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OPTIMAL TIME DECAY ESTIMATES FOR THE ELECTROMAGNETIC
SCHRÖDINGER EQUATION

R. FAHS

Abstract. The aim of this paper is to analyze the time decay of solutions to the Schrödinger
equation with a magnetic potential and a positive scalar electric field, both of which are short-
range, in asymptotically Euclidean spaces. We demonstrate that the decay rate of the solutions
remains identical to that in the Euclidean case without an electromagnetic field. This analysis
relies on specific differentiability properties of the spectral measure.

1. Introduction

Let d ⩾ 3. We consider the Schrödinger equation for a charged particle in an external
electromagnetic field, given by

(1.1)

{
i∂tu+ PA,V u = 0, on R+ × Rd,

u|t=0 = f, on Rd,

where f ∈ L2(Rd), PA,V is a general electromagnetic Laplacian operator on Rd, close to the free
electromagnetic Laplacian at infinity, and the magnetic potential vector A(x) = (A1(x), ..., Ad(x))
and the positive scalar electric field V are small at infinity. More precisely, the operator PA,V

is of the form

PA,V =
1

w(x)

∑
1⩽i,j⩽d

(Di −Ai)
[
gij(x)(Dj −Aj)

]
+ V (x), Dj = −i∂xj ,

where the positive function w(x) and the positive definite symmetric matrix (gij(x)) have smooth
coefficients.

Assumption 1.1. We assume that gij(x) and w(x) are long-range perturbations of δij (the
Kronecker delta) and 1, respectively, in the sense that for some ρ0 ∈]0, 1], there exist constants
Cα > 0, α ∈ Nd, such that for all x ∈ Rd,

(1.2)
∣∣∂α(gij(x)− δij)

∣∣+ ∣∣∂α(w(x)− 1)
∣∣ ⩽ Cα ⟨x⟩−ρ0−|α| .

Here and throughout, we use the standard notation ⟨x⟩ = (1 + |x|2)
1
2 .

Let us now state the assumptions on A and V .

Assumption 1.2. The magnetic potential A and the positive scalar electric field V are smooth,
bounded, and short-range perturbations: there exists Cα > 0, α ∈ Nd such that for all x ∈ Rd,
we have

(1.3)
∣∣∂αA(x)

∣∣ ⩽ Cα ⟨x⟩−1−ρ0−|α| ,

and

(1.4) V ⩾ 0,
∣∣∂αV (x)

∣∣ ⩽ Cα ⟨x⟩−2−ρ0−|α| .

The goal of this paper is to extend the results of Bouclet and Burq [BB21] to the setting
of an electromagnetic field. Specifically, we show that the temporal decay of solutions to the
Schrödinger equation on asymptotically Euclidean backgrounds, in the presence of an electro-
magnetic field, remains identical to the optimal decay obtained in the case without such a field.
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2 R. FAHS

This extension is achieved through an analysis of certain differentiability properties of the spec-
tral measure, under the Assumptions 1.1, and 1.2, which will be detailed later.

For time decay estimates in the electromagnetic-free case on asymptotically Euclidean geome-
tries, the reader can refer to the introduction of [BB21, Roy24] for an overview of results in this
case, without magnetic influences.

The magnetic Schrödinger equation has attracted considerable attention from scientists in
recent years, primarily due to the importance of dispersive estimates in the study of quantum
mechanics and wave propagation in the presence of magnetic fields.

Here, we present some recent results on time decay for the free Schrödinger equation (w(x) = 1
and gij(x) = δij) with time-independent potentials. The dispersive decay for both linear and
nonlinear magnetic Schrödinger equations is established in [DW23], with a decay rate of the solu-
tion in L∞ being t−d/2, where the magnetic field A behaves at infinity like |x|−2−d. Additionally,
they assume that zero is neither an eigenvalue nor a resonance of the magnetic Schrödinger op-
erator. This assumption is critical, as the spectral properties of the operator at zero influence
the resolvent and, consequently, the decay behavior. Indeed, for a perturbation of the Laplacian
by magnetic and electrostatic potentials, the behavior of the resolvent is significantly affected
by the presence of eigenvalues or resonances at zero. This phenomenon is highlighted in the
resolvent expansion described, for example, in the recent article [JK24], where A and V behave
at infinity like |x|−β for β > 2. The expansion of the resolvent in the presence of these singu-
larities provides important insights into the decay rates of solutions, especially when resonances
or eigenvalues at zero are involved.

We recall that the well-posedness of solutions for the Schrödinger equations with time-
dependent and time-independent magnetic fields was established in [AY14]. They prove that
these equations uniquely generate unitary propagators under suitable conditions on the size
and singularities of the time derivatives of the magnetic potentials. For the electromagnetic
Schrödinger equation, under the most general conditions on the time-dependent potentials A
and V , the existence and uniqueness of the fundamental solution are established in [Yaj91].
This result addresses the fundamental question of well-posedness in the presence of general
electromagnetic fields, which has been a central concern in mathematical quantum mechanics.

In a more general setting, it is natural to extend the long-time behavior results from the previ-
ous work to more general Schrödinger equations with electromagnetic fields. This generalization
is crucial for applying dispersive estimates to a broader range of physical and mathematical
models. In particular, our main result involves deriving dispersive decay in weighted L2-spaces
with an optimal decay rate of t−d/2, with weaker assumptions on the electromagnetic fields com-
pared to recent results like those in [DW23].

The main result of this paper is the following.

Theorem 1.3. Let d ⩾ 3 and φ ∈ C∞
0 (R+). Assume that Assumptions 1.1 and 1.2 hold. Then,

for ν >
⌊
d
2

⌋
+ 2, we have

∥∥⟨x⟩−ν φ(PA,V ) e
itPA,V ⟨x⟩−ν

∥∥
L2(Rd)→L2(Rd)

≲ ⟨t⟩−
d
2 .

The quadratic form associated with PA,V is closed, and positive. Therefore, the spectrum of
PA,V , sp(PA,V ) ⊂ [0,+∞[, its resolvent set is contained in C \ R+, and the resolvent at λ ± iϵ
is well-defined for λ, ϵ ∈ R and ϵ ̸= 0. Moreover, using tools from scattering theory (Mourre
theory), see for example [JMP84, Agm75, KUR73], together with the fact that the self-adjoint
operator PA,V does not have eigenvalues embedded in R+ (see Proposition 2.1), the following
limits

(1.5) (PA,V − λ± i0)−1 = lim
ϵ→0

(PA,V − λ± iϵ)−1,
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are well defined in the weighted L2 spaces. Next, we define the spectral measure associated with
(1.5), given by the Stone formula (see, e.g, [RS75, Section VIII.3])

(1.6) E′
PA,V

(λ) :=
1

2iπ

[
(PA,V − λ− i0)−1 − (PA,V − λ+ i0)−1

]
.

Since the self-adjoint operator PA,V does not have eigenvalues embedded in R+ and no resonance
at 0 (see Propositions 2.1, 2.4), “ i.e. the resolvent of the operator PA,V is bounded at the edge
point λ = 0 of the continuous spectrum”, it follows that

φ(PA,V ) e
itPA,V =

1

2iπ

∫ +∞

0
φ(λ)eitλ

[
(PA,V − λ− i0)−1 − (PA,V − λ+ i0)−1

]
dλ

=
1

2iπ

∫ +∞

0
φ(λ)eitλE′

PA,V
(λ) dλ.

Subsequently, to demonstrate Theorem 1.3, it suffices to estimate the latter integral in the
weighted L2 space and therefore, estimating (PA,V − λ± i0)−1 and the derivatives (PA,V − λ±
i0)−k, for k ⩾ 1, as λ → 0.

In addition, we derive uniform estimates on the resolvent, which play an important role in
scattering theory (Theorem 1.4), and on the behavior of the spectral measure (Theorem 1.5),
which is a key tool in the proof of Theorem 1.3.

Theorem 1.4. Let d ⩾ 3, λ0 > 0, k ∈ N and ν > k. Then there is a constant C > 0 such that
for all λ ∈ ]0, λ0], we have∥∥∥⟨x⟩−ν(PA,V − λ± i0)−k⟨x⟩−ν

∥∥∥ ⩽ Cλmin{0, d2−k},

if k ̸= d

2
, and ∥∥∥⟨x⟩−ν(PA,V − λ± i0)−

d
2 ⟨x⟩−ν

∥∥∥ ⩽ C| log λ|,

if d is even and k =
d

2
.

Theorem 1.5. Let d ⩾ 3, λ0 > 0, k ∈ N and ν > k. Then the function

λ → ⟨x⟩−ν E′
PA,V

(λ) ⟨x⟩−ν

is Ck−1 on (0, λ0] with values in (bounded) operators on L2. If in addition ν > d
2 , then∥∥∥∥ dj

dλj
⟨x⟩−ν E′

PA,V
(λ) ⟨x⟩−ν

∥∥∥∥ ⩽ Cλ
d
2
−j−1,

for all j ∈ {1, . . . , k − 1}.

The proof of Theorem 1.4 follows a structure similar to that in [BB21] (see Section 5). Our
approach is based on Mourre theory, which plays a key role in establishing resolvent estimates in
weighted spaces. A central technical condition (Proposition 3.4) ensures the validity of an exact
positive commutator estimate (Theorem 4.1). The main novelty of this paper lies in analyzing
how the presence of the electromagnetic field perturbs the proof strategy developed in [BB21]
(for example Proposition 3.4), while demonstrating that the principal ideas remain applicable
in this extended framework.

We note that Theorem 1.3 deals with the contribution of low frequencies. Below, we get a
non spectrally localized result, under the non-trapping condition in order to handle the high-
frequency contribution. This non-trapping condition means that geodesics associated with the
classical Hamiltonian ⟨G(x)ξ, ξ⟩Rd are not trapped.

Corollary 1.6. Let d ⩾ 3. Under the non-trapping conditions. Then, for ν >
⌊
d
2

⌋
+ 2, we have∥∥⟨x⟩−ν eitPA,V ⟨x⟩−ν

∥∥
L2(Rd)→H

d
2 (Rd)

≲ ⟨t⟩−
d
2 .
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Plan of the paper. In Section 2, we provide some properties of the spectral analysis of the
operator PA,V . In Section 3, we prove some resolvent estimates using the decay of the coefficients
at infinity (see (1.3) and (1.4)). In Section 4, we use the Mourre method to prove the main
estimate for (PA,V − λ± i0)−k. In Section 5, we derive the local decay stated in Theorem 1.3,
Theorem 1.5, and Corollary 1.6, and we prove the intermediate results needed to prove Theorem
1.4.

2. Preliminary

This section focuses on the spectral analysis of the operator PA,V in order to demonstrate
that the limit in (1.5) exists and is finite.

Proposition 2.1. Under the Assumptions 1.1 and 1.2, we have:

spess(PA,V ) = spess(−∆) = [0,+∞[ and sppp(PA,V ) ∩ spess(PA,V ) = ∅ ,

where spess(PA,V ) denotes the essential spectrum and sppp(PA,V ) denotes the point spectrum.

Proof. Show that: spess(PA,V ) = [0,+∞[.

The trivial inclusion is
spess(PA,V ) ⊂ [0,+∞[,

because spess(PA,V ) ⊂ sp(PA,V ) ⊂ [0,+∞[.

For the other inclusion, we write

w(x)PA,V = −div(g−1∇) + i div(g−1A) + 2iA · g−1∇+ g−1A ·A+ w(x)V (x).

To simplify the writing, we can take w = 1, and demonstrate the proposition. The case where
w differs from 1 is obtained by the same reasoning. Then,

PA,V = −div(g−1∇) + i div(g−1A) + 2iA · g−1∇+ g−1A ·A+ V = −∆g + 2iA · g−1∇+W,

where W = i div(g−1A) + g−1A ·A+ V and ∆g = div(g−1∇).
We note that, under the Assumption 1.2 on A and V , we get

lim
|x|→+∞

W (x) = 0.

Let us consider χ ∈ C∞
0 (Rd) such that ∥χ∥L2(Rd) = 1. For n ∈ N and k ∈ R, we consider

χn,k(x) = eik·xn
−d
2 χ(n−1x− ne1).

The sequence (χn,k) is L2-normalized and converges to 0 weakly. We have

∥(PA,V − k2)χn,k∥ ⩽ O(n−1) + o(1) →
n→∞

0.

By the Weyl criterion, we find that k2 ∈ spess(PA,V ) for all k ∈ R.
The second point of the proposition is a consequence of [KT06]. □

Proposition 2.2. For all u ∈ Ḣ1(Rd) := {u ∈ L2
loc(Rd) : ∇u ∈ L2(Rd)}, there exist c > 0, such

that

⟨PA,V u, u⟩L2(Rd) ⩾ c∥∇|u|∥2L2(Rd) +

∫
Rd

V |u|2dx,

where ∇|u|(x) = Re{Sgn(f(x))∇f} for almost every x ∈ Rd.

Remark 2.3. Let d ⩾ 3. By the Hardy inequality on Rd, we have that if u ∈ Ḣ1(Rd), then

∥ |x|−1 u∥L2 ≲ ∥∇u∥L2 .

In particular, by Assumption 1.2, for all 1 ⩽ i ⩽ d, (Di −Ai)u ∈ L2(Rd).
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Proof. Let u ∈ Ḣ1(Rd). We introduce a family of cutoff functions χk, defined by:

χk(x) = χ
(x
k

)
, ∀k ∈ N∗,

where χ ∈ C∞
0 (Rn) satisfies 0 ⩽ χ ⩽ 1, χ = 1 on the unit ball, and supp(χ) ⊂ B(0, 2). We have

⟨PA,V u, χku⟩L2(Rd)

=
1

w(x)

∫
Rd

PA,V uχkū(x)dx

=
1

w(x)

∑
1⩽i,j⩽d

∫
Rd

(Di −Ai)
[
gij(x)(Dj −Aj)

]
u(x)χkū(x)dx+

∫
Rd

V χk|u|2dx

=
1

w(x)

∑
1⩽i,j⩽d

∫
Rd

gij(x)(Dj −Aj)u(x)(Di −Ai)χku(x)dx+

∫
Rd

V χk|u|2dx

=
1

w(x)

∑
1⩽i,j⩽d

∫
Rd

gij(x)(Dj −Aj)u(x)
[
χk(Di −Ai)u+ u(x)Diχk)

]
dx+

∫
Rd

V χk|u|2dx.

Consequently,

(2.1)

⟨PA,V u, χku⟩L2(Rd)) =
1

w(x)

∑
1⩽i,j⩽n

[∫
Rn

χkg
ij(x)(Dj −Aj)u(x)(Di −Ai)u(x)dx︸ ︷︷ ︸

(I)

+

∫
Rn

gij(x)(Dj −Aj)u(x)u(x)Diχkdx︸ ︷︷ ︸
(II)

]
+

∫
Rd

V χk|u|2dx.

Estimate (II): We have∣∣∣∣∫
Rn

gij(x)(Dj −Aj)u(x)ū(x)Diχkdx

∣∣∣∣
⩽

∫
Rn

∣∣gij(x)(Dj −Aj)u(x)ū(x)Diχk

∣∣dx
⩽

∫
k⩽|x|⩽2k

∣∣gij(x)(Dj −Aj)u(x)ū(x)Diχk

∣∣dx
⩽

1

k

∫
k⩽|x|⩽2k

∣∣∣gij(x)(Dj −Aj)u(x)ū(x)Diχ
(x
k

)∣∣∣ dx
⩽

C

k

∫
k⩽|x|⩽2k

∣∣∣(Dj −Aj)u(x)ū(x)Diχ
(x
k

)∣∣∣ dx
⩽

C

k
∥(Dj −Aj)u∥L2(Rd)

[∫
k⩽|x|⩽2k

∣∣∣ū(x)Diχ
(x
k

)∣∣∣2 dx]1/2

⩽
C

k
∥(Dj −Aj)u∥L2(Rd)

[∫
k⩽|x|⩽2k

⟨x⟩2
∣∣∣⟨x⟩−1 u(x)Diχ

(x
k

)∣∣∣2 dx]1/2

⩽ C∥(Dj −Aj)u∥L2(Rd)

[∫
k⩽|x|⩽2k

∣∣∣⟨x⟩−1 u(x)Diχ
(x
k

)∣∣∣2 dx]1/2

.
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Then, as k → +∞, by the dominated convergence theorem and with Remark 2.3, we obtain
that: (II) → 0. Since, χk →

k→+∞
1, then

(I) →
k→+∞

∫
Rn

gij(x)(Dj −Aj)u(x)(Di −Ai)u(x)dx.

We deduce that:

⟨PA,V u, χku⟩L2(Rd) →
k→+∞

1

w(x)

∫
Rn

gij(x)(Dj −Aj)u(x)(Di −Ai)u(x)dx+

∫
Rd

V |u|2dx.

Therefore,

⟨PA,V u, u⟩L2(Rd) =
1

w(x)

∑
1⩽i,j⩽d

∫
Rd

gij(x)(Di −Ai(x))u(x) (Dj −Aj(x))u(x) dx+

∫
Rd

V |u|2dx.

From (1.2), there exists C > 0, such that

⟨PA,V u, u⟩L2(Rd) ⩾ C
∑

1⩽i,j⩽d

∫
Rd

δij(Di −Ai(x))u(x) (Dj −Aj(x))u(x) dx+

∫
Rd

V |u|2dx

⩾ C∥(∇−A(x))u∥2L2(Rd) +

∫
Rd

V |u|2dx.

By the diamagnetic inequality (see, e.g., [LL01, Thm. 7.21] or [23, Thm. 2.1.1])

|(∇−A(x))u|2 ⩾ |∇ |u| |2,
we complete the proof. □

Proposition 2.4. Zero is a regular point of PA,V . Namely, zero is neither an eigenvalue nor a
resonance of PA,V , i.e., there is no non-trivial solution u ∈ Ḣ1(Rd) to PA,V u = 0.

Proof. Let u ∈ Ḣ1(Rd) such that PA,V u = 0, and show that u = 0. From Proposition 2.2,
since V ⩾ 0, we obtain ∇|u| = 0 almost everywhere x ∈ Rd, and thus u is constant. Since
u ∈ L2

loc(Rd), then u = 0 almost everywhere x ∈ Rd, hence u = 0.
□

3. Resolvent estimate

This section focuses on the resolvent estimates of the operator PA,V .

Proposition 3.1. For all u ∈ H2(Rd), we have

(3.1) |e−tPA,V u| ⩽ e−tP0,V |u|.

Proof. Let u ∈ H2(Rd). Let ε > 0 and define

uε = (|u|2 + ε2)
1
2 .

A simple calculation shows that

P0,0uε ⩽ Re

[(
ū

uε

)
PA,0 u

]
.

Since uε → |u| and
ū

uε
→ sgn(ū), we obtain

(3.2) P0,V |u| ⩽ Re
[
sgn(ū)PA,V u

]
,

where sgn(u) = u
|u| for u ̸= 0, and 0 if u = 0. For more details, see [Kat72, Section 5].

Now, multiplying by λ > 0 and adding |u| to (3.2), we obtain

(λP0,V + Id)|u| ⩽ Re
[
sgn(ū)(λPA,V + Id)u

]
⩽ |(λPA,V + Id)u|,

for all u ∈ H2(Rd). This inequality implies that

|(λPA,V + Id)−1u| ⩽ (λP0,V + Id)−1|u|,
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and then for all n ∈ N∗,

|(λPA,V + Id)−nu| ⩽ (λP0,V + Id)−n|u|.

Then, we obtain the estimate (3.1) using the fact that:

e−tPA,V = lim
n→∞

(
t

n
PA,V + Id

)−n

.

For more details, see [Sim79, Theorem 1]. □

Proposition 3.2. For all s ∈ [0, d4 ], σ > 2s and k > s, there is C > 0 such that for all λ > 0,∥∥(PA,V /λ+ 1)−k ⟨x⟩−σ
∥∥
L2→L2 ⩽ Cλs.

Proof. By Hölder’s inequality, we can consider ⟨x⟩−σ as a bounded operator from L2 → Lp. To
complete the proof of Proposition 3.2, it suffices to show that∥∥(PA,V /λ+ 1)−k

∥∥
Lp→L2 ≲ λs.

From the Nash inequality [Nas58, Cou96], for all t > 0 and p ∈ [1, 2], there exists C > 0 such
that:

∥e−tP0,V ∥Lp→L2 ⩽ Ct
− d

2

(
1
p
− 1

2

)
.

Then, from Proposition 3.1, we obtain that

(3.3) ∥e−t(PA,V /λ)∥Lp→L2 ⩽ Cλst−s,

where p = 2d
4s+d ∈ [1, 2]. We use the identity

(PA,V /λ+ 1)−k =
1

Γ(k)

∫ +∞

0
e−t(PA,V /λ+1) tk−1 dt,

and (3.3), we get ∥∥ (PA,V /λ+ 1)−k
∥∥
Lp→L2 ⩽ Cλs

∫ +∞

0
e−t tk−1−s dt.

Since e−t tk−1−s is integrable, the conclusion follows. □

Lemma 3.3. For all σ > 0 and s ∈ [0,min(d4 , 1)) ∩ [0, σ2 ), there exist C > 0, such that for all
λ > 0, ζ ∈ C with |Im(ζ)| > 0, we have

(3.4)
∥∥∥(PA,V /λ− ζ)−1 ⟨x⟩−σ

∥∥∥ ⩽ C
⟨ζ⟩

|Im(ζ)|
λs.

Proof. We have∥∥∥(PA,V /λ− ζ)−1 ⟨x⟩−σ
∥∥∥ =

∥∥∥(PA,V /λ− ζ)−1 (PA,V /λ+ 1) (PA,V /λ+ 1)−1 ⟨x⟩−σ
∥∥∥

⩽
∥∥∥(PA,V /λ− ζ)−1 (PA,V /λ+ 1)

∥∥∥∥∥∥(PA,V /λ+ 1)−1 ⟨x⟩−σ
∥∥∥ .

Using the fact that ∥∥∥(PA,V /λ− ζ)−1 (PA,V /λ+ 1)
∥∥∥ ⩽ C

⟨ζ⟩
|Im(ζ)|

,

and applying Proposition 3.2, we conclude the proof of (3.4). □

Proposition 3.4. Let d ⩾ 3. For all σ, ϵ > 0, there exist λ0 > 0, and f ∈ C∞
0 ((0,∞), [0, 1])

such that f = 1 near 1 and ∥∥∥∥〈λ 1
2x

〉−σ
f(λ−1PA,V )

∥∥∥∥ ⩽ ϵ,

for 0 < λ ⩽ λ0.
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Proof. We start by decomposing
〈
λ

1
2x

〉−σ
f(λ−1PA,V ) as follows:

(3.5)
〈
λ

1
2x

〉−σ
f(λ−1PA,V ) =

〈
λ

1
2x

〉−σ
f(−∆/λ) +

〈
λ

1
2x

〉−σ [
f(PA,V /λ)− f(−∆/λ)

]
.

Using [BB21, Lemma 3.4], we can select f such that∥∥∥∥〈λ 1
2x

〉−σ
f(∆/λ)

∥∥∥∥ ⩽
ϵ

2
.

To finish the proof, it suffices to show that, if λ is small enough,∥∥∥∥〈λ 1
2x

〉−σ [
f(PA,V /λ)− f(−∆/λ)

]∥∥∥∥ ⩽
ϵ

2
.

By the Helffer-Sjöstrand formula (see [DS99, Section 8]), we have

(3.6) f(PA,V /λ)−f(−∆/λ) =
1

π

∫
C

∂f̃

∂ζ̄
(ζ) (PA,V /λ− ζ)−1

[
PA,V

λ
−−∆

λ

](
−∆

λ
− ζ

)−1

dλ(ζ).

To estimate the norm of the integrand, we write

PA,V +∆ =
1

w(x)

∑
1⩽i,j⩽d

(Di −Ai)
[
gij(x)(Dj −Aj)

]
+ V (x) + ∆

=
1

w(x)

[ ∑
1⩽i,j⩽d

Di

[
(gij(x)− δij(x))Dj

]
− div(g−1A) + 2iA · g−1∇+ g−1A ·A

]

+
w(x)− 1

w(x)
∆ + V (x).

We remark that we can write

PA,V +∆ =
∑
|α|⩽2

aα(x)∂
α,

with aα ∈ S−ρ0+|α|−2(Rd). Thus,∥∥∥∥∥(PA,V /λ− ζ)−1

[
PA,V

λ
− −∆

λ

](
−∆

λ
− ζ

)−1
∥∥∥∥∥ =

∥∥∥∥∥∥(PA,V /λ− ζ)−1
∑
|α|⩽2

aα(x)
∂α

λ

(
−∆

λ
− ζ

)−1
∥∥∥∥∥∥

⩽
∑
|α|⩽2

∥∥∥∥∥(PA,V /λ− ζ)−1 aα(x)

(
−∆

λ
− ζ

)−1 ∂α

λ

∥∥∥∥∥ .
Using Proposition 3.2, Lemma 3.3 and the spectral theorem, we deduce that:

• For |α| = 2, for s near
ρ0
2

, we have∥∥∥∥∥(PA,V /λ− ζ)−1 aα(x)

(
−∆

λ
− ζ

)−1 ∂α

λ

∥∥∥∥∥ ⩽
∥∥∥(PA,V /λ− ζ)−1 ⟨x⟩−ρ0

∥∥∥∥∥∥∥∥
(
−∆

λ
− ζ

)−1 ∂α

λ

∥∥∥∥∥
⩽ C

⟨ζ⟩2

|Im(ζ)|2
λs

∥∥∥∥∥
(
−∆

λ
+ 1

)−1(−∆

λ

)∥∥∥∥∥
⩽ C

⟨ζ⟩2

|Im(ζ)|2
λs.
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• For |α| = 1, for s̃ near ρ0
4 + 1

2 , we have∥∥∥∥∥(PA,V /λ− ζ)−1 aα(x)

(
−∆

λ
− ζ

)−1 ∂α

λ

∥∥∥∥∥ ⩽
∥∥∥(PA,V /λ− ζ)−1 ⟨x⟩−ρ0−1

∥∥∥∥∥∥∥∥
(
−∆

λ
− ζ

)−1 ∂α

λ

∥∥∥∥∥
⩽ C

⟨ζ⟩2

|Im(ζ)|2
λs̃− 1

2

∥∥∥∥∥
(
−∆

λ
+ 1

)−1 (−∆)1/2

λ1/2

∥∥∥∥∥
⩽ C

⟨ζ⟩2

|Im(ζ)|2
λs̃− 1

2 .

• For |α| = 0, for s1 near ρ0
4 + 1

2 and s2 near 1
2 , we have∥∥∥∥∥(PA,V /λ− ζ)−1 aα(x)

(
−∆

λ
− ζ

)−1 ∂α

λ

∥∥∥∥∥ ⩽
∥∥∥(PA,V /λ− ζ)−1 ⟨x⟩−ρ0−1

∥∥∥∥∥∥∥∥⟨x⟩−1

(
−∆

λ
− ζ

)−1 ∂α

λ

∥∥∥∥∥
⩽ C

⟨ζ⟩2

|Im(ζ)|2
λs1−1

∥∥∥∥∥⟨x⟩−1

(
−∆

λ
+ 1

)−1
∥∥∥∥∥

⩽ C
⟨ζ⟩2

|Im(ζ)|2
λs1+s2−1.

From the previous estimates, we deduce that the integral in (3.6) is bounded by
ϵ

2
for sufficiently

small λ, since
∂f̃

∂ζ̄
vanishes to infinite order on Im(ζ) = 0 and is compactly supported.

Thus, combining (3.5) and (3.6), we conclude the proof. □

4. Mourre estimates

The main ingredient to prove such resolvent estimates near the real axis is the Mourre commu-
tators method. We use a modified version of the usual conjugate operator of Schrödinger-type
operator, namely the generator of dilations, which is defined by

(4.1) T = −x · i∇+ i∇ · x
2

.

For t ∈ R, u ∈ L2 and x ∈ Rd, this operator satisfies the relation:

(4.2) eitTu(x) = e
td
2 u(etx).

To localize the operator in space, we introduce a cut-off function χ ∈ C∞
0 (Rd, [0, 1]), which is

equal to 1 on a neighborhood of 0. Using this, we define the modified conjugate operator as

(4.3) T λ = −(1− χ(λ
1
2x))x · i∇+ i∇ · x(1− χ(λ

1
2x))

2
.

To account for the self-adjointness of PA,V in L2(w(x)dx), we introduce the operator

T λ
w := w− 1

2T λw
1
2 .

Using the abstract Mourre commutators method and applying Proposition 3.4, we have the
following theorem.

Theorem 4.1. Let d ⩾ 3 and λ0 > 0. Then, for each k ∈ N, there exists a constant C > 0 such
that for all λ ∈ (0, λ0]

(4.4) ∥(T λ
w − i)−k(PA,V /λ− 1± i0)−k(T λ

w + i)−k∥ ⩽ C.

For the proof of Theorem 4.1, we will use pseudodifferential calculus. To this end, we need
some definitions.
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Definition 4.2. A function q(x, ξ) belongs to the class Sm,n(Rd × Rd) if, for all multi-indices
α, β ∈ Nd, it satisfies the inequality:

|∂α
x ∂

β
ξ q(x, ξ)| ⩽ Cα,β⟨ξ⟩m−|β|⟨x⟩n−|α|.

For a symbol q(x, ξ) ∈ Sm,n, the associated pseudodifferential operator Op(q) is defined by the
quantization formula:

(Op(q)u)(x) =
1

(2π)d

∫
Rd

∫
Rd

ei(x−y)·ξq(x, ξ)u(y) dy dξ,

where u is a test function (or a distribution) on Rd.

Proof. Using tools from scattering theory (Mourre theory, see for example [JMP84]), to demon-
strate Theorem 4.4, it suffices to show the following positive commutator estimate

(4.5) f
(
PA,V /λ

)[
PA,V /λ, iT

λ
w

]
f
(
PA,V /λ

)
⩾ f2

(
PA,V /λ

)
,

where f ∈ C∞
0 (]0,+∞[) such that f = 1 near 1.

To prove (4.5), we outline some proof ideas inspired by Section 2 of [BB21]. First, observe
that:

PA,V − (−∆) =
1

w(x)

∑
1⩽i,j⩽d

[[
(Di −Ai)g

ij(x)
]
Dj + (−Dig

ij(x) +Ai(x)g
ij(x))Aj(x)+

+ (gij(x)− w(x)δij)DiDj − gij(x)DjAi(x)

]
+ V (x).

Then, we can write

(4.6) PA,V /λ+∆/λ = eiτT pλ(x,D)e−iτT ,

where τ = ln(λ
1
2 ) (corresponding to a rescaling by λ

1
2 , see (4.6)), and the symbol pλ(x, ξ) is

given by:

pλ(x, ξ) =
λ− 1

2

w(λ
1
2x)

∑
1⩽i,j⩽d

[
(Di −Ai(λ

1
2x))gij(λ

1
2x)ξj

]
+

1

w(λ
1
2x)

∑
1⩽i,j⩽d

(gij(λ
1
2x)− w(λ

1
2x)δij)ξiξj

+
λ−1

w(λ
1
2x)

∑
1⩽i,j⩽d

(−Dig
ij(λ

1
2x) +Ai(λ

1
2x)gij(λ

1
2x))Aj(λ

1
2x)

− λ−1

w(λ
1
2x)

∑
1⩽i,j⩽d

gij(λ
1
2x)DjAi(λ

1
2x) + λ−1V (λ

1
2x).

Now, examining the components of pλ(x, ξ), we deduce the following symbolic properties:

• (Di −Ai(λ
1
2x))gij(λ

1
2x)ξj ∈ λ

ρ0+1
2 S1,−1−ρ0 .

• (gij(λ
1
2x)− w(λ

1
2x)δij)ξiξj ∈ λ

ρ0
2 S2,−ρ0 .

• (−Dig
ij(λ

1
2x) +Ai(λ

1
2x)gij(λ

1
2x))Aj(λ

1
2x) ∈ λ1+ρ0S0,−2−2ρ0 .

• gij(λ
1
2x)DjAi(λ

1
2x) and V (λ

1
2x) ∈ λ1+

ρ0
2 S0,−2−ρ0 .

From the previous writing, we deduce that:

(4.7) pλ(x,D) ∈ λ
ρ0
2 Op(S2,−ρ0).

On the other hand, we have

T λ
w = (1− χ(λ

1
2x))T +

i

2
(1− χ)(λ

1
2x)

x · ∇w(x)

w(x)
+

i

2
(λ

1
2x) · ∇χ(λ

1
2x) = eiτT tλ(x,D)e−iτT
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where

tλ(x, ξ) = (1− χ)(x)

(
x · ξ + d

2i

)
+

i

2
(1− χ)(x)

λ− 1
2x · ∇w(λ− 1

2x)

w(λ− 1
2x)

+
i

2
x · ∇χ(x).

One can rewrite its symbolic form as

tλ(x, ξ) = (1− χ)(x)

(
x · ξ + d

2i

)
+ (1− χ)(x)λ

ρ0
2 S0,−ρ0 + C∞

0 (Rd\{0}).

Using the symbolic form of T λ
w and PA,V , we have[

PA,V /λ, iT
λ
w

]
=

[
PA,V /λ+∆/λ, iT λ

w

]
+
[
−∆/λ, iT λ

w

]
= eiτT

(
i
[
pλ(x,D), tλ(x,D)

])
e−iτT + eiτT

(
i
[
|ξ|2, tλ(x,D)

])
e−iτT

= eiτT
(
i
[
pλ(x,D), tλ(x,D)

])
e−iτT + 2(1− χ)(λ

1
2x)

(
−∆/λ

)
+ eiτT

(
i

[
|ξ|2, (1− χ)(x)λ

ρ0
2 S0,−ρ0 + C∞

0 (Rd\{0})
])

e−iτT

By the pseudo-differential calculus, we can compute[
pλ(x,D), tλ(x,D)

]
=

[
λ

ρ0
2 Op(S2,−ρ0), (1− χ)(x)

(
x · ξ + d

2i

)
+ (1− χ)(x)λ

ρ0
2 Op(S0,−ρ0) + C∞

0 (Rd\{0})
]

=
[
λ

ρ0
2 Op(S2,−ρ0), (1− χ)(x)Op(S1,1) + (1− χ)(x)λ

ρ0
2 Op(S0,−ρ0) + C∞

0 (Rd\{0})
]

= λ
ρ0
2 Op(S2,−ρ0)Φ1(x),

where Φ1 equal 0 near 0. For an arbitrary N , we also have[
|ξ|2, (1− χ)(x)λ

ρ0
2 S0,−ρ0 + C∞

0 (Rd\{0})
]

=

[
Op(S2,0), (1− χ)(x)λ

ρ0
2 Op(S0,−ρ0) + C∞

0 (Rd\{0})
]

= λ
ρ0
2 Op(S2,−ρ0)Φ2(x) + Op(S2,−N )Φ3(x),

where Φ2 and Φ3 are equal to 0 near 0. Thus, using (4.6) and (4.7), we conclude:[
PA,V /λ, iT

λ
w

]
= 2(1− χ)(λ

1
2x)

(
−∆/λ

)
+ λ

ρ0
2 eiτTOp(S2,−ρ0)e−iτTΦ(λ

1
2x)

+
〈
λ

1
2x

〉−N
eiτTOp(S2,0)e−iτTΦ3(λ

1
2x)

= 2(1− χ)(λ
1
2x)

(
−∆/λ− PA,V /λ

)
+ 2(1− χ)(λ

1
2x)

(
PA,V /λ

)
+ λ

ρ0
2 eiτTOp(S2,−ρ0)e−iτTΦ(λ

1
2x)

+
〈
λ

1
2x

〉−N
eiτTOp(S2,0)e−iτTΦ3(λ

1
2x)

= 2(1− χ)(λ
1
2x)

(
PA,V /λ

)
+ λ

ρ0
2 eiτTOp(S2,−ρ0)e−iτTΦ(λ

1
2x)

+
〈
λ

1
2x

〉−N
eiτTOp(S2,0)e−iτTΦ3(λ

1
2x),

where Φ equal 0 near 0. For N = ρ0, we deduce that[
PA,V /λ, iT

λ
w

]
− 2PA,V /λ = −2χ(λ

1
2x)

(
PA,V /λ

)
+

〈
λ

1
2x

〉−ρ0
eiτTOp(S2,0)e−iτT Φ̃(λ

1
2x),
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where where Φ̃ equal 0 near 0.
Take f1 satisfying Proposition 3.4, and compose

[
PA,V /λ, iT

λ
w

]
− 2PA,V /λ on the right and on

the left with f1
(
PA,V /λ

)
, we obtain∥∥∥f1(PA,V /λ

)([
PA,V /λ, iT

λ
w

]
− 2PA,V /λ

)
f1
(
PA,V /λ

)∥∥∥
⩽

∥∥∥f1(PA,V /λ
)
χ(λ

1
2x)

(
PA,V /λ

)
f1
(
PA,V /λ

)∥∥∥
+

∥∥∥∥f1(PA,V /λ
) 〈

λ
1
2x

〉−ρ0
eiτTOp(S2,0)e−iτT Φ̃(λ

1
2x)f1

(
PA,V /λ

)∥∥∥∥
⩽

∥∥∥f1(PA,V /λ
)
χ(λ

1
2x)

(
PA,V /λ

)(
PA,V /λ+ i

)−1
∥∥∥∥∥(PA,V /λ+ i

)
f1
(
PA,V /λ

)∥∥
+

∥∥∥∥f1(PA,V /λ
) 〈

λ
1
2x

〉−ρ0
eiτTOp(S2,0)e−iτT Φ̃(λ

1
2x)

(
PA,V /λ+ i

)−1
∥∥∥∥∥∥(PA,V /λ+ i

)
f1
(
PA,V /λ

)∥∥
⩽

∥∥∥∥f1(PA,V /λ
) 〈

λ
1
2x

〉−ρ0
∥∥∥∥∥∥∥χ(λ 1

2x)
〈
λ

1
2x

〉ρ0 (
PA,V /λ

)(
PA,V /λ+ i

)−1
∥∥∥∥∥(PA,V /λ+ i

)
f1
(
PA,V /λ

)∥∥
+

∥∥∥∥f1(PA,V /λ
) 〈

λ
1
2x

〉−ρ0
∥∥∥∥∥∥∥eiτTOp(S2,0)e−iτT Φ̃(λ

1
2x)

(
PA,V /λ+ i

)−1
∥∥∥∥∥(PA,V /λ+ i

)
f1
(
PA,V /λ

)∥∥ .
Using the spectral theorem and the support of χ, we have the following estimates:∥∥(PA,V /λ+ i

)
f1
(
PA,V /λ

)∥∥ ⩽ C,
∥∥∥χ(λ 1

2x)
〈
λ

1
2x

〉ρ0 (
PA,V /λ

)(
PA,V /λ+ i

)−1
∥∥∥ ⩽ C.

Using standard techniques for constructing a parametrix of (PA,V /λ+ i)−1 (see [BB21, Propo-
sition 2.6], there exists a constant C, independent of λ such that:∥∥∥eiτTOp(S2,0)e−iτT Φ̃(λ

1
2x)

(
PA,V /λ+ i

)−1
∥∥∥ ⩽ C.

Therefore, we obtain:∥∥∥f1(PA,V /λ
)([

PA,V /λ, iT
λ
w

]
− 2PA,V /λ

)
f1
(
PA,V /λ

)∥∥∥ ≲

∥∥∥∥f1(PA,V /λ
) 〈

λ
1
2x

〉−ρ0
∥∥∥∥ .

By Proposition 3.2, the right hand side is arbitrarily small. Hence, we simply have:

f1
(
PA,V /λ

)([
PA,V /λ, iT

λ
w

]
− 2PA,V /λ

)
f1
(
PA,V /λ

)
⩾ −1

2
.

Moreover, when the support of f1 is small enough around 1, we have

2f1
(
PA,V /λ

)(
PA,V /λ

)
f1
(
PA,V /λ

)
⩾

3

2
f2
1

(
PA,V /λ

)
.

Thus, after composition by f
(
PA,V /λ

)
with f equal 1 near 1, (4.5) holds. □

5. Main result: Time decay estimates

In this section, we prove Theorems 1.3, 1.4,1.5, and Corollary 1.6. To do so, we will use the
following proposition.

Proposition 5.1. Let d ⩾ 3, k ∈ N and f ∈ C∞
0 (R). Let ν ⩾ k and s ∈ [0, d4 ] be such that

ν > 2s. Then

(5.1) ∥(T λ
w + i)kf(PA,V /λ) ⟨x⟩−ν ∥ ⩽ Cλs,

as long as λ > 0 belongs to a bounded set.

Proof. The proof is similar to that of Proposition 4.1 from [BB21], without a magnetic field
and an electric potential because, by (4.6), PA,V has the same symbolic structure as (2.8) of
[BB21]. □

By combining (4.4) with Proposition 5.2, we can directly derive bounds on the spectrally
localized resolvent.
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Theorem 5.2. Let d ⩾ 3, f ∈ C∞
0 (R), k ∈ N and λ0 > 0. If if ν ⩾ k and s ∈

[
0, d4

]
are such

that ν > 2s, then ∥∥∥⟨x⟩−νf(PA,V /λ)(PA,V − λ± i0)−k⟨x⟩−ν
∥∥∥ ⩽ Cλ2s−k

for all λ ∈ (0, λ0]. In particular, if ν > d
2 and ν ⩾ k, then∥∥∥⟨x⟩−νf(PA,V /λ)(PA,V − λ± i0)−k⟨x⟩−ν

∥∥∥ ⩽ Cλ
d
2
−k.

This theorem allows us to obtain a bound on the resolvent that is still localized, though less
strongly. Since the proof is analogous to Proposition 4.4 in [BB21], it is not provided here.

Proposition 5.3. Let λ0 > 0, there exists F ∈ C∞
0 (R) (and actually for all F ) equal to 1 near

(0, λ0] such that for k ⩾ 1 and ν > k, one has∥∥∥⟨x⟩−νF (PA,V )(PA,V − λ± i0)−k⟨x⟩−ν
∥∥∥ ⩽ Cλ2s−k,

for all λ ∈ (0, λ0] and k ̸= d

2
.

If d is even and k =
d

2
, we have∥∥∥⟨x⟩−νF (PA,V )(PA,V − λ± i0)−

d
2 ⟨x⟩−ν

∥∥∥ ⩽ C| log λ|.

Proof of Theorem 1.4. Select F as described in Proposition 5.3. The result follows because
(1 − F (PA,V ))(PA,V − λ ± i0)−k is uniformly bounded with respect to λ on L2, as ensured by
the spectral theorem. □

Proof of Theorem 1.5. From (1.6), we have

dj

dλj
⟨x⟩−ν E′

PA,V
(λ) ⟨x⟩−ν =

1

2iπ

dj

dλj
⟨x⟩−ν [(PA,V − λ− i0)−1 − (PA,V − λ+ i0)−1

]
⟨x⟩−ν

=
1

2iπ
⟨x⟩−ν dj

dλj

[
(PA,V − λ− i0)−1 − (PA,V − λ+ i0)−1

]
⟨x⟩−ν

=
j!

2iπ
⟨x⟩−ν [(PA,V − λ− i0)−1−j − (PA,V − λ+ i0)−1−j

]
⟨x⟩−ν .

By Theorem 5.2, we complete the proof. □

Proof of Theorem 1.3. Let m =
⌊
d
2

⌋
. For ν >

⌊
d
2

⌋
+ 2, we have

(it)m⟨x⟩−νφ(PA,V ) e
itPA,V ⟨x⟩−ν

=
1

2iπ

∫ +∞

0
φ(λ)⟨x⟩−ν∂m

λ (eitλ)E′
PA,V

(λ)⟨x⟩−νdλ

=
(−1)m

2iπ

∫ +∞

0
eitλ∂m

λ

[
⟨x⟩−νφ(λ)E′

PA,V
(λ)⟨x⟩−ν

]
dλ

=
(−1)m

2iπ

∫ t−1

0
eitλ∂m

λ

[
⟨x⟩−νφ(λ)E′

PA,V
(λ)⟨x⟩−ν

]
dλ+

+
(−1)m

2iπ

∫ +∞

t−1

eitλ∂m
λ

[
⟨x⟩−νφ(λ)E′

PA,V
(λ)⟨x⟩−ν

]
dλ.

On the one hand, by Theorem 1.5, we have∥∥∥∥∥
∫ t−1

0
eitλ∂m

λ

[
⟨x⟩−νφ(λ)E′

PA,V
(λ)⟨x⟩−ν

]
dλ

∥∥∥∥∥
L2

≲
∫ t−1

0
λ

d
2
−1−m dλ ≲ t−

d
2
+m
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On the other hand, by Theorem 1.5, we also have:

t

∥∥∥∥∫ +∞

t−1

eitλ∂m
λ

[
⟨x⟩−νφ(λ)E′

PA,V
(λ)⟨x⟩−ν

]
dλ

∥∥∥∥
L2

=

∥∥∥∥∫ +∞

t−1

∂λe
itλ∂m

λ

[
⟨x⟩−νφ(λ)E′

PA,V
(λ)⟨x⟩−ν

]
dλ

∥∥∥∥
L2

=
∥∥∥∂m

λ

[
⟨x⟩−νφ(t−1)E′

PA,V
(t−1)⟨x⟩−ν

]∥∥∥
L2

+

∥∥∥∥∫ +∞

t−1

eitλ∂m+1
λ

[
⟨x⟩−νφ(λ)E′

PA,V
(λ)⟨x⟩−ν

]
dλ

∥∥∥∥
L2

≲ t−
d
2
+m+1.

Combining these estimates, we conclude the desired time decay rate for the evolution operator.
□

Proof of Corollary 1.6. For φ ∈ C∞
0 (R+), we have∥∥⟨x⟩−ν eitPA,V ⟨x⟩−ν

∥∥
L2(Rd)→L2(Rd)

=
∥∥⟨x⟩−ν φ(PA,V ) e

itPA,V ⟨x⟩−ν
∥∥
L2→L2 +

∥∥⟨x⟩−ν (1− φ(PA,V )) e
itPA,V ⟨x⟩−ν

∥∥
L2→L2 .

The first norm follows from Theorem 1.3. For the second norm, if the non-trapping condition
holds, we have, by [JMP84, Rob92],∥∥⟨x⟩−ν (1− φ(PA,V )) e

itPA,V ⟨x⟩−ν
∥∥
L2(Rd)→L2(Rd)

≲ ⟨t⟩−ν′ , for ν ′ < ν.

In particular, for ν ′ = d
2 , we obtain the desired estimate for the L2(Rd) → L2(Rd) operator

norm. From the dyadic partition (see [BB21, Section 6]), this can be replaced by the L2(Rd) →
H

d
2 (Rd) norm. □
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