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Abstract
In the present paper, a generalized dithering approach using the
Lattice Boltzmann Method (LBM) is proposed. This generalization
enables to experiment different models, and to adapt them accord-
ingly to targeted features and problems. As illustrations, 4 models
are introduced and tested, including anisotropic gradient-based relax-
ation time and enhanced equilibrium distribution function, aiming
for robust quality and artefacts reduction. These models are imple-
mented on Graphics Processing Units (GPU) and generically inter-
faced with the OBLiX framework. The several test-cases performed
demonstrate that such models yield better qualitative and quanti-
tative results, proving the adaptability of the generalization. This
paper, by providing a general framework for dithering using the
Lattice Boltzmann Method, allows an adaptation of the algorithms
to complex situations deviating from classically encountered cases.

Keywords: Dithering, Lattice Boltzmann, Error diffusion, Anisotropic
gradient-based

1



Springer Nature 2021 LATEX template
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1 Introduction
Printing systems are intrinsically capable of only one thing: applying dots of
a given color on a physical substrate. For grayscale printing, black dots are
used, while color printing utilizes black, cyan, magenta, or yellow dots. To
achieve intermediate gray levels or different colors, density or dot size manip-
ulation is necessary. Different density is perceived by the human visual system
as gray levels or intermediate colors. For instance, with a grayscale printer,
creating a “mid-gray” requires covering 50 % of the area with black dots, which
is known as halftoning. Halftoning, fundamental to all printing systems, is
often paired with dithering. Dithering involves adding spatial noise to ran-
domize point arrangement, specifically distributing quantization errors from
pixel value approximation. Halftoning and dithering exploit the human visual
system’s ability to decode information in noise and the retina’s blue noise
organization [1]. Blue noise’s power increases by 3 dB per octave with rising
spatial frequencies, containing more high frequencies than low frequencies.

The Floyd-Steinberg algorithm [2], widely used in dithering, distributes
quantization errors to the four nearest right and bottom neighbors. Despite
its efficiency with bit-shifting, it suffers from two main drawbacks: worm arti-
facts and color transition issues. Worm artifacts stem from the symmetry of
rightward and downward error diffusion. Jarvis [3] proposed an alternative
algorithm utilizing twelve nearest neighbors, reducing artifacts by spreading
errors more broadly. Stucki [4] offers an improved version, similar to [3], with
different error distribution weights for enhanced speed. Shiau and Fan [5]
introduced a corrected Floyd-Steinberg algorithm with new error diffu-
sion weights, reducing worm artifacts and maintaining bit-shifting capacity.
Ostromoukhov [6] proposed further enhancements by using varying coeffi-
cients according to gray levels and diffusing errors over three close neighbors,
resulting in a more efficient algorithm resembling blue noise distribution. All
dithering algorithms are error diffusion-based, distributing density on nearby
neighbors. Numerical methods capable of diffusion operations, like LBM,1
have been utilized in image processing for anisotropic diffusion for years. They
are adaptable to dithering.

Another algorithm suggested by Jarvis [3], created shortly after that of
Floyd-Steinberg, uses twelve nearest neighbors instead of four. The rest of
the algorithm is the same as Floyd-Steinberg’s one. This algorithm is less
efficient, but helps reduce artifacts by spreading the error more widely. An
improvement of this algorithm has been proposed in [4]. It is similar as that
of [3], but with different error distribution weights which allows a significant
improvement in the speed of the algorithm.

The LBM is a method initially developed for gas mechanics, but is now
also widely used in fluid mechanics, because it allows the simulation of com-
plex phenomena from particle distribution density. Furthermore, one can

1Lattice Boltzmann Method
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show an asymptotic behavior between this method and the Navier-Stokes
equations [7].

The advantages of the LBM are that it is highly parallelizable, and that it
operates on a mesoscopic scale, that is to say on the scale of particle density.

An analogy can be made between particle density and gray levels. Indeed,
the gray levels in an image correspond to a concentration of photons that hit
some photo-receptors. The LBM can and has been used for image processing
for several years. Image processing using LBM is commonly used for denois-
ing [8] and segmentation [9] operations. The anisotropy allowed by the method
is one of the advantages that lead to its use.

The LBM can be used for dithering, due to the diffusion process it embeds.
In a dithered image, the dots correspond to ink droplets deposited on the
paper. As the LBM guarantees the conservation of density, it can also “con-
serves the ink quantities”. The error diffusion becomes straightforward. In
Hagenburg’s LBM dithering work [10], rotational invariance is preserved,
due to the symmetry of the method, and quality in images presenting complex
structures is improved. This is, at the cost of a change of scale in terms of cal-
culation times, a significant improvement directly linked to the isotropy of the
LBM diffusion algorithm. However, the method is not adapted to colour or
multispectral images, plus the relaxation time is unitary, which appears as a
limitation. Despite its quality improvement, the use of the LBM for dithering
remains quite unexplored, with many questions unanswered. Can generalized
anisotropy enhance the quality of LBM based dithering? Can the compu-
tational efficiency be improved? In this paper, the main contribution is to
perform a generalized LBM dithering that takes into account the anisotropy,
inspired by [11]. The algorithm is based on a local variation of the relaxation
time or equilibrium function, which becomes dependent on gray levels.

The results show that the artifacts are reduced compared to Hagenburg.
Edges are also improved and better preserved, and grayscale gradients are
better captured compared to [12], [2] and [10]. The method is also robust on
synthetic and real images. Regarding metrics, GSSIM2 and MSSIM3 metrics
are found to be better with the proposed method. Finally, the implementation
on GPU4 improves the speed compared to [10].

The paper is organized as follows. Section 2 describes the proposed method-
ology, based on a generalization of LBM for dithering, modifications of local
relaxation times or equilibrium distribution function, and implementation on
GPU. The third section is dedicated to the quantitative results using different
metrics. The fourth section is a discussion that also presents some qualitative
results and observations. The last and fifth section concludes the paper.

2Global Structural Similarity Index Measure
3Mean Structural Similarity Index Measure
4Graphics Processing Unit
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2 Methodology
2.1 Generalities about LBM for image processing
As mentioned in the introduction, in the LBM applied to images, the image
intensity ρ(x, t) is considered and treated as density. Thus, in our context,
ρ(x, t) is the intensity of an image at time t and at position x = (x, y). On
the other hand, the microscopic state is modelled by a distribution function
f i(x, t) which describes the amount of intensity along the direction ei = ξi∆t.
In this paper, we employ a D2Q9 lattice model which means that 9 direc-
tions of propagation are considered in 2 dimensions. Using this model, the
macroscopic state is obtained as follows:

ρ(x, t) =
8∑

i=0
f i(x, t) . (1)

The method is based on a collision-propagation scheme at the microscopic
scale. The fundamental equation governing the model is

f i(x + ξi∆t, t+ ∆t) = f i(x, t) + Ωi(x, t) , (2)

where Ωi(x, t) is the discrete collision operator. Using the BGK5 collision
operator, the collision-propagation scheme can be written as follows:

f i(x + ξi∆t, t+ ∆t) = f i(x, t) + ω [feq
i (x, t) − f i(x, t)] , (3)

where ω is the relaxation time and feq
i (x, t) an equilibrium distribution.

Equation (3) can be split into two parts corresponding to two phenomena
governing the LBM: collision and propagation on lattice (i.e. ξi∆t = ei),
respectively eq. (4) and eq. (5):

f i(x, t) = f i(x, t) + ω [feq
i (x, t) − f i(x, t)] , (4)

f i(ei, t+ ∆t) = f i(x, t) , (5)
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,
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)}
. (6)

2.2 A LBM for generalized dithering
The above description explains the general principle of the lattice Boltzmann
method. By choosing different relaxation time and equilibrium distributions,
several treatments on the images can be obtained: denoising, segmentation or
dithering [8, 10, 13].

5Bhatnagar, Gross and Krook
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2.2.1 Dithering equilibrium function
In 2009, Hagenburg et al. [10] proposed a model to perform dithering on
images. Their implementation is based on eq. (3) where the authors have
chosen the following parameters:

ω = 1 , (7)

and

feq
i (x, t) =


t′
i ρ(x, t) if ρ(x, t) < ν and i ̸= 0

t′
i (ρ(x, t) − 255) if ρ(x, t) > 255 and i ̸= 0

ti ρ(x, t) if ρ(x + ei, t) > ρ(x, t) and ρ(x + ei, t) < 255
0 if ρ(x + ei, t) < ρ(x, t)

,

(8)

where

ti =


4/9 i = 0
1/9 i ∈ {1, 2, 3, 4}
1/36 i ∈ {5, 6, 7, 8}

and t′i =


0 i = 0
1/5 i ∈ {1, 2, 3, 4}
1/20 i ∈ {5, 6, 7, 8}

. (9)

In eq. (8), ν is the minimum equilibrium acceptation parameter which is chosen
close to zero. This allows a neighboring pixel in (x + ei, t) to always take
away an amount t′i ρ(x, t) of particles of pixel (x, t) if the latter has a gray
value below ν. This parameter is added to improve the robustness of the
implementation.

2.2.2 Uniform relaxation rate influence
In their paper, Hagenburg et al. have chosen to take the ω parameter as
unity, making it uniform and isotropic. The result of our implementation of
Hagenburg’s algorithm is visible in Fig. 1, we can see that the uniform gray
areas suffer from horizontal and vertical bands. As for the gradients, squares
are visible in the transition areas. The square shape being probably due to
the use of a D2Q9 lattice.

When the relaxation parameter is varied, we observe that it strongly influ-
ences the behavior of the method. Letting vary it from 1 to 0.1, for example,
produces significant changes, see Fig. 1. It can be seen on Fig. 1(d) that the
artifacts in the uniform gray areas have disappeared but at the cost of a
blurring of the contours between the areas.

For a uniform relaxation time, we observe that a value of 0.35 seemed to
be the switch value between fast and slow diffusion process and thus can be
optimal, see Fig. 1(c). This value of 0.35 allows a slow diffusion which gives
time for the pixel particles to equilibrate and not to freeze quickly in one
state. This avoids artifacts that can be seen in the structures at the top and
bottom right of Fig. 1(b). On the other hand, this value is high enough that



Springer Nature 2021 LATEX template

6 Generalized Dithering using the Lattice Boltzmann Method

(a) Original image with structures. (b) Dithering with ω = 1.

(c) Dithering with ω = 0.35. (d) Dithering with ω = 0.1.

Fig. 1: Influence of the relaxation parameter.

the diffusion cannot spread too much, thus avoiding the spillover that can
be seen on Fig. 1(d). Fig. 2 shows the evolution of two metrics applied only
on the gradient part of Fig. 1: the Lebovici entropy [14] and the GSSIM
between the original image and the image dithered with different values of ω.
In a few words, the first metric gives a measure of the disorder in an image,
and it should be as large as possible. Indeed, it is preferred to introduce noise
into the dithered image to give the illusion of different gray levels. The latter
measures the similarity between two images. It is also better for this metric
to be maximal. On Fig. 2, it can be seen that the metrics give diametrically
opposed results for image quality as a function of ω, which is not inconsistent
insofar as the two metrics measure two different phenomena. Moreover, the
Lebovici entropy curve shows that the entropy drops drastically from 0.35
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onwards. A lower entropy means less noise in the image and therefore the
appearance of the artifacts illustrated above. This confirms the switch value
of 0.35 which seems to be an optimal value, allowing us to keep entropy high
while maximizing the GSSIM and, therefore, the similarity between the two
images.
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Fig. 2: Evolution of the Leibovici entropy and the GSSIM with ω.

Thus, our objective is to build diffusion models, i.e. ω or equilibrium
functions, taking into account the characteristics of the image, to adapt to
the particularities of the latter. Models will be both inhomogeneous and
anisotropic because of their dependence on both the position in the image and
the direction of the transitions in the image.

2.3 Testing with various anisotropic relaxation rate
functions

In this section, we introduce two relaxation rate functions which have the speci-
ficity of being anisotropic because of their dependence on the direction vectors
ei. More specifically, the distribution is made non-uniform and anisotropic by
taking into account the gradient ⟨ei|∇ ρ⟩ in the original image.

One point to note is that in this case, the lattice Boltzmann eq. (3)
becomes:

f i(x + ei, t+ ∆t) = f i(x, t) + ωi(x, t) · [feq
i (x, t) − f i(x, t)] + Ωi(x, t) , (10)

where

Ωi(x, t) = ti

8∑
j=0

ωj(x, t) ·
[
feq

j (x, t) − fj(x, t)
]
. (11)
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Fig. 3: Proposed models (ωi(x, t) as a function of ∇ρ).

The two proposed models for the relaxation rate are composed of sums
of 3 functions gn

i (n ∈ {1, 2, 3}), allowing the handling of different cases of
diffusion:

gn
i (x, t) = an + bn

1 + e cn(⟨ei|∇ ρ⟩+dn) , (12)

ωi(x, t) =
{
g1

i (x, t) + g2
i (x, t) + g3

i (x, t) if t ≤ tlimit

0.5 otherwise
, (13)

where the commonly used value of tlimit is 20. The form used by gn
i in eq. (12),

is focusing on the density gradient orientation compared to the lattice direc-
tions through a scalar product. While the use of the exponential function
tends to nullify positive (and large) values of the scalar product. Therefore,
choices for parameters a, b, c and d in eq. (12) are selecting directionally how
to diffuse toward the density gradient.

For the following two models, the parameters a, b, c and d of eq. (12) are
chosen as constant. As eq. (12) uses only these constants and the gradient
of the original image, it implies that eq. (13) is only time-dependent for the
change to a constant after tlimit. This means that the two parts of the relax-
ation rate can be computed before the LBM iterations start and be switched
only once tlimit has been reached.

2.3.1 Model 1: Gradient-based anisotropic diffusion
The model 1, whose representation is visible in Fig. 3(a), has the following
parameters: 

a1 = 0.05
b1 = 0.9
c1 = 15
d1 = 1

,


a2 = 0
b2 = 0.25
c2 = −3
d2 = −2

,


a3 = 0
b3 = 0.1
c3 = −5
d3 = −6

. (14)
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The g1
i function controls the distribution for negative values of the gradient

(i.e. a neighboring pixel in the direction i is darker than the current pixel).
Looking at the eq. (8), it can be noticed that the calculation of the equilibrium
state prevents the displacement of particles from one pixel to another darker
one. This transfer is only allowed by eq. (8) in certain cases, which we then
facilitate with a value of 0.9. In order not to stop the diffusion completely, g1

i

also guarantees a minimum for the distribution even for low gradients.
The function g2

i is intended to allow better diffusion as the gradient
increases. The sum of g1

i and g2
i allows to obtain a 0.30 level for a slow diffusion

in areas with medium gradients.
For its part, g3

i increases the relaxation time for strong gradients to 0.4 for
rapid diffusion to take place. This rapid diffusion allows a rapid convergence
to a stable state, thus preserving the shape boundaries in the original image
and avoiding the spillover effect seen in Fig. 1(d).

Finally, the value of relaxation time becomes uniform with a value of 0.5
after the tlimit number of iterations. This change is made so that the algorithm
can converge to a steady state in all areas, in a reasonable time.

2.3.2 Model 2: two-modes anisotropic diffusion
The first model, while performing well, may have difficulty reproducing uni-
form portions of images, as illustrated in Fig. A6(a). Then, a second model
is introduced, with the capacity of handling such cases while keeping perfor-
mances equivalent to the first model. This model works with two modes, a first
classical diffusion mode close to model 1 and a second diffusion mode which
forces diffusion for uniform image areas.

As for model 1, model 2, whose representation is visible in Fig. 3(b), has
the following parameters:

a1 = 0
b1 = 1
c1 = 100
d1 = 0.1

,


a2 = 0
b2 = 0.36
c2 = −3
d2 = −2

,


a3 = 0
b3 = 0.04
c3 = −5
d3 = −6

. (15)

The model variations in ωi are motivated by the same reasons as the first
model. However, it introduces a difference in the offset of ωi(x, t) which is
set to zero. This zero offset is to be seen in relation to the additional step
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introduced by the model, which is the following:

if
8∑

i=0
ωi(x, t) ⩽ 1, then

ωi(x, t) =


0.5 for i = 1, 2, 3, 4

ωi(x, t) for i = 5, 6, 7, 8

}
if ψ ⩽ 0.5

ωi(x, t) for i = 1, 2, 3, 4
0.5 for i = 5, 6, 7, 8

}
if ψ > 0.5

(16)

where:
ψ ∼ U(0, 1) (17)

With this additional step, diffusion is forced for pixels that do not have
a preferred diffusion direction (i.e. located in a uniform area). This forced
random diffusion in directions will “break up” any potential artifacts caused
by the lack of diffusion.

2.4 Model 3: enhanced equilibrium distribution
The effective management of regions with low gradients is crucial for achieving
high-quality dithering, as demonstrated by the two preceding models. These
areas are found both in the contours of shapes and in uniform areas of the
image, where poor management of low gradients can result in an image with
unclear contours and artifacts.

Therefore, in this section, a new equilibrium distribution is introduced,
based on eq. (8) proposed by Hagenburg et al. The proposed equilibrium
distribution is:

feq
i (x, t) =



t′
i ρ(x, t) if ρ(x, t) < ν and i ̸= 0

t′
i (ρ(x, t) − 255) if ρ(x, t) > 255 and i ̸= 0

ti ρ(x, t) if ρ(x, t) ≤ ρ(x + ei, t) < ρ(x, t) + δ
and α < ρ(x + ei, t) < β and (x + y) ≡ 0 [mod 2]

ti ρ(x, t) if ρ(x, t) + δ < ρ(x + ei, t) and ρ(x + ei, t) < 255
0 otherwise

,

(18)

where

ti =


4/9 i = 0
1/9 i ∈ {1, 2, 3, 4}
1/36 i ∈ {5, 6, 7, 8}

and t′i =


0 i = 0
1/5 i ∈ {1, 2, 3, 4}
1/20 i ∈ {5, 6, 7, 8}

, (19)

As eq. (8), the proposed equilibrium distribution forces diffusion for pixels
with a value smaller than ν and those with a value greater than 255. Similarly,
the weights remain unchanged and no diffusion is performed if the value of
the neighboring pixel in (x + ei, t) is not greater than the value of the pixel
in (x, t).
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The novelty introduced lies in the pixel diffusion in the case where the
neighboring pixel value is higher than the pixel value, i.e. ρ(x+ei, t) ≥ ρ(x, t).
On eq. (8), diffusion takes place as soon as the value is higher whereas on
the proposed equilibrium, the choice of creating a transition zone is made to
improve the diffusion for small differences.

Therefore, an offset parameter δ is introduced (typically 5, but can be
adjusted according to images). For pixels with small differences from their
neighbors (i.e. ρ(x, t) ≤ ρ(x + ei, t) < ρ(x, t) + δ), diffusion only occurs if
the sum of coordinates is even. This condition will prevent the appearance of
artifacts by creating a “grid” where all the pixels in the image alternate their
behavior. Moreover, to prevent the creation of grids in dark or light areas, thus
creating artificial pixels, the condition that the pixel value must be between
two thresholds α and β (typically 25 and 230) to receive particles has been
added. Finally, if the value is greater than ρ(x, t)+ δ, the diffusion takes place
as in eq. (8).

2.5 GPU implementation
As explained in the introduction, one of the strengths of the LBM method lies
in its easy parallelization, which can notably be done on GPUs. Numerous
works [15–18] have been carried out to develop optimized solvers for LBM on
GPUs, but with a different target than the one of the present work. Indeed,
these research projects, like [19, 20], focus on the application of LBM to fluids
and not to images. Furthermore, some of them have different features com-
pared to our work, with for example [15] which is developed in python or [18]
whose techniques are optimized for 3D geometries. All these reasons justified
implementing a GPU parallelization using the OpenAcc6 framework.

2.5.1 LBM parallelization
The four stages defining the LBM, namely propagation, collision, calculation
of the equilibrium distribution and calculation of the macroscopic state are
inherently parallelizable.

The collision and propagation phenomena (eq. (4) and eq. (5)) are fully
parallelizable. The calculation in one direction ei of the former depends only
on the current state of the distributions. For the latter, the computation of
the distribution in direction ei at x+ei and t+∆t only relies on the previous
state of the distribution.

Regarding the calculation of the equilibrium distribution with eq. (8) or
eq. (18), although having many conditions, it can be noted that it can also
be calculated in parallel. Indeed, the equilibrium distribution in direction ei

depends only on ρ(x, t) and ρ(x + ei, t).
Finally, as each pixel of the macroscopic state in eq. (1) only depends on the

distribution at position x and t, the value of each pixel can also be calculated

6Open ACCelerators
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in parallel. It is nevertheless necessary to implement a parallel reduction as
the value ρ(x, t) is modified in parallel.

2.5.2 Parallelization strategy
The implementation of parallelization is done using the model proposed
by OpenAcc. OpenAcc is a directives-based parallel programming model
designed for performance and portability. It allows specifying parallelizable
areas using directives while letting the compiler determine how to implement
them for the desired machine.

Although the GCC7 compiler supports OpenAcc directives, it is still lim-
ited. Therefore, the HPC8 SDK9 provided by NVIDIA was used. This SDK
provides nvc++, a NVIDIA C++ compiler, which offers the latest OpenAcc
features and full support for NVIDIA graphics cards.

In other words, by adding simple directives to existing code, nvc++ will
automatically compile a parallel and optimized code using various techniques
such as GPU offloading, interprocedural optimizations and various miscella-
neous optimizations. Once the code has been generated, it can be then used
on any image thanks to OBLiX.

2.5.3 Memory management
In terms of memory, the algorithm relies on four c++ objects: one object repre-
senting a macroscopic state and three objects representing microscopic states
(the equilibrium state, the prediffusion state and the postdiffusion state). All
these objects use c++ double which can hold floating-point values of up to 15
digits taking up a space of 8 bytes in the memory. The use of three microscopic
states avoids race condition problems, at the cost of using more memory.

When creating these macroscopic and microscopic objects, the following
OpenAcc directives are used:

1 # pragma acc enter data copyin (this)
2 # pragma acc enter data create (array [0: size ])

Listing 1: Allocation of device memory

These unstructured data directives indicate to the compiler how much
space to allocate on the device to store each object. Once the space has been
reserved, the image can be loaded from the host onto the device using the
directive:

1 # pragma acc update device (array [0: size ])

Listing 2: Load of the image to the device

The LBM algorithm is performed only on the states present in the device.
This avoids data going back and forth between host and device memory, which
would slow down the algorithm as moving data at each loop is inefficient.

7GNU Compiler Collection
8High Performance Computing
9Software Development Toolkit
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One point to emphasize is the calculation of the relaxation rate, which as
explained earlier, can be calculated before the LBM algorithm starts. As the
computation time of the relaxation rate is negligible compared to the LBM
algorithm, it is calculated on the CPU and sent to the GPU. In the case of
model 2, it also avoids the need to generate random numbers on the GPU.

2.5.4 Loop parallelization
Using nvc++ and OpenAcc, the for-loops used to implement eq. (4), eq. (5)
have been parallelized as follows:

1 # pragma acc parallel loop default ( present ) tile (32, 32)
2 for loop on image rows
3 for loop on image columns
4 # pragma acc loop
5 for loop on pixel directions
6 ...

Listing 3: Parallelization of collision and propagation equations.

The macroscopic state calculation for-loop of eq. (1), which requires a
parallel reduction operation, has been parallelized in this way:

1 # pragma acc parallel loop default ( present ) tile (16, 16)
2 for loop on image rows
3 for loop on image columns
4 pixel_value = 0.0
5 # pragma acc loop reduction (+ : pixel_value )
6 for loop on pixel directions
7 ...

Listing 4: Parallelization of the calculation of the macroscopic state.

The default(present) directive indicates to the compiler that all vari-
ables used are present in device memory, so there’s no need to make copies
between host and device memory.

2.5.5 OBLiX framework
On one hand, the nvc++ compiler, as well as performing code optimizations,
generates code for the GPU, leading to a significant compilation time increase.
This extended compilation time discourages the direct inclusion of parameters
such as input images or model parameters in the source code.

On the other hand, in order to test, analyze and optimize models in a
reasonable amount of time, it is necessary to be able to easily change model
parameters.

To overcome this problem, the choice was made to use the OBLiX10 frame-
work. OBLiX is simple C++ library allowing both code coupling and generic
execution from the input file (XML11 or JSON12) containing the instructions

10OBject Library eXecutor
11Extensible Markup Language
12JavaScript Object Notation
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to be executed. Thus, OBLiX is designed to guarantee reproducibility even
for complex codes in heterogenous situations.

The framework makes it possible to compile once and easily perform series
of analyses by providing input files defining algorithm arguments such as input
images or model parameters.

3 Results
Evaluate the quality and performance is rarely straightforward. Indeed, at the
best of the authors’ knowledge, there is no conventional metrics for dithered
images. This lack of consensus lies in the complex structure resulting: dithering
by definition is introducing errors to give to human eyes the illusion of a same
image using less color nuances. Therefore, we used a set of different metrics
that we introduce in the following section before presenting the quantitative
results obtained for benchmarking the proposed methods.

3.1 Metrics used
3.1.1 SSIM
The SSIM13 is commonly used to evaluate similarities in the properties of
two given images, such as the luminance (noted l), the contrast (noted c) and
structures (noted s). In its generic formulation, the SSIM can include these
properties measurement with different weights [21]. This leads to the following
expression of the SSIM between two images I and J :

SSIM (I,J ) = [l (I,J )]α · [c (I,J )]β · [s (I,J )]γ

=
[

2µIµJ + c1

µ2
I + µ2

J + c1

]α

·
[

2σIσJ + c2

σ2
I + σ2

J + c2

]β

·
[
σIJ + c3

σIσJ + c3

]γ

,

where µI (respectively µJ ) is the mean value of the image I (respectively
J ), σ2

I (respectively σ2
J ) is the variance of the image I (respectively J ),

and σIJ is the cross-correlation between the two images. The other values
are conventional constants and weighting: c1 = (k1L)2

, c2 = (k2L)2 and
c3 = c2

2 with L the dynamic range of the signal (here 255), k1 = 0.01, k2 =
0.03. The weights for properties measurement are conventionally set at 1 for
luminance and structure. While, contrast weight is intentionally reduced due
to the inherent contrast-altering nature of the dithering process, where the
range shifts from [0, 255] to [0, 1]. This results in α = γ = 1 and β = 0.1. It
should be noted that, since the change of contrast is the same for all dithering
methods, the change of weight associated is only rescaling SSIM and not
affecting relative comparisons.

The SSIM is computed in two different manners: globally and locally. The
GSSIM is applying the previous formula on whole images, while the MSSIM

13Structural Similarity Index Measure
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is applying on a subset of 11 × 11 pixels and taking the average value. In both
cases, values closer to 1 indicate more similarity.

3.1.2 MLWE
The MLWE14 was introduced by [22]. When the human eye is looking at an
image as global set, it tends to focus on areas that seem more degraded/ab-
normal. For this reason the MLWE is taking into account non-linearly the
maximum of error, and is computed as follows:

MLWE (I,J ) = max
x,y

 1
25

2∑
i=−2

2∑
j=−2

∣∣∣∣I(x+ i, y + j) − J (x+ i, y + j)
exp (0.003W (I, x+ i, y + j))

∣∣∣∣2
1/2

,

(20)
with

W (I, x, y) =
1∑

i=−1

1∑
j=−1

∣∣∣∣∣I(x+ i, y + j) − 1
9

1∑
k=−1

1∑
p=−1

I(x+ i+ k, y + j + p)
∣∣∣∣∣ .

Thus, the lower the value of MLWE, the better quality of dithering obtained.

3.2 Quantitative results
The previously defined GSSIM, MSSIM, MLWE and the common MSE15

metrics are computed to compare quantitatively the proposed models and
usual dithering methods from literature. These comparisons are performed
on several famous benchmarking images in addition with some others more
adapted to dithering problems. This bundle of benchmarking images contains
synthetic images and real life photographs. The compared models are those
presented in section 2.3.1, section 2.3.2 and section 2.4 and noted “LBM1” to
“LBM3” in the following; plus a combination of anisotropic diffusion function
from section 2.3.1 with the enhanced equilibrium distribution function from
section 2.4 giving a fourth model and denoted “LBM4” (see table 1). The
proposed models are also compared with well-known ones such as models from
Floyd [2], “false Floyd” [23], Jarvis [3, 24], Stucki [4, 12] and Sierra [23,
25].

For all the test images (Fig. 4 to Fig. 11), it is presented side by side
the original image, the best (according to the metrics) of our models and the
best from the “other” methods. For each test case, the numerical values of
those metrics are presented in tables following the images (table 2 to table 9).
In those tables, the bold numerical values are the best by metrics, the bold
method is the one with the larger number of best metrics (so can be consid-
ered as the best method) and the symbols (b) and (c) are referring to the
methods displayed in the corresponding figures. In addition to those results,

14Maximum Local Weighted Error
15Mean Square Error
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LBM model relaxation rate equilibrium

LBM1 eqs. (13) and (14) eq. (8)
LBM2 eqs. (13), (15) and (16) eq. (8)
LBM3 eq. (7) i.e. ωi = 1 eq. (18)
LBM4 eqs. (13) and (14) eq. (18)

Table 1: Description of LBM models used.

the section A gives systematically the resulting images of our methods for all
test images.

The Fig. 4 (and table 2) show dithering results on the famous cameraman
image. According to table 2, the model LBM1 yields better GSSIM, MSSIM
and MSE and is shown in Fig. 4(b) ; while the Stucki’s method gives better
MLWE and is printed in Fig. 4(c). It can be observed that details in the
background or on the camera are more noticeable with the LBM1 method.
However, an increase of the noise texture size is appearing: the spatial size of
the noise “grains” is larger. On the other hand, the Stucki’s method appears
slightly more blurred.

(a) (b) (c)

Fig. 4: The cameraman test: (a) the original image, (b) the dithered image
using the present model 1, (c) using the Stucki method.

The second test image is a synthetic one. It represents the word “dithering”
using a constant gray level over a gray ramp in background. This original image
is illustrated in Fig. 5(a), while Fig. 5(b) is showing the dithering result with
LBM1 and Fig. 5(c) with Stucki’s method. Table 3 is clearly highlighting
better results for LBM1 (and LBM2) for all metrics used over other methods
and models. Despite, Stucki’s method presents the second-best MLWE value,
as it can be seen on Fig. 5(c), the letter from T to I are much less readable than
on the original image or with the LBM1 method. Moreover, a small asymmetry
in the restitution of the background gradient is also noticeable with Stucki’s
method (see top left corner for example).
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Methods MSSIM GSSIM MWLE MSE
LBM1 (b) 0.3287 0.5586 37.800 11 020.1

LBM2 0.3201 0.5551 35.133 11 076.4
LBM3 0.2257 0.5431 33.399 11 270.8
LBM4 0.2012 0.5507 33.808 11 147.5
Floyd 0.1388 0.4814 33.888 12 269.8

FalseFloyd 0.1308 0.4799 34.099 12 295.2
Jarvis 0.1561 0.4902 33.031 12 127.2

Stucki (c) 0.1520 0.4882 32.507 12 159.8
Sierra 0.1542 0.4888 33.697 12 150.6

Table 2: Metrics results of different dithering methods applied on the cam-
eraman image Fig. 4(a).

(a)

(b)

(c)

Fig. 5: The dithering-word test: (a) the original image, (b) the dithered image
using the present model 1, (c) using the false Stucki method.

The third test image is a higher resolution photograph of a sunset over a
mountain valley. The original image (visible on Fig. 6(a)) is interesting since
it mixes smooth, flatten transitions (from the fog) and sharp edges between
mountains, as well as fine structures in the dark values at the foreground
mountain and in the light values in the background (clouds in the sky). Table 4
gathers metrics results obtained for this image. The LBM3 model gives the
best values for two out of four LBM metrics and thus can be considered as the
best compared model, and is shown in Fig. 6(b). It is worth noting that LBM1
yields the best MSSIM value. But the best MLWE value is obtained with
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Methods MSSIM GSSIM MWLE MSE
LBM1 (b) 0.3454 0.4243 27.294 11 586.3

LBM2 0.3443 0.4175 29.770 11 663.4
LBM3 0.2696 0.3834 31.766 12 049.3
LBM4 0.2543 0.3988 32.588 11 874.3
Floyd 0.1845 0.3697 32.046 12 187.1

FalseFloyd 0.1920 0.3706 30.173 12 179.7
Jarvis 0.1888 0.3770 29.717 12 077.2

Stucki (c) 0.1908 0.3761 28.345 12 089.7
Sierra 0.1876 0.3767 29.588 12 089.7

Table 3: Metrics results of different dithering methods applied on the
“dithering-word” image Fig. 5(a).

the Sierra’s method, as illustrated on Fig. 6(c). Comparatively, the LBM3
captures clouds in the sky and small black fluctuations in the foreground
mountains; while these elements are not perceptible in Sierra’s dithering.

(a) (b) (c)

Fig. 6: The mountain valley test: (a) the original image, (b) the dithered
image using the present model 3, (c) using the Sierra method.

Methods MSSIM GSSIM MWLE MSE
LBM1 0.3459 0.6607 36.399 8713.5
LBM2 0.3457 0.6614 36.276 8697.7

LBM3 (b) 0.2547 0.6782 40.634 8350.6
LBM4 0.2508 0.6595 37.292 8736.9
Floyd 0.2267 0.6498 33.359 8935.4

FalseFloyd 0.2085 0.6496 33.985 8940.4
Jarvis 0.2382 0.6518 33.427 8891.7
Stucki 0.2386 0.6516 33.622 8896.0

Sierra (c) 0.2387 0.6516 33.235 8895.6

Table 4: Metrics results of different dithering methods applied on the moun-
tain valley image Fig. 6(a).

The fourth test image is a synthetic very flat gray-gradient (ramp) starting
from a value of 124 at left side to 127 at the right side (see Fig. 7(a)). Since
this range of gray levels is the midpoint limit between white and black values,
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it often creates artifacts or other defaults in the dithering process. Table 5
gives the metrics results, with the addition of the Leibovici’s entropy to track
artifacts signatures. The LBM1 has the better entropy metric and Stucki’s
method gives the best MLWE and is shown in Fig. 7(c). For all the other
metrics the LBM4 yields better values and is shown in Fig. 7(b). The LBM4
resulting dithering is flat and without geometrical default, only black spots are
present in the transition zones. By comparison, the Stucki’s results present
strong geometrical defaults: relatively horizontal dashed lines appear while
the transitions are vertical, plus these lines are curving downward giving the
impression of a underlying structure which does not exist in the original image.

(a)

(b)

(c)

Fig. 7: The ramp test: (a) the original image, (b) the dithered image using
the present model 4, (c) using the Stucki method.

Methods MSSIM GSSIM MWLE MSE Entropy
LBM1 0.4660 0.2022 4.193 16 221.8 −6515.5
LBM2 0.4826 0.2128 4.198 16 217.1 −9585.8
LBM3 0.4815 0.2146 4.182 16 216.3 −8377.9

LBM4 (b) 0.4864 0.2174 4.169 16 215.1 −7728.7
Floyd 0.3595 0.1378 4.138 16 250.8 −21 091.7

FalseFloyd 0.3610 0.1387 4.123 16 250.4 −20 024.7
Jarvis 0.3606 0.1403 4.116 16 248.9 −16 930.5

Stucki (c) 0.3580 0.1374 4.115 16 250.1 −25 606.5
Sierra 0.3584 0.1390 4.122 16 249.4 −16 697.6

Table 5: Metrics results of different dithering methods applied on the ramp
image Fig. 7(a).
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The fifth test image is the famous picture of Michelangelo’s sculpture
(see Fig. 8(a)). This test image has quite a low resolution, which is always
challenging for dithering algorithms. Table 6 shows the metrics results for the
different methods tested. The LBM2 has better GSSIM, MSSIM and MSE
and is shown in Fig. 8(b), while Jarvis’s method has better MLWE and
is shown in Fig. 8(c). The LBM2 preserves finer structures of the original
image with a larger noise texture seize, while the Jarvis’s method seems more
smoothed.

(a) (b) (c)

Fig. 8: The Michelangelo test: (a) the original image, (b) the dithered image
using the present model 2, (c) using the Jarvis method.

Methods MSSIM GSSIM MWLE MSE
LBM1 0.4690 0.6127 33.471 9866.4

LBM2 (b) 0.4711 0.6139 30.243 9845.2
LBM3 0.3735 0.5853 29.892 10 339.7
LBM4 0.4436 0.6071 31.147 9962.0
Floyd 0.2477 0.5424 29.529 11 075.6

FalseFloyd 0.2393 0.5388 30.741 11 139.9
Jarvis (c) 0.3189 0.5728 29.364 10 545.5

Stucki 0.3012 0.5668 30.272 10 650.9
Sierra 0.3111 0.5696 32.580 10 600.5

Table 6: Metrics results of different dithering methods applied on the
Michelangelo image Fig. 8(a).

The sixth test image is a relatively low-resolution photograph shot with a
laptop camera. The image contains a mug, a table and a lamp pillar over a
uniform wall (see Fig. 9(a)). The low resolution (and poor encoding) combined
with the color of the wall tends to foster artifacts. Table 7 gives the metrics
values computed on the test image for all compared methods. The LBM2



Springer Nature 2021 LATEX template

Generalized Dithering using the Lattice Boltzmann Method 21

yields the best MSSIM value, the Jarvis’s has the best MLWE result and is
shown in Fig. 9(c), while the LBM1 has best GSSIM and MSE values and is
given in Fig. 9(b). From the image comparison, it can be seen that the LBM1
captures more accurately the edges of the objects in the scene and the mug
shadows are easily identifiable. On the other hand, Jarvis’s method has less
sharp edges but wall in the background seems less structured and smoother
which seems more eye pleasant.

(a) (b) (c)

Fig. 9: The mug test: (a) the original image, (b) the dithered image using the
present model 1, (c) using the Jarvis method.

Methods MSSIM GSSIM MWLE MSE
LBM1 (b) 0.4340 0.1746 27.813 15 700.5

LBM2 0.4366 0.1720 28.219 15 715.6
LBM3 0.3467 0.1325 31.003 15 946.4
LBM4 0.3473 0.1458 32.229 15 869.0
Floyd 0.3315 0.1530 25.748 15 826.9

FalseFloyd 0.3303 0.1512 25.635 15 837.4
Jarvis (c) 0.3365 0.1611 25.608 15 779.6

Stucki 0.3356 0.1590 26.332 15 791.6
Sierra 0.3367 0.1604 26.334 15 783.5

Table 7: Metrics results of different dithering methods applied on the mug
image Fig. 9(a).

The seventh test image is a synthetic patchwork with concentric stars,
circles, squares, gray-gradients (ramps) with different gray ranges with and
without constant gray pellet; it also contains a real parrot eye surrounded
by stripes (see Fig. 10(a)). Table 8 gathers the metrics obtained with this
synthetic image. On this test, Jarvis’s method can be considered the best
method with 3 best metrics (GSSIM, MLWE, MSE) out of 4, and is shown
in Fig. 10(c). The LBM2 yields the best MSSIM value and is illustrated in
Fig. 10(b). Despite, the geometrical default in gradients or the top right square
with the Jarvis’s method, the edges are clear and well captured. With the
LBM2, small artifacts remains in the gradient and some black pixels close to
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the star are infidels to the original image. One can also notice the residues of
the diffusion process in the onion skin layers in the dark squares in the top
and bottom right part of the image.

(a) (b) (c)

Fig. 10: The synthetic patchwork test: (a) the original image, (b) the dithered
image using the present model 2, (c) using the Jarvis method.

Methods MSSIM GSSIM MWLE MSE
LBM1 0.6840 0.7402 35.079 5550.2

LBM2 (b) 0.6966 0.7484 31.855 5399.4
LBM3 0.6809 0.7411 33.012 5535.4
LBM4 0.6788 0.7375 47.510 5600.6
Floyd 0.6765 0.7426 34.752 5506.7

FalseFloyd 0.6741 0.7418 30.078 5521.3
Jarvis (c) 0.6829 0.7489 29.705 5391.7

Stucki 0.6823 0.7478 29.709 5411.5
Sierra 0.6822 0.7484 29.262 5401.7

Table 8: Metrics results of different dithering methods applied on the syn-
thetic patchwork image Fig. 10(a).

The eighth and last test image is a photograph of book pages with a
relatively high resolution, see Fig. 11(a). It is interesting to benchmark the
restitution of fine structures as letters and the shading visible on the page
when the resolution is larger. Table 9 gives the numerical values obtained
for the considered metrics with all tested methods. The LBM1 yields bet-
ter value of MSSIM, GSSIM and MSE and is shown in Fig. 11(b), while
the false Floyd’s algorithm presents better MLWE value and is printed in
Fig. 11(c). From a human eye’s point of view, looking at the picture globally,
the differences between the resulting images and the original one are almost
imperceptible. When looking closer at detailed structures (see zoomed pic-
tures in Fig. 12), the LBM1 results are capturing structures sharply while false
Floyd’s method is a little bit more blurred.
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(a) (b) (c)

Fig. 11: The textbook test: (a) the original image, (b) the dithered image
using the present model 2, (c) using the false Floyd method.

(a) (b) (c)

Fig. 12: The textbook test zoom: (a) the original image, (b) the dithered
image using the present model 2, (c) using the false Floyd method.

3.3 Computation time
To compare the computation time of the proposed models, a comparison has
been proceeded on the largest resolution test image (textbook image, see
Fig. 11(a)) with different acceleration options. These accelerations are enabled
simply thanks to the OpenAcc meta-commands. Thus, a sequential execu-
tion, a multi-CPU16 (multi-thread) parallelization and a GPU parallelization,
was tested. The results were obtained on a laptop using: 11th Generation Intel
Core i9 @ 2.60 GHz×16, 32.0 GB of RAM17 and a NVIDIA RTX A2000 Mobile
(4 GB - Ampere 86). Table 10 gives the computation time obtained, with the
different methods and execution strategies.

On the one hand, for all the LBM models, a factor 3 is gained when using
CPU parallelization compared to sequential execution, and another extra fac-
tor 3 is saved with GPU parallelization. These gains are those expected with
such techniques, and show the good scalability of the LBM. On the other
hand, the other models tested here, that can be qualified as “filter” algorithms,

16Central Processing Unit
17Random-Access Memory



Springer Nature 2021 LATEX template

24 Generalized Dithering using the Lattice Boltzmann Method

Methods MSSIM GSSIM MWLE MSE
LBM1 (b) 0.4297 0.5420 37.620 9577.8

LBM2 0.4258 0.5400 40.326 9601.6
LBM3 0.3633 0.5127 36.226 9933.7
LBM4 0.3531 0.5273 38.459 9756.1
Floyd 0.1668 0.4312 32.750 10 924.3

FalseFloyd (c) 0.1656 0.4276 32.628 10 969.3
Jarvis 0.2059 0.4516 33.191 10 673.4
Stucki 0.1965 0.4475 32.952 10 723.5
Sierra 0.2007 0.4485 33.048 10 710.7

Table 9: Metrics results of different dithering methods applied on the text-
book image Fig. 11(a).

Methods seq (s) Mutli-CPU (s) GPU (s)
LBM1 291.550 90.359 25.392
LBM2 252.557 86.537 24.201
LBM3 134.051 42.109 11.187
LBM4 340.378 106.289 28.447
Floyd 0.108 0.125 0.120

FalseFloyd 0.076 0.088 0.086
Jarvis 0.177 0.197 0.189
Stucki 0.170 0.198 0.193
Sierra 0.170 0.196 0.189

Table 10: Computation time of different dithering methods applied on the
textbook image Fig. 11(a) for difference acceleration strategy.

need browsing through the image, one pixel after another. And the final result
is available once the rolling shutter has covered the whole image. This simple
scan through makes the execution very fast, since there is no time evolution,
nor diffusive process, nor converging to be reached. One can notice that our
sequential implementation of “filter” models seem un-scaling. However, for
many years it is possible to split the winding path of dithering filters to have
parallel versions of these algorithms [26–28], leading to improved computa-
tional times. Yet, our naive sequential implementation does not change the
fact that these “filter” methods are clearly less computational time expansive:
the computational time ratio with the LBM models is around 100.

4 Discussion
The principle of using LBM for performing dithering operations is not new.
In their seminal work, Hagenburg et al. chose to use a unitary ω parameter,
which has the effect of generating a uniform and isotropic dithering operation.
In this paper, other values of ω are tested, especially values between 0.1 and
1. The relaxation time value of 0.35 seemed optimal in the proposed imple-
mentations. However, the dithering algorithm remains uniform and isotropic
in this case.
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Our contribution lies in the development of models using variable relax-
ation rates and equilibrium functions based on the image characteristics. This
allows for consideration of image anisotropy in the algorithm. In particular, we
proposed four models using different relaxation rate functions and equilibrium
functions. These relaxation rate functions are based on a general formulation
(given in eqs. (12) and (13)), parameter sets (see eqs. (14) and (15)), which
involve a three-level treatment depending on the values of the considered gray
levels.

Besides, the new equilibrium distribution function proposed in eq. (18)
allows reducing artifacts. GPU implementation was also carried out to achieve
stronger performances. In particular, collision and propagation steps as well
as the calculation of macroscopic states were parallelized. This parallelization
effort has been made to emphasize an argument of parallel efficient which is
often given about the LBM. Such efficiency is coming from the “local” char-
acter of the method. However, our contribution is not aiming any performance
or optimized algorithms. Indeed, we illustrate that argument by showing with
little effort our LBM models can be easily parallelized on GPU and therefore
are providing better results. Nevertheless, these performances are far from well
optimized commercial or dedicated LBM software.

While, the computational efficiency of the LBM is undeniable in fluid
dynamics, it should be considered with caution when applied to image pro-
cessing. Indeed, the LBM is categorized as a local method: all but streaming
operations could be performed independently in parallel; so it scales very
well. However, it is related to a time evolution process (such as diffusion),
which is not necessarily fast. Whereas image processing is often leaning on
well-optimized techniques, as is the case for dithering, that are not relying
on time evolution processing. In such situations, the LBM offers an advan-
tage, providing PDE18 modelling the image processing which enable deeper
understanding, but also offers a disadvantage in computational time. This dis-
advantage can generally be explained by the relatively slow time evolution
process (intrinsic of the method). Even though it is not the aim of our work,
such slow time evolution and “locality” can be traded for steady-state algo-
rithm resulting in an improved computational time, as it has been illustrated
in [29]. This, also, explains why the computational time of our LBM mod-
els which require several hundred of time steps to reach a converged state is
not comparable with filter models that require only one time step. The fact
our work tends to a steady-state diffusion regime could also play a role in its
relative better quality results.

Qualitatively, several phenomena can be observed in the results, corre-
sponding to different test images. First, a reduction in artifacts in the proposed
models can be observed compared to the Hagenburg algorithm. Fig. 1 shows
the appearance of these artifacts for geometric shapes, especially in the case
of ω = 1. Next, the presented methods seem to produce noisier results than

18Partial Differential Equations
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other methods on flat areas and simple geometric shapes in the images. How-
ever, areas with tortuosity and more natural and complex shapes appear to
be better preserved. It is also noticeable that the contrast appears slightly
improved, and the “fog” effect that can be obtained with isotropic dithering
methods such as the Floyd and Stucki algorithms is lost. In fact, with the
proposed methods, the algorithm implicitly induces a sharpening effect. Lastly,
the characteristics of the methods are well summarized in Fig. 5, showing a
general increase in noise, a slight increase in contrast, and the preservation of
contours, which makes the word “dithering” more readable than in the Stucki
algorithm.

For quantitative measures, the choice of commonly used metrics has been
made to evaluate dithering algorithms, namely MSSIM, GSSIM, MLWE,
and MSE. On most images, the metrics show better results for either of the
developed models. It seems that the weakness of our models lies in the increase
in noise in very dark areas of the image, which leads to higher MLWE values.
This is most likely related to the overall increase in noise.

Among the most important limitations, one can mention the critical size
of structures. Indeed, the LBM scheme is defined in D2Q9, which implies a
certain preferred structure size, as in wavelet analysis. This phenomenon can
be observed by comparing Fig. 8 (low resolution) and 11 (high resolution): it
is observed that when the resolution is higher, the increase in noise is much
less significant.

Despite the optimizations, computation times of the methods presented
in this paper remain longer than for classical isotropic algorithms. While this
can be counted as a limitation, it should be considered in the light of the
contribution of structure preservation. It should also be noted that no specific
algorithm optimization nor sensitivity analysis in regard to the number of
iterations, has been performed.

In the light of the quantitative results obtains on the different test-cases
realized, no LBM model can be considered as a universal best quality yielder.
Yet in a method selection process it should consider that: if all LBM models
are yielding better metrics, due to their computational time they should be
preferred only when the quality is at stake. When this is the case, despite
that model and parameters selection is debatable (since it is case-specific),
the LBM3 model can be considered in a first intention, due to its quality over
computational time ratio. While, if the computational time is aimed, then
one should prefer parallel “filter” dithering models [26–28].

A future work will focus on the development of algorithms based on LBM
schemes larger than the classical D2Q9, with the belief that expanding this
scheme will overcome the critical structure size issue. In addition, reflections
on an extension to multi-toning or color dithering could be carried out. Finally,
better parameter tuning or optimization could potentially improve quantita-
tive performance. For example, regarding the δ parameter, it can be seen on
Fig. 13 that a lower δ value leads to larger pixel clusters but also to high con-
trast and finer structure preserved, whereas a high value tends to make the
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pixel clusters disappear in favor of a grid pattern, making the image smoother.
The computational time of LBM models can be reduced by at least 4 when
decreasing the parameter tlimit in eq. (13), but that in return, reduce the qual-
ity of results. Therefore, an optimal trade off remains to be determined. Since
these heuristics is based on observations and the scrutiny of quality metrics,
theoretical proof of convergence, correctness or complexity would lead to a
deep improvement and better understanding of the dithering processing.

(a) δ = 0 (b) δ = 3 (c) δ = 15

Fig. 13: The cameraman dithered with LBM4 using different δ values

5 Conclusions
This paper proposes a generalization of dithering methods using the LBM.
By taking into consideration the anisotropy of the image in the expression of
the relaxation rate via the integration of the image gradient in its expression,
or by adapting the equilibrium distribution function, it has been possible to
establish different dithering models which adapt to the image structures.

The four proposed models have different characteristics that lead to specific
performances. Even if the proposed methods present larger noise patterns than
other methods, this is compensated by better preservation of structures, and,
therefore, better preservation of the information contained in the image.

The qualitative results illustrate these phenomena. The quantitative
results, measured using metrics classically used in the field of dithering, are
almost always better with the proposed methods on the test images used.
Future work will focus on optimizing model parameters, in general or per
image, in particular with regard to residual noise. Until further optimization,
the presented algorithms, despite a great scalability and better quantitative
results, remain more computationally time demanding. Therefore, they might
be more appropriate to complicated cases where quality prevails. This will
improve the results both qualitatively and quantitatively.
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Appendix A Graphical results of our models

Abbreviations
BGK Bhatnagar, Gross and Krook 4

CPU Central Processing Unit 23

GCC GNU Compiler Collection 12
GPU Graphics Processing Unit 3, 11, 13, 23, 25
GSSIM Global Structural Similarity Index Measure 3, 6, 7, 14–16, 20–22, 26

HPC High Performance Computing 12

JSON JavaScript Object Notation 13

LBM Lattice Boltzmann Method 2–4, 8, 11–13, 23–27

MLWE Maximum Local Weighted Error 15–17, 19–22, 26
MSE Mean Square Error 15, 16, 20–22, 26
MSSIM Mean Structural Similarity Index Measure 3, 14–17, 20–22, 26

OpenAcc Open ACCelerators 11–13, 23
OBLiX OBject Library eXecutor 13, 14

PDE Partial Differential Equations 25

RAM Random-Access Memory 23

SDK Software Development Toolkit 12
SSIM Structural Similarity Index Measure 14

XML Extensible Markup Language 13



Springer Nature 2021 LATEX template

Nomenclature 29

(a) (b)

(c) (d)

Fig. A1: The dithering results on the cameraman case with our model 1 (a),
model 2 (b), model 3 (c) and model 4 (d).

Nomenclature
α minimum equilibrium threshold 10, 11
β maximum equilibrium threshold 10, 11
δ offset equilibrium value 10, 11, 26, 27
I image function of RD in R 14, 15
J image function of RD in R 14, 15
µ mean value 14
ν minimum equilibrium acceptation value 5, 10
σ cross-crrelation between two signals 14
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(a) (b)

(c) (d)

Fig. A2: The dithering results on the dithering-word case with our model 1
(a), model 2 (b), model 3 (c) and model 4 (d).

(a) (b)

(c) (d)

Fig. A3: The dithering results on the gradient (ramp) case with our model 1
(a), model 2 (b), model 3 (c) and model 4 (d).

σ standard deviation 14
i index discretized distribution 4, 5, 7–10, 16
c contrast metric 14
l luminance metric 14
s structure metric 14

Ω(., .) collision operator 4, 7

ρ mass density 4, 5, 7, 8, 10–12
D physical space dimension 4, 5, 26

ei discretized space stencil 4, 5, 7, 8, 10, 11

f density distribution function over velocity space 7
feq equilibrium distribution 7
feq

i discretized equilibrium distribution 4, 5, 7, 10
f i discretized density distribution 4, 7
ω relaxation frequency 4–10, 16, 24, 25

∆t increment of time 4, 7, 11

ψ Model 2 random variable 10
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x coordinate Eulerian vector field 4, 5, 7–12

Q number of discretized speed used in the lattice 4, 5, 26

gi function gi of rate function 8, 9
a parameter 1 of function of rate function 8, 9
b parameter 2 of function of rate function 8, 9
c parameter 3 of function of rate function 8, 9
d parameter 4 of function of rate function 8, 9

t time 4, 5, 7–12

U uniform law symbol 10

ti discrete weight of the Gauss quadrature 5, 7, 10

ξi discretized particles velocity 4
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(a) (b)

(c) (d)

Fig. A4: The dithering results on the michelangelo case with our model 1 (a),
model 2 (b), model 3 (c) and model 4 (d).
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(a) (b)

(c) (d)

Fig. A5: The dithering results on the mug case with our model 1 (a), model
2 (b), model 3 (c) and model 4 (d).
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(a) (b)

(c) (d)

Fig. A6: The dithering results on the synthetic case with our model 1 (a),
model 2 (b), model 3 (c) and model 4 (d).
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(a) (b)

(c) (d)

Fig. A7: The dithering results on the gallery case with our model 1 (a), model
2 (b), model 3 (c) and model 4 (d).
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(a) (b)

(c) (d)

Fig. A8: The dithering results on the textbook case with our model 1 (a),
model 2 (b), model 3 (c) and model 4 (d).
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