1ζ, 30n	1ζ, 30n	1ζ, 29n
Ti III	1φ, 17/18n	1φ, 18n	1φ, 18/17n	1φ, 18n	1φ, 18n	1φ, 17/18n
Ge III	12n	12n	12n	12n	12n	12n
TFe III	5n	5n	5n	5n	5n	5n
BFe III	2n	2n	2n	2n	2n	2n
Tr III	1n	1n	1n	1n	1n	1n
Cx III	2n	2n	2n	2n	2n	2n

Acarologia_

Table 2	Metric and	some meristic	data for	Caeculisoma	pouyani	Noei &	Kohansal s	sp. nov. (larva)).
2a, holo	type; 2b–2f,	, paratypes.						• • •	

Character	2a	2b	2c	2d	2e	2f	Range	
IL	265	260	310	360	460	950	260-950	
IW	185	195	220	252	380	1000	185-1000	
SD	85	87	87	87	95	96	82-96	
W	75	80	80	77	82	87	75-87	
AW	52	57	55	57	56	61	52-61	
MW	60	62	62	62	66	70	60-70	
PW	62	62	65	62	67	70	62-70	
AA	6	6	6	6	6	8	6-8	
SB	10	10	10	10	12	12	10-12	
ISD	50	50	50	52	57	56	50-57	
AP	45	42	45	41	40	43	40-45	
AL.	broken	broken	32	36	30	broken	30-36	
ML	31	30	35	37	32	37	30-37	
PL.	35	36	35	37	37	broken	35-37	
ASens	25	25	25	27	25	25	25_27	
PSens	54	52	50	52	55	52	50 55	
DS Min	27	25	27	25	25	27	25 27	
DS May	42	40 42	∠ <i>1</i> 40	23 42	42	>15	40 42	
	42 25	44	40	+2 20	42	213	40-42	
14	20 40	40	21	29	24 42	24	40 40	
16	40	40	46	42/45	42	42	40-46	
2a	35	32	32	34	33	33	32-35	
26 I	32	33	30	30/34	30	broken	30-34	
2b ₂	20	broken	27	27	32	broken	20-32	
3a	25	27	27	25	25	25	25–27	
3b 1	27	32	32	30	32	35	27-35	
3b 2	broken	broken	23	25	22	29	22–29	
GL	117	112	115	112	117	122	112-122	
CS	20	20	20	21	20	20	20-21	
as	12	13	12	13	13	14	12-14	
bs	25	25	20	24	20	23	20-25	
PaScFed	37	37	38	42	37	37	37-42	
PaScGed	17	17	20	20	17	25	17-25	
Ta I	97	100	102	100	100	107	97-107	
Ti I	90	90	90	85	90	95	85-95	
Ge I	70	70	70	74	72	77	70-77	
TFe I	40	40	42	42	46	46	40-46	
BFe I	54	55	55	53	60	60	53-60	
Tr I	42	40	42	45	37	45	37-45	
Cx I	42	42	42	40	45	52	40-42	
Leg I	435	437	443	439	450	482	435-482	
Ta II	87	97	92	90	92	97	87-97	
Ti II	86	87	85	85	85	92	85-92	
Ge II	73	72	73	73	72	80	72-80	
TFe II	40	40	42	42	47	45	40-47	
BFe II	50	52	52	52	57	52	50-57	
Tr II	42	42	42	42	45	45	42-50	
CxII	55	57	55	57	57	63	55-63	
Leg II	433	447	441	441	455	474	433-474	
Ta III	97	105	100	100	102	110	95-110	
Ti III	115	120	115	115	115	130	115_130	
GeIII	77	77	77	78	75	25	75 85	
TFe III	51	50	51	52	55	57	50 70	
BEe III	57	50	57	57	55	67	57 65	
ыс ш т. ш	57	45	J 15	51	45	02	57-05	
	45	45	45	45	45	45	45	
CX III 50 50 52 55 55		60	50-60					
Leg III	492	507	497	502	512	549	492-549	
IP	1360	1391	1381	1382	1417	1505	1360-1503	
ng seta on BFe I	40	40	42	45	45	42	40-45	
a coto on DEo II	40	40	15	17	42	47	40 47	

Key to the larval species of *Caeculisoma* of the world [updated after Noei *et al.* (2024)]

1. ASens bases between levels of ML and PL scutalae C. semispinus Xu & Jin, 2019

Table 3Comparison of measurements in species of Caeculisoma known as larvae: C. allopenlineatus Xu & Jin, 2020, C. brazilensis Noei& Šundić, 2024, C. carmenae Haitlinger, 2008, C. cooremani Southcott, 1972, C. darwiniense Southcott, 1961, C. hunanica Zheng, 2002, C.
huxleyi Southcott, 1972, C. mouldsi Southcott, 1988, C. nestori Haitlinger, 2004, C. penlineatus Xu & Jin, 2019, C.semispinus Xu & Jin, 2019and C. sparnoni Southcott, 1972.

Character	C allan mlin antin	C hunsilansia	<i>C</i>	C	C. damainiana	C humming	C. humlani	C. mandalai	C. mantani	Clinester	Cii	<i>C</i>
Characters	C. allopentineatus	C. brazilensis	C. carmenae	C. cooremani	C. aarwiniense	C. nunanica	C. nuxieyi	C. moulasi	C. nestori	C. penineatus	C. semispinus	C. sparnoni
(D)	N=3	N=9	N=1	N=9*	N=2**	N=1	N=1 ****	N=51	N=1	N=17**	N=0	N=1-*
SD	100-107	130-154	82	79-84	87-88	111	159	84-100 (38)	86	94-114	78-84	83
W	88-96	107-118	76	73-86	97-105	107	133	87-101 (44)	92	109–126	71-80	85
AW	55-57	75-82	50	58-69	83-85	62	94	58-75 (43)	74	66-75	40-45	59
MW	58-62	92-105	60	58-73	87–90	76	106	72–82 (43)	80	81–93	55-62	69
PW	70–75	95-110	66	57–67	77–78	79	115	69-80 (45)	72	80-104	57–71	67
AA	11-14	12-17	8	8-10	8–9	11	12	7–11 (46)	10	12-16	7–11	-
SB	14-18	16-20	12	13-15	15	12	20	11–15 (48)	12	14-19	11-16	11
ISD	52-55	100-112	46	34-41	47-48	67	109	48-66 (41)	30	34-47	41-44	48
AP	46-49	55-77	46	32-45	43-44	55	69	37-50 (46)	44	49–59	4-47	56
AL	36-43	75–95	28	24-30	41-43	51	75	35-56 (33)	42	46-61	36-43	27
ML	114-120	72-82	32	25-30 (8)	43-46	67	73	44-64 (41)	42	59-83	43-51	29
PL	51-57	80-90	40	24-30 (7)	33-34	51	81	38-56 (45)	36	42-63	39-46	28
ASens	46-51	60-65	24	26-35	40-41	37	70	35-49 (44)	32 AM	46-57 ASE	24-27	26
PSens	69-73	90-112	38	42-47	68-75	53	-	55-68 (41)	40	61-74 PSE	58-63	42
DS Min	36-44	50-60	42	19	26-31	48	50-82	47 (1)	30	27-33	36-40	24
DS Max	69–76	90-105	52	30	51-55	85	-	64 (1)	54	63-73	54-62	36
la	17-20	82-95	20	22	30(1)	39	64	-	28	21-29	25-29	16
1b	71–77	92-107	42	38	40(1)	-	90	-	40	55-68	58-66	28
2a	37-46	85-105	-	36	36(1)	40	86	40		30-39	41-45	16
2b ,	47-50	95-106	36	34	32 (1)	-	74	-	26	30-38	45-49	17
2b -	35-37	43-50	26	22	20 (1)	-	63	_	34	33-39	27-36	22
30	31 37	80.92	20	24 30 (1)	31 (1)		73	36	54	23 33	31 40	20
34	52 52	85 105	26	24-30(1)	28 (1)	-	73	50	26	21 20	40 47	16
36	34 36	45 55	20	18	20 (1)	-	60	-	30	31-39	21 28	16
502	120, 122	45-55	100	10	20(1)	-	00	-	30	32-39	31-38	10
GL	129-132	1/5-192	100	-	20 (1)	-	-	-	116	127-151	103-114	112
CS	28-33	37-45	-	20	20(1)	-	c. 25	-	24.6	24-32	18-22	17
as	10-11	17-25	-	10	17	-	20	-	24 Sc 1	13-21	-	10
bs	23-29	87-92	-	26	46	-	60	-		27-34	-	15
PaScFed	65–73	87–113	58		-	-	-	-	30	75–92	49–64	-
PaScGed	26-31	35-45	16		-	-	-	-	26	22-33	24–27	-
Ta I	140–147	197–217	68	74-88	104	-	132	129–155 (50)	108	137–155	134–141	77
Ti I	164-170	280-310	62	63-83 (8)	102	-	157	175-206 (50)	106	143–167	149–163	83
Ge I	115-119	195-228	46	58-75 (8)	-	-	117	131–153 (51)	96	112-130	118-127	65
TFe I	72–77	90-137	28	-	-	-	-	-	50	68-83	65-76	-
BFe I	70–74	125-146	38	-	-	-	-	-	52	72-89	76-84	-
Tr I	44-52	70-75	34	-	-	-	-	-	32	38-53	40-43	-
Cx I	45-56	80-97	50	-	-	-	-	-	46	38-62	45-58	-
Leg I	666-679	1045-1195	316	360	520	655	725	-	490	627-709	648-676	395
Ta II	129-136	172-187	62	-	-	-	-	-	106	134-152	118-127	-
Ti II	151-161	250-276	52	-	-	-	-	-	102	150-179	142-153	-
Ge II	108-109	150-187	48	-	-	-	-	-	90	113-132	105-116	-
TFe II	57-63	75-112	34	-	-	-	-	-	50	61-77	56-65	-
BFe II	64-71	112-127	42	-	-	-	-	-	54	68-81	71-80	-
Tr II	44-49	69-77	32	_	_	-	-	_	38	43-54	40-47	_
Cy II	57-66	87-100	60	_	_			_	60	57_78	56_67	
Leg II	615-644	921-1059	326	345	455	621	690	_	500	645_724	618_634	390
To III	127 141	102 212	520	70	455	021	120	127 164	119	121 152	126 140	70
1 d 111 T; 111	137-141	240 277	72	104	1/4	-	129	240, 270	110	212 220	212 227	100
11 III C. III	227-239	340-3//	12	104	145	-	180	240-279	152	215-259	215-227	100
Ge III	111-112	18/-220	54	64	-	-	106	-	98	11/-140	122-131	65
TFe III	94-109	102-157	36	-	-	-	-	-	62	100-121	81-89	-
BFe III	87-98	137-170	46	-	-	-	-	-	62	93-113	91-100	-
Tr III	47–52	77–87	36	-	-	-	-	-	42	45-56	40-47	-
Cx III	63–68	82-100	60	-	-	-	-	-	62	61-77	56-67	-
Leg III	767-805	1123-1289	376	420	535	728	790	-	596	768-878	758–791	435
IP	2061-2115	3089-3526	1018	1125	1510	2004	2205	-	1586	2060-2298	2041-2100	1220

1*, 2*, 3* & 5* Legs I-III and IP measured with claws. 4* Based on Xu & Jin (2019: 512; 2020: 295).

2. ASens bases closer to the level of PL scutalae than ML	. 3
— ASens bases closer to the level of ML scutalae than PL	. 5
3. Four sternal setae III between levels of coxae II and IIIC. cooremani Southcott, 197	72

4. AW 66–75*, W 109–126, BFe I and II with one nude seta longer than the other normal leg setae
5. fn BFe 5-5-2 6 — fn BFe otherwise (4-4-2 or 4-3-2) 7
6. fn Ge 8-8-8, fn Ti 10-10-10 <i>C. carmenae</i> Haitlinger, 2008 — fn Ge 12-12-12, fn Ti 18-18-18 <i>C. nestori</i> Haitlinger, 2004
7. fn TFe 5-5-4 C. hunanica Zheng, 2002 — fn TFe 5-5-5 8
8. SD > 130, ISD > 100, PW > 95, AL > 75, ML > 73
9. W 107–118, Ti I 280–310, Ge I 195–228, Ti III 340–377, odontus with two subterminal teeth.
10. Scutum wider than long (W 97–105, SD 87–88), fV 17
11. Scutum longer than wide (SD 82–96, W 75–87) C. pouyani sp. nov. — Scutum subequal in length and width 12
12. Ti I 175–206, Ti III 240–279, ML 44–64 <i>C. mouldsi</i> Southcott, 1988 — Ti I 83, Ti III 100, ML 29 <i>C. sparnoni</i> Southcott, 1972

* Based on Xu et al. (2020).

Discussion

All known species of *Caeculisoma* are confined to the southern hemisphere except *C. pouyani* **sp. nov.** and some species from Nigeria and China (Mąkol and Wohltmann 2012, 2013; Xu *et al.* 2019a, b, 2020; Saboori *et al.* 2023). Considering the known host association of the newly described species, host spectrum of the *Caeculisoma* species is still limited to Hemiptera, Lepidoptera and Orthoptera.

Iran mostly lies in the Palearctic zoogeographical realm bordering the Oriental and African ones. Description of *C. haussa* by Beron (2000) from Nigeria (based on post-larval stage) and some species by Zheng (2002) and Xu *et al.* (2019a, b, 2020) from China (*C. hunanica* Zheng, 2002, *C. penlineatus* Xu & Jin, 2019, *C. semispinus* Xu & Jin, 2019, *C. allopenlineatus* Xu & Jin, 2020) and discovery of the new species, *C. pouyani* **sp. nov.** from Iran, extends the distribution of the genus *Caeculisoma* into the northern hemisphere and Palaearctic region.

Acknowledgements

This study (as a part of Ph. D. thesis of the senior author) was partly supported by the Grant No. UOZ-GR-0787, University of Zabol, Zabol, Iran and partly by University of Birjand,

Birjand, Iran, which is greatly appreciated. Contribution by E. Rakhshani was supported by the Grant No. UOZ-GR-9719-28 University of Zabol. We also appreciate Prof. Joanna Mąkol for valuable comments that improved the manuscript English considerably.

ORCID

Mahnaz Kohansal https://orcid.org/0000-0002-9552-1292 Javad Noei https://orcid.org/0000-0002-1161-1064 Sara Ramroodi https://orcid.org/0000-0003-3039-2618 Ehsan Rakhshani https://orcid.org/0000-0001-5199-762X

References

- Berlese A. 1888. Acari Austro americani quos collegit Aloysius Balzan. Manipulus primus. Species novas circiter quinquaginta complectens. Boll. Soc. Entomol. Ital., 20: 171-222. (sep. pp. 1-52).
- Beron P. 2000. Studies on Erythraeoidea (Acari: Prostigmata) from Africa. 1. The genera *Čecidopus* and *Caeculisoma* from Nigeria (Erythraeidae: Callidosomatinae). Hist. Nat. Bulg., 11: 65-72.
- Haitlinger R. 2004. *Charletonia domawiti* n. sp., *Caeculisoma nestori* n. sp. and *Iguatonia barbillae* n. gen. and n. sp. from Brazil (Acari: Prostigmata: Erythraeidae). Genus, 15(3): 435-444.
- Haitlinger R. 2008. *Caeculisoma carmenae* n. sp. from Republic of South Africa (Acari: Prostigmata: Erythraeidae). Genus, 19(1): 139-142.
- Hakimitabar M., Saboori A. 2022. A review of *Charletonia* Oudemans (Trombidiformes: Erythraeidae) based on the larval stage. Syst. Appl. Acarol., 27: 1035-1056. https://doi.org/10.11158/saa.27.6.5
- Makol J., Wohltmann A. 2012. An annotated checklist of terrestrial Parasitengona (Actinotrichida: Prostigmata) of the world, excluding Trombiculidae and Walchiidae. Ann. Zool., 62(3): 359-562. https://doi.org/10.3161/000345412X656671

Mąkol J., Wohltmann A. 2013. Corrections and additions to the checklist of terrestrial Parasitengona (Actinotrichida: Prostigmata) of the world, excluding Trombiculidae and Walchiidae. Ann. Zool., 63(1): 15-27. https://doi.org/10.3161/000345413X666075

- Noei J., Šundić, M., Bernardi L.F.O. 2024. A new species of larval *Caeculisoma* (Trombidiformes: Erythraeidae) from Brazil with a key to species. Syst. Appl. Acarol., 29(10): 1437-1448. https://doi.org/10.11158/saa.29.10.10
- Sabori A., Starý J., Masoumi H., Cakmak I. 2023. Two new species of *Caeculisoma* (Trombidiformes: Erythraeidae) from Madagascar. Acarologia, 63(4): 1225-1259. https://doi.org/10.24349/vqaq-42d1
- Southcott R.V. 1957. The genus *Myrmicotrombium* Womersley 1934 (Acarina: Erythraeidae), with remarks on the systematics of the Erythraeoidea and Trombidioidea. Rec. South. Aust. Mus., 13(1): 91-98.
- Southcott R.V. 1961. Notes on the genus *Caeculisoma* (Acarina: Erythraeidae) with comments on the biology of the Erythraeoidea. Trans. R. Soc. S. Aust., 84: 163-178.
- Southcott R.V. 1972. Revision of the larvae of the tribe Callidosomatini (Acarina: Erythraeidae) with observations on post-larval instars. Aust. J. Zool., 20(13): 1-84. https://doi.org/10.1071/AJZS013
- Southcott R.V. 1988. Two new larval mites (Acarina: Erythraeidae) ectoparasitic on north Queensland Cicadas. Rec. South. Aust. Mus., 22(2): 103-116.
- Stroiński A., Felska M., Mąkol J. 2013. A review of host-parasite associations between terrestrial Parasitengona (Actinotrichida: Prostigmata) and bugs (Hemiptera). Ann. Zool., 63(1): 195-221. https://doi.org/10.3161/000345413X669522
- Walter D.E., Krantz G.W. 2009. Collecting, rearing, and preparing specimens. In: Krantz G.W., Walter D.E. (Eds.) A manual of Acarology, 3rd edition. Texas Tech University Press, Texas, USA, pp. 83-96.
- Wohltmann A., Gabryś G., Mąkol J. 2006. [2007] Terrestrial Parasitengona inhabiting transient biotopes. In: Gerecke, R. (Ed.), Süßwasserfauna Mitteleuropas, Vol. 7/2-1, Chelicerata, Acari I. 2007. Spektrum Elsevier, München, pp. 158-240.
- Wohltmann A., Makol, J. 2012. Morphology and life cycle of *Abrolophus norvegicus* (Thor, 1900) with notes on *Abrolophus* spp. (Actinotrichida: Prostigmata: Erythraeidae). Ann. Zool., 62: 69-97. https://doi.org/10.3161/000345412X633676
- Xu S.-Y., Yi T.-C., Guo J.-J., Jin D.-C. 2019a. A new species of larval *Caeculisoma* (Acari: Erythraeidae: Callidosomatinae) ectoparasitic on insects from China and a revised generic diagnosis. Zootaxa, 4604(3): 511-524. https://doi.org/10.11646/zootaxa.4604.3.7
- Xu S.-Y., Yi T.-C., Guo J.-J., Jin D.-C. 2019b. A new species of larval *Caeculisoma* (Acari: Erythraeidae) parasitic on cicadas from China with detailed comparison of all larval members in the genus. Syst. Appl. Acarol., 24(4): 560-571. https://doi.org/10.11158/saa.24.4.3
 Xu S.-Y., Yi T.-C., Guo J.-J., Jin D.-C. 2020. Four new species of larval Callidosomatinae (Acari:
- Xu S.-Y., Yi T.-C., Guo J.-J., Jin D.-C. 2020. Four new species of larval Callidosomatinae (Acari: Prostigmata: Erythraeidae) and a newly recorded genus *Iguatonia* from China with notes on generic concept. Syst. Appl. Acarol., 25(2): 285-326.
- Zheng B.-Y. 2002. A new species of the genus *Caeculisoma* Berlese (Acari: Erythraeidae) in China. Entomol. Sin., 9(3): 61-64. https://doi.org/10.1111/j.1744-7917.2002.tb00155.x