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2. Abstract  

Alzheimer’s disease (AD) brain markers are needed to select people with early-stage AD 

for clinical trials and as quantitative endpoint measures in trials. Using 10 clinical cohorts 

(N=9,140) and the community volunteer UK Biobank (N=37,664) we performed region of 

interest (ROI) and vertex-wise analyses of grey-matter structure (thickness, surface area and 

volume). We identified 94 trait-ROI significant associations, and 307 distinct cluster of vertex-

associations, which partly overlap the ROI associations. For AD vs. controls, smaller 

hippocampus, amygdala and of the medial temporal lobe (fusiform and parahippocampal gyri) 

was confirmed and the vertex-wise results provided unprecedented localisation of some of the 

associated region. We replicated AD associated differences in several subcortical (putamen, 

accumbens) and cortical regions (inferior parietal, postcentral, middle temporal, transverse 

temporal, inferior temporal, paracentral, superior frontal). These grey-matter regions and their 

relative effect sizes can help refine our understanding of the brain regions that may drive or 

precede the widespread brain atrophy observed in AD. An AD grey-matter score evaluated in 

independent cohorts was significantly associated with cognition, MCI status, AD conversion 

(progression from cognitively normal or MCI to AD), genetic risk, and tau concentration in 

individuals with none or mild cognitive impairments (AUC in 0.54-0.70, pvalue<5e-4). In 

addition, some of the grey-matter regions associated with cognitive impairment, progression 

to AD (“conversion”), and cognition/functional scores were also associated with AD, which 

sheds light on the grey-matter markers of disease stages, and their relationship with cognitive 

or functional impairment.   

Our multi-cohort approach provides robust and fine-grained maps the grey-matter 

structures associated with AD, symptoms, and progression, and calls for even larger initiatives 

to unveil the full complexity of grey-matter structure in AD. 

 



 

 

3. Introduction 

Research into Alzheimer’s disease (AD) aetiology suggests that the underlying neuropathology 

(toxic amyloid-β [Aβ] species and hyperphosphorylated tau protein accumulation) can be 

observed many years (possibly decades) before the first symptoms of cognitive or functional 

decline (Jack et al., 2010; Villemagne et al., 2013). Accumulation of Aβ and tau is thought to 

result in synaptic, neuronal and axonal damage, leading to grey-matter atrophy, typically seen 

first in the hippocampus and medial temporal lobe (Frisoni et al., 2010; Jack et al., 2010). These 

brain changes progressively tap into the ‘brain reserve’(Fratiglioni & Wang, 2007), which 

could explain the delay between brain atrophy and onset of mild cognitive impairment, which 

itself can precede AD diagnosis by a few years(Apostolova, 2016; Frisoni et al., 2010; Jack et 

al., 2010).  

 Recent clinical trials testing new drugs for AD focus on individuals with early AD (mild 

cognitive impairment or mild dementia) (van Dyck et al., 2023). Hence, AD imaging 

biomarkers are needed to improve disease staging(Matsuda, 2016), identify trial participants, 

and could also serve as secondary endpoints in trials to evaluate the effect of 

treatment/intervention on the brain (van Dyck et al., 2023). In research, brain biomarkers may 

be used to study AD risk in cohorts where the information was not collected or available, and 

to prioritise the disease-relevant brain regions in molecular analyses (e.g., omics). 

 PET (positron emission tomography) is considered the brain imaging modality of 

choice for Alzheimer’s in that it can measure Aβ, tau or fluorodeoxyglucose (synaptic 

dysfunction) (Jack et al., 2010). However, the radiochemistry availability and cost limit its use 

in research and the number of scans available. In comparison, structural MRI (sMRI) can 

provide biomarkers of early AD, is less invasive and leverages scans that have been extensively 



collected in both clinical and research settings. In addition, sMRI can capture grey-matter 

changes regardless of the underlying neuropathological processes and is hence potentially more 

sensitive (Bejanin et al., 2017; Chételat et al., 2010; Frisoni et al., 2009).  

 Several studies have identified brain regions more susceptible to grey-matter atrophy 

in Alzheimer’s disease. Early atrophy of hippocampus, amygdala and medial temporal lobe 

(entorhinal, parahippocampus gyri) has been well documented, and even confirmed by 

neuronal counts in autopsies(Johnson et al., 2012). Atrophy has also been reported in the 

posterior cingulate, precuneus and in the rest of the temporal lobe, or in the sensory and primary 

motor cortex although they are thought to appear later in the disease progression(Johnson et 

al., 2012; van Oostveen & de Lange, 2021). However, most of these neuroimaging studies have 

relied on a single neuroimaging cohort and the reported levels of regional atrophy vary widely 

from one study to the next (e.g. hippocampal reduction reported between 15-25%, yearly rate 

of atrophy between 3-5%) (Johnson et al., 2012), which may reflect different disease severity 

or stages in the sample, but may also reflect a lack of precision of the effect sizes estimated 

from small samples(Marek et al., 2022). In addition, there is currently no multi-cohort agnostic 

study of structural AD brain markers (e.g. similar to that of the ENIGMA 

consortium(Thompson et al., 2020)), that can quantify the relative associations of the different 

brain regions, provide robust maps of associations (generalizable to other cohorts) and detect 

novel associations by boosting statistical power(Marek et al., 2022; Smith & Nichols, 2018). 

To answer this challenge, we have gathered almost 10,000 scans from 10 clinical cohorts (and 

>37,000 from the UK Biobank), to perform exploratory analyses of brain markers of 

Alzheimer’s disease. We have used the ENIGMA processing pipelines to extract grey-matter 

measurements to make our results comparable with those obtained by the consortium on other 

disorders of the brain(Thompson et al., 2020). 



Neuroimaging studies of AD progression from MCI or cognitively normal (CN) (and 

more generally of early stages of AD) can shed light on early brain markers, which are of 

greater clinical interest. However, they are limited by small sample sizes that reflect the 

difficulty, and cost associated with following individuals prospectively, over years. As a 

consequence, only the hippocampus and entorhinal cortex have been confidently linked to 

Alzheimer’s conversion (i.e. progression from MCI or CN to AD related dementia) (Lombardi 

et al., 2020), and predictors based on brain structure currently exhibit low robustness and 

performance (Ansart et al., 2021). Here, we combined data from several cohorts, to directly 

investigate the structural brain markers associated with MCI status, Alzheimer’s conversion, 

as well as neuropsychological (cognition and functioning) scores. In addition, we 

systematically evaluated the (out-of-sample) prediction accuracy achieved from the identified 

biomarkers of Alzheimer’s disease course and quantify their generalizability and possible 

usage in research or clinical trials.   

Another limitation of the brain biomarkers identified to date is that they comprise broad 

brain regions or structures (regions of interest [ROI]) which lack precision or specificity. For 

example, the medial temporal lobe atrophy reported, does not precisely identify the atrophied 

gyri or the contours of the susceptible region(s). Lower hippocampal volume in AD is well 

established, and may originate in the CA1 subfield(de Flores et al., 2015), although it is also 

observed across most subfields(J. Zhang et al., 2023). More precise association maps (at a 

voxel/vertex wise level) are needed, that could reveal disease specific signatures in grey-matter 

structure, beyond the reduction in hippocampal volume (and subfields) that have been found 

for most diseases studied by the ENIGMA (Enhancing Neuro-Imaging Genetics through Meta-

Analysis) consortium(Thompson et al., 2020). To progress this issue, we complemented our 

ROI based analyses by brain wide association studies at a vertex level. The large samples sizes 

we gathered provides improved statistical power to detect significant brain regions, despite the 



high multiple testing correction(Smith & Nichols, 2018). Vertex-wise measurements capture 

more of the grey-matter complexity, than ROI measurements(Couvy-Duchesne, Strike, et al., 

2020; Fürtjes et al., 2023), which should pave the way to more performant brain based 

predictors(Couvy-Duchesne, Strike, et al., 2020).  

In our primary analysis, we performed a multi-cohort investigation of grey-matter 

structure associated with Alzheimer’s disease. Our project complements the current ENIGMA 

initiatives(Thompson et al., 2020) by extending the analyses to Alzheimer’s disease. In 

addition to a Region of Interest (ROI) approach, we perform analyses at a vertex level, to 

identify more localized brain markers, that could be more disease specific and 

predictive(Couvy-Duchesne et al., 2022; Couvy-Duchesne, Strike, et al., 2020). To ensure 

robust results, we systematically evaluated replication and out-of-sample prediction that the 

brain markers can achieve(Couvy-Duchesne et al., 2022; Marek et al., 2022). Finally, in a 

secondary analysis, we investigated the grey-matter associations with several disease stages 

(MCI, conversion), symptoms (cognition, functioning) and AD risk (family history). Together, 

primary and secondary analyses can help identify converging brain biomarkers and evaluate 

how they translate into risk prediction across disease stages.  

 

4. Material and Methods 

4.1. Samples  

Data from 11 cohorts of older adults that collected structural brain MRI (T1w) were used 

together with clinical information or neuropsychological scores of interests (Table 1, see 

Appendix A and STable 1, for details). We included data from ADNI (Alzheimer's Disease 

Neuroimaging Initiative, which we split in two cohorts ADNI1 and ADNI2+GO+3, based on 

MRI scanners [1.5T vs. 3T]), AIBL (Australian Imaging, Biomarker and Lifestyle)(Ellis et al., 

2009), ARWIBO (Alzheimer's Disease Repository Without Borders)(Frisoni et al., 2020; 



Riello et al., 2005), EPAD (European Prevention of Alzheimer’s Dementia)(Lorenzini et al., 

2021; Ritchie et al., 2020; Solomon et al., 2019), MAS (Sydney Memory and Ageing 

Study)(Kochan et al., 2010; Sachdev et al., 2010; Tsang et al., 2013), OASIS3 (Open Access 

Series of Imaging Studies 3)(LaMontagne et al., 2018), OATS (Older Adults Twin 

Study)(Koncz et al., 2018; Sachdev et al., 2009, 2013), MEMENTO (Dufouil et al., 2017) and 

PISA (Prospective Imaging Study of Ageing: Genes, Brain and Behaviour)(Lupton et al., 2020) 

and the UK Biobank(Miller et al., 2016).   

 We used ADNI1, ADNI2GO3, AIBL, ARWIBO, EPAD, MAS, OASIS3 and OATS as 

discovery samples, which together comprise 6,981 individuals with usable brain MRI, 

including 4,653 healthy controls at the time of MRI, 1,343 individuals with mild cognitive 

impairment (MCI) and 796 Alzheimer’s disease cases (Table 1). We sought to replicate the 

findings in MEMENTO (N=1,880) and PISA (N=279). The UK Biobank is, by far, the largest 

neuroimaging study (N=37,644), but due to the recruitment strategy (community volunteer, 

and age range) there were no AD cases at the time of imaging, and only a handful of incident 

cases had been reported at the time of data extraction. Thus, we only used the UKB in our 

analyses of parental history (Appendix A, Table 1, STable 1). 

 

Table 1: Summary of the cohorts used in the analyses. 
 Sample N Age Sex AD MCI HC‡ Other data 
 (field 

strength and 
scanner) 

 Mean 
(SD) 

N female 
(%) 

N (%) N (%) N (%)  

Di
sc

ov
er

y 

ADNI1 
(1.5T; GE, 
Philips, 
Siemens) 

805 75.2 
(6.8) 

465 
(57.8%) 

186 
(23.0%) 

393 
(49.0%) 

226 
(28.0%) 

Conversion (1-5 
years); MMSE; CDR; 
FAQ; GDS; NPI-Q; 
RAVLT; Logical 
Memory; Family 
history 

ADNI2GO3 1,410 72.1 
(7.19) 

733 
(50.3%) 

195 
(13.8%) 

619 
(43.9%) 

577 
(41.0%) 

Conversion (1-5 years); 
MMSE; CDR; FAQ;  
GDS; NPI-Q; RAVLT; 



(3T; GE, 
Philips, 
Siemens) 

Logical Memory; 
Family history 

AIBL 
(1.5 and 
3T; 
Siemens) 

606 72.8 
(6.7) 

335 
(55.3%) 

72 
(11.9%) 

89 
(14.7%) 

443 
(73.1%) 

Conversion (1-5 
years)*; MMSE; CDR; 
Logical Memory 

ARWIBO 
(1 and 
1.5T; GE, 
Philips, 
Siemens) 

934 56.7 
(16.0) 

565 
(60.5%) 

130 
(13.9%) 

0 (0%) 715 
(76.6%) 

MMSE; CDR; Family 
History 

EPAD 
(1.5 and 
3T; GE, 
Philips, 
Siemens) 

1,315 64.4 
(7.1) 

748 
(56.8%) 

0 (0%) 0 (0%) 1,315 
(100%) 

Conversion (1-3 years); 
MMSE; CDR; GDS; 
Family History 

MAS 
(3T; 
Philips) 

527 78.4 
(4.7) 

290 
(55.0%) 

0 (0%) 175 
(33.2%) 

288 
(54.6%) 

Conversion (2-5 years); 
MMSE; CDR; RAVLT; 
Logical memory 

OASIS3 
(1.5 and 
3T; 
Siemens) 

1,019 70.7 
(9.3) 

565 
(55.4%) 

207 
(20.3%) 

21 
(0.02%) 

791 
(77.6%) 

Conversion (1-5 years); 
MMSE; CDR; GDS; NPI-
Q; Logical Memory; 
Family History 

OATS  
(1.5T; 
Philips, 
Siemens) 

365 70.3 
(5.1) 

240 
(65.8%) 

6 
(1.4%) 

46 
(12.6%) 

308 
(84.4%) 

Conversion (2-5 
years)*; MMSE; GDS; 
NPI-Q; RAVLT; Logical 
Memory 

UKB  
(3T; 
Siemens) 

37,664 63.6 
(7.5) 

20,056 
(53.3%) 

0 (0%) 0 (0%) 37,664 
(100%) 

Conversion (2-10 
years)*; Family history 

Re
pl

ic
at

io
n  

MEMENTO 
(1.5 and 
3T; GE, 
Philips, 
Siemens) 

1,880 70.0 
(8.7) 

1,199 
(63.8%) 

0 (0%) 1,575 
(83.8%) 

305 
(16.2%) 

Conversion (1-5 years); 
MMSE; CDR, IADL 
(proxy for FAQ), 
DMS48 (proxy for 
logical memory scores) 

PISA 
(3T; 
Siemens) 

279 60.6 
(6.9) 

193 
(72.3%) 

26 
(9.7%) 

21 
(7.9%) 

220 
(82.4%) 

RAVLT 

* Denotes that numbers were too small to be used in meta-analyses. 
‡ We defined as “healthy controls” individuals without a diagnosis of AD or MCI, but they 
may differ between cohorts according to the recruitment strategies and screening. For 
example, MEMENTO recruited in memory clinics, and all HC have subjective cognitive 



decline, while ARWIBO controls were screened for a range of neurodegenerative disorders. 
See Appendix A for more details.   
 

4.2. Clinical status and traits of interest 

We tested for differences in grey-matter structure of individuals with Alzheimer’s disease to 

that of healthy controls (AD vs. HC) and MCI (AD vs. MCI), and between MCI and controls 

(MCI vs. HC). We also used a 3-point scale: 0= HC, 1=MCI, 2=AD).  

We studied AD conversion (or progression to AD dementia) using participants who were 

recorded as controls and MCI individuals at the time of brain imaging but who later received a 

diagnosis of Alzheimer’s disease and considered different post-imaging time frames (1, 2, 3, 4 

and 5 years). We ensured that non-converter individuals had been also followed over the same 

time window. 

We studied neuropsychological scales that were available in at least 4 out of the 8 discovery 

cohorts or that were available on more than 3,000 individuals. Thus, we considered scores from 

the Mini Mental Scale Evaluation (MMSE, available on all cohorts), Clinical Dementia Rating 

(CDR), Functional Activity Questionnaire (FAQ) that assess dementia symptoms and 

functioning. We also included the Geriatric Depression Scale (GDS) and the Neuropsychiatric 

Inventory Questionnaire (NPI-Q) that focus on the psychiatric domains often associated with 

Alzheimer’s. In addition, we studied memory scores such as the Rey Auditory Verbal Learning 

Test (RAVLT) which produces 5 scores of verbal memory (short term memory, working 

memory and long-term memory), and the Logical Memory scores that target episodic memory 

(short and long term).  

Lastly, we considered self-reported maternal and paternal history of Alzheimer’s disease. 

Parental history is available on the UK Biobank and could serve as a proxy phenotype for 

Alzheimer’s disease in samples that do not contain many cases(Marioni et al., 2018).  

 



4.3. MRI acquisition and processing 

We have summarised the MRI acquisition parameters used in the different studies in Appendix 

A. For all samples (except for the UKB), we performed the surface based processing of the 

T1w brain MRI using FreeSurfer 6.0 (Fischl, 2012),  followed by the ENIGMA-shape package 

(Gutman et al., 2013; Gutman, B.A. et al., 2012).  

For the UKB, we downloaded the outputs from FreeSurfer 6.0 processing performed 

by the UKB (bulk field 20263), which used the T1w but also the T2 Flair images in order to 

improve grey-matter parcellation(Miller et al., 2016). We then conducted the ENIGMA-shape 

processing, to further extract surface-based processing of seven subcortical structures. 

 

4.4. ROI and vertex-wise Grey-matter measurements 

We extracted the Region of Interest (ROI) values (produced by FreeSurfer 6.0), of 

cortical thickness and surface area based on the Desikan-Kiliany atlas(Desikan et al., 2006), as 

well as the volume of the seven subcortical structures. This resulted in 150 ROI measurements 

of grey-matter structure, which correspond to the brain measurements used in previous 

ENIGMA publications(Thompson et al., 2020). Mean and variances of the ROI based 

measurements were comparable between samples, that were acquired on different machines 

(SFigure 1).   

In addition, we extracted 654,002 vertex-wise measurements, which consist in 299,881 

cortical vertices (“fsaverage mesh”) for which we have thickness and surface area 

measurements and 27,120 subcortical vertices, at which we measure radial thickness and a 

measure analogous to a surface area(Roshchupkin et al., 2016). We have used and evaluated 

this MRI processing in two previous publications(Couvy-Duchesne et al., 2021) (Couvy-

Duchesne, Zhang, et al., 2020).  



Using the standardised vertex-wise measurements, we calculated the brain-relatedness 

matrix for each sample, which quantifies the similarities between a pair of individuals’ grey-

matter structure(Couvy-Duchesne, Strike, et al., 2020). We excluded the pairs of participants 

that had the extremely similar or dissimilar grey-matter (8SD from the distribution mean), as 

they can bias results from mixed model analyses. This led to exclusion of between 0.3 and 

0.9% of the individuals across the different samples.  

As a check of compatibility of the different datasets, we contrasted the mean and 

variance of the vertex-wise measurements calculated on the healthy individuals from the 

different samples (SFigure 2-5). We observed a great concordance of the average vertex values 

across the different samples. Of note, average cortical thickness was larger in the UKB 

(SFigure 3) than in the other samples, which is a known consequence of the combined use of 

the T1w and T2-FLAIR images in the FreeSurfer processing(Lindroth et al., 2019). We 

observed some variability of the vertices’ variance between samples, although concordance 

remained high (SFigure 2-5). This led us to flag “noisy” vertices that exhibited outlying 

variance in at least one sample (>6SD from the regression lines shown in SFigure 2-5), which 

could suggest they are prone to measurement error in some of the samples. About 1% of the 

vertices were flagged, equally distributed across each type of measurement (SFigure 6-7, 

STable2), although some brain regions contained a large proportion of flagged vertices (37% 

of anterior cingulate [thickness] consisted in flagged vertices, 35% of entorhinal gyrus 

[thickness], 18% of temporal pole [thickness], and 35% of the accumbens [surface area], 

STable2). Considering the overall small number of “noisy” vertices, we included them in the 

subsequent analyses, so we could evaluate if they were more likely to reach significance in 

association testing.  

 

4.4. Methods 



We performed association testing within each discovery sample (Table 1) and meta-analysed 

the results. We used PISA and MEMENTO to replicate the significant associations and to test 

the out-of-sample prediction.  

 

4.4.1. Analyses using grey-matter Regions of Interest (ROI)   

First, we estimated the total association (ROI based morphometricity) between each of our 

traits of interest and the 150 ROI measurements of grey-matter structure (cortical thickness and 

surface area; subcortical volumes). We used multiple regression, using the lm() function in R 

(version 4.2.2), and compared the full model (ROI and covariates) to a “null model” that only 

included covariates. We reported the difference in adjusted R2 between the two models and 

estimated its standard error using bootstrap (boot package). Finally, we tested whether the ROI-

based R2 (ROI based morphometricity) was significantly different from zero using a likelihood 

ratio test (lmtest package). From the full model, we also extracted the conditional associations 

between the ROIs and the traits of interests. These associations correspond to that of each ROI, 

while controlling for covariates and all other ROIs. We can expect that these associations are 

free from redundant (or false positive) associations that arise from correlated ROI 

measurements.   

 Next, we estimated the ROI-traits associations using 150 different linear regressions 

(i.e. one regression per ROI)  that control for covariates. Unlike for the conditional associations 

(from multiple regression), some of the univariate associations may be (in part, or fully) 

redundant, in that they would tag signal from correlated ROIs. We expect the association effect 

sizes to be larger and to be more often significant, compared to the model that fits all ROIs at 

once. 

 

4.4.2. Vertex-wise association studies 



We first used a General Linear Model (GLM), which has been more commonly used in mass-

univariate association testing and can be written as: 

    𝐲 = 𝐱𝒊𝑏" + 	𝐙𝐜 + 𝛆		    (1) 
 

Where,	𝒚	is a vector of size N of the trait of interest,	𝐱𝒊  is a vector of the ith vertex-wise 

measurement and 𝑏" the association effect size (between each vertex and the trait of interest) 

we seek to estimate.	𝐙 is a matrix of size Nxq of q covariates and 𝐜	a vector of the q fixed 

effects. 𝛆 is the error term assumed to follow 𝛆~𝒩(0, 𝐈σ𝛆$). 

In addition, we used a linear mixed model (LMM), which is an extension of the GLM 

that further controls for all vertex-wise measurements, fitted as a random effect. We have 

shown using simulations that this approach could remove many redundant associations 

detected by the GLM, some of which are likely to be spurious associations caused by imaging 

confounders responsible for short and long-range correlations between brain 

measurements(Couvy-Duchesne, Zhang, et al., 2020; B. Couvy-Duchesne et al., 2021). The 

model becomes: 

 𝐲 = 𝐱𝒊b" + 𝐙𝐜 + 𝐗𝛃 + 𝛆		    (2) 

With, 𝐗 the Nxp matrix of all standardised vertex-wise measurements, and 𝛃 a px1vector of 

random effect assumed to be normally distributed with variance σ𝛃$: 𝛃~𝒩60, 𝐈σ𝛃$7. Fitting 𝐗𝛃 

as a random effect allows for the case where there are more vertex-wise measurements than 

individuals (p>N). The variance-covariance matrix for 𝐘 is 𝑣𝑎𝑟(𝐘) = 𝐗𝐗′σ𝛃$ 	+ 𝐈σ𝛆$ = 𝐁 pσ𝛃$ 

+ 	𝐈σ𝛆$  . Here, we recognise 𝐁 = 𝐗𝐗& p⁄  as the brain relatedness matrix and pσ𝛃$  the 

morphometricity (phenotypic variance captured by the total association with all vertices) 

(Couvy-Duchesne, Strike, et al., 2020). 

 In addition, we used a LMM in which we fitted cortical and subcortical measurements, 

as well as thickness and surface area as specific random effects. We found using simulations, 



that this model was best suited to the situation where some modalities are not associated with 

the trait of interest(Couvy-Duchesne, Zhang, et al., 2020). The model becomes:  

𝐲 = 𝐱𝒊b" + 𝐙𝐜 + 𝐗𝟏𝛃𝟏 + 𝐗𝟐𝛃𝟐 + 𝐗𝟑𝛃𝟑 + 𝐗𝟒𝛃𝟒 + 𝛆		    (3) 

𝐗𝟏 , 𝐗𝟐 , 𝐗𝟑 , 𝐗𝟒  are the matrices of standardised vertex-wise measurements from cortical 

thickness, cortical surface area, subcortical thickness and subcortical surface area. Each 

𝛃𝒋~𝒩 @0, 𝐈σ𝛃𝒋
$ A (j in 1-4) is the vector or vertex trait associations specific to each random 

effect. This means that each σ𝛃𝒋
$  quantifies the trait variance that is accounted for by a set of 

measurements, which can be 0.   

 LMM and GLM models are implemented in the efficient OSCA software, which 

allows performs hundreds of thousands of tests in minutes using low memory (RAM) 

requirements (F. Zhang et al., 2019).  

 

4.4.3. Statistical testing and multiple comparisons for vertex-wise models 

We performed a χ2 test of the association between the phenotype and each vertex (𝐗𝒊) using 

that: @ ,"
-.(,")

A
$
~	χ1$  under the null hypothesis of no association. We corrected for multiple 

testing using Bonferroni correction, which allows to control false positive rate across several 

surfaces (left and right hemisphere, cortical thickness and area) and may be best suited to 

analyses on unsmoothed data (Nichols & Hayasaka, 2003). We further corrected for the 

number of phenotypes tested (24, Table 1), which resulted in a significance threshold of 3.18e-

9 for reporting significant vertex-wise associations.  

Finally, we also applied Random Field Theory (RFT) as an alternative to Bonferroni, 

which models the spatial autocorrelations of the test statistics across a surface We applied a 

recent implementation of vertex-wise RFT from the NeuroShape toolbox (URL) to our cortical 

and subcortical surfaces of interest:. NeuroShape only requires, for each surface, the vertices 



coordinates and corresponding t-statistic of association. We used a significance threshold of 

0.05/24/18=1.1e-4 to account for the number of grey-matter surfaces (18) and traits tested (24).  

 
 

4.4.4. Vertex-wise morphometricity 

For each trait and each sample, we reported the vertex-wise morphometricity, which 

corresponds to the total association between the trait and all (vertex-wise) measurements 

(Couvy-Duchesne, Strike, et al., 2020; Sabuncu et al., 2016). In practice, morphometricity is 

expressed as a proportion of the trait variance (𝑅$) and estimated from a mixed model. It can 

estimated as 𝑅$ =	
2#
$

2𝛆$32#
$  for model (2), or 

2#&
$ 32#$

$ 32#'
$ 32#(

$

2𝛆$32#&
$ 32#$

$ 32#'
$ 32#(

$  for model (3) (Couvy-

Duchesne, Strike, et al., 2020). Model (3) also allows to decompose the morphometricity into 

the (joint) contributions of each type of measurement (e.g., 
2#&
$

2𝛆$32#&
$ 32#$

$ 32#'
$ 32#(

$  for the 

contribution of cortical thickness). The difference between vertex-based morphometricity and 

ROI based morphometricity indicates how much information may be lost by averaging brain 

measurements over ROIs, compared to using the full (vertex-wise) resolution. 

4.4.5. Covariates 

We considered standard imaging covariates, that were available for all samples: age, sex, age2, 

age*sex, intra-cranial volume (ICV, estimated from FreeSurfer 6.0), average cortical thickness 

and total cortical surface area (also estimated from FreeSurfer), site/scanner and field strength 

when pertinent (data sets AIBL, OASIS3). We did not consider the extended set of covariates 

that was recently suggested for the UKB (Alfaro-Almagro et al., 2021), as they were not 

available outside of the UKB (e.g. time since first scan, head-motion measured from resting-

state fMRI). When studying neuropsychological scores, we further corrected for AD and MCI 

status, to be able to compare and meta-analyse results across cohorts that contain different 

proportion of cases and MCI (Table 1). 



 

4.4.6. Meta-analysis 

We meta-analysed the association maps from the discovery samples (ADNI1, ADNI2GO2, 

AIBL, ARWIBO, EPAD, MAS, OASIS3, OATS) using the Inverse Variance Weighted (IVW) 

approach, implemented in the R package meta (Balduzzi et al., 2019) (metagen function). We 

used a random effect approach, which considers that the different samples are randomly drawn 

from a global population. In particular, we used the REML method, which provides of the most 

robust estimates of the between-study variance (i.e. heterogeneity)(Veroniki et al., 2016), and 

we reported heterogeneity across studies using the Q statistic. Our meta-analytic approach is 

conservative, but also ensures the findings are generalisable in that only homogeneous 

association effect sizes across cohorts reach significance.   

 

4.4.7. Replication and out-of-sample prediction 

We used MEMENTO and PISA to evaluate the stability of the morphometricity estimates and 

the replicability of the significant brain-trait associations obtained from the meta-analyses. 

Using PISA, we could attempt to replicate results that involved AD cases, RAVLT scores. In 

MEMENTO, we sought to replicate the findings relating to AD conversion and all other 

neuropsychological scores (e.g. MMSE, CDR, FAQ, logical memory). 

We used out-of-sample prediction (into MEMENTO and PISA) to compare and validate 

the findings from the ROI and vertex-wise association maps. Out-of-sample prediction gives 

confidence that the identified brain-trait associations are true and generalisable. It also 

quantifies the total association between a trait and all grey-matter markers identified in the 

analyses. We used prediction accuracy to compare results obtained using, ROI, GLM or LMM 

association models or using Bonferroni vs. RFT to account for multiple testing.  



The linear prediction scores were built using the weights from the meta-analysed 

association maps. For vertex-wise association maps, we only included the top vertex per cluster 

(i.e. vertex with the smallest pvalue), as we can assume that the other voxels of the cluster tag 

the same information. We used the Bonferroni significance level (3.18e-9) or RFT corrected 

pvalue<0.05 to define significant clusters. We reported the prediction accuracy as an R2 (to 

facilitate comparison with morphometricity), which we estimated using a linear model that 

included the covariates.   

 

4.4.8. Cross-trait prediction 

We evaluated how much the brain prediction scores could predict different – albeit related – 

phenotypes in MEMENTO and PISA. This design can help tackle specific research questions 

about disease subtypes and progression. For example, we evaluated the performance of 

Alzheimer’s brain score to predict levels of amyloid beta and tau, which can inform on the 

relationship between grey-matter structure and protein concentration. We also investigated if 

the AD brain score could differentiate MCI from controls, predict AD conversion as well as 

cognition and functioning. These results can shed lights on whether the same brain regions 

contribute to disease symptoms, subtypes, progression, or severity. This cross-trait prediction 

(a.k.a. transfer learning) also leverages that the samples sizes are larger for AD vs. controls 

than for conversion or some neuropsychological scores, which may produce a more performant 

predictor, even if the trait predicted differs from the one used in training.  

 

 

  



5. Results 

5.4. ROI based and vertex-wise morphometricity  

We estimated the morphometricity R2 which quantifies the global association between a trait 

and all grey-matter measurements. We contrasted the morphometricity (Figure 1) obtained 

from vertex-wise data (>654,000 measurements) from that obtained using a ROI representation 

of the grey-matter (150 measurements). The difference in morphometricity between vertex-

wise and ROI analyses indicates how much information is lost when reducing the 

dimensionality of the brain (here by a factor 4,300 [654000/150]).  

We found that most traits (19 out of 24) exhibited a significant morphometricity 

(Figure 1, darker colours indicate pvalue<0.05/24; full details in STable 3-5). Vertex-wise 

morphometricity was 3 to 21 times larger than the ROI based one (Figure 1). For example, it 

was 3.6 times larger for Alzheimer’s case control (“AD vs. HC”), 14 times larger for the MMSE 

and 20 times larger for the CDR or the FAQ. Vertex-wise morphometricity of Alzheimer’s 

disease and conversion was large (100% of variance accounted for when considering global 

brain measurements and vertex-wise measurements, Figure 1), indicating that cases and 

converters may be completely distinguished from controls, based on their grey-matter 

structure. In comparison, the vertex-wise morphometricity of MCI was lower (AD vs. MCI: 

R2=0.64, SE=0.10; MCI vs. HC: R2=0.68, SE=0.11), and that of neuropsychological scales 

ranged between 0.52 (SE=0.069, FAQ) and 0.044 (SE=0.059, RAVLT forgetting). 

Interestingly, family history of Alzheimer’s disease (whether maternal or paternal) did not 

exhibit a significant morphometricity, suggesting the total association is null or too small to be 

detected at the current power. Using the UK Biobank, we confirmed that morphometricity of 

parental history was low. Vertex-wise morphometricity of maternal AD was 0.022 

(SE=0.0054, pvalue=3.8e-5, N= 37,374), and not significantly different from zero in paternal 

AD (R2=0.0021, SE=0.0033, pvalue=0.53, N=31,739). 



The two vertex-wise models (i.e., fitting all measurements as a single random effect, or 

fitting them as 4 modality-specific random effects) yielded comparable morphometricity 

estimates (SFigure 8). However, we can explore the contribution of each modality to the global 

morphometricity (by looking at the variance explained by each modality-specific random 

effect, Figure 2). The results indicate that cortical thickness significantly (p<0.05/24/4) 

contributes to the morphometricity of Alzheimer’s disease status, AD conversion, CDR, FAQ 

or the MMSE scores. In addition, we could confirm that subcortical thickness and surface area 

also significantly contribute to the morphometricity of Alzheimer’s disease. Such analysis has 

a lower power, due to smaller association R2 (compared to global morphometricity) and 

increased multiple testing, meaning that larger samples will be required to precisely estimate 

the contribution of each type of measurement to the global morphometricity.     

The vertex-wise morphometricity we presented in Figure 1 was meta-analysed across 

all the discovery samples, and we note that the estimates appeared consistent across the 

different cohorts, as shown in the forest plots, and estimates of between-sample heterogeneity 

(SFigure 9-10). The exception was for the MMSE and CDR scores, that showed a 

heterogeneous morphometricity across samples, even when controlling for disease and MCI 

status (SFigure 10, I2=74%, Q-test, pvalue<0.05/24). However, the heterogeneity was greatly 

reduced (I2=51% and I2=23%, pvalue>0.05) when estimating the morphometricity with 

modality-specific random effects (SFigure 11), even if the meta-analysed result remained the 

same. This confirms the results from our simulations that a model with several variance 

components is more robust at estimating morphometricity, as it allows the different types of 

measurements to contribute more or less to the morphometricity(Couvy-Duchesne et al., 2022; 

Couvy-Duchesne, Zhang, et al., 2020). Finally, we observed that controlling for disease status, 

when studying neuropsychological scores reduced the between-cohort heterogeneity of results, 



as the morphometricity was inflated in the cohorts that contained Alzheimer’s cases (SFigure 

12). 

 

Figure 1: Morphometricity from ROI and vertex-wise representation of grey-matter structure 
Morphometricity from vertex-wise brain data (fitted as a single random effect) is shown in yellow in the 
upper bar plot, while the ROI based morphometricity is shown in green in the lower barplot. The trait 
variance accounted for by the global brain measurements (ICV, average cortical thickness and total cortical 
surface area for left and right hemisphere) is shown in purple. Whiskers represent the 95% confidence 
intervals around the morphometricity estimates. Bars with lighter yellow or green colours indicate 
morphometricity estimate not significant after multiple testing correction (p>0.05/24). For each bar, 
morphometricity (whether vertex or ROI based) as well as the R2 accounted for by global brain measurement 
has been estimated in each clinical cohort and combined using a meta-analysis. Here, we report the 
morphometricity of neuropsychological scores (CDR, FAQ, GDS, LM, NPI and RAVLT) controlling for 
AD and MCI status. 

 



 
Figure 2: vertex-wise morphometricity broken down into the contributions of each modality of brain 
measurement  
Contributions from the different modalities are estimated jointly by fitting each type of measurement as a 
specific random effect in a mixed model. Significant contributions, after multiple testing correction 
(p<0.05/24/4) are highlighted by a star.  

 

5.5. Associations with global brain measurements  

We tested the associations between global brain measurements (ICV, left and right cortical 

thickness and left and right cortical surface area, fitted together in a multiple regression) and 

our phenotypes of interest, to shed light on the ones contributing to the variance explained 

reported in Figure 1-2. We controlled for all other covariates in the linear models and meta-

analysed the results across samples. Larger ICV was associated with Alzheimer’s disease, 

Alzheimer’s conversion (at 3, 4 and 5 years) and with FAQ score. In addition, Alzheimer’s 

cases also exhibited thinner left and right cortex, compared to controls. Individuals who 

converted within 4 years of brain imaging had a thinner left cortex. Finally, greater MMSE and 



RAVLT immediate memory scores were associated with thicker left cortex, and MMSE was 

further associated with larger left cortical surface area (STable 6).     

 

5.6.  ROI-based associations  

We sought to identify ROI measurements that contribute to the ROI based morphometricity 

reported in Figure 1. First, we focussed on the marginal associations between ROI and traits 

of interest, which are estimated using multiple regression where all 150 ROI measurements are 

fitted in a linear model, together with the covariates. Of note, these same models are used in 

Figure 1 to estimate ROI-based morphometricity. A single association survived multiple 

testing correction (pvalue<0.05/24/150), which suggested that hippocampal volume was 

associated with RAVLT delayed recall score. An increase of one SD in hippocampal volume 

was associated with a 0.79-point score increase (SE=0.17, pvalue=3.3e-6, see SFigure 13 for 

forest plot).  

 Next, we tested the association between traits and each ROI measurement, by including 

a single ROI in the linear model, and controlling for covariates. This is the standard approach 

in neuroimaging, for example used in the publications from the ENIGMA 

consortium(Thompson et al., 2020), although we can expect some redundancy in the identified 

associations. This time, we identified 94 trait-ROI associations after controlling for multiple 

testing (pvalue<0.05/24/150, STable 7). Left hippocampus volume was still associated with 

RAVL delayed recall score (b=0.79-point increase per volume SD, SE=0.11, pvalue=9.6e-14, 

SFigure 13), but so were right hippocampus (b=0.62) and right or left amygdala volumes 

(b=0.49 and b=0.52). Unlike in the multiple regression approach, the comparison of 

Alzheimer’s vs. healthy controls yielded 32 significant associations (Figure 3), which include 

smaller hippocampus and amygdala (to a lesser extend smaller putamen and accumbens), and 

reduced temporal lobe (fusiform, middle temporal, inferior temporal, parahippocampal gyri, 



temporal pole). In addition, we also identified larger cortical thickness or surface areas in the 

paracentral, precentral, and postcentral gyri, as well as in the pars-opercularis and superior 

frontal regions (Figure 3).      

Alzheimer’s disease conversion was associated with thicker lateral occipital gyrus, as well as 

thinner hippocampus, middle temporal, and fusiform gyri (SFigure 14, STable 6).  Logical 

memory scores measure how much participants can recall a story. Lower immediate and 

delayed recall were associated with smaller hippocampus and thinner entorhinal gyrus, as well 

as an increased precentral gyrus. However, immediate recall was further associated with pars 

triangularis, while delayed recall was associated with the amygdala and the parahippocampal 

gyrus (SFigure 15). The RAVLT memory scores, that evaluate how many words of a list can 

be remembered, only implicated the hippocampus, amygdala, and the entorhinal cortex (for 

immediate recall) (SFigure 15).   

 Lastly, the CDR, FAQ and MMSE were significantly associated with ROIs, mostly 

found to be associated with Alzheimer’s disease, even if we controlled for disease status in the 

analyses (SFigure 16). Associations were found with the hippocampus (MMSE), amygdala 

(MMSE, FAQ), middle temporal (CDR, MMSE), entorhinal (FAQ), inferior temporal (FAQ), 

postcentral (MMSE) as well as with the inferior parietal gyrus (MMSE). 



 

 

 

Figure 3: Univariate ROI associations with Alzheimer’s disease (Alzheimer’s vs. healthy controls) 

Outside view (top panels) and Inside view (bottom panels). From left to right: left cortical thickness, right cortical thickness, left cortical surface, right 
cortical surface, left subcortical volumes and right subcortical volumes. We only show significant ROIs after multiple testing correction (p<0.05/24/150). The 
association effect sizes correspond to the effect of 1 SD of ROI on the clinical status (0: controls, 1: Alzheimer’s).  
 

 



5.7.  Vertex-based associations 

We performed vertex-based association testing, to identify the localised grey-matter regions 

that contribute to the vertex-wise morphometricity. As in the ROI based association testing, we 

performed traditional mass-univariate testing (i.e., testing the trait association with a single 

vertex: GLM model) as well as multi-vertex testing (i.e., estimating the trait-vertex association 

controlling for all other vertices: LMM model). We expect the GLM to yield more associations, 

although some would be redundant or confounded as they tag signal from other regions, whose 

association spreads though the brain connectome.  

Using Bonferroni correction (p<3.1e-9), the mass-univariate testing identified 

significant vertices for 16 (out of 24) traits (307 significant clusters overall). In comparison, 

the LMM with a single random effect, identified significant vertices for only 3 traits (AD vs. 

HC, conversion at 2 and 3 years; 34 significant clusters in total) while the LMM with four 

random effects only found associations with AD vs. HC (1 cluster; SFigure 17, STable 8). 

Thus, when comparing Alzheimer’s vs. healthy controls, the mass univariate model returned 

103 significant clusters (5,523 significant vertex-wise measurements), that indicated smaller 

(thickness and surface area) bilateral hippocampus, amygdala, putamen and accumbens, as well 

as thinner pallidum (left and right), caudate (left) and lower surface of right thalamus. In 

addition, we observed thinner cortex in the temporal lobe (entorhinal, fusiform, 

parahippocampal, superior and middle temporal gyri, temporal pole) as well as associations in 

the insula, posterior cingulate, paracentral and precuneus (STable 9, Figure 4a, also see 

SFigure 18 for unthresholded map). In comparison, the multi-vertex approach (LMM with a 

single random effect) located the significant associations in the hippocampus and amygdala 

(lower thickness and surface area), and only implicated the right entorhinal and insula 

thickness, in the cortex (STable 10, Figure 4b).  



Compared to MCI, Alzheimer’s cases exhibited thinner left hippocampus and bi-lateral 

amygdala. The surface of the left hippocampus and right amygdala was also found to be smaller 

(GLM only; STable 9). Alzheimer’s conversion was associated with smaller hippocampus and 

amydgala (using GLM and LMM), although the GLM identified many more significant 

clusters within those subcortical structures (STable 9-10). In addition, the GLM identified 

clusters in the left temporal pole and right entorhinal that were thinner in converters than non-

converters. Finally, most of the grey-matter regions associated with the neuropsychological 

scales (FAQ, LM-delayed, MMSE, RAVLT) were in the hippocampus (STable 9). The 

remaining significant clusters implicated the putamen, amygdala, and entorhinal gyrus (STable 

9). 

 Nine clusters identified with GLM (2.9% of clusters), and three clusters found with 

LMM (8.8% of clusters) contained “noisy vertices” (STable 9,10) which we defined as having 

variable variance across samples. Compared to the overall proportion of “noisy vertices” 

(1.1%) this suggests they are more likely to reach significance in the analyses. We also found 

that RFT to be more conservative that Bonferroni’s correction for multiple testing (STable 8). 

Overall, RFT halved the number of significant clusters (120 vs. 307 using GLM, 12 vs 34 using 

LMM, STable 8). The RFT significance threshold was specific to each cortical or subcortical 

surface. The most lenient RFT threshold was for the Accumbens (pvalue<2.9e-11) while the 

most stringent was for cortical thickness (pvalue<7.7e-16). 



 
 

 
Figure 4: vertex-wise associations with Alzheimer’s disease (Alzheimer’s vs. healthy controls) 
a) mass-univariate (GLM) model, where the association with each vertex-wise measurement is estimated separately. 
b) multi-vertex (LMM) model with a single random effect, where the association with each vertex-wise measurement is estimated conditional on all vertices 
fitted as a random effect.  
Outside view (top panels) and Inside view (bottom panels). From left to right: left cortical thickness, right cortical thickness, left cortical surface, right 
cortical surface, left subcortical volumes and right subcortical volumes. We only show in colour the significant vertex-wise measurement after multiple testing 
correction (p<0.05/24/150). The association effect sizes correspond to cohen’s d, i.e., the effect of 1 SD of the vertex measurements on the clinical status (0: 
controls, 1: Alzheimer’s).  



5.8. Comparison of ROI and vertex-wise associations 

We represented (Figure 5) how much the significant ROIs co-localised with clusters found in 

the mass-univariate vertex-wise analysis (GLM), and with those found in the multi-vertex one 

(LMM). We focussed on AD vs. HC, which yielded significant associations in 38 grey-matter 

regions, across the three approaches. Overall, only four (4/38=10%) grey-matter regions (left 

and right amygdala and hippocampus) were consistently identified across the three analyses. 

Nine additional grey-matter regions (cortical and subcortical) reached significant in the ROI-

based and GLM vertex-wise analysis, and two were identified in both GLM and LMM 

analyses. Thus, only 15 (39%) of the identified grey-matter regions were significant in at least 

two analyses (Figure 5).  

 

 

Figure 5: Concordance of brain regions associated with Alzheimer’s disease (AD vs. HC) across the 

different analyses (ROI and vertex-wise [LMM or GLM]). 

 

 

 



The concordance presented in Figure 5 does not take show whether the association was found 

with volume, thickness, or surface area, see detailed Sankey plots for all details (SFigure 19). 

Furthermore, several clusters identified using GLM and LMM did not overlap, despite being 

located in the same grey-matter regions (e.g., hippocampus, SFigure 19).   

The analyses of Alzheimer’s conversion consistently implicated the hippocampus 

(SFigure 20), and the GLM and LMM identified clusters in the amygdala that were not 

detected in the ROI based analysis. Only one of the three LMM-identified cluster (in right 

amygdala thickness) partially overlapped with a GLM cluster (SFigure 20).    

Similarly, we observed mixed concordance for the ROI and GLM findings for the 

neuropsychological scales (SFigure 21-25). Comparison was not possible with the LMM due 

to the lack of significant clusters with this approach.  

 

5.9. Grey-matter regions associated with several traits 

The large number of significant clusters found in the subcortical volumes (in particular the 

hippocampus and amygdala) led us to investigate whether the same vertices/clusters were 

associated with several traits.   

We found a substantial overlap between the vertex-wise measurements associated 

(using GLM) with the different traits of interest (Figure 6). For example, 92% of the 

associations with AD vs. MCI were also found in the AD vs. HC analysis, 54% of the 

associations with conversion at 2 years were also found when studying conversion at 3 years, 

and 74% of the measurements associated with conversion at 4 were also found for conversion 

at 5 years. However, conversion at 2 or 3 years seemed to implicate different brain regions than 

conversion at 4 or 5 years (only 3-4% overlap, but still greater than what may be expected by 

chance). In addition, a significant fraction of the vertex-wise measurements associated with 

neuropsychological scales were also significance in AD vs. HC, despite controlling for disease 



status in the analyses. The overlap was particularly important with the FAQ (88% of the 57 

associations also significant in AD vs HC), or the MMSE (18 out of 20 associations (90%) 

significant in AD vs HC). Lastly, we observed significant overlap between the brain feature 

associated with the different memory scores (between RAVLT sub-scores and between 

RAVLT and Logical Memory score).  

Some brain regions in the hippocampus and amygdala, were significantly associated 

with up to 6 distinct traits (SFigure 26, STable 11), and may be of particular interest as they 

could point out to key brain regions associated with Alzheimer’s, functioning and cognition. 

For example, a smaller surface of left hippocampus (around vertex 776) was associated with 

increased conversion at 3 years and lower memory scores (RAVLT – delayed, immediate, 

learning and forgetting, as well as Logical memory delayed recall). In addition, thinner right 

amygdala (around vertex 1133) was associated with increased risk of Alzheimer’s (AD vs. HC 

and AD vs. MCI), lower functioning (FAQ) and memory (RAVLT delayed and immediate). 



 

Figure 6: Proportion of significant vertex-wise measurements (from GLM) also associated with another 
trait. 

Each cell indicates the proportion of vertex-wise measurement associated with a phenotype (row label), that is also 
significantly associated with another phenotype (column label). For example: 92% of the vertex-wise measurements associated 
with AD vs. MCI are also associated with AD vs. HC (first column, second row). We only show cells for which the proportion 
of co- associated vertices was greater than chance (chi-2 test of association, pvalue<0.05/(24*23/2)). Significant vertex-wise 
measurements correspond to those that pass Bonferroni correction using the mass-univariate (GLM) approach. Traits with 
no significant vertex-wise measurements are not shown. The last column shows the number of significant vertex-wise 
measurement, for context. 

 
 
5.10.  Replication of associations 

We found consistent vertex-based morphometricity estimates in the PISA and MEMENTO 

replication samples, compared to those from the meta-analysis (correlation between discovery 



and replication estimates 0.76 in PISA, 0.74 in MEMENTO, SFigure 27). The largest 

discrepancies were found for MCI vs. HC, conversion at 1 year, and CDR score, which 

exhibited a lower morphometricity in MEMENTO than in the meta-analysis, although this may 

be due to sample composition and recruitment (HC of MEMENTO all have subjective 

cognitive decline). Concordance was also observed for ROI based morphometricity 

(correlation between discovery and estimates: 0.80 in PISA, 0.84 in MEMENTO, SFigure 28). 

 We sought to replicate the 94 ROI associations that were significant in the meta-

analysis of clinical cohorts (STable 7). In PISA, we evaluated 57 associations (based on the 

phenotypes being available), and 12 reached significance (pvalue<0.05/57; 28 were nominally 

significant (pvalue<0.05). Beyond significance, we found good concordance of the effect sizes 

between discovery and replication (cor=0.92 between effect size, 90% had the same sign). The 

12 associations that replicated corresponded to reduced cortical thickness in Alzheimer’s (left 

middle temporal gyrus, right posterior banks of the superior temporal sulcus, right inferior 

parietal, right inferior temporal, right, paracentral, and right postcentral), as well as reduced 

volumes of hippocampus and amygdala. In addition, we also replicated the positive 

associations between bilateral hippocampal volume and RAVLT delayed memory score 

(STable 7). In MEMENTO, we evaluated the other 37 associations, and 9 reached significance 

(pvalue<0.05/37; 19 nominally significant, cor=0.71 between discovery and replication effect 

sizes, 81% of sign concordance). The replicated associations confirmed lower hippocampus 

volume and middle temporal thickness in AD converters (3 years conversion). In addition, 

logical memory scores (immediate and delayed) were associated with hippocampal, and 

amygdala volumes, as well as with entorhinal thickness (STable 7).  

 At a vertex-wise level using the GLM approach, we replicated one association in PISA 

(left-putamen surface area association with AD; pvalue<0.05/183), although 41 (22%) of the 

tested vertices were nominally significant in the replication sample suggesting an enrichment, 



despite a low sample size and statistical power. In MEMENTO, we replicated 65 (54%) 

associations (pvalue<0.05/120), and 83% were nominally significant. The replicated 

associations were with logical memory delayed recall score (entorhinal, hippocampus and 

amygdala) as well as with Alzheimer’s conversion (bilateral hippocampus, amygdala, and right 

entorhinal gyrus) (STable 9). As per the LMM results, we replicated 6 (out of 30 – 20%) 

associations with AD vs. HC in PISA (pvalue<0.05/30), that corresponded smaller surface area 

in bilateral hippocampus and left amygdala, as well as reduced thickness in left hippocampus 

and right amygdala. In total, 17 (57%) of the associations were nominally significant in PISA, 

and all signs were concordant between discovery and replication effect sizes. In addition, we 

replicated 1 (out of 4) association with AD conversion at 3 years, located in the right amygdala 

(thickness).    

  

5.11. Out-of-sample prediction 

To validate but also to compare the different set of results obtained in ROI or vertex-based 

analyses, we evaluated their prediction accuracy in the PISA and MEMENTO cohorts.  

In PISA, we found that the three analyses (ROI, GLM, LMM) led to a prediction of 

Alzheimer’s status (vs. controls), significantly greater than chance. Prediction accuracy was 

comparable across the three predictors as indicated by overlapping confidence intervals: 

R2ROI=0.12 (95%CI 0.05-0.19, pvalue=3.5e-12), R2GLM=0.07, (95%CI 0.01-0.15, pvalue=4.6e-

7) and R2LMM=0.13, (95%CI 0.05-0.22, pvalue=6.2e-13, which corresponds to OR=4.1 or 

AUC=0.71) (STable 12). We also found that the ROI or vertices associated (via GLM) with 

RAVLT scores had significant predictive power in PISA, although prediction accuracy was 

limited (R2<0.035, STable 12). 

In MEMENTO, the significant brain measurements could significantly predict AD 

conversion, although the best predictor was R2GLM=0.051 (equivalent to AUC=0.63), for AD 



conversion at 3 years (pvalue=1.6e-21). Overall, the ROI and vertex-wise approaches led to 

comparable prediction (STable 12). In addition, we also observed significant prediction 

accuracy from the MMSE and logical memory (immediate recall) brain markers (R2<0.014) 

In addition, we found that the AD vs. HC predictors could predict several traits and scores 

in the PISA or MEMENTO non-diseased (HC + MCI) group. In PISA, the AD brain risk scores 

were associated with MCI status, presence of memory and language impairment, as well as the 

number of impaired cognitive processes. Furthermore, the brain risk scores could predict some 

of the cognition scores (Graded Naming Test, and RAVLT scores), as well as the individuals’ 

genetic risk (Figure 7, STable 13). In MEMENTO, the AD vs. HC predictors could 

significantly predict multi-domain amnestic MCI status, AD conversion (at all time frames), a 

series of neuropsychological scores (MMSE, CDR, naming test, visual memory), as well as 

APOE e4 status and total Tau protein level, measured from lumbar punction (Figure 7, STable 

13). The AD brain scores achieved comparable prediction accuracy (R2 <0.06) as the specific 

predictors of AD conversion or neuropsychological scores (MMSE, CDR) (STable 12).   

 



Figure 7: Prediction accuracy of the AD vs. HC brain predictors in the non-diseased group of the 
PISA and MEMENTO study.  

In PISA (top panel) evaluated prediction across 33 traits or scores available in the non-diseased group, and we 
show the nine for which at least one of the brain-based prediction returned significant (p<0.05/33/3). In 
MEMENTO (bottom panel), we considered 36 traits, and 14 were significantly predicted (p<0.05/36/3) by at 
least one of the AD vs. HC brain predictor.  Error bars correspond to the 95% confidence intervals estimated 
via bootstrap. 

 
 
6. Discussion 

We collated data from 10 cohorts (total N=9,140) to perform a well-powered Brain Wide 

Association Study of the grey-matter structure in Alzheimer’s disease, progression to AD, and 

neuropsychological scores. The large sample size and deep clinical characterisation supported 

identification of identified grey-matter markers associated with the different stages of the 

disease: early disease risk (markers of conversion up to 5 years prior to diagnosis), non-specific 

first symptoms (mild cognitive impairment), specific memory and functioning complaints, as 

well as (post-)diagnostic markers (Figure 3, 4) that may be indicative of disease progression 

and severity. Our results suggest some overlap between the grey-matter regions associated with 

early (pre-diagnostic) AD risk, disease progression and memory domains (Figure 6, STable 

11), which progresses our understanding of the clinical correlates of grey-matter atrophy and 



allows cross-trait prediction. Thus, we showed that brain markers associated with disease status 

could predict global tau pathology, AD genetic risk (measured from SNPs), progression to 

dementia, and cognitive domains in non-diseased individuals (Figure 7). Our results are robust 

and generalisable to other cohorts or studies, as shown by the high replication rate (STable 7, 

9) and out-of-sample prediction accuracy (STable 12). Another strength of our study is that we 

performed multi-level brain analyses, i.e., at a region of interest but also at the vertex-wise 

level. The high-resolution (vertex-wise level) analysis increased the characterisation of some 

of the associated brain regions, but also identified of novel brain regions that could not be 

detected using the traditional ROI approach (Figure 5).     

 

Medial temporal lobe in Alzheimer’s’ disease 

 The comparison of AD cases vs. healthy controls, yielded the most associations, either 

at the ROI or vertex-wise level (Figure 3, 4). Our ROI-level results confirmed the known 

atrophy of hippocampus volume (cohen’s d=-0.17), amygdala volume (d=-0.15) and of the 

medial temporal lobe (e.g. reduced thickness in fusiform [d=-0.08] and parahippocampal gyrus 

[d=-0.05]) (STable 7), which are known to play an important role in memory 

processing(Raslau et al., 2015). Previous publications(Frisoni et al., 2008; Schuff et al., 2009; 

Vijayakumar & Vijayakumar, 2012) have reported somewhat larger hippocampal reductions 

in AD (equivalent to cohen’s d in -0.26 -0.36, Appendix B), although we can expect their 

results to be inflated by winner’s curse due to small sample sizes(Marek et al., 2022), the 

inclusions of more severe cases, or unaccounted sex and age differences between cases and 

controls (Appendix B). Overall the effect sizes we observed in the ROI-based analysis are 

comparable to the ones reported by the ENIGMA consortium on Parkinson’s disease(Laansma 

et al., 2021), and for most psychiatric disorders(Thompson et al., 2020). All the ROI level 

associations (in subcortical and medial temporal cortex) were matched by one or several 



significant clusters in the vertex-wise analysis (STable 9, 10, Figure 5, SFigure 19 which 

offers a more fined grained localisation of the grey-matter associations. We confirmed these 

brain regions (ROIs) to be implicated in memory processes, as indicated by their association 

with episodic memory (RAVLT and logical memory scores, STable 7, even after controlling 

for disease status). Importantly, the entorhinal cortex, often reported to be an early site of 

atrophy(Johnson et al., 2012), was not significant in the ROI analysis, but several atrophied 

clusters were found at the vertex-wise level (Figure 5, SFigure 19, STable 9, 10), which 

highlights the added value of high-resolution analyses. The vertex-wise analysis further 

pinpointed localised regions in the amygdala and hippocampus that were simultaneously 

associated with AD status and episodic memory scores (STable 11). Furthermore, reduced 

thickness and surface area in parts of the hippocampus and amygdala was observed several 

years prior to the diagnosis (see STable 11 for the list of vertex-wise markers of AD vs. HC 

also associated with AD conversion, SFigure 14, 20), which confirms that the atrophy appears 

in early stages of the disease process(Johnson et al., 2012). Lastly, the vertex-wise associations 

we observed in the hippocampus (Figure 4) resemble that reported in a previous article (see 

Figure 5 from (Frisoni et al., 2008)) that reported smaller regional volume in the dorsal (CA1) 

and ventral parts (subiculum and presubiculum).    

 

Associations between AD and other cortical and subcortical regions  

 We found associations between AD status and the putamen (ROI volume: d=-0.04,  and 

vertex-wise clusters), or the accumbens (ROI volume, d=-0.03) (Figure 3,4), which have been 

previously reported in smaller studies(de Jong et al., 2008, 2012). In addition, atrophy of the 

basal nuclei in Alzheimer’s is thought to relate to general cognitive dysfunction(de Jong et al., 

2008), and apathy(Guo et al., 2022). Coherent with this hypothesis, we found locally reduced 

right and left putamen thickness, associated with AD status as well as with impaired 



functioning (Functional Assessment Questionnaire, STable 11). However, we did not replicate 

the published association with thalamus volume(de Jong et al., 2008). 

 In the cortex, we identified additional regions (ROIs only) associated with Alzheimer’s 

disease (Figure 3, STable 7), including several (with inferior parietal, postcentral [parietal], 

middle temporal, transverse temporal, inferior temporal [temporal], paracentral, superior 

frontal [frontal]) that replicated in an independent cohort (PISA), which gives confidence in 

the findings. A previous review has suggested that the medial and posterior parts of the parietal 

lobe would be preferentially affected in early stages of AD (Jacobs et al., 2012), which does 

not align with our results based on a much larger sample size. Our findings in the frontal and 

temporal lobes might reflect disease progression and general decay in cognition and 

functioning, that these regions encode(Johnson et al., 2012), which was corroborated by 

associations of the same ROI with MMSE and CDR scores (STable 7). Although, we cannot 

rule out that some of these findings could be caused by some misdiagnosis of frontotemporal 

dementia or vascular pathology, as screening is not systematic across the cohorts, and 

differential diagnostic can be difficult at the early stage of the diseases. Surprisingly, we did 

not find an association between Alzheimer’s disease and posterior cingulate structure (either 

at a ROI or vertex-wise level), a region known to display strong hypometabolic (PET) changes 

in early stages of AD(Minoshima et al., 1994)(Brun & Gustafson, 1976; Minoshima et al., 

1994). Reduced thickness in posterior cingulate has been reported before (Choo et al., 2010; 

Lehmann et al., 2010; Lerch et al., 2005), but in small studies prone to false positive and 

inflated association estimates(Marek et al., 2022). More work is needed to clarify the link 

between posterior cingulate hypometabolism and grey-matter structure, which may only appear 

in later stages of Alzheimer’s disease.  

 Overall, inconsistent results in the literature can come from the use of different cortical 

atlas, which can capture different (non-overlapping) information(Fürtjes et al., 2023). In 



addition, some of the ROI associations we have identified may be (partly) redundant with those 

observed with the medial temporal lobe due to the correlation between ROI measurements. Our 

attempt to estimate the specific ROIs-trait association appeared underpowered (no association 

reached significance), but may be investigated in larger samples, or in post-hoc analyses.  

 

Grey-matter markers of Alzheimer’s conversion and neuropsychological scores 

 We also identified brain markers of AD conversion, beyond those also associated with 

Alzheimer’s status. They included thicker lateral occipital cortex and larger cortical area of the 

middle temporal gyrus (STable 7), which replicated in the MEMENTO cohort. These brain 

markers could be specific to early stages of the disease, and have previously been implicated 

in object recognition(Grill-Spector et al., 2001), but also in face and emotion recognition, as 

well as reading ability(Tanaka, 2001). Future studies should clarify if these regions remains 

associated in later stages of AD (e.g., at a vertex-wise level), or if these brain markers are stage 

specific. Together, the identified markers of AD conversion, could significantly predict an 

individuals’ risk of receiving a diagnosis within 5 years of the brain MRI, in an independent 

sample (MEMENTO, STable 12). Prediction accuracy remained modest (R2<0.051, i.e. 

AUC<0.63, or cohen’s d<0.46) and below some of the published results (mean AUC=0.74, 

range 0.59-100; across 48 studies). However, our predictors only include ROIs or vertex-wise 

measurements that reached significance and were not designed to maximise prediction 

accuracy. In addition, the accuracy  previously reported is likely optimistic (or overfitted) as 

predictors were trained and evaluated on ADNI only (Ansart et al., 2021).  

 The brain markers associated with neuropsychological scores (after controlling for AD 

status) shed light on the grey-matter circuits associated with cognition domains and 

functioning. Currently, the identified brain regions largely overlapped with those found to be 

associated with AD (Figure 6), although larger imaging samples should reveal many more 



relevant (and specific) grey-matter regions, as indicated by the gap between morphometricity 

(Figure 1) and the variance currently explained by the identified regions (see prediction R2, 

STable 12).  

 

Alzheimer’s brain score captures disease risk in healthy individuals. 

The overlapping patterns of association we observed between AD and 

neuropsychological scores (Figure 5) led to performant cross-trait prediction, in non-diseased 

individuals (Figure 7, STable 13). Thus, we found that AD brain scores were associated with 

MCI status (memory and language impairments), AD conversion, AD genetic risk (incl., APOE 

e4), total Tau level from cerebral spinal fluid (associations with phosphorylated Tau or 

Amyloid-beta did not reach significance), and a wide range of cognitive scores (Figure 7, 

STable 13), which can shed light on the nature of the AD-related grey-matter markers reported 

above. The robust and transferrable prediction accuracy (across traits and samples) suggests 

that our AD brain scores could be used widely, when samples sizes are too small to derive 

efficient predictors of related traits, or when AD status is not collected or available. For 

example, our AD brain score could (partly) differentiate MCI from HC in PISA (Figure 7, 

STable 13), while the direct analysis of MCI vs HC did not yield significant prediction 

accuracy (STable 12). In addition, the fact that similar grey-matter regions are associated with 

AD and related traits warrants the use of multivariate approaches, that could boost discovery 

in future studies.  

  

More precise grey-matter maps require larger samples 

Our analysis of almost 10,000 brain MRI has identified many associations between grey-matter 

and our traits of interests (94 significant ROIs, 307 clusters of significant vertices, across the 

24 traits considered). However, our findings fail to account for the full morphometricity (either 



ROI based or vertex-based, Figure 1, 2), suggesting that larger samples are needed to identify 

additional brain regions with smaller effects, or to estimate more precisely the association 

effect sizes. For example, the significant ROI associated with AD could explain 12% 

(SE=3.6%) of the variance in case control status in PISA (STable 12), while we estimated a 

ROI based morphometricity of 21% (SE=3.6%, Figure 1, STable 4) across the discovery 

samples (R2=27%, SE=7.7% in PISA). Even more strikingly, the significant vertex-wise 

measurements accounted for 13% (SE=4.4%, STable 12) of AD variance, well short of the 

vertex-wise morphometricity of 100% (SE=6.4%, Figure 1, STable 5).     

 

ROI vs. Vertex-wise analyses  

We conducted analyses on two scales ROI-wise and vertex-wise. Vertex-wise analyses allows 

detection of more localised associations at the cost of a higher multiple testing burden. For 

example, some of the ROI detected as significant (e.g., in the frontal regions, Figure 5), did 

not generate significant vertex-wise associations within the matched regions. However, we 

found 94 significant ROI associations (STable 7) but 307 clusters of significant vertices 

(Figure 4, STable 9), which indicates that vertex-wise analysis are also well powered using 

our current sample size. The different number of findings can be explained by the fact that 

vertex-wise analyses allow the detection of several, independent clusters of significant vertices 

within a ROI (e.g., SFigure 19). For example, when using LMM that limit the detection of 

redundant associations(Couvy-Duchesne et al., 2022), we identified 9 significant clusters 

associated with AD in the left hippocampus. This exemplifies the fact that that a lot of the brain 

variation is lost when aggregating vertices across large regions (ROI), which results in a ROI 

based morphometricity 3 to 20 times lower than the vertex-based morphometricity (Figure 1), 

similar to what we have reported on the UK Biobank(Couvy-Duchesne, Strike, et al., 2020). 

In addition, each atlas used to define the ROIs (here we used Desikan-Killiany) removes signal 



of interest in specific part(s) of the brain(Fürtjes et al., 2023), which likely explains why we 

have detected significant vertices in ROIs that did not reach significance (Figure 5, SFigure 

19). 

In summary, ROI based analyses are best suited to association analyses in single 

cohorts, where statistical power remains limited. However, they provide a simplified, and 

limited description of the associations in the brain. In future, as sample sizes grow, vertex-wise 

analyses can unveil more complex patterns of associations and should supersede prediction 

accuracy achieved from ROIs. Our results demonstrate that vertex-wise analyses can already 

offer a precise localisation of the brain regions associated with diseases and traits, are well 

powered (with samples of several thousands), and yield robust, homogeneous, and reproducible 

results.  

In addition, our results also echo a recent debate about power of brain wide association 

studies. We observed that the statistical power depends on the trait studied and was larger for 

case control status (AD vs. HC), where contrast is large, than for cognition domains(Libedinsky 

et al., 2022). Yet, our analysis suggests that thousands of individuals are required to detect 

robust associations(Marek et al., 2022), especially when the number of brain measurement 

tested is large(Smith & Nichols, 2018), and that tens of thousands would be necessary to further 

progress our understanding of grey-matter structure in AD. 

 

GLM vs. LMM in vertex-wise association testing 

Compared the current state of the art (GLM), LMM lead to parsimonious brain maps of 

associations (30 clusters vs. 103 for AD vs. HC, STable 9, 10), as it controls for all brain 

measurements (fitted as a random effect) which prevents redundant associations from reaching 

significance(Couvy-Duchesne et al., 2022). For proof, the 30 “LMM” clusters account for the 

same amount of information as the 103 identified using GLM (Figure 7, STable 12, 13). LMM 



also offer a more precise localization of the associated regions, and can identify several 

independent signals in close vicinity when the GLM detects a single large cluster of association 

(Figure 4, 5), which aligns with results from simulations(Couvy-Duchesne et al., 2022). As 

sample sizes grow, the power to detect smally associated regions will increase, leading to detect 

more redundant regions (in low correlation with associated regions) using GLM. Some of the 

redundant regions may even be false positive, if the correlation between brain measurements 

is induced by a confounding factor, such as head motion or age(Couvy-Duchesne et al., 2022). 

LMM could overcome these issues and help prioritise key regions of AD atrophy that can be 

used to build interpretable brain-based predictors or be followed up in research.     

 

Family history as a proxy-phenotype for Alzheimer’s disease 

Our analysis of maternal and paternal history of Alzheimer’s, conducted in clinical cohorts as 

well as in the UK Biobank (N=37,644) indicated a low (almost negligible, R2<5%) association 

with grey-matter structure. This result is in line with the weak association between familial 

history and AD status. In the UK Biobank, the morphometricity may be further reduced due to 

the relatively young age of the participants (63 years old on average), consistent with reports 

of an age-dependent effect of APOE on the brain(Jack et al., 2015; Thompson, 2020). Our 

results currently suggest that family history cannot be directly used as a proxy phenotype of 

AD, in order to boost power of brain wide association studies, unlike in GWAS(Marioni et al., 

2018).  

 

Limitations 

In neuroimaging, choices made in image processing can impact the results. We have used a 

simple, albeit commonly used atlas (Desikan Killiany(Desikan et al., 2006)) to define our 

ROIs, which makes our results comparable with those published by the ENIGMA consortium.  



Following a recent article, we can expect that more complex atlases (with more ROIs) would 

capture more trait variance (morphometricity), although each atlas also captures some unique 

signal, which makes comparison of results across atlases difficult (Fürtjes et al., 2023). In 

addition, we considered the most general and high-dimensional vertex-wise representation 

available in FreeSurfer (“fsaverage” with no smoothing applied), as we observed that it 

maximised the morphometricity captured in the UK Biobank (Couvy-Duchesne, Strike, et al., 

2020). Our choice led to the identification of many clusters of significant vertices, but using a 

simpler mesh (e.g. fsaverage6 with only 40,962 vertices per hemisphere) might have resulted 

in increased statistical power, by reducing the multiple testing burden, while still capturing a 

large fraction of the morphometricity (Figure 1). Smoothing might improve the overlap of 

signals across individuals’ maps, although it would likely reduce the association effect sizes, 

with an overall unclear effect on power. In general, more work is needed to guide researchers 

into choosing the best image processing (and software), which may vary depending on the 

objective of the study and the traits of interests. This concern can be extended to the choice of 

harmonisation procedure, when dealing with several scanners or cohorts. Here, we used 

covariates (e.g. site, scanner) throughout the analyses, and meta-analysed results across 

cohorts, which yielded robust and replicable results. Our results can serve as benchmarks for 

future work that would evaluate the effect of applying more advanced harmonisation 

techniques, such as “combat” (Fortin et al., 2018), its extensions or even deep-learning 

approaches(Hu et al., 2023).  

Beyond MRI processing, the method used for multiple testing comparison can also 

influence power. RFT can be less stringent than Bonferroni, but only on smooth 

surfaces/volumes(Breznik et al., 2020), where the morphometricity (hence overall power) is 

reduced. More work is needed to evaluate which combination of MRI processing and multiple 

testing maximises power. In addition, we have used vertex-wise RFT but cluster-based 



RFT(Breznik et al., 2020; Nichols & Hayasaka, 2003) and more advanced 

implementations(Bowring et al., 2021) may give different results. We have not used them here, 

as they have only been implemented to be performed on specific set of surfaces (typically, only 

cortical surfaces). 

 Another possible limitation concerns potential heterogeneity of cohorts. While AD 

status was always based on a clinical assessment (NINCDS/ADRDA, DSM-IV or ICD10 

criteria, Appendix A), some cohorts used additional inclusion criteria (e.g., MMSE score 

threshold for dementia severity).severity). In addition, Alzheimer’s cases, were not 

systematically screened for other dementias, and few had known amyloid status. Fuzzy 

diagnoses can lead to a loss of power, or to detect brain markers associated with general 

dementia and less specific to Alzheimer’s disease. Of note, the modalities of recruitment and 

the screening of the healthy controls also varied depending on the cohort (Appendix A), which 

can further induce variability in the results. Lastly, MCI were typically defined using the 

Petersen/Winblad criteria, but the definition of impairments varied across the samples 

(Appendix A).  To ensure reporting of robust results, we used a mixed effect meta-analytic 

approach that models between-cohort heterogeneity, to ensure the detected associations are 

consistent across samples. In practice, this reduces the influence of each cohort (and its specific 

ascertainment and recruitment) on the results. In addition, we validated our findings using 

independent samples for replication, and prediction analyses. As the sample sizes grow, it will 

be possible to restrict the analyses to more uniform cases (e.g., screened for amyloid), and to 

investigate the robustness of the results across specific subgroups of interest.  

 Lastly, we have treated all our traits/diseases as continuous in our analyses, meaning 

that our reported estimates cannot be directly converted into odd-ratios (OR), or compared with 

results that used a logistic regression. This is because, logistic regression is not routinely 



implemented for LMM, and effect sizes from linear regression can be easily transformed into 

approximate OR(Lloyd-Jones et al., 2018).  
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