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Abstract—Determinacy races are concurrent programming
hazards occurring when two accesses on the same memory ad-
dress are not ordered, and at least one is writing. Their presence
hints at a correctness error, particularly under asynchronous
task-based parallel programming models. This paper introduces
Taskgrind: a Valgrind tool for memory access analysis of parallel
programming models such as Cilk or OpenMP. We illustrate
the tool’s capabilities with a determinacy-race analysis and
confront it with state-of-the-art tools. Results show fewer false
negatives and memory overheads on a set of microbenchmarks
and LULESH, with meaningful error reports toward assisting
programmers when parallelizing programs.

Index Terms—HPC, Task, Binary Instrumentation, Determi-
nacy Race

I. INTRODUCTION

Determinacy races are concurrent programming hazards
occurring when two accesses on the same memory address are
not ordered, and at least one is writing [1]. The presence of
determinacy races in a program can make its output vary given
the same input, which may hint at the presence of correctness
errors. With the ever-growing intra-node parallelism of super-
computers, porting simulation codes while ensuring parallel
execution correctness is challenging. It is particularly true
with dependent task-based programming models over more
synchronous programming models. A missing synchronization
can lead to an incorrect order of execution and, in the end, to
an erroneous simulation.

To help prevent unintended determinacy races, many tools
had been developed, which we summarize briefly here.
LLOV [2] is a static data-race checker, meaning it detects the
presence or absence of errors at compile-time, hence with a
limited vision of the program. Archer [3] and TaskSanitizer [4]
instruments at compile-time to perform run-time analysis
falling back to LLVM’ ThreadSanitizer [5]. Motivations and
results of Archer [3] showed its effectiveness for debugging
applications, even at large scale. However, as suggested by E.
Dijkstra [6], "debugging is an inadequate means for ensuring
programs correctness and that we must prove the correct-
ness of programs". In particular, both tools are subject to
false negative: it may report no data race in an erroneous
program. One source of false negatives comes from non-
instrumented code - for instance, in vendor-specific dynamic

libraries which source code may not be visible at compile-
time. ROMP [7] is a static binary instrumentation tool relying
on Dyninst [8] for checking OpenMP program’s correctness.
It tackles Archer/TaskSanitizer’s limitation by recompiling
and instrumenting binary programs. However, ROMP’ main
drawbacks are its poor error reporting and that it only supports
OpenMP semantics.

This paper explores the use of heavyweight Dynamic Binary
Instrumentation (DBI) towards (1) reducing false-negatives
detection, (2) meaningful determinacy race reports and (3)
multi-parallel programming model support. Our contributions
are:

• the introduction of Taskgrind: a Valgrind tool for parallel
programming model memory accesses analysis - with
support for OpenMP and a work-in-progress Cilk support.

• a brief survey on pitfalls related to heavyweight DBI of
parallel programs,

• the implementation of a determinacy race analysis in
Taskgrind, and its evaluation with respect to state-of-the-
art tools.

The paper is organized as follows. Section II provides
relevant background. Section III introduces the design of
Taskgrind and the determinacy race detector implementation.
Section IV presents a few pitfalls on parallel programs heavy-
weight DBI, and how Taskgrind workarounds them. Section V
evaluates Taskgrind overheads and its determinacy race detec-
tion analysis. Finally, Section VI review the literature, and we
conclude in Section VII.

II. BACKGROUND

Here we introduce the segment graph data structure and
Valgrind concepts on which rely Taskgrind.

A. Segment Graph

Parallel programs can be represented as a segment graph
where nodes are non-divisible sequences of instructions, and
so that there exists a path from nodes Ni to Nj if and only
if a synchronization imposes Ni to happen-before Nj . Fig. 1
illustrates such a graph, used in race detector tools such as
TaskSanitizer [4] or ROMP [7].



1
2    # pragma omp task
3        {}
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Fig. 1: Minimal example of a segment graph

To reason about segment graphs, we build on the formal
definitions of TaskSanitizer [4]. In particular, we refine the
definition of a happens-before relation (HB, ≺) to include
reasoning about parallel regions. Precisely, if one parallel
region happens before another, than all task segments in the
first happen before all test segments in the second. Formally:

p1 ≺ p2

∀t1 ∈ p1,∀t2 ∈ p2, t1 ≺ t2 (1)

This is a useful definition in implementing and reasoning
about OpenMP (and perhaps Qthreads), while Cilk programs
can be assumed to have a single parallel region containing all
tasks.

B. Valgrind

Valgrind is a Dynamic Binary Instrumentation (DBI) frame-
work [9]. It performs just-in-time recompilation of code blocks
from binary programs to the VEX intermediate representation
(IR). A Valgrind tool includes the Valgrind core and a plugin.
The IR tree is generated by the core and passed to the plugin
that can inject IR instructions for instrumenting. In addition,
Valgrind provides utilities such as client requests - so the in-
strumented program (aka. the client) can forward information
to the tool - or function replacement, used, for instance, by the
default tool memcheck to wrap memory allocators. Valgrind
also makes read/write instruction instrumentation relatively
simple through the VEX IR.

III. TASKGRIND: A TOOL FOR PARALLEL PROGRAM
MEMORY ACCESSES ANALYSIS

We present Taskgrind, a Valgrind tool designed to analyze
parallel program memory accesses. Fig. 2 summarizes its
design. The application may be any program supported by
Valgrind. It must rely on a parallel programming model that
provides a segment graph to Taskgrind through client requests.
Section III-A presents the considered parallel programming
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Fig. 2: The design of Taskgrind

models and their support, Section III-B the per-segment mem-
ory accesses recording, and finally Section III-C an analysis
for determinacy race detection.

A. Parallel Programming Models Support

In order to support a programming model, Taskgrind must
build a segment tree from a program execution. We briefly
introduced considered programming models and their current
support.

a) OpenMP: OpenMP is a parallel programming model
with a main focus on intra-node parallelism. It provides many
synchronization mechanism such as threads fork-join, mutex,
barriers, dependencies or detachable tasks. It also comes with
a standard tooling interface: OMPT [10]. An OMPT-tool can
register callbacks raised on specific run-time events. Taskgrind
provides a built-in OMPT-tool that forward the OpenMP
program state to the Taskgrind plugin via client requests. The
OMPT-tool is automatically injected into the instrumented pro-
gram by Taskgrind. Such approach to building a segment tree
is similar to TaskSanitizer [4], the main differences stands in
the supported interfaces: for instance, TaskSanitizer supports
mutexes but does not support the inoutset dependency type
nor the detach clause, while Taskgrind is the opposite.

b) OpenCilk: Cilk is a programming model that uses
tasks as its fundamental building block [11]. While there is
a race detector for Cilk [12], it has the previously mentioned
drawback of requiring compile-time instrumentation. The im-
plementation of the Cilk runtime, Cheetah, takes a drasti-
cally different approach from OpenMP, making a Taskgrind
integration difficult. As a result, we have a work-in-progress
implementation1.

c) Qthreads: Qthreads is a userspace threading run-
time that implements tasks and other synchronization primi-
tives [13]. It provides a wide range of primitives for organizing
dependencies between tasks, which presents unique challenges
for taskgrind. As a result, instrumenting qthreads for use with
Taskgrind will require subtle extensions to Taskgrind seman-
tics to allow handling of constructs such as the full/empty-bits
(FEBs). That said, we hope to get some of the basic tasking
semantics of Qthreads instrumented for use with Taskgrind.

B. Memory Accesses Recording

While building the segment tree, Taskgrind keeps track of
the active segment on each thread. Two interval trees are
attached to each segment to record read and write access.

1https://github.com/stelleg/cheetah/tree/taskgrind

https://github.com/stelleg/cheetah/tree/taskgrind


1  int i;
2  
3  for (i = 0 ; i < 4 ; ++i)
4      x[i] = 1;
5
6  x[8] = 1;
7
8  for (i = 12 ; i < 16 ; ++i)
9      x[i] = 1;

[ &x+8 .. &x+9 [

[ &x+0 .. &x+4 [ [ &x+12 .. &x+16 [

[ &i .. &i+1 [

Fig. 3: Write interval tree for the right-side segment

Fig. 3. Such structure allows compactly accumulated dense
memory accesses and a light O(log n) complexity on most
tree operations used in later analysis - n being the number of
dense intervals accessed.

C. Determinacy Race Analysis

When the parallel program finishes execution, Taskgrind
will have generated a segment tree representation of the
execution, with accesses recorded for each segment. Using
that knowledge, Algorithm 1 presents the implementation of
a determinacy race analysis. It compares each independent-
segments to one-another, intersecting their accesses location
where at least one is writing. If the intersection is not empty,
then a determinacy race may be reported.

Algorithm 1 Determinacy Race Analysis Pass

Require: Segment graph G
1: for each segment s1 ∈ G do
2: for each segment s2 ∈ G\{s1} do
3: if no path exists between s1 and s2 then
4: if s1.w ∩ (s2.r ∪ s2.w) is not empty then
5: Possible determinacy races (s1, s2)

In order to provide meaningful report to the programmer,
Taskgrind overloads the memory allocator using Valgrind
interfaces, to save a stack trace on each memory block
allocation, so conflicting accesses can be matched with source-
code location reading debugging information if compiled-in
the binary.

IV. PITFALLS WITH HEAVYWEIGHT INSTRUMENTATION

The original motivations of Taskgrind were to avoid false-
negative detection by instrumenting every instruction of the
program understudy. However, naively running Taskgrind and
its determinacy race analysis leads to many false positives.
Instrumenting an OpenMP dependent task-based version of
LULESH 2 reports about 400,000 determinacy races with a
low problem size -s 4 (the mesh size) and low parallelism
-tel 2 (the number of tasks per loop). This section presents
a few sources of false-positives, illustrated with OpenMP, and
how Taskgrind suppresses them.

A. Parallel Runtimes Non-Determinacy

Reporting every determinacy race is not always relevant for
correctness analysis. In fact, correct parallel runtime systems

2https://github.com/rpereira-dev/LULESH

(in the sense that they respect their specifications) can be
non-deterministic themselves. For instance, OpenMP and Cilk
implementations rely on work-stealing task scheduling: given
the same tasks, different execution may lead to different
scheduling.

In order to turn off the report of such unharmful determinacy
races, we added two lists of symbols: the ignore-list and the
instrument-list. The former one tells Taskgrind to turn off
instrumentation for accesses occurring in a symbol matching
any. The latter tells Taskgrind only to allow instrument ac-
cesses occurring in a symbol matching any. For instance, the
ignore-list contains symbols prefixed with __kmp correspond-
ing to LLVM’ OpenMP runtime.

B. Memory Recycling

1 for (int i = 0 ; i < 2 ; i++)
2 {
3 # pragma omp task // T(i)
4 {
5 void * x = malloc(4);
6 write(x);
7 free(x);
8 }
9 }

Listing 1: Memory Recycling false-positives

Another source of false positives stems from memory
allocators. Listing 1 shows a minimal example where two
tasks allocate memory, write on it, and deallocate it. While
segments associated with OpenMP tasks T (0) and T (1) are
declared independent, but run-time scheduling may lead the
system allocator to allocate/deallocate the same memory loca-
tion x by recycling memory. Taskgrind bypasses this issue
by overloading the system allocator. It transforms memory
deallocation calls such as free or delete to a no-op.
This workaround ensures that two allocations will always point
to distinct memory addresses, removing false positives from
recycling.

It must be noted that Valgrind memory allocator over-
riding does not support custom memory allocators. For
instance, the LLVM OpenMP runtime 19.x has its own
memory allocator that can also perform memory recy-
cling (___kmp_fast_allocate). Extending the support
of memory allocators is kept as future work.

C. Thread-Local Accesses

1 _Thread_local int * x;
2 [...]
3 for (int i = 0 ; i < 2 ; i++)
4 # pragma omp task // T(i)
5 write(x);

Listing 2: Memory Recycling false-positives

Thread-local accesses are also a source of false
positives. For instance, it includes memory allocated
via the pthread_key_create interface, C11 specifier
_Thread_local, or OpenMP threadprivate directive.
We focus on the support of the _Thread_local specifier,
but concepts could be extended to other thread-local storage.

https://github.com/rpereira-dev/LULESH


On the Listing 2, both T (0) and T (1) may be scheduled on
the same thread and Taskgrind would record two independent
tasks writing the same memory location. To suppress such
false-positive, Taskgrind records the Thread Local Storage
(TLS) [14] information of the executing thread. When a
segment completes, the Thread Control Block (TCB) and the
Dynamic Thread Vector (DTV) are saved and attached to the
segment. In the determinacy race analysis, if both accesses
occurred on the same thread and in the same DTV, then the
report is suppressed.

However, this approach is limited. A segment could allocate
a new DTV block, access it, and de-allocate it before the
segment completion, which means it would not appear in
the recorded DTV. Such a scenario would still lead to false-
positive reports by the determinacy race analysis. Using TLS
gen number, Taskgrind could detect a change of the DTV
structure that occurred during the segment execution and
warn the user, but a false-positive would still be reported.
A better solution kept as future work is to use Valgrind
function replacement for TLS allocation/de-allocation record
TCB/DTV while splitting the current segment when it occurs.

Another limitation is user-based thread-local
accesses. A pattern commonly found in OpenMP
code is indexing an array with the executing thread -
array[omp_get_thread_num()] - which is not
detected currently by Taskgrind.

D. Segment-Local Accesses

1 for (int i = 0 ; i < 2 ; i++)
2 # pragma omp task // T(i)
3 int x = 0;

Listing 3: Memory Recycling false-positives

The last source of false-positive suppression presented in
this paper is depicted on Listing 3. Running with code with
LLVM’ OpenMP, both segments associated with tasks T (0)
and T (1) may be executed on the same thread one after the
other. With LLVM/GCC implementation, x is pushed at the
same address onto the executing thread stack, resulting in
a conflict when analyzing. In order to suppress such false
positives, Taskgrind registers the stack frame address at the
start of a segment. Then, during the determinacy analysis, such
false positives are suppressed by confronting conflicting stack
accesses with registered stack frames.

V. EVALUATION

The original motivations of Taskgrind were to have no false
negative reports (as compared to Archer and TaskSanitizer)
- while improving error reports (as compared to ROMP).
This section evaluates Taskgrind determinacy race analysis, its
overhead over execution time, and memory use, and illustrates
its error reporting capabilities3. Every program was compiled
using LLVM and disabling optimizations (option -O0).

3Software versions and source code are referenced in the Appendix of this
document.

A. Microbenchmarks

We evaluate Taskgrind determinacy race detection analysis
on a subset of the DataRaceBenchmarks [15] focusing on
task-related constructs. We extended it with seven Taskgrind-
specific microbenchmarks (TMB) treating heavyweight DBI
pitfalls discussed in Section IV. We run TMBs with 1 and 4
threads to:

• force memory recycling, thread-local accesses, and
segment-local accesses of independent segments,

• ensures the tool captures the code semantic and not
implementation specific behavior. For instance, LLVM
implementation makes every task included when execut-
ing on a single-thread 4.

Results are depicted on Table I and confront state-of-the-art
analysis tools: TaskSanitizer [4], Archer [3] and ROMP [7].
The first column is the benchmark name, the second is whether
a data race is present, and the other columns depict reports
obtained by the specified tools. Letter (T, F, P,N) respec-
tively stands for (true, false, positive, negative). ncs on
TaskSanitizer stands for "no compiler support" and indicates
that the test does not compile with Clang 8.x. segv on ROMP
indicates that the instrumented execution was incomplete due
to a run-time error.

As Taskgrind’s main objective is to avoid false negative
reports, we have highlighted them. Amongst all the tools,
it reports the least false-negative with only a single one on
DRB129-mergeable-taskwait-orig. It evaluates the support for
OpenMP mergeable clause, which semantic is not sup-
ported by Taskgrind, nor by TaskSanitizer, Archer, or ROMP.
Single-thread execution of TMB reports 100% accuracy, while
other tools do not. The multi-threaded execution of TMP
reports a few false positives that require further investigation:
Taskgrind detects conflicting sibling tasks on a memory loca-
tion in their parent segment stack frame.

B. LULESH

Table II and Fig. 4 reports data race detection and over-
heads on execution time and memory usage on the LULESH
proxy application on 12th Gen Intel(R) Core(TM) i5-12450H.
The execution time reported for Taskgrind only includes the
recording phase and not the determinacy race analysis.

On the table, we report two versions of LULESH: a correct
one (with no in the "racy" column) and an incorrect one (with
yes in the "racy" column) by removing a task dependence to
introduce data races intentionally. We also run it on 1 and
4 threads for the same reason as the previous experiment.
On the single-threaded run, we observe a slowdown against
non-instrumented versions of 10x for Archer and 100x for
Taskgrind and a memory overhead of 4x for Archer and 6x
for Taskgrind. The reasons for Taskgrind deadlocks running
with multiple threads remain to be investigated. Regarding
data race, Archer never reports errors when running in a
single-thread, most likely because it only sees undeferred tasks
through OMPT due to LLVM serialization. On the other hand,

4https://github.com/llvm/llvm-project/issues/89398

https://github.com/llvm/llvm-project/issues/89398


Micro-benchmarks suite Tool
DRB (with OMP_NUM_THREADS=4) Determinacy Race TaskSanitizer Archer ROMP Taskgrind

027-taskdependmissing-orig yes TP FN TP TP
072-taskdep1-orig no TN TN TN TN
078-taskdep2-orig no TN TN TN FP
079-taskdep3-orig no ncs TN TN FP
095-doall2-taskloop-orig yes ncs TP TP TP
096-doall2-taskloop-collapse-orig no ncs TN TN FP
100-task-reference-orig no ncs FP TN FP
101-task-value-orig no FP FP TN FP
106-taskwaitmissing-orig yes TP TP TP TP
107-taskgroup-orig no FP TN TN FP
122-taskundeferred-orig no FP TN FP TN
123-taskundeferred-orig yes TP TP TP TP
127-tasking-threadprivate1-orig no ncs TN segv FP
128-tasking-threadprivate2-orig no ncs TN TN FP
129-mergeable-taskwait-orig yes ncs FN FN FN
130-mergeable-taskwait-orig no ncs TN TN TN
131-taskdep4-orig-omp45 yes ncs TP TP TP
132-taskdep4-orig-omp45 no ncs TN TN TN
133-taskdep5-orig-omp45 no ncs TN TN TN
134-taskdep5-orig-omp45 yes ncs TP TP TP
135-taskdep-mutexinoutset-orig no ncs TN FP TN
136-taskdep-mutexinoutset-orig yes TP TP TP TP
165-taskdep4-orig-omp50 yes ncs FN TP TP
166-taskdep4-orig-omp50 no ncs TN TN TN
167-taskdep4-orig-omp50 no ncs TN TN TN
168-taskdep5-orig-omp50 yes ncs TP TP TP
173-non-sibling-taskdep yes FN FN FN TP
174-non-sibling-taskdep no TP TN TN FP
175-non-sibling-taskdep2 yes FN TP TP TP

TMB (OMP_NUM_THREADS=1)
1000-memory-recycling.1 no TN TN TN TN
1001-stack.1 yes TP FN FN TP
1002-stack.2 no TN TN TN TN
1003-stack.3 no FP TN TN TN
1004-stack.4 yes TP FN TP TP
1005-stack.5 no FP TN TN TN
1006-tls.1 no FP TN TN TN

TMB (OMP_NUM_THREADS=4)
1000-memory-recycling.1 no TN TN TN FP
1001-stack.1 yes TP FN/TP TP TP
1002-stack.2 no TN TN TN FP
1003-stack.3 no TN TN TN TN
1004-stack.4 yes TP TP TP TP
1005-stack.5 no TN TN TN TN
1006-tls.1 no FP TN TN FP

TABLE I: Micro-benchmark suites results

Execution time (s.) Memory usage (MB.) N° of reports
Racy N° of threads No tools Archer Taskgrind No tools Archer Taskgrind Archer Taskgrind

no 1 0.01 0.12 1.23 10 41 64 0 0
4 0.01 0.43 deadlock 15 83 deadlock 149 to 273 deadlock

yes 1 0.01 0.12 1.23 10 41 64 0 458
4 0.01 0.46 deadlock 15 84 deadlock 140 to 221 deadlock

TABLE II: Execution time, memory usage overheads and number of reports for Archer and Taskgrind, on a dependent task-
based OpenMP implementation of LULESH with -s 16 -tel 4 -tnl 4 -p -i 4
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Fig. 4: Execution Time and Memory overheads on LULESH with parameters ‘-s $s -tel 4 -tnl 4 -p -i 4‘

we annotated the code to notify Taskgrind that the task is
semantically deferrable, which leads to no false negatives on
the racy version with 458 races detected.

On the figure, the x-axis varies the problem size -s - with
the application having a O(s3) time and memory complexity.
The reference and Archer execute with four threads, and
Taskgrind with a single thread.

We also evaluated using ROMP but omitted results from the
figure, as the instrumented program crashed early during the
first iteration of LULESH. Still, measurements showed that
memory use and execution time follow a similar shape with
s, but with much larger overheads: for -s=64, before the
application crashes, the execution time and memory use were
respectively 79s and 75GB.

C. Error Reporting

Listing 4 is a minimal erroneous OpenMP program, where
the tasks line 8 and 11 may both concurrently access x. List-
ing 5 and Listing 6 respectively transcribe errors reported by
ROMP and Taskgrind, compiling with debug symbols (option
-g). As you can see, Taskgrind provides debug information
thanks to the Valgrind framework, while ROMP does not
by default even though its DBI framework (Dyninst) can be
patched to enable similar report.
1 int main(void)
2 {
3 int * x = (int *) malloc(2 * sizeof(int));
4 # pragma omp parallel
5 {
6 # pragma omp single
7 {
8 # pragma omp task
9 x[0] = 42;

10
11 # pragma omp task
12 x[0] = 43;
13 }
14 }
15 return 0;
16 }

Listing 4: task.c - an errorneous OpenMP Program

1 [...]
2 data race found:

Listing 5: An error report from ROMP

1 Segments task.1.c:8 and task.1.c:11 were declared
independent while accessing the same memory
address

2 4 bytes from 0xC3EA040 allocated in block 0
xC3EA040 of size 8

3 from task.1.c:3
4 [...]

Listing 6: An error report from Taskgrind

VI. RELATED WORK

Taskgrind relies on Valgrind to instrument memory accesses
and attach them to segments, it eventually implements a deter-
minacy race analysis based on these information. We present
a brief review of the literature on programs instrumentation
framework and determinacy races analysis.

a) Instrumentation Frameworks: Instrumenting pro-
grammes to analyse them is a much-studied subject in the liter-
ature, and several approaches had been explored. Pin [16] and
Valgrind [9] rely on Dynamic Binary Translation (DBT) [17]:
the binary program is translated to an intermediate representa-
tion, instrumented, and its execution is emulated keeping track
of a virtual machine state. The main drawback is the cost of
translating and emulating, that lead to important slowdown
when executing. It motivates the design of instrumentation
frameworks such as DynamoRIO [18], Dyninst [8] or In-
strew [19], which is capable of instrumenting while executing
natively. All these frameworks present different capabilities,
in the end, we choose Valgrind for its well-established ca-
pabilities (memory allocator overloading, memory access in-
strumentation, debug information reading...) and for its active
community.

b) Determinacy Race Analyzer: In 1997, Nondetermina-
tor [20] was designed as an entire toolsuite (including compile-
time instrumentation and run-time analysis) to detect accu-
rately and provably determinacy races of Cilk programs. The
core of its analyzer relies on a low complexity algorithm (SP-
Bags) which assumes the program serial execution correct -
known as the serial elision. Taskgrind has no such assumption.

Helgrind+ (2007-2009) is a Valgrind tool for data race
detection. It supports pthread synchronizations primitives, in-
cluding mutexes and condition variables, which are currently
not supported by Taskgrind but could be added in the future.



ThreadSanitizer [21] (2009) was originally designed as a
Valgrind tool and support pthread-based synchronizations. Its
core moved to the LLVM compiler [22] to reduce execution
overheads by instrumenting during the compilation and exe-
cuting natively.

R. Raghavan et al. [23] (2010) generalized Nondeterminator
approach for async/await programming models, and provided a
tool for X10 programs, still under the serial elision assumption.

Archer [3] was introduced in 2016 as a ThreadSanitizer
extension to support OpenMP semantics. However, it is a
thread-centric analyzer that may be a source of false negatives
running under task-related synchronizations which is a source
of motivations for TaskSanitizer [4], ROMP [7] and Taskgrind.

OmpSs-2 has a toolchain to verify the parallelization of
programs [24]. It checks five errors (E1, E2, E3, E4, E5)
"using local task analysis to deal with each task separately" -
as opposed to Taskgrind which looks at the program entirely
through its segment graph. If OmpSs-2 were to be supported
by Taskgrind, errors E3, E4 and E5 would fallback to a generic
determinacy-error. On the other hand, OmpSs-2 toolchain
seems to provide more insights about the error, such as syn-
chronizations mechanism suggestions. Extending Taskgrind
to report programming model-specific suggestion is left as
future work, and could assist programmers in parallelizing
their applications.

VII. CONCLUSION AND FUTURE WORK

This paper introduced Taskgrind5: a Valgrind tool for par-
allel program memory access analysis. It analyses segment
graphs that model parallel programs. We implemented a de-
terminacy race analysis, as it sometimes hints at correctness
errors of asynchronous task-based programs while also ad-
dressing some pitfalls bound to heavyweight dynamic binary
instrumentation (DBI). As opposed to source code compile-
time instrumentation (such as LLVM Sanitizers), heavyweight
DBI ensures the instrumentation of every program instruction
(even closed-source) - aiming at no false-negative report due
to non-instrumented segments. However, it required a lot of
engineering to filter out the many false positives that arose and
provide meaningful report to programmers. In this paper, we
have illustrated a few, such as the inherent non-determinacy
of parallel runtime systems, memory allocator recycling, and
thread/segment-local accesses.

In the future, we would like to implement support for
Cilk, Qthreads, and explore the support of GPU programming
models. In addition, a few drawbacks of the current design
could be improved:

• On memory recycling, (1) removing free operations is
not a satisfactory solution, and (2) we need to support
libraries built-in memory allocators.

• The determinacy race post-processing analysis is an em-
barrassingly parallel algorithm, but it is currently run
sequentially within the Valgrind framework after the
instrumented program execution.

5https://gitlab.inria.fr/ropereir/valgrind

Finally, we would like to add more analysis and improve error
reporting, having Taskgrind move toward a more general "trial
and error" parallel programming assistant.
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APPENDIX

List of software versions used in this paper.
• GNU/Linux 6.5.0-44-generic x86_64
• LLVM/Archer releases 8.x, 14.x, 17.x and 19.x
• TaskSanitizer (commit a3d3b44)
• ROMP (commit 4ea4ad5b)
• Taskgrind SC-24 (https://gitlab.inria.fr/ropereir/valgrind)
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