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Abstract: Large-scale crop phenology monitoring is essential for agro-ecosystem policy. Remote sens-
ing helps track crop development but requires high-temporal and spatial resolutions. While datasets
with both attributes are now available, their large-scale applications require significant resources.
Medium-resolution data offer daily observations but lack detail for smaller plots.
This study generated crop-specific phenomaps for mainland France (2016–2020) using PROBA-V
data. A spatial disaggregation method reconstructed NDVI time series for individual crops within
mixed pixels. Then, phenometrics were extracted from disaggregated PROBA-V and Sentinel-2
separately and compared to observed phenological stages. Results showed that PROBA-V-based
phenomaps closely matched observations at regional level, with moderate accuracy at municipal
level. PROBA-V demonstrated a higher detection rate than Sentinel-2, especially in cloudy periods,
and successfully generated phenomaps before Sentinel-2B’s launch. The study highlights PROBA-V’s
potential for operational crop monitoring, i.e., wheat heading and oilseed rape flowering, with
performance comparable to Sentinel-2. PROBA-V outputs complement Sentinel-2: phenometrics
cannot be generated at plot level but are efficiently produced at regional or national scales to study
phenological gradients more easily than with Sentinel-2 and with similar accuracy. This approach
could be extended to MODIS or SPOT-VGT, to generate historical phenological data, providing that a
crop map is available.

Keywords: crops phenometrics; mixels; spatial disaggregation; winter wheat heading; oilseed rape
flowering; phenomaps

1. Introduction

Phenology is the study of the timing of recurrent seasonal events in the life of plants
and animals, including its observation and description, the analysis of biotic and abiotic
causes, and its role in the interplay between species [1]. In botanics, it concerns the timing
of key events such as flowering, leaf bud-break or senescence, the role of explanatory
factors such as air temperature [2], soil moisture, photo-period, etc. Phenology metrics are
essential parameters for assessing variations in the functioning of ecosystems in the context
of climate change [3–10]. In particular, the advance of spring events are considered among
the clearest effects of climate change [11,12]. These changes themselves have consequences
on carbon [9,13,14] and water exchanges balance [15], biodiversity [16,17], and most eco-
logical aspects as detailed by [18]. For agriculture, phenological information plays a role in
(i) scheduling agricultural activities such as irrigation, fertilization, agrochemical applica-
tion and harvesting, (ii) choosing suitable species and varieties based on local pedoclimatic

Remote Sens. 2024, 16, 4521. https://doi.org/10.3390/rs16234521 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16234521
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6743-4503
https://orcid.org/0000-0002-0462-6305
https://orcid.org/0000-0001-5024-5928
https://orcid.org/0000-0002-4703-3702
https://orcid.org/0000-0003-1304-6414
https://doi.org/10.3390/rs16234521
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16234521?type=check_update&version=1


Remote Sens. 2024, 16, 4521 2 of 28

conditions, and (iii) planning crop rotations [19]. It also contributes to the prediction of
yield by indicating the stages to be evaluated as well as the optimal moment to measure
the parameters (e.g., biomass, number of pods, weight of 100 seeds, etc.) [20], and therefore
supports food security [21,22]. For crops, the main stages are emergence, leaf development,
tillering, bolting, inflorescence/heading, flowering, fruit development, maturation, and
senescence [23].

Hence, it is essential to acquire phenology observations for both natural and agricultural
vegetation. These are obtained through networks of naturalist field observations [24–28],
by analyzing daily radiometric measurements from field sensors [29–33] or by remote
sensing [5,34–39]. In remote sensing, the concept of observing and interpreting phenological
information is different from observing specific phenological stages in the field. Land
Surface Phenology (LSP) refers to seasonal variations in surface reflectance that correspond
to the overall development of vegetation, without being linked to any specific phenological
phase [40,41]. These seasonal variations are therefore the result of the accumulation of
specific phenological events that are not explicitly detectable by the sensors. Phenometrics
usually detected by satellites are the start (SOS), peak (POS), end (EOS), and duration of
the growing season, which can be partially linked to biological events [32].

Over the past four decades, daily observations from medium-spatial resolution (MSR)
sensors like AVHRR [42], SPOT-VGT [43], MODIS [44], or PROBA-V [45], have significantly
contributed in assessing changes in natural vegetation [46]. These observations have allowed
to quantify the evolution of the ecosystem’s seasonality [7,35,47,48], and provided valuable
insights into the consequences of these changes on biogeochemical processes [9,49,50]. In the
literature, most remote sensing-based phenological studies have focused on monitoring
entire vegetated surfaces [51–53] or large thematically homogeneous areas [54–56]. This
focus is mainly driven by the limitations imposed by the spatial resolution of available data
and the undesirable effects of mixed pixels (mixels) [57].

The remote sensing-based monitoring of crop phenology, however, presents additional
specific challenges. These arise from the limitations in current sensor capabilities, including
the needs for high-frequency observations during critical phenological transitions and for
adequate spatial resolution to differentiate individual agricultural plots. Hence, satellite-
based monitoring of phenology is more complex for crops than for forests or natural
grasslands, due to the fragmented nature of agricultural landscapes resulting in mixels, and
the diversity of agricultural practices leading to complex and multi-modal signals. Despite
this, MSR images (250 m–4 km) allowed to characterize certain agricultural systems by
their phenology [58,59].

Today, the recent availability of high-spatio-temporal resolution data (HSR), provided
by Sentinel-2 (10 m and 5 days of revisit) and Sentinel-1 (10 m and 6 days of revisit),
or harmonized Landsat-8/Sentinel-2 [60], allows the monitoring of phenology at a finer
scale [61–64]. High-spatio-temporal resolution time series were used to obtain LSP in-
dicators for various crops in many regions of the world. For example, in Russia, LSP
indicators agreed with the timing of tillering, rising, or maturity of crops [65]. In the eastern
United States, these data were able to extract crop emergence date as well as cover crop
termination date [66,67]. High-spatio-temporal resolution phenology monitoring has al-
lowed to improve crop types mapping at a 30 m resolution by a synergistic use of Sentinel-2
and Landsat 7 and 8 [68], to map rice-cultivated surfaces at 10 m [69], or soya-cultivated
surfaces with MODIS for large homogeneous fields or Sentinel-2 for smaller parcels [70].
Similarly, it was shown that considering phenology is necessary when estimating yield
from remote sensing time series for sunflower [71], manioc [72], or rice [73]. LSP indicators
also allow mapping crop successions [74] that may impact water quality [75]. Additionally,
commercial PlanetScope (3 m and 1 day revisit) constellation data have already demon-
strated their high potential in phenology studies [76], mainly in areas with short-cycle
vegetation and heterogeneous land cover [77]. Similarly, Venµs (5 m and 2–3 days revisit)
data have also been able to accurately detect crop-specific phenological metrics and have
exhibited near-real-time detection capabilities [66,67]. These studies showed increased
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performances compared to Sentinel-2 data, largely due to the higher temporal revisit
(<3 days). This very high spatio-temporal resolution phenological information has helped
to understand how vegetation responds to local weather conditions, whether at the indi-
vidual level with PlanetScope (3 m) data or at the landscape level with Sentinel-2 (10 m)
and MODIS (250 m) data [77]. Refs. [66,67] have demonstrated that phenological informa-
tion can be extracted in near-real-time from Venµs data (5 m) and likely from Sentinel-2
(10 m) and harmonized Landsat/Sentinel-2 (30 m) data, which could support agricultural
scheduling or public policy monitoring.

Phenological indicators can thus be extracted at high- and even very high spatio-
temporal resolution from optical remote sensing time series. Radar data have been used
for phenology monitoring because of their insensitivity to atmospheric conditions and
their current cost-free availability. The synergistic use of optical Sentinel-2 data and radar
Sentinel-1 data has further increased the possibility of mapping phenological events [78–80].
Altogether, the above-mentioned optical high-spatio-temporal data and Sentinel-1 data
offer an unprecedented opportunity in the study of current and future phenology, both for
natural and agricultural vegetation.

However, these datasets have only become usable for phenological purposes in the
last decade due to improved revisit capabilities. For instance, Sentinel-2 data have been
exploitable for phenological monitoring only since the launch of Sentinel-2B in March 2017,
while Sentinel-1 data’s usefulness improved only after the launch of Sentinel-1B in April
2016. Harmonized Landsat/Sentinel-2 data, which show promise, have been available since
2015. Venµs, designed for scientific purposes, offers data from August 2017 for specific
sites only, while PlanetScope, among sensors with extensive global observation capabilities,
provides data from June 2016, and so forth. With those data, a long-term phenomaps archive
cannot be built to assess the climate change’s impact on agro-ecosystems. Moreover, their
use for large-scale applications requires significant computational resources, which could be
an operational limitation, especially when it relies on very high-spatio-temporal resolution
data such as PlanetScope data, which indeed could pose financial challenges for large-scale
applications in support of public policy initiatives, this sensor being commercial. Thus,
such data cannot easily support large-scale phenological mapping that would facilitate
the implementation of new adaptation strategies at the agro-ecosystem level. Finally,
recent studies using high-spatio-temporal resolution data (3–10 m and 1–5 days revisit,
i.e., PlanetScope, Venµs, and Sentinel-2) also highlighted that despite acquiring a dense
dataset, the number of cloud-free observations might not be enough to ensure accurate
detection of phenological stages, as a function of location and temporal period in the
growing season [66,67,76,77].

In this context, MSR data have great potential for monitoring crop-specific stages
because of their large-scale operational applicability and their long period availability
(about 40 years). MSR also offers a daily temporal resolution that increases the proba-
bility of cloud-free observations and is suitable for studying plant dynamics during the
main development periods. However, in fragmented agricultural landscapes, the problem
of mixels must be correctly addressed. In this study, we explore the potential of MSR
optical data to provide crop phenometric maps to study the phenological gradients at a
national scale. We evaluate this potential comparatively to the performances obtained with
Sentinel-2 data. For this purpose, the MSR data need to be disaggregated to each specific
crops. The approach consists in isolating the contribution of each crop type in the mixed
signal to extract its average phenometrics within a group of mixels, allowing to study the
phenology across scales from the municipality to the country, and allowing the comparison
of the phenology of the various crops. The disaggregation does not aim to provide the
phenometrics for each stand individually, but the average phenology of a crop within
an area corresponding to several pixels. As a feasibility test, we generated country-scale
crop-specific phenomaps over mainland France (except Corsica) during 2016–2020, from
medium-spatial resolution PROBA-V (300 m) data. Additionally, this feasibility test aims
to determine whether this PROBA-V’s ability remains prior to the launch of Sentinel-2B, as
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this would extend in the past the possibility to derive crop phenology. Nevertheless, the
description of phenology at plot level is outside the scope of this study due to the nature
of PROBA-V’s disaggregated data, which synthesizes information from all plots within a
neighborhood. Despite synthesizing spatial variations within neighborhoods, disaggre-
gated data could effectively describe large-scale spatial patterns within municipalities or
regions, and allow analyzing spatial gradients in phenology within the country limits.

This work is based on the spatial disaggregation method previously developed [81],
which provides NDVI time series for individual crops within mixels, provided that the
surface fraction of each crop is known. This approach is in continuity with other disag-
gregation techniques in the literature [82–87]. Following this pre-processing, we applied
usual LSP extraction techniques to resulting crop-specific time series. These techniques
involved gap-filling methods [38,88,89], followed by the extraction of the date when the
adjusted curve reaches a threshold or maximizes a curvature [90]. These LSP extraction
techniques were also applied identically to Sentinel-2 data. Subsequently, phenometrics
were compared to observed phenological stage dates provided by: 1/the Céré’Obs dataset,
which gives a regional synthesis of the phenological progression, arising from the analysis
by agricultural advisers in chambres d’agriculture, and 2/TEMPO observations, coming
from visual inspection on the ground of the timing of phenological stages following the
Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie (BBCH) protocol [23].
Given their significant socio-economic importance and the high performance of the spatial
disaggregation algorithm for these major crops compared to other minority ones like maize
or spring barley [81], our study was focused on three crops in France: winter wheat, winter
barley, and oilseed rape. These crops represent about 50% of the agricultural area exclud-
ing grasslands. Here, we added the winter barley plots to the winter wheat ones due to
their similar growth patterns and indistinguishable radiometric responses observed in this
work. To enhance clarity, this paper organizes the presented results into only two thematic
categories: winter wheat and oilseed rape.

The advantages and limitations of phenometrics extracted from the disaggregated
PROBA-V data, and MSR data in general, are discussed in comparison with the results
obtained from Sentinel-2 data. The results also involve an analysis of the succession of a phe-
nological event among two crops across the study years and the common cultivation area.

2. Materials and Methods

We estimated crop-specific phenometrics from both disaggregated PROBA-V (300 m)
and Sentinel-2 (10 m) NDVI time series for the period 2016–2020 (Figure 1). From the disag-
gregated PROBA-V data, phenometrics were derived at the national level through a pixel-
by-pixel strategy, while a parcel-by-parcel strategy was employed for the high-resolution
data at seven Sentinel-2 tiles (100 km × 100 km) level, here called inter-comparison sites.
Then, a comparison was made between the phenometrics derived from each sensor within
these inter-comparison sites. Finally, the performance of each sensor was assessed by
comparing the estimated phenometrics with ground data from the French phenological
observation networks, TEMPO and Céré’Obs. In the following sections, we will explain the
different methodological steps carried out.
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oceanic, with warm summers throughout mainland France and a Mediterranean climate 
in its south. The main extensive crops are wheat, barley, maize, sunflower, oilseed rape, 
sugar beets, grapes, and potatoes (https://agreste.agriculture.gouv.fr, accessed on 1 Octo-
ber 2024). Crop production typically follows a conventional approach, beginning with 
deep ploughing in November–December, followed by chiseling in March, and subsequent 
seedbed preparation for spring cereals. Winter crops are sown in October–November, and 
spring crops in March–April. Annual rainfall is around 800–1000 mm, with a contrast be-
tween the western (>1000 mm) and the southeastern regions (600–800 mm). The average 
annual temperature is about 11–13 °C, with an average value of 20–25 °C in summer and 
of 5–10 °C in winter (https://meteofrance.com, accessed on 1 October 2024). 

Figure 1. General flowchart of this study. Crop-specific phenological mapping procedure using
(A) PROBA-V (300 m) and (B) Sentinel-2 (10 m) data. PROBA-V-based phenometrics were extracted
at pixel level, while those from Sentinel-2 were extracted at plot level. Both are inter-compared
and compared with TEMPO data at the municipal level. PROBA-V-based phenometrics are then
compared with Céré’Obs data at the regional level. For phenometrics extraction, thresholds were
calibrated in Block A using disaggregated PROBA-V NDVI time series and TEMPO data, and were
then applied identically to both disaggregated PROBA-V and Sentinel-2 NDVI time series.

2.1. Study Area

Our study area covers about 25% (75,000 km2) of the agricultural area declared
in mainland France’s (except Corsica) Land Parcel Identification System (LPIS, [91]) in
2016–2020 (Figure 2). According to the Köppen–Geiger classification [92], the climate is
mainly oceanic, with warm summers throughout mainland France and a Mediterranean
climate in its south. The main extensive crops are wheat, barley, maize, sunflower, oilseed
rape, sugar beets, grapes, and potatoes (https://agreste.agriculture.gouv.fr, accessed
on 1 October 2024). Crop production typically follows a conventional approach, beginning
with deep ploughing in November–December, followed by chiseling in March, and subse-
quent seedbed preparation for spring cereals. Winter crops are sown in October–November,
and spring crops in March–April. Annual rainfall is around 800–1000 mm, with a contrast
between the western (>1000 mm) and the southeastern regions (600–800 mm). The average
annual temperature is about 11–13 ◦C, with an average value of 20–25 ◦C in summer and
of 5–10 ◦C in winter (https://meteofrance.com, accessed on 1 October 2024).

https://agreste.agriculture.gouv.fr
https://meteofrance.com
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rithm developed by [81] to derive the NDVI time series for several crop types. SD was 

Figure 2. Study area location. The validation of the phenomaps was carried out at regional and
municipal scales. (A) The regional comparison between the phenometrics (from PROBA-V) and
the observed (from Céré’Obs) median phenological dates was made across administrative regions,
highlighted in both yellow and orange (n = 14), while the comparison between phenometrics and
observed phenological progression (i.e., the percentage of area reaching a given phenological stage,
as a function of date) focused on regions highlighted in orange only (n = 3). Regional ground data
were not available for the three regions highlighted in gray. (B,C) The comparison at municipal
level between the phenometrics (from PROBA-V and Sentinel-2) and the observed (from TEMPO)
median phenological stage dates was made across points highlighted in blue (winter wheat) and
red (oilseed rape) within inter-comparison sites. Inter-comparison sites were delimited by seven
Sentinel-2 tiles: 30UWU, 31UCQ, 31UDP, 31TCN, 31UGQ, 31TFN, and 31TCJ. Additionally, PROBA-
V-based phenomaps were also compared to TEMPO data available outside these inter-comparison
sites. Finally, the green mask shows the winter wheat and oilseed rape areas declared in 2019
according to LPIS.

Here, we evaluated our results at the regional and municipal administrative scales.
Regional evaluation was conducted at the national level and municipal evaluation was
conducted only within inter-comparison sites. These sites were chosen to compare the
performances of PROBA-V (300 m) and Sentinel-2 (10 m) since high-resolution data analysis
demands substantial computing power, posing challenges for nationwide comparisons.
Inter-comparison sites are representative of four eco-climatic regions [93] that present
important phenological contrasts and host the largest agricultural production basins in
mainland France.

2.2. Satellite Data

All available scenes from PROBA-V and Sentinel-2 sensors between September 2015
and October 2020 were used. Images were preprocessed by masking non-valid pixels using
their quality flags (clouds, shadows, undefined. . . ) for each acquisition date.

2.2.1. Disaggregated PROBA-V (300 m)

PROBA-V images were acquired at a 300 m spatial resolution with a daily revisit [94].
Annual NDVI time series, which included 420 scenes, were obtained from the Vito Remote
Sensing data center (https://proba-v.vgt.vito.be, accessed on 15 July 2024). Because a 300 m
spatial resolution pixel may include several crop types and even other land uses, we
generated disaggregated NDVI time series using the spatial disaggregation (SD) algorithm

https://proba-v.vgt.vito.be
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developed by [81] to derive the NDVI time series for several crop types. SD was based
on the knowledge of crop fractions within a mixel. This linear mixing approach assumes
that the signal value of a mixel is the weighted average of the contributions from each crop
fraction within that mixel. It also assumes that the signal is stationary within a crop class,
as described by [95]. Hence, the mathematical expression of the mixing model is as follows:

NDVI j(t) =
n

∑
i=1

f ci,j × NDVIi(t) + ε j(t) (1)

where NDVI j(t) is the NDVI value of the mixel j at time t, f ci, j is the fraction of crop i in
mixel j, NDVIi(t) is the NDVI value of crop i at time t, n is the number of crops within
mixel j, and ε j(t) is the error in mixel j at time t.

To derive the crop-specific NDVI value within the mixel, we proceeded to an inversion
of an m equations system, where m is an integer totaling the mixel and its eight neighbors.
The theoretical value of m is 9, but may be reduced to exclude unsuitable mixels from
the system (corresponding, for example, to mixels containing none of the targeted crops).
It should be mentioned that the spatial disaggregation method considers that a crop
signal is also stationary among all pixels (i.e., same growing stage and condition) in the
neighborhood, as intra-plot or inter-plot phenological differences within a 9-pixel window
are outside the scope of our study. All details are provided in [81].

2.2.2. Sentinel-2 (10 m)

Sentinel-2 images were acquired at a 10 m spatial resolution with a revisit of 5 days
(10 days before 2017). For each tile shown in Figure 2, annual reflectance time series,
which included 97 scenes on average, were obtained at level 2 (Bottom-of-Atmosphere).
Subsequently, NDVI time series were derived from the red (B4) and NIR (B8) bands as
detailed by [96].

Here, data were obtained from two distribution sites. For the 2018–2020 period, data
were obtained from the Copernicus Open Access Hub site (https://scihub.copernicus.
eu, accessed on 10 January 2024) via the Google Earth Engine (GEE) platform (https:
//earthengine.google.com, accessed on 10 January 2024). This distribution site uses the
Sen2Cor processing chain for obtaining level 2 products [97]. Since these products are
unavailable on the GEE platform for the previous years (2016–2017), the remaining data
were obtained from the French data center THEIA (https://www.theia-land.fr, accessed
on 10 January 2024), which uses the MAJA processing chain for pixel quality flags and
atmospheric corrections [98].

A preliminary assessment of the temporal behavior of a few pixels with a stable vege-
tation cover, such as forests and natural grasslands, showed that there were no significant
differences between the average reflectance values of each mentioned period. This suggests
that this Sentinel-2 multi-source data, without considerable impact on the signal mean
values, can be used in phenological crop assessment. The data from the GEE platform were
primarily chosen because we also used GEE’s computational capabilities and we thus did
not have to download images.

2.3. Ancillary Data
2.3.1. Land Use Map

To generate disaggregated NDVI time series using the SD method, we need to de-
termine the fraction of each crop within each PROBA-V (300 m) mixel. Therefore, we
performed a geometric interception between the pixel grid and a land use map, which
was obtained from the French Land Parcel Identification System (LPIS), available on
the Institut national de l’information géographique et forestière (IGN) data distribution site
(https://www.geoportail.gouv.fr, accessed on 10 January 2024). Since 2015, LPIS has
provided annual maps of crop types declared by farmers at plot level [91]. We used all
available plots for winter wheat, winter barley, and oilseed rape (Table 1). Here, we added

https://scihub.copernicus.eu
https://scihub.copernicus.eu
https://earthengine.google.com
https://earthengine.google.com
https://www.theia-land.fr
https://www.geoportail.gouv.fr
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the winter barley plots to the winter wheat ones due to their similar growth patterns
and indistinguishable radiometric responses observed in this work. LPIS shows that the
average plot area (Table 1) is approximately half smaller than the PROBA-V pixel surface
(9 ha). Together, these crops account for approximately 50% of the arable land (excluding
grasslands), while the remaining area is cultivated with over 100 other crop types.

Table 1. Land use map average area (2016–2020).

Total Area (ha) Average Plot Area (ha) % of LPIS Area

Winter wheat 4,804,300 4.78 17.20
Winter barley 1,331,200 4.57 4.76
Oilseed rape 1,350,500 6.10 4.83

2.3.2. Ground Data

We used two phenology databases to evaluate the extracted phenometrics. Firstly,
a comparison at regional scale between PROBA-V-based phenomaps and the Céré’Obs
dataset was performed. The latter was obtained from the National Phenological Obser-
vatory for Cereals website (https://cereobs.franceagrimer.fr/cereobs-sp/#/, accessed on
15 April 2024). This dataset provides an indicator of the regional phenology progression,
i.e., the percentage of area reaching a given phenological stage, as a function of date.
This information is based on the analysis of field observations by agricultural advisers in
chambres d’agriculture, further aggregated at the administrative regional level. Secondly, a
comparison at the municipality level between satellite-based (PROBA-V and Sentinel-2)
phenomaps and the TEMPO dataset was performed. The latter was obtained from the
national phenological observation network website (https://tempo.pheno.fr, accessed
on 15 April 2024). This dataset provides the date at which a given phenological stage
happens at the plot level. However, the precise location of the plot is not provided, but
only the coordinates of the commune to which it belongs. Table 2 presents the crop-specific
phenological stages of interest, as well as the sensor from which they are estimated and
their ground evaluation dataset. The selected phenological stages are described in Table S1,
while Table S2 summarizes the available observations in each ground evaluation dataset. It
should be noted that these phenological stages, as well as their spatial comparison level,
were established according to the availability of ground data. In addition, the geographical
spread of the evaluation was determined according to the sensor and the computational
capacity it needed.

Table 2. Crop-specific phenological stages of interest. For each phenological stage, a phenometric (SOS
or EOS) was estimated from PROBA-V (300 m) and eventually Sentinel-2 (10 m) data, depending on
the spatial comparison level. The regional or municipal phenometrics median dates were compared
to phenological stage median dates derived from Céré’Obs or TEMPO, respectively.

BBCH Code 1 Phenometric 2 Sensor Data Ground
Data

Comparison
Level Geographic Spread

Winter
wheat 31 SOS PROBA-V Céré’Obs region nationwide

51 SOS PROBA-V Céré’Obs region nationwide
99 EOS PROBA-V Céré’Obs region nationwide

29 SOS PROBA-V and
Sentinel-2 TEMPO municipality inter-comparison sites

51 SOS PROBA-V and
Sentinel-2 TEMPO municipality inter-comparison sites

75 EOS PROBA-V and
Sentinel-2 TEMPO municipality inter-comparison sites

https://cereobs.franceagrimer.fr/cereobs-sp/#/
https://tempo.pheno.fr
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Table 2. Cont.

BBCH Code 1 Phenometric 2 Sensor Data Ground
Data

Comparison
Level Geographic Spread

Oilseed
rape 31 SOS PROBA-V and

Sentinel-2 TEMPO municipality inter-comparison sites

65 NDVIlocal_min
3 PROBA-V and

Sentinel-2 TEMPO municipality inter-comparison sites

73 EOS PROBA-V and
Sentinel-2 TEMPO municipality inter-comparison sites

1 BBCH classification establishing the main and secondary phenological stages, as detailed by [23]. 2 The threshold
value of each indicator varies according to the phenological stage of interest. These values are indicated in Table 3.
3 Local minimum of the NDVI time profile, used as a phenological indicator.

Table 3. Crop-specific phenometrics extraction. For each phenometric, the occurrence date was
estimated from fitted NDVI time series. These dates were extracted using either the threshold or the
derivative method, depending on the associated phenological stage. The threshold value is calibrated
on an annual basis.

Phenometric 1 Associated
Phenological Stage BBCH Code Method

Winter wheat SOS42–53 End of tillering 29 threshold-based
SOS54–60 Stem elongation 31 threshold-based
SOS95–98 Heading 51 threshold-based
EOS60–89 Development of fruit 75 threshold-based
EOS10–15 Senescence 99 threshold-based

Oilseed rape SOS30–45 Stem elongation 31 threshold-based
NDVIlocal_min

2 Flowering 65 derivative-based
EOS97–99 Development of fruit 73 threshold-based

1 The threshold value, given as a % of the amplitude, changes annually and falls within the presented range of
possible values. 2 Local minimum of the NDVI time profile, used as a phenological indicator.

2.4. Crop-Specific Phenology from Time Series
2.4.1. Vegetation Index and Phenological Stages

In France, the end of tillering (i.e., the increase in the horizontal footprint of the
plants) in winter wheat (BBCH29) happens when post-winter vegetative activity restarts
(February–March), leading to a gradual increase in NDVI (Figure 3). Development advances
from stem elongation (BBCH31) in March to heading (BBCH51) in May, achieving seasonal
NDVI peak value. The development of fruit (BBCH75) occurs in June, characterized by
a yellowing of plants due to a reduced chlorophyll content, which leads to a decrease in
NDVI. In July, at the end of the cycle, senescence (BBCH 90–99) occurs, with plants drying
up completely and NDVI reaching its minimum value for the growing season.

For oilseed rape, stem elongation (BBCH31) occurs in February–March, when the
NDVI starts to rise after a period of stagnation during the winter (Figure 3). Flowering in
April to May results in a yellow canopy as flowers hide the chlorophyllous parts. This leads
to a gradual decrease in NDVI due to an increase in red-band (0.65–0.75 µm) reflectance.
Then, from full flowering (BBCH65), NDVI rises as petals fall and the green parts of the
plant become visible again. This convex behavior of NDVI during flowering is in contrast
to the yellowness indices, such as the Normalized Difference Yellow Index used by [78],
which are typically used to monitor flower dynamics. Fruit development (BBCH73) takes
place after flowering (May). Here, the plant’s green pods raise NDVI up to maturation
stage, which is the inflection point where the slope of the curve becomes negative. Finally,
senescence (BBCH90–99) appears at the end of the cycle, in July, when the plants become
dry and NDVI returns to around the minimum value for the growing season.
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average derived from disaggregated PROBA-V (300 m) data in 2019, which were fitted using the 
Figure 3. NDVI time profile for (A) winter wheat and (B) oilseed rape. Values represent the national
average derived from disaggregated PROBA-V (300 m) data in 2019, which were fitted using the
Whittaker smoother model. Vertical lines indicate observed median dates across France in 2019, of
all phenological stages of interest. Vertical line labels represent winter wheat tillering (BBCH29),
stem elongation (BBCH31), heading (BBCH51), development of fruits (BBCH75), and senescence
(BBCH99); and oilseed rape stem elongation (BBCH31), flowering (BBCH65), and development of
fruits (BBCH73). These dates were obtained from the TEMPO dataset, except for those of winter wheat
stem elongation (BBCH31) and senescence (BBCH99), which were obtained from the Céré’Obs dataset.
Panel (A) details the amplitude definition for each side of the curve and the calibrated threshold
value for each phenometric associated with each phenological stage of interest. Curve sides are
relative to the maximum of the growing season. In panel (B), calibrated threshold values are shown
for phenometrics associated with stem elongation (BBCH31) and development of fruits (BBCH73),
which were obtained using the same amplitude definition process detailed in panel (A). For flowering
(BBCH65), the associated phenometric (NDVIlocal_min) is shown within the corresponding temporal
window (gray band). A local minimum occurs when the first derivative (dashed line) is zero at time t,
negative at t − 1, and positive at t + 1.

2.4.2. Phenometrics Extraction

Phenometrics were extracted at different spatial scales, according to the sensor. This
was carried out pixel by pixel for PROBA-V (300 m) and plot by plot for Sentinel-2 (10 m).
The accuracy of the phenometrics varies with different interpolation and extraction meth-
ods, depending on their sensitivities to artifacts and patterns in the curve. Finding a
universally applicable best method is particularly challenging [41,90]. In this context, time
series were reconstructed by adjusting curves following two algorithms: HANTS (Har-
monic Analysis of Time Series, [99]), using a python implementation developed by [100], for
general phenometrics (SOS and EOS) detection, and the Whittaker smoother [89] for the spe-
cific oilseed rape NDVIlocal_min detection, because of its higher sensitivity to small changes
in the curve. To calibrate the HANTS parameters, we used a parameter optimization
technique commonly used in machine learning, known as GridSearch (https://scikit-learn.
org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html, accessed
on 25 November 2024). In this approach, we randomly selected a sample of pixels
(100 per class per year) and systematically evaluated all possible combinations of pre-
defined parameter values. The combination that yielded the best-performing model was
then applied to all pixels. The optimized parameters were as follows (start:end:step:selected
value): Number of frequencies (2:5:1:3); Fitting error tolerance (0.01:0.15:0.01:0.05); Degree
of over-determinedness (0:20:1:1); Delta (0:1:0.1:0.1). Regarding non-optimizable parame-
ters, settings were as follows: Length of base period = length of time series; HiLo = “low”;
Valid range = 0, 1.

Subsequently, phenometrics were extracted using two methods: the threshold-based
method applied on the HANTS-adjusted series for general phenometrics extraction, and

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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the derivative-based one applied on the Whittaker-adjusted curve for the specific oilseed
rape NDVIlocal_min extraction.

For the threshold-based method, we established a value in percentage of the am-
plitude, and extracted the first date on which NDVI is larger (smaller) than that value
(e.g., Equation (2)) on the ascending (descending) phase, for SOS (EOS), respectively. Am-
plitude was calculated for each side of the curve using the maximum NDVI during the
growing season to differentiate between the sides (left or right), as shown in [101]. For
instance, the left-side amplitude was calculated from the maximum NDVI during the
growing season and the minimum NDVI observed on this side (i.e., the lowest NDVI before
the occurrence date of the maximum NDVI). The left-side amplitude was used for SOS and
the right-side one for EOS.

For the derivative-based method, we identified critical points in the curve, and ex-
tracted the date on which NDVI exhibited a local minimum (NDVIlocal_min) or maximum
(NDVIlocal_max). For instance, a local minimum was identified when a critical point had a
slope of zero and when previous and subsequent observations had a higher NDVI. Subse-
quently, the local minimum with the lowest NDVI value was selected from all the identified
points. This was performed within a seasonal pre-established temporal window, in which
the associated phenological event (i.e., oilseed rape flowering) is expected to occur (winter,
spring. . . ).

After comparing the crop-specific time series and ground data, we observed that each
of the phenological stages of interest could be associated with a given phenometric (SOS
or EOS using a given threshold value). This led to the application of the threshold-based
method as a general approach. The threshold value for each phenometric was determined
by comparing the national-level average time profile with ground data of the associated
phenological stage, which were calculated from the PROBA-V (300 m) and the TEMPO
dataset, respectively (Table 3). However, due to the pronounced convex behavior of NDVI
during oilseed rape flowering, the derivative-based method was employed to determine
the date corresponding to the local minimum (NDVIlocal_min). These methods, as well as
those commonly found in the literature, are detailed in [90].

We calculated a phenometric’s date of occurrence as follows:

SOSk = t ∈ [0, tmax] |
(

NDVI(t) = NDVImin +
k

100
× A

)
(2)

SOSk: Start of Season, used as an example here.
tmax: Date of occurrence of the maximum NDVI during the growing season (NDVImax).
NDVImin: The minimum NDVI recorded between the 1st January and tmax.
NDVI(t): NDVI value at date t.
A: Amplitude extracted from the left side of the curve. A is calculated as NDVImax − NDVImin.
k: Threshold value adjusted for each phenological event as explained above.

2.5. Assessment of Phenometrics

Here, the dates of occurrence of phenometrics and their associated phenological stages
are referred to as estimated and observed dates, respectively.

2.5.1. Regional Comparison Between PROBA-V (300 m) and the Céré’Obs Dataset

We evaluated our results at the regional scale across mainland France. For each
phenometric, according to ground data availability, we compared estimated (phenometric)
and observed (associated phenological stage) median dates. Here, regional ground data
were available for phenological stages of winter wheat (BBCH31, BBCH51, and BBCH99)
as shown in Table 2. These crop-specific phenological median dates were extracted from
both PROBA-V-based phenomaps and from the Céré’Obs dataset. Subsequently, statistical
indicators, such as the Pearson correlation (r), coefficient of determination (r2), root mean
square difference (rmsd), and bias, were calculated using the Equations (3)–(6).
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Then, regional estimated and observed phenological progressions were also compared.
We evaluated winter wheat SOS54–60 and SOS95–98 across three regions (Nouvelle-Aquitaine,
Centre-Val de Loire, and Hauts-de-France), illustrating phenological contrasts in the south-
west, center and north of mainland France. Here, we fitted a logistic function to the
cumulative date distribution of these two datasets before comparing them using distance
statistics (i.e., rmsd and bias).

r = ∑n
i=1 (xi − x)(yi − y)√

∑n
i=1(xi − x)2

√
∑n

i=1(yi − y)2
(3)

r2 = 1 − ∑n
i=1(xi − yi)

2

∑n
i=1(yi − y)2 (4)

rmsd =

√
1
n∑n

i=1(xi − yi)
2 (5)

bias =
1
n∑n

i=1(xi − yi) (6)

where n is the number of RoI (region or municipality), xi and yi are estimated and observed
median dates at RoI i, and x and y area mean of x and y. These dates are in terms of Day of
Year (DoY).

2.5.2. Municipality Comparison Between Sensors (PROBA-V and Sentinel-2) and the
TEMPO Dataset

We also assessed the sensor’s performance at the municipality scale across inter-
comparison sites (Figure 2). For each phenometric, estimated and observed median dates
were compared. Here, municipality ground data were available for phenological stages
of winter wheat (BBCH29, BBCH51, and BBCH75) and oilseed rape (BBCH31, BBCH65,
and BBCH73) as shown in Table 2. These crop-specific phenology median dates were
extracted from both sensor-based (PROBA-V and Sentinel-2) phenomaps and from the
TEMPO dataset. Subsequently, for each sensor, we calculated the comparative statistical
indicators mentioned above. Finally, we also compared estimated dates from both sensors
with each other, as well as the detection rate of each one. The detection rate refers to
the proportion of the number of municipalities with crop-specific phenology estimates
to the total number of municipalities. When a municipality lacks phenology estimates, it
indicates that no pixel within that area has accumulated a satisfactory number of cloud-free
observations to extract crop-specific phenometrics.

3. Results

PROBA-V-based crop-specific annual phenomaps were generated at the national
level. In general, we observed a spatial gradient from south-west to north for all phe-
nometrics (e.g., Figures 4 and S1), following the latitudinal climatic characteristics in
mainland France [93]. Here, we evaluated these phenomaps at the regional scale across the
country (Section 2.5.1), before conducting the evaluation at the municipality scale across
inter-comparison sites (Section 2.5.2). In these inter-comparison sites, we also generated
Sentinel-2-based phenomaps in order to compare the performance of both sensors. An
annual comparison was carried out from 2016 to 2020 separately, in order to check whether
or not the inter-annual variations were captured by the remote sensing methods.
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Figure 4. PROBA-V-based phenomaps of winter wheat. Each column represents a phenometric
associated with a phenological stage available in the Céré’Obs database, i.e., SOS54–60 with stem
elongation (BBCH31), SOS95–98 with heading (BBCH51) and EOS10–15 with senescence (BBCH99),
respectively. Each row represents a year in our study period. The color palette represents the day of
the year (DoY) on which the phenometric was detected.

3.1. PROBA-V-Based Phenomaps Versus Céré’Obs

On the regional scale, PROBA-V-based phenomaps (SOS54–60, SOS95–98, and EOS10–15)
were compared with ground data for the phenological stages available in the Céré’Obs
dataset (Table 2): winter wheat stem elongation (BBCH31), heading (BBCH51), and senes-
cence (BBCH99), respectively.
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3.1.1. Regional Comparison of Phenological Median Dates

We estimated winter wheat SOS54–60 between late January and mid-April across our
study period. Phenomaps revealed an earlier phenology in meridional regions and in
two occidental ones (Bretagne and Pays-de-la-Loire), as shown in Figure 4. On average over
2016–2020, this phenometric was estimated to occur on the 82th DoY ± 4.3 days. Estimated
(SOS54–60) and observed (stem elongation, BBCH31) dates diverged from 4.4 to 13.5 days,
depending on the year (Table S3). The highest difference was observed in 2016. However,
in this year, the PROBA-V-based phenomap consistently captured the spatial gradient of
the observed phenology (r2 > 0.60). Overall, stem elongation was estimated 1.5 days later
while 60% of its observed phenology was explained. SOS95–98 was estimated between
mid-April and early June, with an average date at DoY 133 ± 4.8 days. Here, the highest
difference with ground data (heading, BBCH51) was observed in 2018 (rmsd = 7.7 days),
while average bias was −2 days. This phenometric obtained a better correspondence with
the associated phenological stage compared to SOS54–60 and EOS10–15 (r2 higher by 13%
and 35%, respectively). EOS10–15 was estimated between mid-June and late July, with the
average date at DoY 201 ± 4.6 days. Although phenomaps showed a difference <6 days on
average with the Céré’Obs dataset (senescence, BBCH99), they only captured 37% of the
observed senescence variability (9% in 2018). This phenometric exhibited the lowest bias
(1.3 days on average) compared to the other ones.

Overall, PROBA-V-based phenomaps were consistent with the regional ground data pro-
vided by Céré’Obs (Figure 5), with a global (all stages and years) rmsd = 6.4 days ± 2.2 days
(Table S3). For all phenometrics, estimated dates consistently captured inter-annual varia-
tions of the associated observed dates. However, there was less agreement in their spatial
representation, since PROBA-V-based phenomaps exhibited higher inter-regional dynamics
than the Céré’Obs dataset. This suggests that phenomaps could complement these region-
ally aggregated ground data by providing the missing intra-regional spatial dynamics.
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Figure 5. Regional comparison of phenometrics (from PROBA-V) and phenological stages (from
Céré’Obs) for winter wheat. (A) SOS54–60 vs. stem elongation, (B) SOS95–98 vs. Heading, and
(C) EOS10–15 vs. senescence. Each point represents a region median date and its color the year of
interest. Median dates are expressed in the day of the year (DoY).

3.1.2. Regional Comparison of Phenological Progression

We also evaluated intra-regional estimated (phenometric) and observed (associated
phenological stage) phenological progression in terms of % of area (e.g., Figure 6). Here,
winter wheat SOS54–60 and SOS95–98 were assessed across three regions representative
of mainland France’s phenological contrast (Hauts-de-France, Centre-Val de Loire, and
Nouvelle-Aquitaine) for all years.

On the one hand, SOS54–60 progression showed an average rmsd = 22.9%
of area ± 12.8% (all regions) compared to the observed (stem elongation, BBCH31) pro-
gression (Table S4), with the highest discrepancies in the south-west (Nouvelle-Aquitaine,
rmsd = 26.4% of area). On the other hand, SOS95–98 progression obtained better correspon-
dence with observed (heading, BBCH51) progression showing an average
rmsd = 14.6% of area ± 8.5% (all regions). In contrast to SOS54–60, the largest discrep-
ancies for SOS95–98 were observed in the north (Hauts-de-France, rmsd = 16.3% of area).
In general, phenology progression was better estimated (all stages and years) in the center
of the country (Centre-Val de Loire, rmsd = 17.4% of area) and with less precision for
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the year 2016 (all stages and regions). Finally, phenomaps sub-estimated the observed
phenology progression for most comparisons (bias = −5.3% of area on average).
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Figure 6. Intra-regional comparison of phenometrics and associated phenological stages in terms of
phenological progression in 2019. Phenometrics progression (in % of area) was obtained from the
PROBA-V-based phenomaps (dashed lines), while phenological stage progression was obtained from
Céré’Obs (solid lines). Each column represents a specific winter wheat phenometric and its associated
phenological stage: (A–C) SOS54–60 vs. stem elongation and (D–F) SOS95–98 vs. heading, while each
row represents a region of interest. The curves represent the values fitted with a logistic function.

3.2. Sensor-Based Phenomaps Versus TEMPO

The sensor-based (PROBA-V and Sentinel-2) phenomaps were separately compared
with ground data for the phenological stages available in the TEMPO dataset (Table 2):
for winter wheat, SOS42–53 vs. tillering (BBCH29), SOS95–98 vs. heading (BBCH51), and
EOS60–89 vs. development of fruit (BBCH75); for oilseed rape, SOS30–45 vs. stem elonga-
tion (BBCH31), NDVIlocal_min vs. flowering (BBCH65), and EOS97–99 vs. development of
fruit (BBCH73). Here, as TEMPO does not provide the location of the observed plots, we
evaluated the median aggregated dates at the municipality scale across inter-comparison
sites (Section 2.5.2). Overall, both PROBA-V- and Sentinel-2-based phenomaps demon-
strated similar performances whatever phenometric, but only after the launch of Sentinel-2B
in 2017. These sensor-based phenomaps were in moderate agreement with observed ground
data, mainly due to their greater spatial variability compared with ground observations.
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3.2.1. Winter Wheat Phenometrics

Globally, for winter wheat, PROBA-V- and Sentinel-2-based phenomaps were mod-
erately consistent with the ground data provided by TEMPO (Figure 7), with global (all
stages and years) rmsd values of 8.8 ± 5.8 and 9.6 ± 7.9 days, respectively (Table S5). As
observed in regional comparisons, and this whatever phenometric, the estimated dates
reliably reflected the inter-annual variations of the observed dates. However, on aver-
age, the PROBA-V- and Sentinel-2-based phenomaps explained only 35% and 32% of
the observed intra-annual phenology (all stages and years), respectively. Indeed, the an-
nually sensor-based phenomaps reflected higher inter-municipality variability than the
TEMPO dataset. Additionally, when we compared estimates and observations within inter-
comparison sites, PROBA-V was able to estimate phenology in more municipalities than
Sentinel-2. Phenometrics based on central or high threshold values (SOS95–98 and EOS60–89)
showed better correspondences with the associated phenological stages across our study
period (2016–2020) with an average rmsd = 5.8 ± 0.9 and 6.0 ± 2.2 days, by PROBA-V
and Sentinel-2, respectively. These sensors demonstrated a shared lower performance in
estimating SOS42–53, with an average rmsd = 11.8 ± 2.8 days over 2017–2020 and > 25 days
in 2016 (Table S5).
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Figure 7. Municipal comparison of phenometrics and associated phenological stages in terms
of median dates. Phenometrics dates were obtained from both PROBA-V- and Sentinel-2-based
phenomaps, while phenological stages were obtained from the TEMPO dataset. Each col-
umn represents a specific winter wheat phenometric compared to associated phenological stage:
(A–D) SOS42–53 vs. tillering, (E–H) SOS95–98 vs. Heading, and (I–L) EOS60–89 vs. development of
fruits. First row shows the locations where ground observations of each stage were made. Second row
shows scatter-plots from all these observed municipalities, while third and fourth rows show scatter-
plots from only the observed municipalities within the inter-comparison sites (dashed boxes), where
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we were able to extract phenometrics from Sentinel-2: third row represents estimated dates from
PROBA-V, while fourth row represents those from Sentinel-2. In these last two rows, assessed
municipalities were identical for both sensors. Scatter-plots and maps share the same color code
representing the year of interest. Median dates are expressed in the day of the year (DoY).

3.2.2. Oilseed Rape Phenometrics

For oilseed rape, the statistical interpretations below were derived from years 2018
and 2019. For the other years, oilseed rape data actually had some limitations: on the
one hand, for 2016–2017, cloud-free Sentinel-2 data were not sufficient to extract metrics;
on the other hand, for 2020, perhaps due to the curfew associated with the health crisis,
oilseed rape ground observations were not sufficient to yield consistent comparisons.

In general, PROBA-V- and Sentinel-2-based phenomaps exhibited a lower accuracy
(Figure 8) than those generated for winter wheat, with global (all stages and years) rmsd
values of 10.8 ± 5.9 and 12.8 ± 7.9 days, respectively (Table S5). Here, for all phenometrics,
the sensor-based estimated dates also captured the inter-annual variations of the observed
dates (Figure 8). However, on average, PROBA-V- and Sentinel-2-based phenomaps
explained only 22% and 16% of the observed intra-annual phenology (all stages and years),
respectively. Additionally, as observed for winter wheat, when we compared estimates and
observations within inter-comparison sites, PROBA-V was able to estimate phenology in
more municipalities than Sentinel-2.
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Figure 8. Municipal comparison of phenometrics and associated phenological stages in terms of me-
dian dates. Phenometrics dates were obtained from both PROBA-V and Sentinel-2-based phenomaps,
while phenological stages came from the TEMPO dataset. Each column represents a specific oilseed
rape phenometric compared to associated phenological stage: (A–D) SOS30–45 vs. stem elongation,
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(E–H) NDVIlocal_min vs. Flowering, and (I–L) EOS97–99 vs. development of fruits. First row shows
the locations where ground observations of each stage were made. Second row shows scatter-plots
from all these observed municipalities, while third and fourth rows show scatter-plots from only the
observed municipalities within the inter-comparison sites (dashed boxes), where we were able to
extract phenometrics from Sentinel-2: third row represents estimated dates from PROBA-V, while
fourth row represents those from Sentinel-2. In these last two rows, assessed municipalities were
identical for both sensors. Scatter-plots and maps share the same color code representing the year of
interest. Median dates are expressed in the day of the year (DoY).

As already observed for winter wheat, phenometrics based on central or high thresh-
old values (NDVIlocal_min and EOS97–99) showed better correspondences with associated
phenological stages, with average rmsd = 7.5 ± 0.9 and 7.8 ± 1.3 days, for PROBA-V
and Sentinel-2 respectively. Differences regarding SOS30–45 and stem elongation were
around 20.0 days. Finally, for the period where Sentinel-2 valid data were not suffi-
cient to extract phenological metrics (2016, 2017, and 2020), PROBA-V-based phenomaps
showed, on average for all stages and years, an acceptable discrepancy with observed dates
(rmsd < 10 days). However, in 2016–2017, estimated dates for EOS97–99 did not capture the
observed spatial variations of the development of fruits.

3.2.3. Inter-Comparison of PROBA-V- and Sentinel-2-Based Phenomaps

We also compared sensor-based phenomaps with each other to assess the consistency
of remotely sensed data and their sensitivity to vegetation dynamics as a function of their
spatial resolution. Here, we evaluated the median aggregated dates at the municipality
scale across inter-comparison sites. Overall, for all crop-specific phenometrics and years,
PROBA-V-based phenomaps were correlated with those generated from Sentinel-2, but only
after the launch of Sentinel-2B in 2017 (Table S6). Hence, statistical metrics below refer to
the 2017–2020 period. For winter wheat, all phenometrics and years, sensor-based phe-
nomaps showed an r = 0.8 ± 0.1 and an rmsd = 7.8 ± 2.4 days (Table S6). Among phe-
nometrics, SOS42–53 was better correlated (r = 0.8), compared to SOS95–98 and EOS60–89,
which showed lower discrepancy (rmsd < 8.8 days). For oilseed rape, sensor-based phe-
nomaps showed lower spatial correspondence than winter wheat ones (r = 0.5 ± 0.2), with
a temporal divergence of rmsd = 10.7 ± 7.6 days. For this crop, the sensors showed better
agreement with each other when estimating NDVIlocal_min (r = 0.7 and rmsd = 4.3 days, on
average), while SOS30–45 showed the lowest correspondence (r < 0.5).

Additionally, we also assessed their phenological detection rate, i.e., the proportion
of municipalities where cloud-free observations were sufficient to extract crop-specific
phenometrics. For the 2016–2020 period and all phenometrics, we were able to extract
phenometrics from PROBA-V data in 94.4 ± 7.2% of the municipalities, and from Sentinel-2
data in 71.8 ± 18.8% (Figure 9). For 2018–2020, during which Sentinel-2 yielded the highest
number of cloud-free observations over an agricultural period, we were able to map
83.4 ± 7.0% of municipalities. However, before 2018, our ability to generate phenomaps
from Sentinel-2 decreased by 29%, especially for oilseed rape NDVIlocal_min detection (<50%
of municipalities).
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Figure 9. Phenological detection rate from both PROBA-V and Sentinel-2 data. Each row represents a
specific crop, and each column a specific phenometric: (A–C) winter wheat SOS42–53, SOS95–98 and
EOS60–89, (D–F) oilseed rape SOS30–45, NDVIlocal_min, and EOS97–99. The assessment was conducted
based on all municipalities in the intercomparison sites, not only on those in which ground observa-
tions were carried out. On average between 2016 and 2020, 1943 municipalities were assessed for
winter wheat and 1293 for oilseed rape.

3.3. Application: Analyzing and Comparing the Temporal Variations in Phenometrics for Wheat
and Oilseed Rape

We analyzed the spatial and temporal variations in phenometrics for the two crops
and for each year in 2016–2020. For each crop, we consider only here the phenometrics
with the best performances: SOS95–98 (associated with heading) for the winter wheat, and
NDVIlocal_min (associated with flowering) for the oilseed rape.

On average over the 5 years, the spatial mean of wheat SOS95–98 is the DOY 134
(14 May), with a standard deviation of 8.7 days, with the western and southern parts of the
country displaying earlier dates. Moreover, at each location the date is variable from one
year to the other: the multi-year range of variations is computed for each disaggregated
mixel, showing that in 2016–2020, on average over France the range is 24.7 days, with
a standard deviation of 10.2 days. The two standard deviation values are of similar
order, showing that the temporal and the spatial variations in this phenometric are almost
similar. The same property is found with the interquartile ranges that are equal to 6.3 and
6.5 days, respectively.

For oilseed rape, the standard deviation of the spatial variations is 8.7 days, and the
one for the range of changes across the 5 years is 11 days. These values are calculated over
a much smaller area than for wheat because of the smaller cultivation area and cannot
strictly be compared to them. However, we find that oilseed rape NDVIlocal_min occurs
22 days before wheat SOS95–98, on average over the common growing area, with very large
spatial differences. This lag between the wheat and the oil seed rape rises up to 45 days
in the northern part of the country but is only 6 days in the central parts. This shows a
highly diverse relationship between the two crop phenologies, that may be explained either
by different cultural practice calendars inside the northern half of France, and/or various
phenological response of the two crops to the seasonal climate variation.

4. Discussion
4.1. Phenomaps: Regional and Municipal Accuracy

The PROBA-V-based phenomaps for winter wheat demonstrated a strong agreement
with the associated phenological stages observed at a regional level, provided by the
national phenological observatory Céré’Obs. Estimated dates, when aggregated by region,
reflected the phenological contrast between the south, center, and north of the country,
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showing a spatial gradient consistent with the latitudinal variation of climate in mainland
France [93]. However, as observed from other satellite-based phenology estimates [102–104],
for some cases, phenometrics were more spatially dynamic than the associated phenological
stages, resulting in a low coefficient of determination (r2), even with a low rmsd. Here,
observed dates were obtained from a regional synthesis of the phenological progression,
derived from an analysis by agricultural advisers from local chambres d’agriculture. Hence,
this phenological information is an extrapolation based on the phenology observed at
specific points throughout the area, which might overlook the phenological diversities,
particularly in regions characterized by significant climatic and environmental contrast.
Therefore, this data collection approach could explain the lack of dynamism in the spatial
representation of the observed regional phenology. Consequently, this discrepancy in
the spatial representation of phenology could significantly account for the low r2 values.
The estimated intra-regional phenology progression (% of area) was more accurate in the
center of the country, perhaps because this in situ observation system is more sensitive and
consistent for these regions with the largest winter wheat areas in the country.

Estimated dates, when aggregated by municipality, showed lower agreement with
observed dates from the TEMPO network, compared to the observed regional phenol-
ogy from the Céré’Obs network. We mainly observed a low-spatial correspondence
(r2 < 0.50), yet reasonable temporal differences (rmsd < 15 days), in agreement with satellite-
based performances usually reported in the literature [32,80,102,105]. Here, observed dates
were obtained from a visual inspection of the timing of phenological events, conducted by
observers in some specific plots throughout the municipality (5 plots on average). Hence,
TEMPO observations do not attempt to represent municipal phenology, unlike those of
Céré’Obs, which attempt to summarize regional phenology. These observed dates were
provided without the location of plots, which led to their municipal aggregation to compare
them with the estimated dates. Therefore, these aggregated dates are likely not the best indi-
cator of the municipal phenological diversity, which could also explain the moderate spatial
correspondence with PROBA-V- and Sentinel-2-based phenomaps. For a robust validation
of satellite-derived phenometrics, ongoing efforts to enhance the spatial representation of
the observed phenology are crucial.

4.2. Accuracy of Crop-Specific Phenometrics

Overall, winter wheat phenometrics showed better correspondences with associated
phenological stages than oilseed rape ones. This can reliably be attributed to the accu-
racy of the disaggregated data used to extract these phenometrics. According to [81],
disaggregated data perform better for the main crops in the study area because they more
significantly contribute to the signal reconstruction. The spatial disaggregation algorithm
is sensitive to the crop’s occurrence level within the spatial window used for extracting
information. Therefore, it is likely that the reconstructed NDVI time series for winter wheat,
the dominant crop in our study area, more accurately captures the phenological variations
of this specific crop.

In addition, crop-specific phenometrics based on central or high threshold values
(associated with heading and development of fruits) exhibited higher accuracy than those
with lower threshold values (associated with tillering and stem elongation), perhaps due to
their more stable radiometric response. Winter wheat SOS95–98 was located around maxi-
mum NDVI of the growing season, while the EOS60–89 was located at the beginning of the
temporal profile decline (Figure 3). Oilseed rape flowering leads to a consistent decrease in
NDVI between April and May as the flowers hide the leaves. The well-defined radiometric
response of this stage was also observed by [78] when they used the Normalized Difference
Yellow Index (NDYI), which consistently increased over the same period. Hence, such
identifiable behaviors made NDVIlocal_min a reliable indicator of this phenological stage.
In contrast, phenometrics associated with tillering and stem elongation showed less re-
liability, because these associated phenological stages demonstrated more ambiguous
radiometric responses, likely due to higher variability in vegetation condition and/or



Remote Sens. 2024, 16, 4521 21 of 28

coverage among plots before and during winter, as highlighted by [80] when they used
optical data. For instance, a warmer autumn may stimulate vigorous plant growth without
accelerating phenology. As a result, the plot will have high NDVI values during winter,
potentially enabling the earlier estimation of these stages. Finally, the detection of pheno-
metrics associated with senescence could be influenced by several factors, including the
decreasing quality of the disaggregated NDVI time series and the applied metric extraction
method itself. Moreover, toward the end of the growing season, plant stress arising from
water or nutritional deficiencies may act as a confounding factor, potentially resulting in an
earlier-than-expected estimation.

4.3. Inter-Comparison of PROBA-V and Sentinel-2 Performances

Disaggregated PROBA-V data allowed us to map crop-specific phenology at the
national level, providing a comprehensive view of crop vegetation dynamics in mainland
France. In general, disaggregated NDVI time series, with a daily temporal resolution,
were not significantly affected by the cloud cover, offering an advantage over high-spatial
resolution data with a lower frequency. However, this advantage did not have an impact
on the accuracy of phenometrics estimation. In contrast, in terms of phenological detection
rate, PROBA-V-based phenomaps showed a strong improvement over Sentinel-2, even
during the era of the two Sentinel-2A and B satellites (2018–2020) (Figure 9). Finally,
generating PROBA-V-based phenomaps requires less computational resources compared to
Sentinel-2. This significant advantage increases the analysis capacity regarding the spatial
and temporal coverage.

4.4. Phenometrics Extraction Method

Threshold-based methods require extensive knowledge of local production systems,
as well as ground data to facilitate time profile interpretation. This is mandatory to take
into account, as far as possible, the highly dynamic and complex nature of agricultural land-
scapes. Here, for each phenometric associated with a given phenological stage, a specific
threshold value was determined by annually comparing the national average NDVI time
profile with the corresponding national average observed date. Although these thresholds
are relative to the amplitude of the pixel, this approach may be less sensitive to the local
phenology. For instance, the spatial variation in plant development (not phenology), mainly
driven by the local weather conditions and agricultural practices (density, fertilization, irri-
gation, etc.), could exhibit contrasted radiometric responses between regions. Hence, these
thresholds may not directly be applied to local time profiles significantly different from the
national time profile used for calibration. In other words, thresholds can only be transferred
between areas with similar growing conditions [106]. To address this problem, current
machine learning techniques could facilitate setting extraction parameters, such as shown
in [79,107]. However, although promising, these techniques demand extensive ground data
that are generally both expensive and time-consuming to obtain. Moreover, these methods
are not exempt from generalization challenges. Finally, our detection method is based on
adjusting a single curve in the vegetation index ascending phase, and another one in the
descending phase, as it is generally done. It was recently shown that adjusting separate
curves in a restricted time window around each phenological event before detecting the
inflexion timings improves the results, as it reduces the interdependence of the detections
of each event [108]. In the future, such methods could be tested over our disaggregated
time series.

4.5. Limitations

Sensor-based phenomaps are mainly affected by the many limitations of satellite
data and signal processing techniques. In this approach, a robust and automatic pheno-
metrics extraction requires a smooth time series with a continuous time step. However,
satellite data, including composite data, often contain noise caused by cloud residues or
atmospheric contamination. In addition, cloud-free observations generally show irregular
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temporal distances. Consequently, gap-filling methods are usually employed in time series
analysis. In this case, the accuracy of the phenometric is directly influenced by the accuracy
of the crop’s time trajectory reconstruction, which can vary depending on the applied
interpolation method [41]. Likewise, there is no agreement on the preferred method for
extracting phenometrics from gap-filled data [102]. Ref. [90] reviewed sensor-derived
vegetation phenometrics extraction methods, such as thresholds (absolute or relative) and
derivatives approaches, and highlighted that the accuracy of estimates varies according to
the applied method. In addition, sensor-based phenomaps remain difficult to evaluate due
to the lack of spatial correspondence with available ground data. PROBA-V estimates also
have certain limitations inherent in the spatial disaggregation technique, which is efficient
only for the most dominant crops [81], and does not attempt to provide a phenometric at the
plot scale: the phenological differences of the same crop growing up in two plots within the
same 3 × 3 pixel neighborhood are not retrieved. Moreover, because of this limitation, and
because of the need to know all crop types within the disaggregation neighborhood, our
method is not designed for providing the near-real-time phenology information necessary
for agricultural advice to individual farmers. Regarding input data reliability, the accuracy
of the disaggregated PROBA-V data is dependent on the quality of the crop type map used.
Here, disaggregated PROBA-V data were generated using the LPIS (Section 2.3.1). Although
it is positioned as the reference crop type map in France, it may be subject to misdeclaration
and would not include undeclared plots. Concerning this last point, a completed LPIS ver-
sion (containing undeclared plots), generated by INRAE’s Rural Development Observatory
(Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE-ODR):
https://odr.inrae.fr/intranet/carto_joomla/, accessed on 25 November 2024) team [109],
could improve geographic coverage of the disaggregated PROBA-V data, for available years
and solely for our study site. Concerning misdeclaration, other crop type maps can be used
such as the OSO-THEIA (https://www.theia-land.fr/ceslist/ces-occupation-des-sols/,
accessed on 25 November 2024) product generated from high-spatial resolution satellite
data [110]. From an operational perspective, the LPIS is updated annually as part of the
European Union’s Common Agricultural Policy. This would allow the generalization of our
method to member states’ territories with LPIS maps. However, the accuracy and spatial
detail of the crop type maps are still undergoing harmonization across these countries.

5. Conclusions

By utilizing disaggregated PROBA-V data, which provide daily time-step NDVI time
series for individual crops within a 300 m mixel [81], we were able to generate compre-
hensive annual crop-specific phenomaps at the national level from 2016 to 2020. These
phenomaps provide a coherent overview of vegetation dynamics aligned with the latitudi-
nal climatic patterns observed in mainland France. PROBA-V-based phenomaps exhibited
a strong agreement with ground observations at the regional level, while showing mod-
erate agreement at the municipal level. This discrepancy can be attributed to the limited
representativeness of the observed data at the municipal level. Overall, our findings in-
dicate that phenomaps exhibit greater spatial variability compared to currently available
ground observations, resulting in low annual values for both rmsd and r2 across most cases.
Notably, sensor-based phenomaps successfully captured the inter-annual variations of phe-
nology. Phenometrics based on central and high threshold values (associated with winter
wheat heading and fruit development, as well as with oilseed rape fruit development)
exhibited more accurate estimations than those with lower threshold values (associated
with tillage and stem elongation of crops). NDVIlocal_min showed to be a reliable indicator
of the oilseed rape flowering. This disparity can be attributed to the higher variation in
plant development and coverage before and during the winter period (i.e., tillage and
stem elongation of crops’ occurrence period), primarily influenced by weather conditions
and local farming practices. These performance levels were comparable to those achieved
by Sentinel-2-based phenomaps. Sensor-based phenomaps derived from PROBA-V and
Sentinel-2 demonstrated significant correlations with each other starting from 2017, coincid-

https://odr.inrae.fr/intranet/carto_joomla/
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ing with the launch of Sentinel-2B. Nevertheless, PROBA-V-based phenomaps consistently
exhibited a higher phenological detection rate, even when Sentinel-2 achieved its peak of
cloud-free observations (2018–2020). Altogether, these findings highlight the significant
potential of disaggregated PROBA-V data for operational monitoring of crop phenology in
France, for winter wheat heading and oilseed rape flowering, as the performances were as
good as those obtained with Sentinel-2 after 2018 but were higher before this date. This
potential was used to explore the phenology differences between crops, showing that the
lag between the wheat heading and the oilseed rape flowering differs from the north to the
center of France.

Furthermore, these results lay the foundation for employing SPOT-VGT or MODIS
data in retrospective studies, enabling the investigation of crop phenology evolution within
fragmented agricultural landscapes. The method could be applied on these medium-
resolution data from as early as 1999. However, before 2015, the French LPIS maps gave
the crop type as a sole fraction of each farm, thus, our method would require to be adapted
to this initial version of LPIS, which may be challenging. Nevertheless, such investigations
can provide valuable insights into the adaptation and resilience of species in the face of
ongoing climate change, as phenological changes are one of the key fingerprints of climate
change in agriculture and ecosystems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16234521/s1. Table S1. Crop-specific phenological stages
description; Table S2. Crop-specific phenological stages. Statistical summary of available observations
at regional and municipal level from the Céré’Obs and the TEMPO dataset, respectively. The number
of observations is denoted by n. Values represent average between 2016 and 2020. TEMPO’s
summary was made at inter-comparison sites level, while for Céré’Obs it was made at national level;
Figure S1. PROBA-V-based phenomaps of oilseed rape. Each column represents a phenometric
associated with a phenological stage, i.e., SOS30–45 with stem elongation (BBCH31), NDVIlocal_min
with flowering (BBCH65) and EOS97–99 with development of fruit (BBCH73), respectively. Each row
represents a year in our study period. The color palette represents the day of the year (DoY) on
which the phenometric was detected; Table S3. Regional comparison of phenometrics and associated
phenological stages for winter wheat. Phenometrics dates were obtained from PROBA-V-based
phenomaps, while phenological stages ones were obtained from the Céré’Obs dataset. Annual
statistical metrics (rmsd and bias) are expressed in days. The bias is negative when phenometrics
dates are earlier than phenological stages dates. The number of compared regions is denoted by n;
Table S4. Intra-regional comparison of phenometrics and associated phenological stages in terms of
phenological progression. Phenometrics and their associated phenological stages progressions were
obtained from the PROBA-V-based phenomaps and Céré’Obs, respectively. Annual statistical metrics
(rmsd and bias) are expressed in terms of % of area. The bias is negative when the phenometric
progression is lower than the associated phenological stage. The number of compared days is denoted
by n; Table S5. Municipal comparison of phenometrics and associated phenological stages in terms
of median dates. Phenometrics and phenological stages dates were obtained from sensor-based
phenomaps and TEMPO, respectively. Annual statistical metrics (rmsd and bias) are expressed in
days. The bias is negative when phenometrics dates are earlier than phenological stages dates. The
number of compared municipalities is denoted by n; Table S6. Municipal comparison of phenometrics
median dates obtained from both PROBA-V- and Sentinel-2-based phenomaps. Annual statistical
metrics (rmsd and bias) are expressed in days. The bias is negative when PROBA-V estimates are
earlier than Sentinel-2. The number of compared municipalities is denoted by n. Assessment was
conducted based on all municipalities in the inter-comparison sites, not only on those in which
ground observations were carried out.
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