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Abstract—In this work we consider scheduling strategies to
deal with disaggregated memory for HPC systems. Disaggregated
memory is an implementation of storage management that
provides flexibility by giving the option to allocate storage based
on system-defined parameters. In this case, we consider a memory
hierarchy that allows to partition the memory resources arbitrar-
ily amongst several nodes depending on the need. This memory
can be dynamically reconfigured at a cost. We provide algorithms
that pre-allocate or reconfigure dynamically the disaggregated
memory based on estimated needs. We provide theoretical per-
formance results for these algorithms. An important contribution
of our work is that it shows that the system can design allocation
algorithms even if user memory estimates are not accurate,
and for dynamic memory patterns. These algorithms rely on
statistical behavior of applications. We observe the impact on the
performance of parameters of interest such as the reconfiguration
cost.

Index Terms—Memory Disaggregation, High performance
computing, Scheduling, Stochastic model.

I. INTRODUCTION

To reach peak performance, node memory on High-
Performance Computing systems (HPC) is usually high, de-
signed to be able to cope with most applications. Yet, data
shows that HPC systems generally underutilize memory. For
instance, Peng et al. [1] observed on a large scale study of
four HPC clusters at Lawrence Livermore National Laboratory,
that 90% of the time a node utilizes less than 35% of its
memory capacity. By studying traces of the Marconi-100
supercomputer [2], we observed a higher memory utilization.
Still, Marconi100 uses up to 50% of its total memory for half
of its operation time.

This underutilization of resources has a high cost in terms
of machine construction. To give orders of magnitude, today
256GB of RAM costs about 2000USD [3]. The Marconi100
supercomputer [4] had 920 nodes, each with 256GB of RAM.
This leads to an estimated cost of RAM in the order of 2
million euros. Wahlgren et al. [3] estimate the node memory
cost (DDR4+HBM2e) on Frontier to $170 million out a
global cost of $600 million. All these motivate memory size
reduction.

Recent architectural advances have included the use of
disaggregated memory (such as CXL [5]). The idea behind
it is to semi-dynamically (provided various costs such as a re-
configuration cost) share and allocate memory for the compute
nodes, adjusting the allocated memory to the actual needs of
the applications. Disaggregated memory would therefore help
to reduce the total volume of memory consumed by the HPC
resource.

In this work we discuss algorithmic solutions for efficient
disaggregated memory usage. We consider an architecture with
multiple tiers of memory/storage, such that when an applica-
tion does not have enough first tier memory available (which
we call in the following node memory), it needs to access a
much slower memory which slows down its performance. We
aim to answer the following question: given an implementation
of disaggregated memory on a system with multiple memory-
tiers, how do we allocate the first-tier of memory between
competing applications? To be able to design these algorithmic
solutions, we assume that we have access to some knowledge
on application behavior. This knowledge can be precise (the
memory footprint for the next x units of time), or statistic,
based on historical data. For instance, we plot in Figure 1 the
distribution of memory utilization per node in May 2022 on
Marconi100. Similar statistical studies have been performed
on other systems such as Quartz and Lassen at LLNL [6].

We consider the problem of disaggregated memory in
a much larger scheme of multidimensional HPC Resource
Management, where the resource manager has to allocate the
applications on the compute nodes, and partition the extra
memory amongst the running applications.

More specifically, this work presents the following contri-
butions:

• We present two novel algorithmic strategies with guar-
anteed performance when not considering the reconfig-
uration cost, one of which is using as input a statistical
description of resource usage;

• We show that these solutions can help reduce largely the
memory needed by an HPC machine while keeping the



Figure 1: Distribution of the per node memory utilization in
Marconi100 dataset 8 (May 2022) [7]. Marconi100 has 256GB
of RAM available per node (242 usable) [4].

same performance, including in cases where the memory
pattern of an application is unknown;

• We demonstrate their performance via a thorough evalu-
ation, including in limit cases.

Our work focuses on the robustness and performance of the
proposed algorithmic strategies and is complementary to those
focusing on practical/technical implementations [3], [8]. We
observe that an implementation of disaggregated memory with
our algorithms could theoretically halve the memory usage of
HPC machines with insignificant losses of performances.

We organize the rest of this paper as follows: we provide
some related work in Section II. In Section III, we propose
a mathematical formulation of the scheduling problem, and
propose algorithmic solutions along with proofs of their op-
timality for certain objectives in Section IV. We design an
evaluation framework based on real traces in Section V and
evaluate our solutions compared to baselines in Section VI.
Finally, we conclude and open discussion on the next steps.

II. RELATED WORK

The need for memory heterogeneity or disaggregated mem-
ory on HPC resource has been demonstrated by many work
that study various workload. Peng et al. [6] have studied HPC
systems workloads. They have shown the heterogeneity of
workloads where 80% of the workloads of both the Lassen and
Quartz systems use less than 25% of the available memory.
In parallel, they have observed the emergence of memory-
intensive workloads. By showing a correlation between jobs
with high memory consumption and large jobs on a system
with low memory per node, and showing the absence of this
correlation on a system with high memory per node, they
have intuited that some applications reserve more nodes to
have more available memory, and hence wasting compute node
power.

a) Implementation of Disaggregated Memory: Imple-
mentations of disaggregated memories belong into several
categories: hardware based such as CXL [5], [9], RDMA [10],
[11], Infiniband [12] or RoCE [12], and software based (or
logical disaggregation).

In addition to technological implementation, there are sev-
eral logical disaggregation modes (i.e. software based) that
have been implemented. Recently, Copik et al. [8] have
proposed a software-based implementation for HPC systems
based on Function-as-a-Service paradigm to utilize idle re-
sources while retaining near-native performance.

Several works have discussed what would be expected from
a fully functional disaggregation system [13]. Other works
focus on the practical challenge such an implementation could
face [3]. This paper approaches resource disaggregation under
an algorithmic point of view. We assume that fully functional
disaggregation systems are theoretically available.

Our work focuses on cluster-wide memory disaggregation.
Cluster-wide memory disaggregation adds the challenge of
keeping track of the location of data [13]. In practice, this is
done by updating a memory map (which implies a reconfigura-
tion cost). To deal with the scalability challenge of maintaining
this map (and keep this cost to a minimum), solutions for large
size cluster include hierarchical constructions, by constructing
smaller groups of nodes that share the resources [14].

b) Allocation algorithms for competing applications:
Most of the allocation algorithms for disaggregated memory
consider the case where memory is sufficiently available for
all applications running in the system. This is particularly true
for single node applications/OS level scheduling [15]. In such
a case, the scheduling problem consists of deciding which data
goes where, depending on factors such as the frequency [15]
or the proximity [16] of the data accesses.

These node-level memory disaggregation solutions are out
of the scope of our study. Here we are interested in memory
disaggregation at the cluster level. With respect to cluster-
based scheduling algorithms, we do not know related work
for the HPC decision problem.

The algorithmic solutions that we are looking for are closer
to those from the Cloud Computing community, with the
main difference that in cloud system, the applications cannot
be slowed down because they have a quality of service to
match. Applications are looked at independently of the rest
of system, for instance Rzadca et al. propose Autopilot, a
ML-based solution to predict how much memory to allocate
dynamically to each job [17]. The goal is then to minimize
the cost associated to adding more resources (optimization
problem), and the solutions in elastic memory/shared memory
are often more technical (extra memory is available, how do
we get access to it), rather than decisive (who gets most
memory).

In our case, we are interested in a problem where resources
are bounded, and need to be shared with competing appli-
cations (decision problem). To the best of our knowledge, we
did not find explicit algorithmic solutions to solve this decision
problem.

III. PRELIMINARY CONCEPTS

A. Disaggregated memory model

We consider an architecture with P compute nodes and
a two tier memory. Typically, this corresponds to an archi-



Symbol Meaning
P Number of nodes
α Bandwith ratio between the two tiers of memory. α ∈

]0, 1[
M Size of the disaggregated memory

τalloc Reconfiguration time of the disaggregated memory
N Number of applications
Ai ith application
γj Ratio of completion of the application at which the phase

j ends
mj Memory need during phase j of the application
T

opt
i Completion time of Ai if it has all the memory it needs

Mi(t) Memory allocated to Ai as a function of the time
SLi(Mi, j) Slowdown ratio of Ai, when it is in phase j and has Mi

memory allocated
U(S) Utilization (or mean throughput) of a schedule
ρ(t) Throughput at time t

Table I: This table summarizes the symbols and notations
which are used in the paper.

tecture with a shared NVME and I/O storage. The first tier
(disaggregated memory) is shared between the nodes and
faster than the second tier. α (∈]0, 1[) represents the ratio
of bandwidth between these two tiers of memory. α ≈ 0
corresponds to the second tier being extremely slow, while
α = 1 corresponds to both memory tiers having the same
bandwidth.. The shared disaggregated memory of size M
can be partitioned between the different nodes. There is one
reconfigure operation which can change how much memory
each node is provided. This reconfiguration has a cost; during a
time τalloc it is impossible to use the memory that is allocated
and/or desallocated. This model represents an hypothetical
HPC machine using disaggregated memory. Such machines
do not exist yet.

B. Application model

We consider N parallel applications {A1, . . . , AN}. Each
application can run using one of the three processing modes:
(1) with no access to the disaggregated memory at limited
speed, (2) at full speed with complete access to disaggregated
memory, or (3) a trade-off with limited access to disaggregated
memory. All applications have access to the slower memory.
For an application Ai, we characterize its memory profile as
a function of the requested memory: γ 7→ mi(γ) with γ ∈
[0, 1] the proportion of the application completed. Note that in
general this profile is an unknown variable that can only be
traced after execution (see Section III-D).

To model the application memory consumption, we first
consider the memory profile as piecewise constant. We divide
the memory profile into successive phases, with constant mem-
ory profile during each phase. A memory profile is therefore
denoted as a set {(γj ,mj), 0 ≤ j < J} where J is the number
of phases of the application, mj is the memory request on
phase j, that start when a proportion γj−1 of the application
is executed, and finishes at ratio γj of the application (γ0 = 0
and γJ−1 = 1).

Performance model: The performance of application Ai

is computed based on the allocation Mi of memory allocated

to Ai: If the application runs with requested memory at each
phase, then the runtime of phase j will be T opt

i (γj − γj−1)
and the total runtime of the application will be T opt

i .
With a fixed memory Mi ≤ M , a slowdown affects the

runtime of each phase. In general this slowdown is very
application dependent, but some data [13], [14] show that
a linear slowdown on memory accesses may be a good
approximation. Particularly, Liu et al. [13, Figure 7] have
shown it using several memory swapping systems (Linux,
Infiniswap, Fastswap). We can observe that the main difference
in performance lies in an architecture-dependent growth factor.
This is coherent with the roofline model [18], [3]. Hence, we
compute the slowdown on phase j as follows:

SLi(Mi, j) =

(
α+ (1− α)min

(
1,

Mi

mj

))
.

Discussion: the underlying hypothesis behind this model
is that all memory accesses are accessed with the same
frequency. This is the case for some applications such as
HPL/SuperLU [3]. For some applications where the inbalance
between the memory blocks that are accessed is extremely
important (NekRS, BFS, XSBench [3]), this model could also
work by considering as main memory footprint, only the
blocks that correspond to 90% of the memory accesses and
considering a first order approximation.

We only model a slowdown due to not having enough mem-
ory available: in line with recent literature on disaggregated
memory systems in HPC [3], we consider that access to this
shared memory does not impact the bandwidth in general.

With this formula, an application that has all the memory it
needs (or more) will have a slowdown of 1 (i.e., no slowdown).
An application with no memory will have a slowdown of
α (the bandwidth ratio between fast and slow storage). An
application with βmj memory (β ∈ [0, 1]) will have a
slowdown of α + (1 − α)β, which is the linear interpolation
between the slowdown with no memory and the slowdown
with all the memory.

We obtain a runtime for phase j:

ri(Mi, j) =
T opt
i (γj − γj−1)

SLi(Mi, j)
. (1)

More generally, an application can be run with successive
memory allocations {(γ′

k,Mk), 1 ≤ k ≤ K} during phase j
with Mk ≤ M and γ′

K = γj and γ′
0 = γj−1, where memory

Mk is allocated to the application when the application is
between γ′

k−1 and γ′
k of its execution. Then, the execution

time of the phase will be

K∑
k=1

T opt
i (γ′

k − γ′
k−1)

SLi(Mk, j)
.

The execution time of the application will thus be the sum
of execution of each phase. For better clarity, we formulate in
the following the memory allocation as a function of the time.



C. Scheduling problem

Given a number of nodes P , a fast, disaggregated memory
of size M , a relative bandwidth ratio α between fast and slow
memory, and a set {A1, · · · , AN} of applications defined by:
their memory profile mi(γ), their node request ci, a minimal
execution time T opt

i with unlimited memory.
A schedule consists in allocating applications to the P

nodes, and partitioning the memory between applications.
The memory allocation of a schedule can be described as a
time vector t 7→ π(t) = (M1(t), . . . ,MN (t)) s.t. for all t,∑

i≤N Mi(t) ≤M .
Optimization objective: In line with the literature [19],

we first define the throughput or instantaneous utilization of
the system. More specifically, given a set of applications St =
{A1, · · · , Ak}, if at time t applications Ai uses ci cores, then
the throughput ρ is:

ρ(t) =
∑

Ai∈St

ci

Due to low memory allocation, an application can be slowed
down, hence we use the or ’useful’ throughout. It consists in
giving to each node a weight proportional to the quantity of
work it is effectively processing. We use this modified version
of the metric to account for the fact that if an application is
executed on a node with a slowdown of 0.5, then the node
run at half of its maximal capacity, hence, only half of the
node counts as producing ’useful’ work. If application Ai is
running phase ji with memory Mi, then the useful throughput
is:

ρ(t) =
∑

Ai∈St

ci · SLi(Mi(t), ji).

Finally, we want to maximize the useful utilization of the
system, defined as the mean useful throughput over time. The
useful utilization U of the schedule S is therefore given by
the formula:

U(S) =
1

TS

∑
t

∑
Ai∈St

ci · SLi(Mi(t))

where TS is the makespan of the schedule. For simplicity, in
the rest of this work we use utilization when we talk about
useful utilization and throughput when we talk about useful
throughput.

D. Limits of Memory Models

While an application can be described by a memory profile
t 7→ M(t), it may not always be reasonable to consider that
we can accurately obtain this profile in practice [20]. There are
too many variables that impact the accuracy of this profile: the
performance of the system (the CPU may be slower at some
time which translates the memory function in time), the shape
of the data etc.

Storing an entire memory profile for applications running on
a large scale machine may be extremely costly. For instance, if
we collect the node memory consumption every second (stored
on 4B), that is roughly 350KB/day/node. On a machine like
Frontier with more than 9400 nodes, this comes to 3.2GB/day,
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(a) Memory footprint of a Marconi100 Job with phased memory pattern. The
lines represent the interpolation and the points are the data.
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(b) Memory footprint of a Marconi100 Job with various footprints per phase,
one footprint per computing node. The lines represent the interpolation and
the points are the data.

(c) Memory footprint of a Neuroscience job with a dynamic memory pat-
tern [21].

Figure 2: Different flavors of memory behavior

more than 1.2TB/year of memory profile. Because storing
fine-grained memory profiles can be prohibitive in terms
of data footprint, we need to consider lower data footprint
representations of a memory profile.

In comparison, over five years of Mira (Jan 2014 to Dec
2018), 330k jobs were executed [19]. If we ran aggregated
data per jobs (for instance the percentage of time spent using
0-8GB, 8-16GB, 16-32GB, 32-64GB, 64-128GB [1]), that
would amount to 6.6GB. Of course, this comes with a loss
of information.

In addition to the inaccuracy of the measurement, Peng et
al. [6] identified four types of memory temporal patterns to
describe applications:

• Constant pattern: the memory utilization has minimal
changes throughout the execution;

• Phased pattern: the memory consumption is constant by
segments;

• Dynamic patterns: a pattern with frequent and substantial
changes in memory usage over time;

• Sporadic patterns: low memory utilization most of the
time with spiked memory usage for short periods.

In the evaluation we consider two flavors of input that
the algorithm can use, that would represent various means of



collecting memory information:
1) Constant memory profiles: Our observation from Mar-

coni100’s traces [7] is that some applications have very
structured behavior (see Figure 2a). In cases where phases
with constant memory usage are quite long in front of the
reconfiguration cost, this cost can usually be neglected.

2) Stochastic memory profiles: Finally, there are jobs whose
memory behavior varies dynamically during its execution
(see for instance Fig. 2c). This is typical of jobs relying
on Deep-Learning phases. This variability can be random or
deterministic but with variations that are too fast in front of the
time to reconfigure the machine. For these jobs, we propose to
use a stochastic model to describe the memory consumption.
This model can be obtained based on historical data.

Definition 1 (Stochastic Memory Profile). We say that an
application has a stochastic memory profile (mj , pj)j on time
interval [l, l + 1], with

∑
j pj = 1 and mj0−1 < mj0 for all

j0 > 0, if for t ∈ [l, l + 1], t 7→ m(t) is equal to X where
X is a discrete random variable of distribution (mj , pj)j (i.e.
P(X = mj) = pj)).

Some comments: we focus on a simple definition, but it
could be generalized trivially to a model where the random
variable is time dependent (phase behavior). Similarly, the
duration of the time interval where the memory is constant
could be non-deterministic.

One can verify that, for application A with node request c
and memory profile (mj , pj)j , if mj0 ≤ M0 < mj0+1, then
we have the following properties:

E (ρA(M0)) = cα+ c(1− α)
∑
j≤j0

pj + c(1− α)M0

∑
j>j0

pj
mj

E (ρA(M0))− E (ρA(mj0))

= c(1− α)(M0 −mj0)
∑
j>j0

pj
mj

= (1− α) · (M0 −mj0) · g(mj0) (2)
E (ρA(mj0+1))− E (ρA(M0))

= c(1− α)(mj0+1 −M0)
∑
j>j0

pj
mj

= (1− α) · (mj0+1 −M0) · g(mj0) (3)

where, for mj0 ≤M0 < mj0+1,

g(M0) = c
∑
j>j0

pj
mj

= cE
(

1

X

∣∣ X > M0

)
P (X > M0) (4)

IV. ALGORITHMS

In this section we present various algorithmic strategies to
solve the problem described in Section III-C. We propose
two algorithms: the Priority algorithm, which is suited for
application scenarios with known memory behavior, and the
Stochastic algorithm, which is suited for application sce-
narios with dynamic memory requirements. These algorithms

are compared to baseline algorithms presented in Section IV-C.
Finally, we discuss how these algorithms impact the batch
scheduling mechanism in Section IV-D.

A. Priority

The first algorithm is priority-based: at all time t0,
Priority sorts all running applications by decreasing
ci/mi(t0). Then while there is memory available, it allocates
it (up to the memory requirement) to the first application of
the list that needs additional memory.

Theorem 1. Given a set of running jobs {A1, · · · , AN},
with respective constant memory profile t 7→ mi(t) = mi.
Priority is optimal with respect to the system throughput
ρ(t).

Proof. We show the result by contradiction.
Assume an optimal solution π = (M1, . . . ,MN ), such that

there exists two jobs A1 and A2, such that c1/m1 > c2/m2,
and such that M1 < m1 and 0 < M2 (≤ m2), then we show
that there exists ε > 0 such that the allocation π′ with M ′

1 =
M1 + ε, M ′

2 = M2 − ε and M ′
i = Mi for i > 2 has better

performance.
Because the throughput is additive, one can notice that

ρ(π′)− ρ(π) = (1− α)
c1
m1

ε− (1− α)
c2
m2

ε > 0

which contradicts the optimality of π.

B. Stochastic

Based on Theorem 1, we expect Priority to work well
when the memory profile of an application stays steady,
close to the predicted peak usage as can be observed on
traces on the Marconi100 supercomputer (see Section III-D1).
For applications where the memory consumption is more
dynamic within the execution [21], or where the predicted
peak consumption can be far-off, there can be an important
reconfiguration cost.

We provide another approach based on a stochastic memory
profile (Definition 1). In the following we assume that the
memory profile of applications are described by random
variables X whose discrete distributions are known (mj , pj)j
(i.e. for all j, P (X = mj) = pj).

In this case, we derive Stochastic, a strategy with
loglinear complexity that minimizes the expected throughput
when applications follow a stochastic memory model. In
general this can be obtained with historic data or known
behavior for recurrent jobs (see Section III-D).

In the following and for simplicity when the job index i is
omitted when it is obvious.

Lemma 1. Let X a random variable that follows the discrete
distribution (mj , pj)j , then for all j:

g(mj) ≥ g(mj+1)

This lemma is trivial with Equation (4).
We now prove the main theorem that we use to define

Stochastic. Intuitively Theorem 2 along with Lemma 1



state that we can sort applications by decreasing values g (mj),
and allocate memory greedily up to the next value mj .

Theorem 2. Given a set of running applications
{A1, . . . , AN} with stochastic memory profile. Given an
optimal schedule π = (M1, · · · ,Mn) for the problem of
maximizing the expected throughput, then this schedule
satisfies the following property.

For all i1, i2, let j1 (resp. j2) s.t. m(i1)
j1
≤ Mi1 < m

(i1)
j1+1

(resp. m(i2)
j2
≤Mi2 < m

(i2)
j2+1), then:

gi1

(
m

(i1)
j1

)
< gi2

(
m

(i2)
j2−1

)
.

Proof of Theorem 2. We show the result by contradiction.
Given π = (M1, · · · ,Mn) an optimal schedule, assume that
there exists

m
(1)
j1

such that m
(1)
j1
≤M1 < m

(1)
j1+1

m
(2)
j2

such that m
(2)
j2
≤M2 < m

(2)
j2+1

and g1(m
(1)
j1

) > g2(m
(2)
j2−1) ≥ g2(m

(2)
j2

).
We show that for

0 < ε ≤

min
(
m

(1)
j1+1 −M1,M2 −m

(2)
j2

)
if M2 > m

(2)
j2

min
(
m

(1)
j1+1 −M1,M2 −m

(2)
j2−1

)
if M2 = m

(2)
j2

the schedule π′ = (M1 + ε,M2 − ε, · · · ,Mn) has a better
expected throughput than π.

E (ρ(π))− E (ρ(π′)) = E (ρA1(M1))− E (ρA1(M1 + ε))

+ E (ρA2(M2))− E (ρA2(M2 − ε))

Using Equation (2) and (3):

E (ρA1
(M1))− E (ρA1

(M1 + ε)) = −(1− α) · ε · g1(m(1)
j1

)

E (ρA2(M2))− E (ρA2(M2 − ε))

=

{
(1− α) · ε · g2(m(2)

j2
) if M2 > m

(2)
j2

(1− α) · ε · g2(m(2)
j2−1) if M2 = m

(2)
j2

≤ (1− α) · ε · g2(m(2)
j2−1) (Lemma 1)

Hence

E (ρ(π))− E (ρ(π′)) ≤ (1− α) · ε
(
g2(m

(2)
j2−1)− g1(m

(1)
j1

)
)

< 0

Contradicting the optimality hypothesis.

Algorithm 1 is derived from Theorem 2. It initially allocates
0 memory to each application. Then, in increasing order of
gi(m

(i)
j ), it increases the memory allocation of each appli-

cation up to the next value of the memory distribution until
the memory limit is reached or until all application met their
maximum memory value.

Algorithm 1 Stochastic (A1, . . . , AN , M )

1: Avail_M←M
2: G table of size N , initialized with G[i] = ci ·∑

j≥1 p
(i)
j /m

(i)
j .

3: V table of size N , initialized at 0.
4: H heap of applications sorted by decreasing value of G
5: π table of size N , initialized at 0.
6: while Avail_M > 0 OR H is empty do
7: i← pop(H)
8: j ← V [i]
9: Mt ← π[i]

10: π[i]← min
(
m

(i)
j+1,Mt + Avail_M

)
11: Avail_M← Avail_M− (π[i]−Mt)

12: G[i]← G[i]− ci · p(i)j+1/m
(i)
j+1

13: V [i]← V [i] + 1
14: if G[i] > 0 then insert(H, i) end if
15: end while
16: return π

C. Others heuristics

We compared Priority and Stochastic with several
heuristics:

• Aggregated, the baseline heuristic, behaves like a
solution would on a machine with aggregated memory,
i.e. the memory allocation is proportional to the number
of compute resources used by the application.

• We also compare to other priority-based heuristics (i.e.,
heuristics that sort jobs by a priority function and allo-
cates the maximum between the available memory and
what the job requires), namely:

– Oldest-First: sorts jobs by increasing arrival
time (i.e. the date in which the job entered the
system);

– Largest-First: sorts jobs by decreasing size.

D. Batch Scheduler Integration

In our work we considered a batch-scheduler relying on
EASY-BF [22]. At submission time, users are expected to
provide an expected walltime to the batch scheduler. The usual
impact of this expected walltime is that if a job lasts longer
than this value, it is killed by the resource manager. In our
implementation, we chose to separate the memory partitioning
from the node allocation, in order to simplify the overhead.
This means that if the expected walltime is shorter than the
worse case (T opt/α), the job is at the risk of being killed.
Hence, a batch scheduler needs to use the worse possible
walltime as the expected walltime.

The focus of this work was to compare different memory
allocation strategies, and determining the impact of disaggre-
gated memory. In future work, it may be interesting to study
the co-design of Batch-Scheduling strategies with memory
partitioning algorithms, this co-design could use better runtime
estimates.



V. EVALUATION METHODOLOGY

In order to generate traces for the evaluation, we rely on
real behavior. We use application traces from the Marconi100
supercomputer [2]. The Marconi100 supercomputer consisted
of 980 computing nodes, each of which having 2x IBM
POWER9 AC922 (32 cores), 4x NVIDIA Volta V100 GPUs,
and 256GB of RAM. In Section V-A, we explain how we
extract stochastic profiles. These profiles are then used to
generate synthetic traces as described in Section V-B.

For the evaluation we designed an event-based simulator
based on the model designed in Section III-A. This simulator
is available freely at https://doi.org/10.5281/zenodo.13981594.
This simulator takes in entry the memory profiles of the
applications, the platform parameters (number of nodes and
quantity of disaggregated memory) and a memory allocation
strategy. It then performs the simulation and return some
parameters of interests such as the quantity of memory used
at each event or the completion time of each application.

A. Extracting stochastic memory profiles

To extract stochastic memory from real workload data, we
sampled 400 jobs from dataset 8 (2022-05) of Marconi100 [2].
The sampling method used mainly two criteria to select jobs:
select jobs that (i) run for more than one minute, and (ii) had
exclusive access to the computing nodes.

For each sampled job, its memory footprint consists of a
time series of measurements of the nodes’ memory consump-
tion. From this time series, we define the phases frontiers in
three steps. First, we calculate the distribution of memory
consumption differences between subsequent measurements
in the memory consumption time series. Second, we use
this distribution to calculate the z-scores of the memory
consumption differences. Third, from these z-scores, we define
the phase frontiers as the timestamps where the z-scores of the
memory consumption differences were larger than a threshold
∆, expressed as a ratio of the standard deviation.

Put another way, we set the phases frontiers where the
memory consumption significantly went up or down, where
“how much significantly” is determined by ∆. Finally, for each
phase determined by two subsequent frontiers, we determine
its memory consumption as being the maximum memory
consumption of the initial memory consumption time series
during the duration of the phase.

In practical terms, we reduce a fine-grained time series
of memory consumption into a coarse-grained sequence of
memory consumption phases, where we only store new infor-
mation when the memory consumption significantly changed.
Figures 2a, and 2b illustrate some outputs of the above
procedure. In these figures, the points represent the data and
the lines the output.

Based on the obtained phases, we generated four distribu-
tions of behaviors on Marconi100 that we use for synthetic
trace generation:

• a node distribution Cm (see Figure 3a). We have
E(Cm) = 7.

(a) Distribution of num-
ber of nodes per applica-
tions on Marconi100.

(b) Distribution of phase
length distribution on
Marconi100.

(c) Distribution of num-
ber of phases per applica-
tions on Marconi100.

Figure 3: Job parameters on the Marconi100 dataset that we
studied.

• a phase length distribution Lm (see Figure 3b which is
showed truncated). We have E(Lm) = 1000s.

• a distribution of number of phases Np (see Figure 3c).
We have E(Np) = 17.

• a memory usage distribution Xm (see Figure 1). We have
E(Xm) = 105GB.

B. Generating synthetic traces

In all the experiments we consider that there are P = 54
nodes. Unless specified otherwise, we used as machine pa-
rameters: τalloc = 1s and α = 0.03. We chose α = 0.03 as
the ratio between the speed of a SSD at 300MB/s versus a
RAM at 10GB/s. The available memory M depends on the
experiment, but we call M̄ = E(Xm) = 105GB the average
memory usage of Marconi100’s traces, and Mmar = 256GB
the memory per node on Marconi100.

Unless specified otherwise, the applications are generated
as follows: there are 30 batches of N = 1000 applications.
For each application Aj :

• Its number of nodes is selected following Cm

• The number of phases is selected following Np (where
we have bounded the number of phases at 45), and for
each phase:

– Its memory is selected following Xm

– Its length is selected following Lm

The release time of each job is 0 for the first 10% of jobs,
then each job is released 0.9 · 10E(Lm)Cm

P units of time after
the previous one. This release ratio is to guarantee that there
is always enough work to be executed. Intuitively, if there was
no scheduling constraints, the jobs released after t = 0 could
allow a theoretical utilization of 90%.

C. Measuring Performance

When measuring the performance of an algorithm, we con-
sider an interval of time included in the workload generation
interval. That is, if the last application is submitted at time Tlast,
we measure the system utilization on the interval [0, Tlast]. In
practice this means that the executed workload is not the same
for all solutions, but when we take Tlast to be large enough, we
reach a steady state which makes the solution trustable [19].

https://doi.org/10.5281/zenodo.13981594


VI. EXPERIMENTS

We first evaluated the impact of disaggregated memory
allocation solution in simple cases where the memory is
constant by phases (Section VI-A). Next, we evaluated the
limits of the online strategy Priority when the memory
pattern changes frequently. Finally, we evaluated the impor-
tance of Stochastic (Section VI-B) to alleviate the cost of
reconfiguration. In this section we refer to the term baseline
performance as the performance on an architecture where
memory is not limited (in this case this is satisfied by 256GB
per node).

A. Evaluation on Phased patterns

Using the nomenclature proposed by Peng et al. [6] we eval-
uated our algorithms on Phased patterns, that is patterns where
memory is constant by segments. The number of segments can
be equal to one which corresponds to the constant patterns.
We first provided a general evaluation based on Marconi100
job profile, then we studied the limits when the architecture
parameters vary. In this section, we slightly modified the trace
generation by drawing the number of nodes per applications
uniformly between 1 and 23. This provides more variability
in the applications to observe more differences in the results.
However our take-aways hold with the original Marconi100
node distribution.

Figure 4: Utilization of different algorithms.

1) General evaluation: In Figure 4, we measured the mean
useful utilization (i.e. equivalent to the number of Flops)
when the average memory per node varies. Since all ap-
plications use less than 256GB of memory per node, all
allocation policies give similar results with 256GB (or any
volume of memory larger, what we consider in the following
baseline/unlimited memory case). The difference in behavior
between Aggregated and disaggregated heuristics is that
in our implementation, disaggregated heuristics still release
unused memory and reallocate it later when needed.

When the memory becomes more limited, disaggregated
heuristics behave better than the Aggregated that uses
the same volume of memory. Our result showed that using
150% of the average occupied memory (150GB), then us-
ing disaggregated heuristics allow to have roughly the same
performance to that of a machine where memory is not
limited (loss of 0.2%). In this scenario, heuristics that do
fewer reconfiguration (Oldest-First, Largest-First)
perform slightly better than Priority.

Figure 5: Impact of the response time of Priority as a
function of the memory available.

When the average memory per node gets closer to the
average memory usage (125GB), then as expected by our
theoretical results Priority outperforms other heuristics.
The overhead compared to the baseline solution is still min-
imal with 125GB (i.e. the machine has 25% more memory
than the average memory usage): there is a 0.7% utiliza-
tion loss compared to the baseline on average. Finally, the
Priority heuristic really shows its performance with very
limited memory on the machine compared to the memory
needed by applications. In these case it allows to gain up to
2% of utilization over Oldest-First and nearly 4% over
Largest-First.

The response time is the average duration between a job
submission and its completion. In Figure 5, we showed the
response time of Priority for various job sizes, when the
available memory varies compared to the baseline strategy.
This allows to confirm that no jobs are arbitrarily hurt by our
scheduling heuristic, even when the memory is small.

Take-aways:
1) Disaggregated heuristics allow to considerably reduce

the memory needed by the machine.
2) When the memory available is small, then a more

precise heuristic like Priority is important, however
otherwise, simpler heuristics like Oldest-First are
sufficient and do not require precise memory require-
ments.

2) Impact of machine parameters: In this section we are
interested by how architectural parameters impact the perfor-
mance of disagregated algorithms. Specifically we evaluated
the impact of α, the ratio between memory bandwidth and
out of node storage bandwidth, and τalloc, the reconfiguration
time. In the following of this section, instead of an absolute
value of the utilization, we study relative values, that is,
the difference with the baseline utilization when memory is
considered as unlimited (i.e., Aggregated with 256GB).

In Figure 6, we plotted the mean utilization as a function
of the memory for various values of α (α = 0.1 means that
memory bandwidth is 10 times faster than external storage).

We perform two evaluations: in Figure 6a, we eval-



(a) Relative performance of Oldest-First and Priority. A perfor-
mance higher than 1 means that Oldest-First performs better, lower
than 1 than Priority performs better.

(b) Performance of Priority compared to baseline with 256GB of memory
per node.

Figure 6: Machine utilization as a function of α.

uated the relative performance between Priority and
Oldest-First when α varies. This evaluation confirms our
previous findings that when there is enough memory, a solution
that minimizes the number of memory reallocation by giving
priority to longer running jobs is better, however, as memory
becomes limited, Priority improves this performance. It
should be noted that in both cases, the relative gains are
negligible (about 1%).

In Figure 6b, we evaluated the relative performance of
Priority compared to the baseline architecture (256GB
memory per node). Naturally, the higher α is, the better per-
formance disaggregated solutions obtain. From the results in
Figure 6, we observed a robustness of disaggregated heuristics.

Take-aways:
3) Even in limit cases where the cost of overflowing the

memory is high, previous take-aways hold.

Our next step is to evaluate the impact of τalloc. In practice,
this characteristic time of the system is interesting compared to
the characteristic time of applications (i.e., the average phase
length). This is what we showed in Figure 7.

We increased the value of τalloc gradually, and plot-
ted as a function of the ratio r = E(Lm)/τalloc,
for r ∈ {1, 2.5, 10, 25, 100, 1000} (hence, τalloc ∈
{1000, 400, 100, 40, 10, 1}).

We observed that Priority stays efficient until
E(Lm)/τalloc = 100. The difference between r = 100 and
r = 1000 are negligible. As this ratio decreases we observed
the following:

• When r = 25, the reconfiguration cost becomes so
important that when memory is not limited (memory per
node greater than 200GB). In this case, an aggregated

Figure 7: Average utilization of Priority (normalized by
baseline utilization) when r = E(Lm)/τalloc varies.

strategy is better;
• When the reconfiguration cost has the same order of mag-

nitude than the phase length, even with small volumes of
memory it is better to use an aggregated storage.

These observations hint that an online reconfiguration solu-
tion may not be adapted to a scenario with dynamic memory
pattern which is what we study in the next section.

B. Evaluation on dynamic patterns

In this section we are now interested by dynamic memory
patterns, such as in Figure 2c. In order to do so, we update
the generation protocol as follows:

• The number of phases is drawn uniformly between 50
and 149, but all phases have length τalloc;

• For each application, we draw uniformly at random one
variable out of 4 to describe their memory patterns in the
following truncations of the normal law of mean 105 and
scale 30:

– A truncation between 30 and 80;
– A truncation between 80 and 130;
– A truncation between 130 and 180;
– A truncation between 180 and 240.

This statistical behavior is the only memory information
available to the scheduler ahead of time.

• All phases memory from one application are drawn
according to the selected distribution (this information
is used for the evaluation, but not for the scheduling
decision).

1) General evaluation: The results are presented in
Figure 8. We compared Priority, Stochastic and
Aggregated, and we normalized their performance to the
baseline architecture with 256GB memory per node. As ex-
pected, Priority is outmatched by the two others policies.
Indeed, as the length of a phase is equal to the reconfiguration
time, it can no longer keep up with the fast-changing memory
profile. Stochastic is able to correctly balance the memory



Figure 8: Utilization (normalized by baseline) of different al-
gorithms when memory per node varies for dynamic patterns.

allocation between the application which allows it to perform
better than Aggregated when the memory is constrained.

For each quantity of memory per node, the Aggregated
policy performed as well in this case as in the first experiment.
This is not surprising as this policy is independent of the
variations speed of memory consumption of the application.
Unsurprisingly and due to the dynamicity of patterns, the
best performance cannot reach the same level of utilization
that the Priority algorithm was able to reach in the
first experiment (80% of utilization for Stochastic with
105 GB of memory versus 85% for Priority in the first
scenario). Yet, those performance are still impressive given
the dynamicity and overhead dut to reallocation, where the
Stochastic algorithm allows to reduce the memory per
node by more than 40% (to 150GB) with only 2% loss in
performance.

A small comments on the results: in very rare cases we
can observe that Stochastic of Aggregated with less
memory behaves better than the Baseline that uses 256GB
(see for instance 200GB on Figure 8). After checking the
Gantt chart and the results, this is an artifact of the global
scheduling strategy and a consequence of their heuristical
nature: slowing down jobs can reorder the order in which the
jobs are executed, which in turns can provide improvement on
the global performance.

Finally, by studying the response time as a function of the
size of the jobs, we confirm in Figure 9, that in this case as
well, no jobs are arbitrarily hurt by our scheduling heuristic
even when the memory is small.

Take-aways:
4) Even with dynamic patterns, when the overhead of an

online algorithm would be too high, the static algorithm
Stochastic is able to provide important gains, simply
by using the statistical memory behavior. For our traces,
it brought memory consumption reductions by more than
40% while losing less than 2% of performance.

Figure 9: Impact of the response time of Stochastic as a
function of the memory available.

(a) Relative performance of Stochastic over Priority. A performance
higher than 1 means that Stochastic performs better, lower than 1 than
Priority performs better.

(b) Performance of Stochastic compared to the baseline.

Figure 10: Relative performance for several values of α.

2) Impact of machine parameters: In Figure 10, we plot the
results of the simulations for others values of α. In Figure 10a,
we evaluate the relative performance between Stochastic
and Priority when α and M vary. A performance higher
than 1 means that Stochastic performs better, lower than 1
than Priority performs better. In Figure 10b we compared
the performance of Stochastic compared to the baseline.
Just like in the phased pattern use-case, these two experiments
confirm that the performance of Stochastic are robust to
others machine parameters.

Take-aways:
5) The results for Stochastic are robust to various

access cost to the second tier of memory.



VII. CONCLUSION

Memory capacity is a critical point of HPC architecture. To
cope with most applications, HPC systems classically over-
supply this resource with high financial cost. Disaggregated
memory has been proposed as a solution to provide shared
memory to multiple nodes.

We present in this work a model of HPC with disaggregated
memory and different strategies for memory allocation. Each
proposed strategy is validated by theoretical results.
Priority strategy is designed for memory profiles con-

stant by part, with a reconfiguration time at least one order
of magnitude lower than the length of a phase. It outperforms
Aggregated as soon as the memory starts to be constrained.
It allows reducing by 50% the memory usage while only losing
0.7% performance.

The second proposed strategy Stochastic is designed
for dynamic memory patterns. It allocates memory based on
statistical data of applications. It outperforms Priority for
these applications with dynamic memory and allows reducing
memory usage by 40%, while only losing 2% of performance.

In future work, it may be interesting to study the co-design
of Batch-Scheduling strategies with memory partitioning al-
gorithms, this co-design could use better runtime estimates.
If still using EASY-BF, it would also be interesting to study
what happens when using runtimes estimates better than the
worst-case scenario.
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