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Abstract. Quadrature phase differential interferometry is a technique of choice
for measuring arbitrary large displacements with record resolution. The so-called
Heydemann corrections are generally employed to take account of the unavoidable
imperfections due to the optics or the electronics, and a linearisation of the signals
is usually performed when the displacement to be determined is the superposition
of a quasi-static component and a small harmonic component. Here we show
that this standard analysis can lead to non-linearities of two types. The first
type of non-linearities is due to optical and electronic imperfections that were
not reported in the past and not included in the Heydemann corrections. These
imperfections appear as amplitude difference and phase shift between each pair
of intensity signals, and produce periodic non-linearities of nanometer amplitude
when the intensity signals are combined to obtain contrats, i.e., quantities that
are insensitive to intensity fluctuations of the light source. The second type of
non-linearities is due to large amplitudes of harmonic oscillation, which become
significant when the oscillations are typically larger than 20 nm for a red-emitting
laser source, and can lead to an underestimation of the measured amplitude
of ∼ 20 %. In order to correct these non-linearities, new procedures of calibration
and analysis are presented, implemented and successfully tested over a wide range
of quasi-static velocities, frequencies and amplitudes of harmonic oscillation. The
proposed corrections reduce non-linearities below the noise level, making them
smaller than 100 pm and 10 pm for the quasi-static and harmonic displacement,
respectively.
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1. Introduction

Differential interferometry is a technique of choice to
measure extremely small displacements. The initial
design, imagined by Nomarsky in 1955 [1, 2], has
proved to offer an exquisite sensitivity, only limited
by the shot noise inherent to photodetectors [3]. A
key factor for such outstanding performances is that
the interfering beams are spatially separated over
small distances, limiting the impact of environmental
perturbations. An improved design was proposed by
Bellon et al. in 2002 [4], which consists in adding an
arm in the optical set-up to measure not only the cosine
but also the sine of the phase to be determined. This
so-called quadrature phase interferometric technique
applied to differential interferometry allows to measure
very large displacements with a constant, maximum,
sensitivity.

Quadrature phase differential interferometry can
be seen as single-pixel holographic interferometry.
While the purpose of holographic techniques [5, 6,
7] is to obtain interference patterns through which
the 3D shape or deformation field of an object
can be resolved, we focus here on the displacement
of a single mirror relative to a reference mirror.
Optical phase unwrapping is an essential and delicate
problem for holographic techniques [8, 9]. In the
case of quadrature phase differential interferometry,
the interference pattern presents no fringes, as in the
central zone of a Michelson interferometer at optical
contact. The optical phase is deduced from the
intensity level of the light, and can be easily unwrapped
by following its evolution over time.

Quadrature phase differential interferometry has
been applied in the context of force measurements, first
with the Atomic Force Microscope (AFM) [3], then
with the dynamic Surface Force Apparatus (dSFA) in
our team [10]. In the dSFA case, the phase to be
determined is the sum of a quasi-static component
and of a small harmonic component, leading to a
linear analysis considering the harmonic component
as a perturbation of the static one. It is evident
that such interferometry should provide quantitative
measurements to access delicate physical quantities as
nanometric hydrodynamic slip length [11], to name
but one example. This is why calibrations of the
dual output are performed to take account of the
unavoidable imperfections due to the optics or the
electronics, generally using the corrections proposed

by Heydemann in 1981 [12] in the general context of
quadrature phase interferometry. In short, Heydemann
corrections take into account the fact that the dual
outputs are not perfectly equal to the cosine and the
sine of the phase to be measured, but have different
offsets, amplitudes and phase shifts.

In the present article, we show that the
Heydemann corrections and the linear treatment of
the harmonic perturbation are not sufficient, leading
to non-linearities of two types:

• non-linearities due to optical and electronic
imperfections, appearing when combining the
different signals to obtain normalized quantities
which are insensitive to any intensity fluctuations
of the light source,

• non-linearities due to large amplitudes of har-
monic oscillation, for which the linearisation of
the interferometric signals (as a quasi-static com-
ponent plus a single harmonic component) is no
longer valid.

After highlighting these non-linearities, we propose and
implement a general method to correct them.

The manuscript is organized as follows: in
section 2 we describe the experimental set-up, in
section 3 we present the key ideas of the analysis in
the case of ideal signals, in sections 4 and 5 we explain
the methods to correct the two types of non-linearities,
in section 6 we test the robustness of these corrections
and in section 7 we discuss these findings in relation to
literature.

2. Experimental setup

Optics. The optical interferometer, sketched in
Figure 1, is composed of three areas.

In the ”Beam preparation” area, a stabilized He-
Ne laser (SIOS SL 04/A) produces a linearly-polarized
beam (λ = 632.9912 ± 0.0002 nm) oriented at 0◦.
A Faraday isolator (Thorlabs IO-3D-633-PBS) rotates
the direction of polarization by 45◦ and prevents any
reflected light from re-entering the laser cavity and
destabilizing its emission. A Glan-Taylor polarizer
with a 100 000:1 extinction ratio (Thorlas GT10-A)
oriented at 45◦ ensures the quality of the beam’s
polarization, and a convergent lens (Thorlabs LA1908-
A) allows to focus the beam on the photodetectors
(described after).
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In the ”Sensing” area, the beam passes through
a first 50:50 non-polarizing beamsplitter (Thorlabs
BS013), and half of its intensity is directed towards a
calcite crystal (Thorlabs BD40) oriented at 0◦. The
incident beam is linearly polarised at 45◦ with the
principal axis of the calcite, and is therefore spatially
separated in two parallel beams of equal intensities
and orthogonal linear polarizations. The two beams
are reflected by two mirrors (Fichou, aluminium-coated
BK7), which are parallel and shifted by a distanceH to
be determined. After reflection the beams are spatially
recombined by the calcite and again passes through
the first beamsplitter, forming a beam of elliptical
polarization, due to the phase shift between the two
orthogonal components of the polarization, equal to:

ϕ =
4πH

λ
, (1)

where the factor 2 is due to the back and forth
trajectories of the beams.

In the ”Analysis” area, the beam passes through
a second identical beamsplitter. Half of the light
goes in the ”X arm”, composed of a Wollaston prism
(Thorlabs WP10-A) oriented at 45◦ with the principal
axis of the calcite, which projects the two orthogonal
components of the polarization onto the ±45◦ axis and
therefore make them interfere. Two separated beams
emerge from the Wollaston prism, and their intensities
are measured with two photodiodes (Osram Opto
Semiconductors, SFH 206 K), giving the photocurrents
IX1 = I0

2 (1 + cosϕ) and IX2 = I0
2 (1− cosϕ), with I0

corresponding to the incident intensity (in the ideal
case, see after). The other half of the light emerging
from the second beamsplitter goes in the ”Y arm”,
which is similar to the X arm except that a quarter-
wave plate (Lambda Research Optics WPZM-25.4-
20.0CQ-0) oriented at 0◦ has been inserted before
the Wollaston prism. This is the quadrature phase
technique, which allows to measure the photocurrents
IY1 = I0

2 (1 + sinϕ) and IY2 = I0
2 (1− sinϕ). Finally,

a general expression for the four photocurrents can be
written as:

I
X
Y

1
2 =

I0
2

(
1±cos

sin
ϕ

)
, (2)

where the + or − sign refers to the photodiode 1 or 2,
and the cos or sin function refers to the X or Y arm,
respectively. The measured photocurrents can then be
analysed to deduce the phase shift ϕ via equation 2
and the distance H via equation 1.

Electro-mechanics. One mirror is actuated
while the other is fixed, in such a way that the distance
between them is controlled over time t as:

H = Hstat +Hdyn cos(ωt+ φ). (3)

The left-hand term is a (quasi-)static component
varying at constant velocity as Hstat = vt, with |v|
typically chosen between 0.1 nm/s and 100 nm/s, over
a total range of about 1 µm. The right-hand side term
is a dynamic component of sinusoidal shape, with an
amplitude Hdyn > 0 typically chosen between 0.7 nm
and 70 nm and a frequency ω/(2π) between 10 Hz and
500 Hz. Combining equations 1 and 3, the phase shift
therefore reads:

ϕ = ϕstat + ϕdyn cos(ωt+ φ), (4)

with ϕstat = 4πHstat

λ and ϕdyn =
4πHdyn

λ > 0. In the
present study, i.e., for the application of this interfer-
ometry technique to dSFA, we want to simultaneously
determine the quasi-static and harmonic displacements
from the measured photocurrents. In this regard, the
situation is very different from modulation techniques
in which a known harmonic displacement is applied in
order to measure only the quasi-static displacement (as
for example in [13]).

The home-made actuator used in this study has
been described in details elsewhere [10]. In short, it
is first composed of a flexure hinge, which geometry
ensures a deflection in an almost perfectly straight
motion: a residual rotation of 0.5 prad for 1 µm of
translation [14] (the maximum range used), i.e., almost
7 orders of magnitude smaller than the laser beam
drift. Its second component is a coil-magnet system
which permits a fine control of the force applied to the
flexure hinge. The two ends of the coil are connected to
the output of a function generator (Keysight 33220A)
providing a quasi-static saw-shape voltage of desired
slope, and to the output of a lock-in amplifier (Stanford
Research System SR830) providing a dynamic voltage
of sinusoidal shape and amplitude Vdyn. When all these
components are operated in conditions where they
respond linearly, which is the case for displacements
smaller than 1 µm, this actuator allows to precisely
control the distance as shown in equation 3, in
particular with a constant velocity over the entire
displacement range.

Opto-electronics. The photodiodes are oper-
ated in photovoltaic mode, to avoid dark current and
to ensure low noise and best linearity, at a modest price
in terms of dynamics given the frequencies used.

Each photodiode corresponding to the signals IX1

and IY1 is connected in series with two amperemeters.
The first one is a precision multimeter (Keysight
34465A) working in DC current mode to measure the
static component of the photo-current, with a 1-day
precision of ∼ 1 nA for a 10 µA range. The second
one is a lock-in amplifier (Stanford Research System
SR830) working in current mode to measure the
modulus and phase of the harmonic component of the
photo-current, with resolutions of respectively 100 pA
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and 0.01◦. In the case of the signals IX2 and IY2,
each photodiode is connected only to a a precision
multimeter.

The signals measured by the four precision
multimeters and the two lock-in amplifiers are acquired
simultaneously by TTL triggering every T = 1 s, with
an integration time τ = 0.1 s.
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Figure 1. Schematic of the optical interferometer.

3. Analysis in the case of ideal signals

Conditions. The analysis of the measurements ob-
tained with quadrature phase differential interferome-
try applied to the dSFA is based on four general con-
ditions. These conditions are stated in this subsection,
and their importance will be shown in the next subsec-
tion.

The first one is a linearity condition. For the
photocurrents (equation 2) to be linearized as a static
plus a single harmonic component, one has to verify:

4πHdyn

λ
≪ 1 ⇔ Hdyn ≪ λ

4π
∼ 50 nm. (5)

The second one is a quasi-static condition, i.e.,
the quasi-static component of the distance has to vary
slowly enough to be considered as a constant at the
timescale of the integration time:

4π|v|τ
λ

≪ 1 ⇔ |v| ≪ λ

4πτ
∼ 500 nm/s. (6)

The third one is a sampling condition, i.e., the
quasi-static component of the distance has to vary
slowly enough for the interferogram to be followed at
the timescale of the acquisition period:

4π|v|T
λ

≪ 1 ⇔ |v| ≪ λ

4πT
∼ 50 nm/s. (7)

The fourth one can be termed as a filtering
condition, and should be verified for the precision
multimeters to measure only the static component, and
the lock-in amplifiers to measure only the harmonic
component at the working frequency ω/(2π). One can
show that this condition is:

ωτ

2
≫ 1 ⇔ ω

2π
≫ 1

πτ
∼ 3 Hz. (8)

Photocurrents. Under the aforementioned
conditions and in the case of ideal signals (we
will specify what it means in the next sections),
the measured photocurrents have simple analytical
expressions. In the following, we will consider only
channel X1, as analogous expressions can be found for
the other channels. Thanks to the linearity condition
(equation 5), the photocurrent can be expanded at first
order in ϕdyn:

IX1 ≃ I0
2
[1 + cosϕstat − sinϕstat × ϕdyn cos(ωt+ φ)] .

(9)
The precision multimeter collects the static

component (i.e., the component at zero frequency) by
integrating the signals over τ at a time t:

IX1
stat(t) ≡

t+τ∫
t

IX1(t
′
)
dt

′

τ
. (10)

The quasi-static condition (equation 6) allows to
consider ϕstat as a constant over the integration time τ ,
and the temporal integration of equation 9 provides:

IX1
stat(t)≃

I0
2

[
1 + cosϕstat (11)

− sinϕstat × ϕdyn cos
(
ωt+ φ+

τ

2

)
sinc

(ωτ
2

) ]
,

Thanks to the filtering condition (equation 8), the
cardinal function sinc is close to zero and we finally
obtain:

IX1
stat(t) ≃

I0
2
(1 + cosϕstat) . (12)

Note that the sampling condition (equation 7) ensures
that the acquisition rate is sufficient to be able to follow
the quasi-static evolution of the interferogram.

The lock-in amplifier collects the two RMS
quadratures of the harmonic component (real and
imaginary parts) at the working frequency ω/(2π). It
can formally be written as:
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IX1
re (t) ≡

t+τ∫
t

IX1(t
′
)
√
2 cos(ωt)

dt
′

τ
(13)

IX1
im (t) ≡

t+τ∫
t

IX1(t
′
)
√
2 cos

(
ωt+

π

2

) dt′
τ
. (14)

In the same way as for the static components and under
the same conditions, one can show that these quantities
are equal to:

IX1
re (t) ≃ − I0

2
√
2
sinϕstat × ϕdyn cosφ (15)

IX1
im (t) ≃ − I0

2
√
2
sinϕstat × ϕdyn sinφ. (16)

Equivalently, it can be expressed with the modulus and
argument of the harmonic component:

IX1
mod(t) ≃

I0

2
√
2
|sinϕstat|ϕdyn (17)

IX1
arg(t) ≃ φ if sinϕstat < 0, φ+ π otherwise. (18)

Contrasts. In order to obtain normalized
quantities which are insensitive to any intensity
fluctuations of the light source, we numerically combine
the measurements from each pair of photodiodes to
compute contrasts. We define static contrasts as:

CX
stat ≡

IX1
stat − IX2

stat

IX1
stat + IX2

stat

≃ cosϕstat (19)

CY
stat ≡

IY1
stat − IY2

stat

IY1
stat + IY2

stat

≃ sinϕstat. (20)

We define dynamic contrasts in a consistent way
as:

CX
mod ≡ 2

√
2

IX1
mod

IX1
stat + IX2

stat

≃ |sinϕstat|ϕdyn (21)

CY
mod ≡ 2

√
2

IY1
mod

IY1
stat + IY2

stat

≃ |cosϕstat|ϕdyn (22)

CX
arg ≡ IX1

arg, C
Y
arg ≡ IY1

arg. (23)

Note that moduli here are not RMS values.
Displacements. The static displacement Hstat

can deduced from the static contrasts:

Hstat =
λ

4π
arctan

(
CY

stat

CX
stat

) (
mod

λ

2

)
. (24)

Thanks to the quadrature, this is performed with
a sensitivity which is independent of the value

of Hstat. The static displacement is initially
determined modulo λ

2 , but then the signal can be
unwrapped over time, providing that the interferogram
varies slowly enough (sampling condition given by
equation 7). As we have no way to detect the optical
contact (corresponding to zero phase shift), the static
displacement is finally known to within one constant.

The harmonic displacement Hdyn is obtained by
numerically combining the different contrasts as:

x ≡ −CX
mod cos

(
CX

arg

)
CY

stat + CY
mod cos

(
CY

arg

)
CX

stat

(25)

y ≡ −CX
mod sin

(
CX

arg

)
CY

stat + CY
mod sin

(
CY

arg

)
CX

stat

(26)

Hdyn =
λ

4π

√
x2 + y2. (27)

This is achieved with a sensitivity which is independent
of the working point, i.e., independent of the value of
Hstat.

4. Correction of non-linearities due to optical
and electronic imperfections

Imperfections. Experimentally, we observe that the
photocurrents differ slightly from equation 2. For
example we have for channel X1:

I
X1

= aX1 I0
2

[
1 + bX1 cos

(
ϕ+ ψX1

)]
, (28)

with aX1 and bX1 which are close but less than 1,
and ψX1 which is close but different from 0. Similar
equations can be written for the other three channels,
with different factors ai, bi and ψi. Note that the
additional phase shift ψX1 cannot simply be included in
the phase shift ϕ (which will be determined to within
one constant anyway), because it is not the same on
the different channels (ψX1 ̸= ψX2 ̸= ψY1 ̸= ψY2).

Some of these imperfections were already pointed
out in the seminal paper of Heydemann [12]. He
considered only the raw signals (i.e., photocurrents
and not contrasts, in the terminology of the present
paper) and the effects of aX1 ̸= aY1, bX1 ̸= bY1

and ψX1 ̸= ψY1. These factors may have various
origins in our set-up, which can be listed in a non-
exhaustive way. The factors aX1 ̸= aY1 and bX1 ̸= bY1

are caused by imperfect beams superposition, beams
clipping, and slightly different adsorption coefficients
and photodiodes sensitivities. The factors bX1 ̸= bY1

can be further reduced by an imperfect inclination of
the Wollaston prisms in the plane perpendicular to the
propagation. The factors ψX1 ̸= ψY1 are induced by
an imperfect orientation of the quarter-wave plate, and
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by optical elements like beamsplitters which are not
perfectly non-polarizing.

In the present study, we consider normalized
signals in order to be insensitive to any intensity
fluctuations of the laser; therefore we make use of
the channels labelled as ”2”. We find significant
differences between the photocurrents coming from
each pair of photodiodes, i.e., aX1 ̸= aX2, bX1 ̸= bX2

and ψX1 ̸= ψX2. These discrepancies can be observed
and precisely calibrated by performing a ”calibration
actuation”, which consists in applying a quasi-static
displacement at constant velocity v = 2.45 nm/s
(slow enough to fulfil the quasi-static and sampling
conditions, fast enough to have little influence of drifts)
over a range of ∼ 1 µm (to cover ∼ 2 periods of static
phase) and a harmonic voltage of frequency ω/(2π) =
30 Hz (large enough to fulfil the filtering condition,
small enough to have the maximum response of the
flexure hinge) and of amplitude Vdyn = 0.01 Vrms,
corresponding to oscillations of amplitude ∼ 1.8 nm
(small enough to fulfil the linearity condition, large
enough to have little influence of noise) to the actuator.
In Figure 2(a) are plotted the temporal evolutions
of IX1

stat (in red) and IX2
stat (in blue), together with

sinusoidal fits of common frequency fcalib (in green).
Even if, at first glance, the signals look like identical
sinusoids in antiphase, the fits show that the offsets
differ by ∼ 2.2%, the amplitudes differ by ∼ 0.13% and
that there is a phase shift of (π+) ∼ 0.048 rad between
them. These differences are not due to fitting errors or
random noise, as shown by numerically computing the
”simple sum”:

sum
[
IX1,X2
stat

]
≡ IX1

stat + IX2
stat. (29)

This quantity is represented in red in Figure 2(b),
and exhibits residual oscillations at frequency fcalib,
while sinusoidal signals of exact same amplitude and in
perfect antiphase would lead to a constant signal. The
factors aX1 ̸= aX2 and bX1 ̸= bX2 may have various
origins among the ones mentioned previously, whereas
the factors ψX1 ̸= ψX2 require further investigations.
Measurements at different velocities v showed that
there is indeed a phase shift (and not a time shift)
between the signals. Such phase shift is more likely
to be optical than electronic in origin, which has been
confirmed experimentally by observing that the phase
shift is due to an imperfectly perpendicular incidence
of the laser beam on the Wollaston prim. The residual
oscillations obtained with the simple sum (red curve
in Figure 2(b)) are problematic to determine the static
and harmonic displacements, as we will show in the
following that they lead to periodic non-linearities
when normalizing the photocurrents by this sum to
compute the contrasts. We can calculate a ”corrected
sum”, defined as:

sum
[
IX1,X2
stat

]
(t)≡IX1

stat(t)+
aX1bX1

aX2bX2
IX2
stat

(
t+

ψX1−ψX2

2πfcalib

)
.

(30)
This quantity is represented in blue in Figure 2(b). As
expected by construction, this corrected sum exhibits
no residual oscillation. However, such a trick of
applying a time shift to correct for a phase shift can
only be used during the ”calibration actuation” at
constant velocity v, where the frequency fcalib of the
interference signals is constant and known. We will
propose in the next subsections a method to correct
for this phase shift in the general case of an arbitrary
and variable velocity v.

Another imperfection can be spotted when
comparing the static and harmonic signals coming from
the same photodiode. In Figure 2(c) are represented
the temporal evolutions of IX1

stat (in red) and IX1
re

(in blue), together with sinusoidal fits of common
frequency fcalib (in green). A careful inspection reveal
that the sinusoids are not perfectly in quadrature, but
there is an additional time shift δtX1

stat,dyn ∼ 0.35 s.
Measurements at different velocities v showed in this
case that this is indeed a time shift (and not a phase
shift). It is more likely to be electronic than optical
in origin, as the two signals are given by the precision
multimeter and the lock-in amplifier plugged in series
on the same photodiode. We attribute this to a
delay in signal acquisition, which exists despite TTL
triggering, perhaps due to the different designs of these
instruments. This time shift is not due to fitting errors
or random noise, as shown by numerically computing
a ”simple quadrature-shifted sum” as:

sum
[
IX1
stat,re

]
(t) ≡ IX1

stat(t)+r
X1
stat,reI

X1
re

(
t+

π/2

2πfcalib

)
,

(31)
where rX1

stat,re compensates for the difference in
amplitude between static and harmonic signals, which
would be present even in the ideal case (equal to
ϕdyn cosφ/

√
2). This ratio is determined from the

sinusoidal fits; it will not be used as a calibration
parameter in the next subsection, but only to calculate
the simple quadrature-shifted sum. This quantity
is represented in red in Figure 2(d), and exhibits
residual oscillations at frequency fcalib, while sinusoidal
signals in perfect quadrature would lead to a constant
signal. Note that the harmonic photocurrent has
been multiplied by the amplitude ratio (very different
from 1, even for ideal signals) and quadrature-shifted
by applying a time shift (only possible during the
”calibration actuation” at constant velocity v). Such
time shift is problematic, as we will show in the
following that it leads to periodic non-linearities
when combining the static and harmonic signals to
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compute the harmonic displacement Hdyn. We can
calculate a ”corrected quadrature-shifted sum”, where
an additional time shift δtX1

stat,dyn has been applied to
the harmonic photocurrent:

sum
[
IX1
stat,re

]
(t)≡IX1

stat(t) (32)

+rX1
stat,reI

X1
re

(
t+

π/2

2πfcalib
+δtX1

stat,dyn

)
.

This quantity is represented in blue in Figure 2(d). As
expected by construction, this corrected quadrature-
shifted sum exhibits no residual oscillation. As this
imperfection is intrinsically a time shift and not a phase
shift, it will be easily corrected by numerically time-
shifting the harmonic signals (moduli and arguments)
to resynchronize them with the static signals.

Calibrations. In order to correct the imper-
fections presented just before, it is necessary to cali-
brate them for all the channels. This is done by per-
forming the ”calibration actuation” described previ-
ously. We recall here its principle: applying to the
actuator a quasi-static displacement at constant veloc-
ity v = 2.45 nm/s (slow enough to fulfil the quasi-static
and sampling conditions, fast enough to have little in-
fluence of drifts) over a range of ∼ 1 µm (to cover
∼ 2 periods of static phase) and a harmonic voltage
of frequency ω/(2π) = 30 Hz (large enough to ful-
fil the filtering condition, small enough to have the
maximum response of the flexure hinge) and of am-
plitude Vdyn = 0.01 Vrms, corresponding to oscillations
of amplitude ∼ 1.8 nm (small enough to fulfil the lin-
earity condition, large enough to have little influence
of noise). Crucial points are: (i) quasi-static motion
is at a constant velocity, so that the signal imperfec-
tions pointed out in the previous subsection can be
extracted from temporal fittings and phase shifts can
be corrected by time shifting the signals; (ii) the am-
plitude of the harmonic oscillation is small enough that
the non-linearities presented in section 5 are negligibly
small.

The first calibration consists in fitting the two
static signals associated to X arm with sinusoidal fits
of common frequency fcalib (as in Figure 2(a)) to

extract the amplitude ratio rX = aX1bX1

aX2bX2 and the phase
shift ∆X = ψX1 − ψX2.

The second calibration consists in fitting the two
static and real component of the harmonic signals
associated to photodiode 1 in X arm with sinusoidal
fits of common frequency fcalib (as in Figure 2(c)) to
extract the time shift δtX1

stat,dyn.
We can then numerically calculate ”corrected

contrasts” associated to the X arm, defined as follows
only during calibrations:

CX
stat(t) ≡

IX1
stat(t)− rXIX2

stat

(
t+ ∆X

2πfcalib

)
IX1
stat(t) + rXIX2

stat

(
t+ ∆X

2πfcalib

) (33)

CX
mod(t) ≡ 2

√
2

IX1
mod

(
t+ δtX1

stat,dyn

)
IX1
stat(t) + rXIX2

stat

(
t+ ∆X

2πfcalib

) (34)

CX
arg(t) ≡ IX1

arg

(
t+ δtX1

stat,dyn

)
. (35)

Note that, for analysing the calibration only, the
phase shift ∆X between the pair of static signals is

corrected by applying a time shift + ∆X

2πfcalib
to the

signal IX2
stat, which is possible because the calibration is

performed at constant quasi-static velocity (equivalent
to constant frequency fcalib). Together with the
correction of the amplitude ratio rX and of the time
shift δtX1

stat,dyn between the static and harmonic signals,
this allows to suppress the first type of non-linearities,
due to optical and electronic imperfections that are
reported in this paper for the first time and which
have been described in the previous subsection. The
second type of non-linearities, due to large amplitudes
of harmonic oscillation and described in section 5 are
not present because the oscillation amplitude is kept
small for the calibration. One can show that:

CX
stat(t) ≃ CX

off + CX
amp cosϕstat (36)

CX
mod(t) ≃ CX

amp |sinϕstat|ϕdyn (37)

CX
arg(t) ≃ φ if sinϕstat < 0, φ+ π otherwise, (38)

with CX
off = bX2−bX1

bX2+bX1 , C
X
amp = 2bX2bX1

bX2+bX1 , and considering

that ψX1 = 0 without loss of generality as Hstat is
known to within one constant.

We proceed in the same way for the Y arm, to
calculate the corrected contrasts and obtain:

CY
stat(t) ≃ CY

off + CY
amp sin (ϕstat + ψ) (39)

CY
mod(t) ≃ CY

amp |cos (ϕstat + ψ)|ϕdyn (40)

CY
arg(t) ≃ φ if cos (ϕstat + ψ) > 0, φ+ π otherwise,

(41)

where ψ ≡ ψY1 .
The third calibration corresponds to the Heyde-

mann corrections applied to the static contrasts. This
will allow to correct the well-known imperfections due
to optical and electronic imperfections that have been
reported in the literature many times. It consists in
fitting CY

stat versus CX
stat with an elliptical function to

obtain the values of CX
off , C

Y
off , C

X
amp, C

Y
amp and ψ. In

Figure 3(a) is represented CY
stat versus CX

stat (the so-
called ”Lissajous plot”), for ”simple contrasts” calcu-
lated as for ideal signals (in red, using equations 19 and
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Figure 2. Temporal evolutions of the static and harmonic components of the photocurrents, associated to the X arm, during
the ”calibration actuation” (i.e. applying a static displacement at constant velocity v = 2.45 nm/s and a harmonic voltage of
amplitude Vdyn = 0.01 Vrms and frequency ω/(2π) = 30 Hz to the actuator). (a) Static currents measured with photodiodes 1 (in
red) and 2 (in blue). The green dashed lines are sinusoidal fits. (b) Simple sum (in red) and corrected sum (in blue) of the static
currents measured with photodiodes 1 and 2. (c) Static current (in red, left axis) and real part of the harmonic current (in blue,
right axis) measured with photodiode 1. The green dashed lines are sinusoidal fits. (d) Simple quadrature-shifted sum (in red) and
corrected quadrature-shifted sum (in blue) of the static current and real part of the harmonic current measured with photodiode 1.

20), ”corrected contrast” (in blue, using equations 36
and 39), together with elliptical fits (in green). The
two ellipses are slightly different, and a careful inspec-
tion suggests that the corrected contrasts are better
fitted by the elliptical function. This is better seen in
Figure 3(b), where the residuals of the elliptical fits
(res

[
CX

stat

]
, res

[
CY

stat

]
) are shown as a Lissajous plot.

The curve corresponding to simple contrasts (in red)
exhibits a so-called trifolium shape [15] of maximum
amplitude ∼ 6 · 10−3, whereas the curve corresponding
to corrected contrasts (in blue) exhibits only noise of
maximum amplitude ∼ 1 · 10−3, slightly larger along
the ellipse’s minor axis than along the ellipse’s major
axis. The trifolium clearly disappears when correct-
ing for amplitude ratio and phase shift between each
pair of photocurrents, which is of utmost importance
as we will show in the following that this trifolium leads
to periodic non-linearities in the determination of the
static and harmonic displacements.

The eleven parameters obtained from the calibra-
tions shown here are summarized in Table 1 (only the
ellipse parameters corresponding to the corrected con-
trasts are given).

Corrections. In this subsection, we will explain
how the imperfections presented and calibrated above

can be corrected for the analysis of data obtained with
an arbitrary and variable velocity v (and not only
during the ”calibration actuation”). In this case, the
phase shift present between the static photocurrents
of each pair of photodiodes cannot be corrected by
applying a time shift. We define the static contrasts
as follows:

CX
stat(t) ≡

IX1
stat(t)− rXIX2

stat(t)

IX1
stat(t) + rXIX2

stat(t)
(42)

CY
stat(t) ≡

IY1
stat(t)− rYIY2

stat(t)

IY1
stat(t) + rYIY2

stat(t)
. (43)

In other words, at this stage we correct for the
amplitude ratios rX, rY but not for the phase shifts ∆X

∆Y between each pair of static signals. The remaining
non-linearity comes from the act that the sinusoidal
terms do not add up in the numerator and do not
cancel out the denominators of equations 42 and 43,
because of the phase shifts. In Figure 4(a) are shown
typical temporal evolutions of these static contrasts,
here during the ”calibration actuation”. To take these
phase shifts into account, we will take advantage that∣∣∆X

∣∣ , ∣∣∆Y
∣∣ ≪ 1 and expand the static contrasts at

first order in ∆X and ∆Y:
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Figure 3. (a) Lissajous plot of the static contrasts, associated to the X and Y arms, during the ”calibration actuation”. The red
curve is obtained with static contrasts calculated without correcting (in red) and while correcting (in blue) for amplitude ratio and
phase shift between each pair of photocurrents. The green dashed lines are elliptical fits. (b) Lissajous plot of the residuals of the
elliptical fits of the static contrasts, calculated without correcting (in red) and while correcting (in blue) for amplitude ratio and
phase shift between each pair of photocurrents.

Table 1. Calibration parameters obtained for the data shown in this paper.

rX (1) ∆X (rad) δtX1
stat,dyn (s) rY (1) ∆Y (rad) δtY1

stat,dyn (s) CX
off (1) CY

off (1) CX
amp (1) CY

amp (1) ψ (rad)

0.999 -0.0483 -0.347 1.091 0.0218 -0.345 0.0102 0.0211 0.918 0.922 -0.783

CX
stat ≃

[
CX

off −
(
1 + CX

off

) 1
2
CX

amp∆
X sinϕstat

]
+ CX

amp cosϕstat

[
1− 1

2
CX

amp∆
X sinϕstat

]
(44)

CY
stat ≃

[
CY

off +
(
1 + CY

off

) 1
2
CY

amp∆
Y cos (ϕstat + ψ)

]
+ CY

amp sin (ϕstat + ψ)

[
1 +

1

2
CY

amp∆
Y cos (ϕstat + ψ)

]
.

(45)

At zero order we recover the ellipse equations
(equations 36 and 39). At first order, we observe that
the phase shifts tend to slightly modify the center and
amplitudes of the ellipse. This is only approximate,
as the correction terms depend themselves on the
variable ϕstat of this parametric equation.

Conversely, we can express the cosine and sine of
the static phase ϕstat as:

cosϕstat ≃
CX

stat−CX
off+

(
1+CX

off

)
1
2C

X
amp∆

Xsinϕstat

CX
amp

[
1− 1

2C
X
amp∆

Xsinϕstat
]

(46)

sinϕstat ≃

[
CY

stat−CY
off−

(
1+CY

off

)
1
2C

Y
amp∆

Ycos (ϕstat+ψ)

CY
amp

[
1+ 1

2C
Y
amp∆

Ycos (ϕstat+ψ)
]

−cosϕstat sinψ

]
1

cosψ
. (47)

The static phase ϕstat can be deduced for each pair
(CX

stat,C
Y
stat) measured experimentally, given that all

parameters have been calibrated. A subtlety is that the
static phase ϕstat to be determined also appears in the
right-hand sides. Thus, correcting the non-linearities
due to the phase shifts requires to solve these self-
consistent equations. As these corrections are small,
we can proceed iteratively:

• we first perform the calculation as if there were no
phase shifts (i.e., we assume ∆X = ∆Y = 0) to get
a zeroth-order estimate ϕstat,0,

• we secondly restore their calibrated values to
∆X and ∆Y, use ϕstat,0 in the right-hand sides
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of equations 46 and 47 to obtain a first-order
estimate ϕstat,1,

• we then iterate the previous step as many times
as necessary.

In practice, we found that N ∼ 3 iterations are enough
for the value of ϕstat,N to converge within 1%. The
static displacement Hstat can then be deduced.

For the dynamic analysis to be at the same time
insensitive to any intensity fluctuations of the laser,
and not impacted by the phase shift between each pair
of photodiodes, we define corrected sums for the static
photocurrents as follows:

sum
[
IX1,X2
stat

]
(t) ≡

[
IX1
stat(t) + rXIX2

stat(t)
]

(48)

×
[
1 +

1

2
CX

amp∆
X sinϕstat

]
sum

[
IY1,Y2
stat

]
(t) ≡

[
IY1
stat(t) + rYIY2

stat(t)
]

(49)

×
[
1− 1

2
CY

amp∆
Y cos (ϕstat + ψ)

]
.

We use these corrected sums to normalize the
harmonic photocurrents and define the dynamic
contrasts as, in the case of the X arm:

CX
mod(t) ≡ 2

√
2
IX1
mod

(
t+ δtX1

stat,dyn

)
sum

[
IX1,X2
stat

]
(t)

(50)

CX
arg(t) ≡ IX1

arg

(
t+ δtX1

stat,dyn

)
. (51)

We proceed similarly for the Y arm. Therefore,
these dynamic contrasts contain corrections for the
amplitude ratios rX, rY and the phase shifts ∆X

∆Y between each pair of static signals, and for the
time shifts δtX1

stat,dyn, δt
Y1
stat,dyn between the static and

harmonic signals coming from the same photodiode.
Note that in general the time shifts are a fraction
of the sampling period T = 1 s, therefore linear
interpolations are performed in order to evaluate
the harmonic photocurrents at shifted times. In
Figure 4(b) and (c) are respectively shown typical
temporal evolutions of the modulus and arguments of
these dynamic contrasts, here during the ”calibration
actuation”. With such definitions, one can show that
we recover the expressions for the dynamic contrasts
given by the equations 37, 38, 40 and 41.

The harmonic displacement Hdyn is simply
obtained by numerically combining the dynamic
contrasts with the static phase:

x ≡− CX
mod cos

(
CX

arg

)
CY

amp sin (ϕstat + ψ) (52)

+ CY
mod cos

(
CY

arg

)
CX

amp cosϕstat

y ≡− CX
mod sin

(
CX

arg

)
CY

amp sin (ϕstat + ψ) (53)

+ CY
mod sin

(
CY

arg

)
CX

amp cosϕstat

Hdyn =
λ

4π

√
x2 + y2

CX
ampC

Y
amp cosψ

. (54)

Results. Figure 5(a) shows the temporal
evolution of the static displacement Hstat during the
”calibration actuation”, computed numerically from
the experimentally measured photocurrents thanks to
the calibrated parameters, without correcting (in red)
and while correcting (in blue) for amplitude ratios,
phase shifts and time shifts. The red curve therefore
corresponds to the application of the Heydemann
corrections only. At first glance, the two analyses
produce two very similar signals which vary linearly
with time, and linear fits (in green) provide the same
slope, equal to v = 2.45 nm/s. However the residuals
on the fits (shown on top) are significantly different.
The signal obtained with Heydemann corrections only
(in red) exhibits periodic variations, with a peak-peak
amplitude of ∼ 3.8 nm and a period corresponding to
the interferogram’s one (i.e., λ

2v ). On the contrary, the
signal obtained with all the corrections (in blue) does
not present such periodic variations, but only random
noise of standard deviation ∼ 0.11 nm.

Figure 5(b) shows the temporal evolution of the
harmonic displacement Hdyn deduced simultaneously,
without correcting (in red) and while correcting (in
blue) for amplitude ratios, phase shifts and time shifts.
The signal obtained with Heydemann corrections
only (in red) exhibits periodic variations at the
interferogram’s period, with a peak-peak amplitude
of ∼ 0.25 nm, corresponding to ∼ 14% of the nominal
harmonic displacement. On the contrary, the signal
obtained with all the corrections (in blue) does not
present such periodic variations, but only random noise
of standard deviation ∼ 8.8 pm around a mean value
of ∼ 1.831 nm, hence a relative standard deviation
of ∼ 0.5%.

This clearly shows that optical and electronic
imperfections lead to periodic non-linearities in the
measurement of the static and harmonic displacements.
More precisely, these imperfections are amplitude
ratios and phase shifts between each pair of static
signals, and the time shifts between the static and
harmonic signals coming from the same photodiode.
The procedure proposed to correct these imperfections
produces satisfying results, removing all periodic non-
linearities, or at least reducing them below the
noise level. It is important to note that it is
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Figure 4. Temporal evolutions of the static and dynamic contrasts, associated to the X arm (in red) and the Y arm (in blue),
during the ”calibration actuation”: (a) static contrasts, (b) modulus of the dynamic contrast, (c) argument of the dynamic contrast.
Here the static contrasts are calculated while correcting for amplitude ratio but not for phase shift between each pair of static
photocurrents, whereas dynamic contrasts are calculated while correcting for these two imperfections and for time shifts between
harmonic and static currents measured for each photodiode.

not just one or two of these imperfections that
need to be corrected, but all three, in order to
remove all periodic non-linearities. Providing that
the sampling condition (equation 7) is satisfied (see
section 6), these corrections have no influence on the
random noise that can be observed on the deduced
displacements. This noise was already present on the
raw photocurrents, and probably has several sources:
vibrations of the mechanical assembly, fluctuations of
the laser frequency, shot noise of the photodiodes,
parasitic signals in the electronics [16], etc. The
characterization and reduction of this noise is beyond
the scope of this article, which focuses on the correction
of non-linearities in quadrature phase differential
interferometry.

5. Correction of non-linearities due to large
amplitudes of harmonic oscillation

Generalisation. The analysis presented so far is
only valid when the linearity condition is verified, i.e.,
ϕdyn ≪ 1 (equation 5). If the harmonic displace-
ment Hdyn is not small enough, the linearisation given
as equation 9 is no longer valid. Nevertheless, it is
possible to expand the phase-modulated photocurrent
in Fourier series, the coefficients of the series being ex-
pressed by the Bessel functions of first kind [13, 17, 18].
In the following, we write equations only for channel
X1 as similar ones can be obtained for all channels, and
for the sake of simplicity we will first consider that the
imperfections presented in the previous section 4 are
not present. It can be mathematically shown that:

IX1 ≃ I0
2

[
1 +

{
J0(ϕdyn) (55)

+2

+∞∑
p=1

(−1)pJ2p(ϕdyn)cos((2p)ωt)

}
cosϕstat

−

{
2

+∞∑
p=0

(−1)pJ2p+1(ϕdyn)cos((2p+1)ωt)

}
sinϕstat

]
,

where Jk are the Bessel functions of first kind of
order k.

We identify the static component, measured by
the precision multimeters, as:

IX1
stat ≃

I0
2
[1 + J0(ϕdyn) cosϕstat] , (56)

J0(ϕdyn) =

+∞∑
n=0

(−1)n

(n!)
2

(
ϕdyn
2

)2n

(57)

= 1− ϕdyn
2

4
+
ϕdyn

4

64
− ϕdyn

6

2304
+ ... (58)

The RMS modulus of the harmonic component at
the working frequency ω/(2π), measured by the lock-in
amplifiers, is equal to:

IX1
mod ≃ I0

2
√
2
|sinϕstat|ϕdyn

2J1(ϕdyn)

ϕdyn
, (59)

2J1(ϕdyn)

ϕdyn
=

+∞∑
n=0

(−1)n

n!(n+ 1)!

(
ϕdyn
2

)2n

(60)

= 1− ϕdyn
2

8
+
ϕdyn

4

192
− ϕdyn

6

9216
+ ... (61)

We note that the argument of the harmonic
component at this frequency is still given by
equation 18.
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Figure 5. Temporal evolutions of the static and harmonic displacements obtained during the ”calibration actuation”, with
Heydemann corrections only (in red) and with all the corrections (in blue). (a) Bottom: static displacements, and linear fits
(green dashed lines). Top: corresponding residuals of the fits. (b) Modulus of the harmonic displacement.

This second type of non-linearity is explicitly
revealed by the presence of the harmonic phase ϕdyn
in Bessel functions. Comparing the equations 56
and 59 to the equations 12 and 17 obtained with
the linear analysis, we observe that a large harmonic
displacement Hdyn has two effects:

• reducing the envelope of the static interferogram
by a factor J0(ϕdyn),

• reducing the modulus of the harmonic signal by a

factor
2J1(ϕdyn)

ϕdyn
.

The same non-linear analysis can be performed
for all channels, and also in the case where the
imperfections presented in the previous section 4 are
present. Finally, a large harmonic displacement Hdyn

has two effects on the different contrasts:

• reducing the amplitude of the ellipse formed by
the static contrasts by a factor J0(ϕdyn) (same
reduction along the two axis X and Y, the center
being invariant),

• reducing the modulus of the dynamic contrasts by

a factor
2J1(ϕdyn)

ϕdyn
(same reduction for X and Y).

Corrections. These effects induced by a
large amplitude of harmonic oscillation can be taken
into account to calculate the static and harmonic
displacements.

The equations 46 and 47 giving the static
displacement should be adapted, by dividing by
J0(ϕdyn) each term where ϕstat appears (three times
for each equation). The equations 52 and 53 together
with 54 giving the harmonic displacement are modified

by dividing by
2J1(ϕdyn)

ϕdyn
each term where CX

mod or CY
mod

appears (twice in the first two equations).
The Bessel functions J0 and J1 are easily

calculated numerically by using the expansions 58 and
61 up to a required order n (note that only even order
are non zero). In the following, and unless otherwise
indicated, these corrective terms have been calculated

to order 10. A difficulty is that ϕdyn should be known
to determine ϕstat and ϕdyn. As the corrections coming
from the non-linear analysis are small, we can proceed
iteratively here too:

• we first perform the calculation with the linear
analysis (i.e., we do not include any J0(ϕdyn)

or
2J1(ϕdyn)

ϕdyn
factors) to get estimates ϕstat,0 and

ϕdyn,0,

• we secondly perform the non-linear analysis,

including J0(ϕdyn) and
2J1(ϕdyn)

ϕdyn
factors to obtain

estimates ϕstat,1 and ϕdyn,1,

• we then iterate the previous step as many times
as necessary.

In practice, we found thatM ∼ 2 iterations are enough
for the value of ϕstat,M and ϕdyn,M to converge within
1%. Note that for each of the M = 2 steps of this
iterative procedure to take account of large amplitudes
of harmonic oscillation, another iterative procedure
with N = 3 steps is performed to take account of
phase shifts between the static signals for each pair
of photodiodes (as explained in previous section 4).
Therefore the calculation involves a total of M ×N =
6 steps.

Results. Figure 6(a) shows a Lissajous plot of
the static contrasts defined as equations 42 and 43
(in red), when successively applying harmonic voltages
of amplitudes Vdyn = 0.008, 0.08 and 0.2 Vrms to the
actuator. We clearly see that the interferometer covers
different ellipses, of same center but of amplitude
decreasing with the amplitude of harmonic oscillation.
Corrected contrasts, used only for this graph, can be
calculated by dividing the distance to center by the
factor J0(ϕdyn). The result is shown in blue, and we
see that the data obtained for different amplitudes of
harmonic oscillation are now nicely superimposed on
the largest ellipse. This graphically allows to check
that the influence of a large amplitude of harmonic
oscillation on the static contrasts is well described
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by our analysis, and that the correction proposed
in the previous subsection is appropriate. This is
important, because we observed that if the influence of
a large amplitude of harmonic oscillation on the static
contrasts was not corrected, this would lead to periodic
non-linearities in the determination of the static and
harmonic displacements (similar to the ones shown in
Figure 5).

In Figure 6(b) is represented the harmonic dis-
placement Hdyn as a function of the rms ampli-
tude Vdyn of the harmonic voltage applied to the actu-
ator, in log-log scales. The red markers (resp. blue
markers) are the obtained without correcting (resp.

while correcting) for the factor
2J1(ϕdyn)

ϕdyn
in the modu-

lus of the harmonic signals. The corrected data exhibit
a perfect linear behaviour over 2 decades of harmonic
displacements, from ∼ 0.7 nm to ∼ 70 nm. The blue
line is a linear fit of the form:

Hdyn = α(30 Hz)×Vdyn, (62)

with α30 Hz = 181.1 ± 0.6 nm/Vrms which is the
electro-mechanical response coefficient of our actuator
at 30 Hz. This proves that the actuator response
is linear and that the influence of a large amplitude
of harmonic oscillation on the dynamic contrasts is
well corrected by our analysis. On the contrary, the
uncorrected data exhibit a sub-linear shape. The red
curve is a prediction of the form:

Hdyn =
λ

4π
× 2J1

(
4πα(30 Hz)Vdyn

λ

)
. (63)

This theoretical curve nicely passes through the
experimental points, again showing that the influence
of a large amplitude of harmonic oscillation on the
dynamic contrasts is well corrected by our analysis.
If the influence of a large amplitude of harmonic
oscillation on the dynamic contrasts was not corrected,
this would lead to an underestimation of the harmonic
displacement. We can use this criterion to precisely
specify the range of validity of the linear analysis: for
Hdyn = 10 nm the linear analysis underestimate the
harmonic displacement by only 0.03%, for Hdyn =
17 nm the linear analysis underestimate the harmonic
displacement by 1% and for Hdyn = 70 nm the linear
analysis underestimate the harmonic displacement by
22%. Thus we can refine the linearity condition given
in equation 5 by saying that the linear analysis holds
within ∼ 1% for harmonic displacements lower than ∼
20 nm.

An important aspect is to choose the order n
up to which the expansions 58 and 61 are used to
calculate the Bessel functions J0 and J1. Figure 6(c)
shows on top the calculated harmonic displacement
as a function of the calculation order, for a harmonic

voltage of amplitude Vdyn = 0.4 Vrms applied to the
actuator. The black dashed line is the value for n = 10
equal to ∼ 72 nm, and the markers in blue (resp.
in red) indicate values smaller (resp. larger) than
the value for n = 10. At the beginning the linear
analysis underestimates the harmonic displacement,
but then the terms of alternating signs coming from
the non-linear correction lead to an damped oscillatory
shape. The bottom graph shows in semi-log scales the
absolute value of the relative error committed when
stopping the calculation at a given order n compared
to order n = 10, defined as:

|err [Hdyn]| =
|Hdyn(n)−Hdyn(n = 10)|

Hdyn(n = 10)
. (64)

The markers in blue (resp. in red) indicate negative
(resp. positive) errors. The error continuously
decreases with the correction order, and the black
dashed line suggests this decrease is exponential with
an error that is divided by ∼ 50 every time a correction
term is added (n incremented by 2, the odd terms
being zero). This characterisation allows to choose the
order n as a function of the desired precision in the
determination of the harmonic displacement. For all
the data presented in this paper, we have used n = 10
to make this error negligibly small compared with the
noise and drift of the experimental data.

6. Robustness of the corrections

So far we have presented data obtained for a
single velocity v = 2.45 nm/s and a single
frequency ω/(2π) = 30 Hz, and in cases where the
two types of non-linearities presented in the previous
sections 4 and 5 were not present at the time. The
objective of this section is to assess the robustness of
the analysis, when varying the velocity and frequency,
and when the two types of non-linearities are present
simultaneously.

Velocity. In Figure 7(a) is shown the temporal
evolution of the harmonic displacement when applying
a harmonic voltage of amplitude Vdyn = 0.02 Vrms

to the actuator, for different quasi-static velocities.
The time axis is rescaled by the velocity v in order
to be able to compare the signals graphically. For
v = 0.20 nm/s (smallest velocity, in red) and v =
2.0 nm/s (velocity typically used for calibration, in
blue), the signals present no periodic non-linearities
but random noise of standard deviation of 7 pm
around a mean value of 3.653 nm, hence a relative
standard deviation of 0.2%. In contrast, the signal
for v = 20 nm/s (in green) presents a slightly smaller
mean value of 3.587 nm and a significantly larger
standard deviation of 0.2 nm, corresponding to a
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Figure 6. (a) Lissajous plot of the static contrasts, when successively applying harmonic voltages of amplitudes Vdyn =
0.008, 0.08 and 0.2 Vrms and simultaneously a static displacement at velocity v = 2.45 nm/s to the actuator. The red curves are the
raw signals, whereas the blue curves are obtained by correcting for non-linear effects. (b) Modulus of the harmonic displacement
as a function of the rms amplitude of the harmonic voltage applied to the actuator, in log-log scales, while applying no quasi-static
motion. The red markers are the raw measurements, whereas the blue markers are obtained by correcting for non-linear effects.
The blue curve is a linear fit of the corrected data, whereas the red curve is the prediction from the non-linear analysis given by
equation 63. (c) Top: Modulus of the harmonic displacement, for a harmonic voltage of amplitude Vdyn = 0.4 Vrms applied to the
actuator, as a function of the correction order n. The black dashed line is the value for n = 10, and the markers in blue (resp. in
red) indicate values smaller (resp. larger) than the value for n = 10. Bottom: Corresponding absolute value of the relative error on
the modulus of the harmonic displacement as a function of the correction order n, in semi-log scales. The black dashed line is an
exponential fit, excluding the values for n = 0 and n = 10.

relative standard deviation of 5%. Of course, for these
three runs the true harmonic displacement was exactly
the same constant, and the differences observed here
are measurement artefacts. We think that this velocity
effect is due to the sampling condition (equation 7) that
no longer holds.

We have systematically characterised the influence
of the velocity on the average and the fluctuations
of the harmonic displacement. Figure 7(b) shows
how the mean of the harmonic displacement is
modified relatively to its value at the smallest
velocity of 0.2 nm/s (considered as the true harmonic
displacement), in absolute value (quantity labelled
as |err [⟨Hdyn⟩]|, in red, left axis). The same
graph also shows how the standard deviation of
the harmonic displacement varies relatively to the
true harmonic displacement (quantity labelled as
err [σ (Hdyn)]), in blue, right axis). At small velocities,
the determination of the harmonic displacement is
the most accurate, precise and independent of the
velocity. At large velocities, the determination of the
harmonic displacement becomes clearly dependent on
the velocity, with the accuracy and more significantly
the precision which are all the more degraded than the
velocity is large. We can refine the sampling condition
given in equation 7 by saying that the analysis holds
within ∼ 1% in accuracy and precision for velocities
lower than ∼ 5 nm/s for a sampling period T = 1 s.

Combined corrections. An important question
is whether the methods proposed to correct for the two
types of non-linearities, due to optical and electronic
imperfections (section 4), and due to large amplitudes

of harmonic oscillation (section 5), work when these
two types of non-linearities are present simultaneously.
It can be evaluated by checking whether or not the
harmonic displacement exhibits periodic oscillations
when applying a static displacement at a finite velocity
v = 2.45 nm/s and a harmonic voltage of very
large amplitude. To be able to graphically compare
the result with signals obtained at small harmonic
voltages, we define the relative error on the harmonic
displacement as:

err [Hdyn] =
Hdyn − ⟨Hdyn⟩

⟨Hdyn⟩
, (65)

where ⟨·⟩ indicates a time average. Figure 7(c) shows
the temporal evolution of this quantity when applying
a static displacement at velocity v = 2.45 nm/s and a
harmonic voltage of amplitude Vdyn = 0.008 Vrms (in
red), Vdyn = 0.08 Vrms (in blue) or Vdyn = 0.2 Vrms

(in green) to the actuator, corresponding to average
harmonic displacements of respectively 1.5 nm, 15 nm
and 36 nm. We see that no periodic non-linearities
are observed for either curves, and in particular for the
one with the largest harmonic voltage. The proposed
corrections work very satisfactorily even when both
types of non-linearity are present simultaneously.

We can note a slightly larger random noise for
the lowest harmonic voltage (respectively 0.43%, 0.29%
and 0.30%). This is explained by some instrumental
noise which is independent of the amplitude of the
harmonic displacement, and which has therefore a
relatively stronger impact on the measurements in the
case of small harmonic displacements.
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Figure 7. (a) Temporal evolution of the modulus of the harmonic displacement, when applying a harmonic voltage of amplitude
Vdyn = 0.02 Vrms to the actuator, and a static displacement at velocity v = 0.20 nm/s (in red), v = 2.0 nm/s (in blue) or v = 20 nm/s
(in green). Time has been multiplied by the corresponding velocity, so that the signals can be compared. (b) Relative error on
the average (in red, left axis) and relative error on the standard deviation (in blue, right axis) over the measured modulus of the
harmonic displacement, as a function of the static velocity, in semi-log scales. (c) Temporal evolution of the relative error on the
modulus of the harmonic displacement, when applying a static displacement at velocity v = 2.45 nm/s and a harmonic voltage of
amplitude Vdyn = 0.008 Vrms (in red), Vdyn = 0.08 Vrms (in blue) or Vdyn = 0.2 Vrms (in green) to the actuator.

Frequency. Figure 8(a) shows the variation of
the harmonic displacement when scanning the working
frequency ω/(2π) from 10 Hz to 500 Hz, for four
different harmonic voltages: Vdyn = 0.0027 Vrms

(in blue), Vdyn = 0.013 Vrms (in green), Vdyn =
0.053 Vrms (in yellow) or Vdyn = 0.27 Vrms (in red).
Note that the measured harmonic displacements range
between ∼ 20 pm and ∼ 80 nm. The general shape is
reminiscent of the electro-mechanical response of our
actuator, described in section 2, which can be modelled
as a damped mass-spring system with a resonance
frequency around 115 Hz. The dips in the curves
around 115 Hz, all the more pronounced that the
harmonic voltage is large, are due to an electronic
saturation of the lock-in amplifier inputs, limiting
the measurements to maximum of ∼ 80 nm. This
saturation could be removed by inserting a current
divider, not implemented here. We also remark
peaks every multiple of 50 Hz, all the more visible
that the harmonic voltage is small. This is 50 Hz
electronic noise coming from the power supply and
irradiating the cables connecting the photodiodes to
the amperemeters, which is present even if these cables
are ground shielded. Overall, one can say that the
range of measurable harmonic displacements is limited
here by the electronics, and not by the signal analysis
described in this article.

In Figure 8(b) the harmonic displacements Hdyn

are rescaled by the harmonic voltages Vdyn, and we
observe that all the curves collapse on a single master
curve (except for points corresponding to saturation of
the lock-in amplifier inputs and to 50 Hz noise). This
electro-mechanical response can be fitted with a simple
harmonic oscillator model (black dashed line), of the
form:

α(ω) ≡ Hdyn

Vdyn
=

A√
(1− (ω/ω0)2)

2
+ ((ω/ω0)/Q)

2
,

(66)
with A = 170 ± 40 nm/Vrms the static response,
ω0/(2π) = 115.02 ± 0.04 Hz the resonance frequency
and Q = 66 ± 2 the quality factor. This first shows
that the actuator response is linear in this entire
frequency range, and is satisfactorily modelled by a
harmonic oscillator. More importantly for the subject
of this paper, this secondly shows that the signal
analysis described here provides quantitative results.
In particular, the corrections for the two types of non-
linearities, due to optical and electronic imperfections
and due to large amplitudes of harmonic oscillation,
work whatever the frequency. We also find that the
filtering condition given by equation 8 is fulfilled for
frequencies as low as 10 Hz.

7. Discussion

Non-linearities due to optical and electronic
imperfections. To our knowledge, the correction of
the imperfections presented in section 4 have never
been reported in the literature. More precisely, the
amplitude ratio and phase shift between each pair
of photodiodes, leading to periodic non-linearities
when normalizing the photocurrents to compute the
contrasts, have never been mentioned. One possible
reason is that, in many cases, the signals are not
normalized, perhaps because light source fluctuations
have a negligible influence in these applications.

Generally, Heydemann corrections are applied off-
line, i.e., after data acquisition, by digital analysis of
the signals [19, 4, 3, 20], as we have done in the present



Correction of non-linearities in quadrature phase differential interferometry 16

Figure 8. (a) Modulus of the harmonic displacement as a function of frequency, when applying a harmonic voltage of amplitude
Vdyn = 0.0027 Vrms (in blue), Vdyn = 0.013 Vrms (in green), Vdyn = 0.053 Vrms (in yellow) or Vdyn = 0.27 Vrms (in red) to the
actuator. (b) Same data, where the modulus of the harmonic displacement has been divided by the corresponding amplitude of
harmonic voltage. The black dashed line is a fit with a harmonic oscillator model.

study. In order to achieve fast real time measurements,
Heydemann corrections can also be applied live, i.e.,
prior to data acquisition, by electronic manipulation
of the signals, with the ellipse parameters calibrated
beforehand [21]; we believe that such approaches
could be adapted to include the additional corrections
presented here. Harmonic calibration has been shown
to outperform the Heydemann corrections [22]. Such
calibration may implicitly include the imperfections
highlighted in this paper, but one of the advantages of
our approach is that the imperfections and their origins
are explicitly identified.

The use of optical shutters has proved to be
an alternative method for calibrating the correction
parameters when only a small part of the ellipse can be
explored [23]. This method could also be implemented
for our new corrections, except that it only works for
ideal phase shifts (perfectly in-phase pairs of static
signals, and perfect quadrature between X and Y
channels), which presupposes perfect adjustment of the
optical elements at the origin of these imperfections
(Wollaston prisms, quarter-wave plate). The addition
of another channel to simultaneously measure a
fraction of the intensity coming from the light source
has recently been proposed [24]. This could be done
in our set-up, for example by adding a photodiode
at the unused output of the first beamsplitter.
Compensation for fluctuations in laser intensity could
be achieved by normalizing the interference signals
with this reference instead of combining each pair of
signals, thus avoiding the non-linearities caused by
the amplitude ratio and phase shift between them.
Two-wavelength interferometry has proved suitable
to correct periodic non-linearities [25], however such
heterodyne techniques are much more complex to
implement.

More generally, a wide variety of sophisticated
optical interferometers have been designed -using
two wavelengths, modulators, capacitive sensors, etc.-

with exquisite sensitivity and linearity [26, 16],
however a comparison of their performance with our
implementation of quadrature phase interferometry is
well beyond the scope of this paper, as it would require
a dedicated review.

Non-linearities due to large amplitudes of
harmonic oscillation. The corrections of the non-
linearities presented in section 5 are only relevant
in the case where the phase to be determined is
the sum of a quasi-static component and a small
harmonic component, with an analysis assuming that
the harmonic component as a perturbation of the
static one. Such a superposition probed by quadrature
phase differential interferometry has, to our knowledge,
mainly been tackled by our team in the context of the
dSFA.

In a previous publication [15], we proposed a
method to produce a single real-time analog output
for quadrature phase interferometry. In short, it
consisted in processing the total photocurrents (static
plus harmonic) in home-made electronics to transform
them into total contrasts as:

CX =
IX1 − IX2

IX1 + IX2
(67)

CY =
IY1 − IY2

IY1 + IY2
. (68)

On one hand, these signals were sent to precision
multimeters to obtain analog signals for the static
contrasts (CX

stat, CY
stat), which were numerically

analysed to obtain the static phase and so the static
displacement via Heydemann corrections. On the other
hand, the total contrasts were sent in an electronic
circuit performing the following operation [13]:

U =
〈
CX

〉
× CY −

〈
CY

〉
× CX, (69)

which, under conditions of linearity, generates an
analog signal that is simply proportional to the
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harmonic phase and so to the harmonic displacement.
In practice, periodic non-linearities were observed for
the signal U as a function of the static phase, which
were empirically calibrated with a truncated Fourier
series.

Although this approach provides a single real-
time analog output from a 4-channel interferometer
for the harmonic displacement, it presents in this
form several important limitations with respect to
the imperfections reported in the present paper.
First, particular care must be taken when installing
this additional electronics to avoid inducing new
imperfections as DC offsets, amplification errors and
reduced bandwidth. Then, the amplitude ratio and
phase shift between each pair of photodiodes were
not taken into account for the electronic calculation
of the contrasts. This lead to the observation of
a trifolium for the residuals on the elliptical fit of
the static contrast, and to periodic non-linearities
in the determination of the static and harmonic
displacements which were approximatively corrected
with an empirical calibration. This could be resolved
by correcting these imperfections electronically, in the
spirit of the live Heydemann corrections that have been
proposed previously [21]. There, the expansion for
large amplitudes of harmonic oscillation was limited
to order n = 2 with a coefficient which was determined
experimentally, and the analysis neglected the effect
on the static signals. Consequently, this analysis
required an additional calibration, and it lead to
even more pronounced periodic non-linearities in the
determination of the static displacement and to a
∼ 10% overestimation of the harmonic displacement.
The analysis presented here, i.e., the expansion of the
static and harmonic signals for large amplitudes of
harmonic oscillation to an arbitrary order n, could
be easily implemented to correct the non-linearities
on the signal U , quantitatively and without specific
calibration.

8. Conclusion

To summarize, this paper has dealt with two types
of non-linearities that quadrature phase differential
interferometry can suffer from. The first type
of non-linearities is due to optical and electronic
imperfections, specifically to amplitude ratio and
phase shift between each pair of photodiodes. These
imperfections have been clearly highlighted, their
origins have been identified, and new calibrations and
analysis have allowed to correct them. The second type
of non-linearities is due to large amplitudes of harmonic
oscillation. An analytical extension of the analysis to
the non-linear regime of harmonic perturbation has
been developed and successfully implemented. The

methods proposed to correct the two types of non-
linearities are very general and have proved effective
over a wide range of quasi-static velocities, frequencies
and amplitudes of harmonic oscillation.

We list below the key aspects of the new
procedures of calibration and analysis.

• All the measurements should be carried out
at sufficiently low quasi-static velocity (typically
v < 5 nm/s for a red-emitting laser and a
∼ 1 s sampling time) and with a sufficiently
high frequency of harmonic oscillation (typically
ω/(2π) > 10 Hz for a ∼ 100 ms integration time),
to ensure the quasi-static, sampling and filtering
conditions are met.

• Calibrations at constant constant quasi-static
velocity and low amplitude of harmonic oscillation
(typically v ∼ 1 nm/s and Hdyn ∼ 1 nm)
allow to precisely quantify the signals deviations
from ideality due to optical and electronic
imperfections. Eleven parameters, listed in
Table 1, are extracted: 5 parameters are the usual
ones introduced by Heydemann and obtained by
elliptical fits, while 6 parameters are new and
obtained by simple sinusoidal fits.

• Static and dynamic contrasts can be defined as
in equations 42, 50 and 51 in order to correct all
the non-linearities, except the ones due to phase
shifts between each pair of photodiodes and to
large amplitudes of harmonic oscillation.

• The phase shifts between each pair of photodiodes
are small and can be corrected by determining the
static phase iteratively (only ∼ 3 iterations needed
for a ∼ 1% convergence).

• Large amplitudes of harmonic oscillation tend
to reduce the amplitudes of the static and
harmonic signals, by factors which can be
calculated analytically from the harmonic phase
to be determined. These effects can be taken
into account quantitatively by determining the
static and harmonic phases iteratively (only ∼ 2
iterations needed for a ∼ 1% convergence).

As shown in this manuscript, these non-linearities
have a significant impact on the precision and accuracy
of the measured displacements. Therefore, the
correction of these non-linearities will be beneficial in
a large number of applications of quadrature phase
differential interferometry. It is particularly the case
in the context of the dSFA [10], an instrument used
in our team and for which this work was initiated.
Its principle consists in confining a liquid between
two solid surfaces, varying the distance between the
surfaces and probing the force acting between the
surfaces. The distance is controlled with a quasi-static
component plus a dynamic component of sinusoidal
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shape, and so does the force in the framework of the
linear mechanical response of the system. Quadrature
phase differential interferometry is then a tool of
choice to measure these static and harmonic distance
and force (via the deflection of an elastic element),
typically ranging from 10 pm to 10 µm. The first
type of non-linearities discussed here leads to periodic
oscillations on the determined harmonic displacement,
of ∼ 14% in amplitude at the interferogram’s period.
The second type of non-linearities appears with large
amplitudes of harmonic oscillation, which are often
imposed to the distance between the surfaces in order
to obtain a substantial, measurable, harmonic force.
This leads to an underestimation of the harmonic
displacement, all the more pronounced the greater the
amplitude of harmonic oscillation, of ∼ 25% for a
typical oscillation of amplitude 70 nm. It is clear that
all these errors should be avoided for the realization
of quantitative measurements of the nano-rheology
of confined liquids, and in particular for the fine
and unambiguous determination of the hydrodynamic
boundary condition, the so-called hydrodynamic slip
length [11]. Finally, the correction of these non-
linearities is important not only for the dSFA, but also
for all mechanical studies requiring the measurement of
nanometric displacements with an exquisite sensitivity.
For example, the methods presented in this article
might be of great interest for many applications
including AFM [3], laser vibrometry [23, 27], or even
the detection of protein folding [28].
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