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A B S T R A C T
Digital Elevation Models (DEM) are widely used in planetary sciences, including for the specific case
of Mars. DEMs allow us to extract topography parameters necessary in geomorphological studies.
However, DEMs are not free from vertical errors, which yields uncertainties in calculations of param-
eters such as local slopes. In addition, slope maps computed from DEMs often display slope patterns
which are not spatially correlated with the original images. We suspect such slope patterns to orig-
inate from DEM vertical errors. To investigate this question, we propose a fully numerical method
to provide a quantitative analysis of slope errors based on DEM error propagation using synthetic
models. We find that the addition of vertical errors following a normal distribution (random noise)
leads to the occurrence of slope patterns comparable to those in observed data. Results are simi-
lar for the two models of spatially correlated errors. We also provide estimations of slope errors for
four martian cameras: HiRISE (High Resolution Imaging Science Experiment), CaSSIS (Colour and
Stereo Surface Imaging System), HRSC (High Resolution Stereo Camera) and MOC (Martian Orbiter
Camera). These estimations aim to be used as first order uncertainty constraints on local slopes for
geomorphological studies.

1. Introduction
Digital Elevation Models (DEM) are a primary tool used

to describe topographic relief on Earth and other planets such
as Mars. DEMs are representations of elevation data for
planetary surfaces, typically taking the form of a regular grid
with the elementary element being a pixel. Each pixel has an
attributed elevation value. These representations are widely
used for geomorphological analysis, a major research field
to characterize planetary surfaces. Three-dimensional rep-
resentations and estimations of local slopes and orientations
can be computed using Geographical Information System
(GIS) software such as ArcGIS or QGIS. However, DEMs
are not free from vertical errors on elevations. Errors can
be constrained, with several studies having focused on their
estimations (Heipke et al., 2007; Kirk et al., 2003, 2008; Re
et al., 2019). Typically, elevation errors are not explicitly
taken into account in slope calculations within GIS software,
resulting in slope errors that remain unassessed. Hence, slope
error computations are often restricted to standard deviation
(𝜎) estimations of the DEM slopes under the form of a 2
or 3𝜎 error bar. In addition, while the relationship between
DEM and derived topography parameters such as slope has
been extensively studied from a theoretical point of view
(taking Earth’s DEM as example, e.g. Heuvelink et al., 1989),
slope errors on Mars’ DEM are less constrained. The first
modern approach to estimating error within Martian DEMs
came from the work done by the Martian Orbiter Camera
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(MOC) from Kirk et al., 2003, with estimations of Root Mean
Square (RMS) values of bidirectional slopes as a function
of the DEM baseline. A number of studies then applied
this method to other martian cameras (Heipke et al., 2007;
Kirk et al., 2008), including High Resolution Stereo Cam-
era (HRSC, Neukum and Jaumann, 2004) and High Resolu-
tion Imaging Science Experiment (HiRISE, McEwen et al.,
2007). However, two key problems have not yet been ad-
dressed: first, the spatial structures or patterns of slope errors
have not been investigated in depth. We illustrate this point
with Figure 1, which highlights the correlation between HiRISE
images (1B), Colour and Stereo Surface Imaging System (CaS-
SIS, Thomas et al., 2017) images (1C), and the resulting
slope maps (respectively 1D and 1E) for two locations: Pa-
likir Crater and Oxia Planum (1A). Spatial slope patterns are
uncorrelated with geological features in the CaSSIS image
(especially within the yellow square in 1C and E); moreover,
high frequency slope patterns appear in the HiRISE-derived
slope map 1D seemingly unrelated to the approximately ho-
mogeneous surface displayed in the HiRISE image from Fig-
ure 1B (see the blue square). Finding the source of this
slope variability is important for both sites as Oxia Planum
is the landing site (Quantin-Nataf et al., 2021) for the Exo-
mars Rosalind Franklin rover, and the Palikir Crater site ex-
hibits Recurring Slope Lineae (RSL, McEwen et al., 2011),
seasonal flows of which the source mechanism remains un-
known and can be linked to the angle of repose for triggering
the dry mechanism hypothesis (e.g. Dundas et al., 2017, see
their supplementary material, or Schmidt et al., 2017). The
second problem deals with slope errors which are difficult to
extract from “true” or “real” slope values (given that “true”
slopes are dependent on both how they are computed and the
spatial resolution of the DEM), in the sense that “true” slopes
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result from a “true” surface (i.e. free of any errors on eleva-
tions). This surface is estimated using the highest resolution
DEM and is used as a reference for a given area. Such a ref-
erence is called the “ground truth” (Kirk et al., 2003). The
problem is that high resolution DEMs are not free of vertical
errors, even when smoothed to a coarser spatial resolution.
To address these problems, we propose a complementary ap-
proach in the estimation of slope errors to investigate both is-
sues. We first create a synthetic DEM according to different
geological shapes and we add vertical errors following a nor-
mal distribution, assuming a spatial correlation between two
different laws or complete independence. We then compute
slopes using the Horn’s method (Horn, 1981) default option
in the ArcGIS 10 software on both a vertical errors-free syn-
thetic DEM and a noisy DEM to compare resulting slope
patterns. Slope errors are assessed using the following Pon-
tius et al., 2008 method to provide laws of slope errors. Our
goal is to provide complementary results to previous Mars’
DEM studies (e.g. Kirk et al., 2003) by improving the un-
derstanding of DEM error propagation and slope uncertainty
constraints. We aim for this paper to provide a method to
simplify the interpretation of computed slope maps from a
given DEM. We suggest referring to our slope uncertainty
laws for the interpretation of slope map data derived from
the martian DEM; this must be done after a careful review of
the slope map computation method and its properties, along
with a complete check for possible artifacts on the DEM.
We also advise to always compare the original orbital im-
age with the resulting slopes to compare slope patterns with
local topography. Any inconsistencies between slope maps
and local topographies can possibly be the result of data er-
ror propagation on slope maps.

2. Methods
We present a full numerical method based on a synthetic

approach. The numerical method consists of
• creating a synthetic DEM with different shapes (tilted

surfaces, craters, channels),
• computing the associated slopes using ArcGIS default

equation (Horn, 1981),
• adding vertical errors to the synthetic DEM, following

various laws and assumptions,
• computing the slopes from this new noisy DEM,
• comparing with the slopes from the first DEM (free of

errors).
From different synthetic shapes, this method allows rapid
quantification of slope errors from normally distributed in-
put vertical errors. Each parameter is adaptable, as per the
dimensions, spatial resolution or distribution of vertical er-
rors in the DEM. The next sections detail the key steps of
the method. Section 2.1 describes each synthetic shape we
create, including tilted surface, simple and complex impact

craters, and channels. Part 2.2 explains how we model verti-
cal errors on the synthetic DEM and focus on their spatial
distribution and the different components of errors. Sec-
tion 2.3 is dedicated to the description of the default slope
computation using GIS systems such as ArcGIS and QGIS.
Finally, section 2.4 describes how to estimate the different
components of resulting errors, involving RMS values ac-
cording to the formalism detailed in Pontius et al., 2008.
2.1. Creating synthetic DEM

We aim to create synthetic DEMs providing topographies
relevant for planetary surface studies. Each shape is cre-
ated using a custom Matlab program. We model flat and
constant sloped surfaces, craters (complex and simple crater
shapes) and channels. The synthetic DEM contain 104 pixels
(100×100) to provide robust statistics as well as low compu-
tational time, but larger DEMs are also feasible. A clockwise
rotation can be easily made to modify the orientation of the
DEM, as the code includes SPICE/NAIF (Spacecraft Planet
Instrument C-matrix Events/Navigation and Ancillary Infor-
mation Facility) libraries (Acton, 1996). It should be noted
that our synthetic DEMs are schematic representations of
commonly observed geological features and does not dis-
play the complexity of a real planetary surface. However,
we pay attention to best respect the morphology of geologi-
cal shapes as described in morphometric studies (e.g. Wat-
ters et al., 2015 for craters, Millot et al., 2021 for channels).
Synthetic constant slope We create a constant slope syn-
thetic DEM by defining an array of elevation values 𝑧. We
model this with both a constant slope 𝜃 and a pure west-
facing slope (azimuth 𝜑 = 270°). 𝜃 value is set as an input
and ranges from 0 (horizontal plane) to 80° (vertical plane).
Each increment 𝛿𝑧 in elevation value 𝑧 is computed follow-
ing

𝛿𝑧 = tan 𝜃 𝛿𝑥 , (1)
starting from 𝑧 = 0 m on the left (i.e. western) column,
where 𝛿𝑥 is the pixel width. The topographic profile of such
simple DEM is presented Figure 2A, with a constant slope
of 𝜃 = 30° with dimensionless variables.
Synthetic impact craters Craters are created using Legen-
dre polynomials. A given crater profile is defined as

𝑧(𝛼) = 𝑅 cos 𝛼 (2)
where 𝛼 is the angle between the vertical axis and 𝑅 (see
Figure 3), which is

𝑅 =
𝑁
∑

𝑛=0
𝑎𝑛𝑃𝑛(cos 𝛼) . (3)

𝑃𝑛 are shifted Legendre polynomials of degree 𝑛 and 𝑁 is
the highest Legendre polynomial degree. Both crater shapes
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Figure 1: A) Close-up on Palikir Crater locations of respectively HiRISE DEM (Kirk et al., 2008) and CaSSIS DEM (Simioni et al.,
2017) and their related orthoimages, superimposed on the global MOLA map (Smith et al., 1999) to provide a topography context.
B) HiRISE orthoimage PSP_005943_1380 located in Palikir Crater (e.g. McEwen et al., 2011), used to create HiRISE DEM
DTEEC_005943_1380_011428_1380 and displaying the eastern part of the crater wall. Main slope orientation is northwest.
C) CaSSIS stereo image MY34_005664_163_1 used to create CaSSIS DEM DTM-MY34_005664_163_1. Yellow square is
displayed to be used as a spatial reference in E. The CaSSIS DEM is located in Oxia Planum Rosalind Franklin’s landing site
(Quantin-Nataf et al., 2021). D) and E) Slope maps for C and D areas from 1 m/pixel HiRISE and 5 m/pixel CaSSIS DEM
previously named. Slope variability is present within D, especially in the central blue square compared with quite homogeneous
surface in B. Apparent noise is also visible in slope values within yellow square in E and seems to be poorly correlated with
geological features in C.
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are modeled until𝑁 = 2. Hence, simple and complex craters
are defined as

𝑧(𝛼) =
[

𝑎0𝑃0(cos 𝛼) + 𝑎1𝑃1(cos 𝛼) + 𝑎2𝑃2(cos 𝛼)
]

cos 𝛼 .

𝑎𝑛 coefficients are related to morphometric equations from
martian craters’ studies. Morphometric equations are used
in our study to create realistic crater shapes for Mars. Dis-
tinctions between simple and complex craters are made, thus,
we use the following scaling law from Watters et al., 2015
for simple craters:

𝑑 = 0.205 ± 0.012𝐷1.012 , (4)
where 𝑑 is the maximum depth and 𝐷 is the diameter in km.
Watters et al., 2015’s study has been done at HiRISE res-
olution, yielding accurate measurements of morphometric
parameters thanks to the high precision of the DEM (verti-
cal precision around 0.2 px, Kirk et al., 2008). For com-
plex craters, we use the following equation 5 from a mor-
phometric study made using the Mars Observer Laser Al-
timeter (MOLA, Zuber et al., 1992) which has a global res-
olution of ∼500 m/pixel (Smith et al., 1999). This spatial
resolution is very different from HiRISE resolution, which
resolves metric objects (Kirk et al., 2008; McEwen et al.,
2007). For Mars, complex craters are restricted to diameters
> 6-7 km (Melosh, 1989), which can be resolved by MOLA.
Thus, we take the scaling law for complex craters from Rob-
bins and Hynek, 2012, the expression of which is

𝑑 = 0.286𝐷0.582 . (5)
We choose to use dimensionless depth 𝑑 = 𝑑∕𝐿 and diam-
eter 𝐷̃ = 𝐷∕𝐿, using length 𝐿 = 𝑛𝑅 where 𝑛 is the number
of pixels along 𝑥 and 𝑅 is the resolution in m/px. Equa-
tions 4 and 5 are used to provide expressions for 𝑎𝑛 Legendre
polynomials coefficients. Coefficients 𝑎0, 𝑎1, 𝑎2 for simple
craters 𝐴𝑠 and for complex craters 𝐴𝑐 are

𝐴𝑠 =
⎛

⎜

⎜

⎝

0.7090
−0.2840
0.0250

⎞

⎟

⎟

⎠

, 𝐴𝑐 =
⎛

⎜

⎜

⎝

0.6299
−0.2449
−0.0150

⎞

⎟

⎟

⎠

for a dimensionless depth 𝑑 = 0.4. Equations 4 and 5 provide
the relationship between 𝑑 and 𝐷, which depends on 𝑎0 and
𝑎1, assuming 𝑎0 and 𝑎1 are determined from these equations.
𝑎2 controls central peak height, so it has been tuned with
respect to the synthetic crater’s profile for both simple and
complex craters (following Wood, 1973), in order to obtain
a smooth rounded shape for simple craters and central peak
for complex craters.

Two topographic profiles derived from synthetic craters
are displayed in Figure 2B: the blue solid line is the topo-
graphic profile crossing the central point (where 𝑥 = 0) of a
simple crater, while the red line represents the complex case.

A

B

C

Figure 2: Topographic profiles derived from synthetic A) con-
stant slope DEM, with a slope value 𝜃 = 30°; B) simple (in
blue) and complex (in red) craters DEM, with dimensionless
depth 𝑑 = 0.4 for the first and 𝑑 = 0.37 for the second; C)
channels DEM, with 𝑑𝑐 = 0.02 and 𝑘 = 2. 𝑥 and 𝑧 are dimen-
sionless.

Notice the presence of a central peak for the complex pro-
file. Its height is set according to complex crater morphol-
ogy through the ratio of the central peak height ℎ𝑐𝑝 and crater
diameter 𝐷. We have estimated this ratio on four complex
craters using MOLA data and also derived data from the to-
pographic profile presented in Craddock et al., 1997 (“fresh”
crater from their Figure 2). We find that ℎ𝑐𝑝∕𝐷 = 0.015 –
0.020 for the entire dataset, so the 𝑎2 value is defined follow-
ing this constraint for the complex case.
Synthetic channels Typically, morphometric investigations
focus on large scale valley networks (e.g. outflow channels,
Baker and Kochel, 1978; Williams and Phillips, 2001; Ansan
and Mangold, 2013), providing morphometric equations de-
scribing terrains with low topographic gradients. In order to
cover a wide range of slopes, these morphometric equations
are not modified. In this study, we only use morphomet-
ric parameters closer to small scale channels such as gul-
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𝑑

Figure 3: Schematic representation with different morphomet-
ric parameters for the synthetic crater modeled using Legendre
polynomials. 𝐷 is the diameter, 𝑅(𝛼) is the radius and 𝑑 is the
maximum depth (defined for 𝛼 = 0).

lies (Malin and Edgett, 2000) and Recurring Slope Lineae
(RSL, McEwen et al., 2011). In particular, RSL can be cor-
related with a local signal on topography as presented in Cho-
jnacki et al., 2016 and Millot et al., 2021, providing both first
order depth and spatial wavelength. Channels features are
modeled using the following equation:

𝑍(𝑥) = −1
2
𝑑𝑐 sin 𝑘𝑥 , (6)

where 𝑘 is the number of waves on the DEM for a given
length 𝐿, and 𝑑𝑐 = 𝑑𝑐∕𝐿 is the dimensionless channels
depth. One can play with the number of channels 𝑘 and their
depth 𝑑𝑐 . An example is displayed on Figure 2C, with 𝑑𝑐 =
0.02 and 𝑘 = 2.
2.2. Vertical errors
2.2.1. Random errors

We add vertical errors on the synthetic DEM to model
realistic noise as expected for a “real” DEM. Theoretically,
errors can be divided into two parts: one part is called the
systematic error; the other part is the random error. System-
atic error is a constant or predictable shift with respect to the
expected value; random error is associated to the variability
against the expected value for a repeated number of measure-
ments (e.g. Taylor, 1997). Errors on measurements can be
systematic or random, however most of the time the overall
error is a combination of both (e.g. Ku et al., 1966). Sys-
tematic error is also known as a bias in the measurements. In
the case of a DEM created by stereophotogrammetry, such
a component of error can be created by jitter effects (Kirk
et al., 2003, 2008; Sutton et al., 2015) of the satellite. Jitter
for HiRISE camera is amplified though the motions of inde-
pendent Charged Coupled Devices (CCD), which can cause
misalignment between CCD seams (e.g. Sutton et al., 2015,
their Figure 1). However, jitter effects tend to be minimized
by correction algorithms. For this study, we assume that cor-

Camera d𝑧 Pixel size d̃𝑧 𝜎

HRSC 10 m 50 m 0.2 5 m
MOC ∼0.22 px ∼10 m ∼0.22 1.1 m
HiRISE <0.5 m 1 m <0.5 0.25 m
CaSSIS 5 m 20 m 0.25 2.5 m

Table 1
Table summarizing camera parameters with vertical errors d𝑧,
pixel size and dimensionless vertical errors d̃𝑧, following con-
straints from literature (HiRISE (McEwen et al., 2007; Kirk
et al., 2008; Sutton et al., 2015); CaSSIS (Thomas et al.,
2017; Re et al., 2019); HRSC (Neukum and Jaumann, 2004;
Jaumann et al., 2007; Gwinner et al., 2009); MOC (Kirk et al.,
2003)). 𝜎 is the standard deviation used to parameterize the
law of vertical errors applied to synthetic DEM for each cam-
era. 𝜎 is set as 𝜎 = d𝑧∕2.

rection algorithm have removed jitter-associated errors in el-
evation. Matching errors, which are errors in matching ob-
jects between multiple images, also require manual correc-
tions to avoid severe artefacts such as those occurring within
interpolated areas (Kirk et al., 2008). We exclude manually
corrected areas from our study. On a MOLA DEM, we as-
sume there is no bias, that is, there is no systematic error,
so vertical errors are only due to random error caused by the
precision of the altimeter. As DEMs provided by other cam-
eras are orthorectified on MOLA’s surface, the RMS differ-
ence between the orthorectified DEM and MOLA is close to
zero. Systematic error can be caused on MOLA interpolated
areas, due to the lack of MOLA tracks used as a reference for
images with small footprints (MOC and HiRISE). Accord-
ing to Sutton et al., 2022, this situation is rare for HiRISE and
can be treated using CTX DEM as an intermediate ground
reference (see their section 2.1.3). Hence, we also assume
that systematic errors produced by an incorrect orthorecti-
fication on MOLA are negligible on HRSC (Neukum and
Jaumann, 2004), MOC (Kirk et al., 2003), HiRISE (McEwen
et al., 2007) and CaSSIS (Thomas et al., 2017) DEM. Verti-
cal errors on elevation are defined following a normal distri-
bution. Thus,

d𝑧 ∼  (𝜇, 𝜎2) ,

where 𝜇 = 0 m and 𝜎 is defined according to the upper limit
of error values d𝑧, following constraints provided by the lit-
erature. For our study, 𝜎 is set to half of the d𝑧 value, which
assumes 95% of vertical errors are within ±d𝑧 for a normal
distribution. This value is chosen as it ensures the magnitude
of vertical errors respects constraints from previous studies
(e.g. Kirk et al., 2008 and see table 1); at the same time, this
definition does not prevent the occurrence of larger errors,
as could be the case on a single DEM. d𝑧 are summarized
in table 1 for each Mars orbiter’s camera. Expected preci-
sion may vary between different DEMs for the same camera
(e.g. Sutton et al., 2015).
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2.2.2. Autocorrelated errors
By definition, random error assumes spatial independence

between each pixel of the DEM. In other words, if an element
of the DEM is associated with a large vertical error, it would
not impact the errors on neighboring pixels. As pointed out
in several studies (e.g. Hunter and Goodchild, 1997), spatial
correlation between errors is more realistic than assuming a
complete independence between neighboring pixels. Hence,
we use an autoregressive error model (see e.g. Le Gallo,
2000) to model the effects of spatially correlated errors. The
autoregressive errors model takes the following form:

d𝑧𝑡+1 = 𝜌𝑊 d𝑧𝑡 + 𝜖 , (7)
where d𝑧𝑡 are errors at time 𝑡 in the form of a vector, 𝜌 is
a correlation parameter between 0 and 1, 𝜖 is a vector of
spatially independent errors ∼  (0, 1) and 𝑊 is the weight
matrix. This definition states that high errors tend to be clus-
tered with high errors; suggesting there is a spatial correla-
tion between errors. The two important parameters are 𝜌
and 𝑊 to define the correlation between neighboring areas.
We define 𝑊 according to commonly used weight matri-
ces in econometric modeling and physical geography stud-
ies (Hunter and Goodchild, 1997; Le Gallo, 2000; McMillen,
1992). We choose to focus on two well-known studied defi-
nitions of weight matrices:

1. the contiguity matrix which gives weights to adjacent
pixels. Contiguity matrix is defined as follows:

{

𝑊𝑖𝑗 = 1 for rook′s − case neighbors
𝑊𝑖𝑗 = 0 otherwise (8)

2. the weight matrix following an inverse exponential dis-
tance law which sets higher coefficients to closer pix-
els according to this equation:

𝑊𝑖𝑗 = e−𝛼 𝑑𝑖𝑗 , (9)
where 𝑑𝑖𝑗 is the euclidean distance and 𝛼 is a param-
eter defined empirically, set to 𝛼 = 4 here. The im-
pact of 𝛼 on the weights 𝑊𝑖𝑗 with different euclidean
distances 𝑑𝑖𝑗 has been described in Figure 4. As 𝛼 in-
creases, weights on the reference pixel becomes higher
compared to distant pixels and autocorrelation decreases.
Conversely, spatial correlation is total for 𝛼 = 0.

For all our calculations, 𝜌 is set to 0.99 to provide posi-
tive and negative errors patches efficiently, with a low num-
ber of iterations 𝑛𝑡. The convergence of equation 7 occurs
for variable 𝑛𝑡, depending on the definition of 𝑊 . We test
the convergence by running our program with multiple 𝑛𝑡values and test if convergence is reached for 𝑛𝑡 ∼ 5 – 10 for
the exponential law and ∼ 50 for the contiguity matrix.
2.3. Slope computations

There are multiple methods to compute slopes and sev-
eral studies have pointed out their differences (Skidmore,
1989; Dunn and Hickey, 1998; Raaflaub and Collins, 2006;

1

√

5

√

2

2
√

2

Reference pixel →

Euclidean distance 𝑑𝑖𝑗 :

Figure 4: Impact of 𝛼 value (ranging from 0 to 1) on matrix
weights 𝑊𝑖𝑗 for three different euclidean distances 𝑑𝑖𝑗 . Weights
are higher on closer pixels and decrease with 𝑑𝑖𝑗 for a given
𝛼. When 𝛼 increases, the spatial correlation decreases as the
weights imposed on neighboring pixels lowers.

Tang et al., 2013). Empirically, we assess that typical plan-
etary surface studies use GIS software to compute slopes
from a DEM. The most popular GIS software applications,
namely ArcGIS and QGIS, both use the definition from Horn,
1981 (see ArcGIS and QGIS documentation, both consulted
on 11th February, 2021) as default options. To provide a
wide range of results for the slope tool, we study their defi-
nition, which follows the equation

𝜃 = arctan

√

( 𝜕𝑧
𝜕𝑥

)2
+
(

𝜕𝑧
𝜕𝑦

)2
(10)

with
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑧
𝜕𝑥

=
𝑧3 + 2𝑧6 + 𝑧9 − 𝑧1 − 2𝑧4 − 𝑧7

8 d𝑥
,

𝜕𝑧
𝜕𝑦

=
𝑧7 + 2𝑧8 + 𝑧9 − 𝑧1 − 2𝑧2 − 𝑧3

8 d𝑦
.

(11)

where 𝜃 is the local slope, 𝑧𝑖 with 𝑖 = 1, 2, ..., 9 are local el-
evations for each surrounding pixel and d𝑥 and d𝑦 are width
and height, respectively, as shown in Figure 5. Pixels located
closer to the central pixel have higher weighting coefficients,
as illustrated by the “2” coefficient for pixel 2, 4, 6 and 8
in equation 11. Defining d𝑥 = d𝑦 = 1 coefficients vary as
2 × (1∕𝑑2), where 𝑑 is the center of pixel to the center of
window distance for the eight pixels surrounding the central
pixel.
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Figure 5: Representation of the 3×3 window used to compute
central pixel slope (highlighted by red boundaries). Nearest
pixels have higher weights.

2.4. Quantifying errors on slopes
An intuitive way to evaluate errors between two maps is

to compute the pixel by pixel differences. One can take the
quadratic mean (more widely known as Root Mean Square
value) and standard deviation to get statistical descriptors
of these differences. However, as errors between two maps
have different components which are independent, we choose
to follow the statistical description method of the Root Mean
Square Errors (RMSE) as proposed in Pontius et al., 2008.
This is used to quantify the resulting errors from noisy slope
maps in order to separate the different components of errors
from the pixel to pixel scale (random error) up to the whole
map scale (systematic error). We calculate two error com-
ponents on a 𝑛 × 𝑚 grid to evaluate the error following the
expressions

RMSQ =

√

√

√

√

√

[∑𝑛
𝑖=1

∑𝑚
𝑗=1(𝜃

s
𝑖𝑗 − 𝜃𝑖𝑗)

𝑛 × 𝑚

]2

(12)

for error on quantity at map scale and

RMSpx =

√

∑𝑛
𝑖=1

∑𝑚
𝑗=1(𝜃

s
𝑖𝑗 − 𝜃𝑖𝑗)2

𝑛 × 𝑚
− RMSQ (13)

for error on pixel location (Pontius et al., 2008), where 𝜃s𝑖𝑗and 𝜃𝑖𝑗 are respectively synthetic and noisy slopes. The sum
of RMSpx and RMSQ is the total RMS error between the
two maps. We will refer to RMS, RMSpx and RMSQ in the
results part of this study.

3. Results
In this study, we focus on only instruments collecting

data yielding to Mars’ DEM products: HiRISE, MOC, CaS-

SIS and HRSC. Additionaly, we focus on DEMs produced
by stereophotogrammetry as they represent a large compo-
nent of the elevation data available for Mars, thanks to the
widely used SOCET SET (e.g. McEwen et al., 2007) or
Ames Stereo Pipeline (ASP, e.g. Watters et al., 2015) stere-
opipelines. Pixel size and vertical errors d𝑧 are summarized
in the table 1 for each instrument. We use HiRISE param-
eters from table 1 to create a synthetic DEM and compute
the slope maps in parts 3.1 and 3.3. Synthetic slope maps
are also compared to slope values derived from a real DEM
(part 3.2). The spatial resolution of the synthetic DEM is
1 m/pixel and vertical errors are under 0.5 m, as specified
by Kirk et al., 2008. Thus, vertical errors follow a normal
law d𝑧 ∼  (0, 𝜎2) with 𝜎 = 0.25 m. This implies that 95%
of errors are under 2𝜎 = 0.5 m (see methods part 2.2). We
define the same criterion of 2𝜎 = d𝑧 for other cameras to
compute our general laws (part 3.4). Autoregressive defini-
tions of vertical errors (part 3.3) from equation 7 involve het-
eroskedasticity, that is, a change in the errors distribution’s
variance (𝜎2) value, so we must adapt 𝜎 to obtain slope er-
rors distributions comparable to normal’s law definition. We
tune 𝜎 in order to get an output variance 𝜎2 for the distribu-
tion of vertical autoregressive errors equal to 𝜎2 for indepen-
dent errors, with a difference threshold lower than 1%.
3.1. Slope maps on synthetic DEM with random

errors
We compute slope maps for a range of different synthetic

DEMs, from tilted or flat surfaces to crater and channels
shapes. Figure 6 presents our results for a tilted surface, with
a 30° slope used as input (6A and B) for a 100×100 compu-
tation grid, with a 1 m/pixel resolution. Slope aspect is west.
Figure 6B presents a perfectly constant slope value of 30°.
Apparent vertical banding is due to colorscale and numeri-
cal precision issues for a spatially constant value; this effect
does not represent any real change in slope value. Adding
noise with respect to the methods presented in section 2.2
yields to a noisy DEM (6C) and its resulting slope map (6D).
Figure 6D shows how the addition of random vertical noise
affects the resulting slopes following a normal law whose pa-
rameters are d𝑧= 0 m and 𝜎 = 0.25 m. Significant slope vari-
ations occur, yielding to differences of up to ±10 – 15° (6F)
for maximum vertical errors of ∼75 cm (for a 1 m/pixel reso-
lution, 6E). Intuitively, higher vertical errors provide higher
slope variations. Figure 6D and F underline also the prefer-
ential orientation of the slope patterns (i.e. patches of low
or high slope values) as most of them are aligned perpen-
dicularly to the slope direction. Differences between both
maps can reach ∼10 – 15° locally. We also highlight how
slopes derived from flat terrains are affected by the addition
of normal noise, as summarized in Figure 7. As expected,
flat surfaces (7A) yield a homogeneous slope value of 0°
(7B). Slope values increase heterogeneously (7C) while nor-
mal noise (7E) is added to the synthetic DEM (7D). High
slope values patterns appear, with no preferred shape or ori-
entation (7D-F), which suggests that significant slope is nec-
essary to observe stretched slope patterns, perpendicular to
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Figure 6: Results for models with a resolution of 1 m/pixel and vertical errors d𝑧 ∼  (0, 𝜎2). A) Synthetic elevations with a 30°
westward slope (if north is up). B) Slopes computed from A. C) Synthetic elevations with normally distributed noise and same
slope. D) Slopes computed from C. E) Elevations differences between A and C. F) Slope differences between B and D.

the slope direction. Highest slopes are around 15° and can
exceed 20° locally (7F). Crater shapes have been also inves-
tigated. Simple crater shape results are summarized in fig-
ure 8 and complex crater shape results in figure 9. Both high-
light how slope patterns are oriented with respect to the cen-
tripetal direction of the slope (8F and 9F), which confirms
the results for the tilted surface. The highest slope variations
are underlined in Figures 8F and 9F in a form of a succession
of positive/negative slope differences patterns. These high
discrepancies are expected for mid-range slopes, around 30

– 40° (green and light blue areas on synthetic slope maps 8B
and 9B). We also notice that central uplift for complex crater
shapes (9A and B) becomes blurred in the noisy slope map 9,
compared to the synthetic slope map 9. This suggests quite
intuitively that small scale topographies are more impacted
by DEM vertical noise than large scale topographies. Chan-
nel shapes have also been modeled and results are summa-
rized within Figure 10. Three channels are present in the
synthetic DEM (10A) which has a dimensionless depth of
𝑑𝑐 = 0.5. The resulting synthetic slope map (10B) shows
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Figure 7: Results for models with a resolution of 1 m/pixel and vertical errors d𝑧 ∼  (0, 𝜎2). A) Synthetic elevations with a flat
surface. B) Slopes computed from A. C) Synthetic elevations with normally distributed noise and still a flat surface. D) Slopes
computed from C. E) Elevations differences between A and C. F) Slope differences between B and D.

that values often exceed 50°, excepted on crests and valley
bottoms, where the surface flattens. The main differences
in slope are concentrated within these low to medium (from
∼ 0 – 40°) slope areas (10F), which is consistent with what
we find on crater shapes. Overall, Figures 8, 9 and 10 show
that highest slope errors are concentrated for low to moder-
ate slopes, assuming spatially independent vertical errors.
3.2. Comparison between synthetic and real data

Synthetic and real DEM are now compared. As an ex-
ample, the area of the eastern walls of Palikir Crater has been

taken from Figure 1B, using HiRISE image PSP_005943_1380
(11A). Figures 11B and 11C are elevations and slopes from
the HiRISE DEM, respectively; 11D and 11E are elevations
and slopes from the synthetic DEM. The synthetic DEM has
been created using constraints taken from the literature for
the HiRISE DEM. These are summarized in table 1. Please
note the synthetic DEM in 11D has been rotated to allow
a better visual comparison with the the real DEM, showing
both the real and synthetic DEMs in a west-northwest slope
direction (B and D). All axes from B to E are distances along
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Figure 8: Results for simple crater shape models with a resolution of 1 m/pixel and vertical errors d𝑧 ∼  (0, 𝜎2). A) Synthetic
elevations with a simple crater of dimensionless depth 𝑑 = 0.4. B) Slopes computed from A. C) Synthetic elevations with normally
distributed noise and the same crater shape. D) Slopes computed from C. E) Elevations differences between A and C. F) Slope
differences between B and D.

x and y directions. 11F is the synthetic slope map histogram;
11G is the data-derived slope map histogram. The x-axis
is the slope and the y-axis is the relative number of pixels
with a given slope value 𝜃 (%). Plain orange and yellow
lines are normal laws sharing the same mean and standard
deviation as histograms for synthetic and real data. Our re-
sults show that each output slope (C and E) presents slope
patterns aligned perpendicularly to the slope direction. Our
synthetic data successfully reproduces the preferential direc-
tion of slope patterns. One noticeable difference arises from
the wavelength of these slope patterns: wavelength is larger

for the real DEM than the synthetic one. This difference oc-
curs for two reasons: first, the real DEM describes local to-
pographies of several meters to several kilometers that far ex-
ceed in size the topographies created by random errors; and
secondly, data are usually smoothed by a filter (e.g. a box-
car filter, see Kirk et al., 2008; a median filter and a boxcar
filter in Re et al., 2019 for CaSSIS image). Finally, distribu-
tions of slope values represented in parts F and G are similar
to the normal laws for both data, with the synthetic distri-
bution in F having a slightly flattened shape. Data-derived
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Figure 9: Results for complex crater shape models with a resolution of 1 m/pixel and vertical errors d𝑧 ∼  (0, 𝜎2). A) Synthetic
elevations with a complex crater of dimensionless depth 𝑑 = 0.4. B) Slopes computed from A. C) Synthetic elevations with
normally distributed noise and the same crater shape. D) Slopes computed from C. E) Elevations differences between A and C.
F) Slope differences between B and D.

slopes have a mean of 𝜃 = 18.7°and a standard deviation of
𝜎𝜃 = 8.6°. Comparable values are retrieved from synthetic
slopes with 𝜃 = 19.1°and 𝜎𝜃 = 8.7°. Extreme values in both
distributions range from around 0°to 45-50°. To summarize,
synthetic data reproduce the slope distribution of real data
successfully, as well as both the occurrence and the direc-
tion of slope patterns. One limit is that synthetic data do not
succeed in reproducing the correct size of slope patterns.

To provide a better textural comparison between syn-
thetic and real slope maps, we add a smoothing filter on

synthetic DEMs using CaSSIS DEM parameters and com-
pare it with the real CaSSIS DEM. Initial synthetic DEM
was completely flat before the addition of vertical noise and
set to a 5 m/pixel spatial resolution. We add vertical errors
following a normal lawwith a standard deviation of 𝜎 = 4.0
m. Then, the synthetic DEM is smoothed by a 3×3 gaus-
sian filter using the default algorithm in Matlab. Figure 12
compares a smoothed synthetic CaSSIS DEM with a 3×3
gaussian filter (12A) with a small section of a real CaSSIS
DEM (CAS-DTM-MY34_005664_163_1-OPD, 12B). The
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Figure 10: Results for channel shape models with a resolution of 1 m/pixel and vertical errors d𝑧 ∼  (0, 𝜎2). A) Synthetic
elevations with 3 channels of dimensionless depth 𝑑𝑐 = 0.5. B) Slopes computed from A. C) Synthetic elevations with normally
distributed noise and the same channel shape, with parameters from A. D) Slopes computed from C. E) Elevations differences
between A and C. F) Slope differences between B and D.

location of the CaSSIS data is the yellow square from Fig-
ure 1E. Slope extrema for both images are similar, and range
from 0 to 5.5°. The addition of a smoothing filter yields to
the occurrence of comparable slope patterns, with a typical
wavelength of 3 – 5 pixels in width. Overall, the addition
of a smoothing filter similar to those used in the making of
the real DEM produces a better visual comparison between
synthetic and real data.

3.3. Slope errors from DEM autoregressive errors
In this part, we determine the impact of autocorrelation

of DEM vertical errors (equation 7) on slope values. Fig-
ures 13 and 14 present slope computations performed with
two different laws of DEM vertical errors: autoregressive
errors using a contiguity weight matrix for figure 13 and au-
toregressive errors involving an inverse exponential weight
matrix for Figure 14. Both figures are built upon slope calcu-
lations performed from a 30° tilted surface with a west ori-
entation. Figures 13A and C are dimensionless DEM ver-
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Figure 11: A) From top to bottom, successive close-up of study area, global MOLA (463 m/pixel) and HIRISE image
PSP_005943_1380 (0.25 cm/pixel). The blue square is the studied region, presenting a quite homogeneous surface. B)
and C) are elevations and slopes derived from HiRISE DEM DTEEC_005943_1380_011428_1380 (1 m/pixel) within the region
of interest, respectively. D) and E) are synthetic elevations and slopes. Mean slope is set to fit with mean data slope and
vertical uncertainties correspond to the constraints from literature (Kirk et al., 2008). F) and G) are histograms showing slope
distributions for synthetic and real data, respectively. Orange and yellow plain lines are normal laws to be used as a reference,
using statistical parameters from the synthetic and real data.

tical errors following equation 7 with a weight matrix 𝑊
defined as a contiguity matrix (equation 8). Figure 13B is
the slope map resulting from a horizontal surface with the
vertical errors in 13A, and figure 13D comes from a 30°
tilted DEM with the vertical errors in 13C. The distribution
of vertical errors (13A and C) is quite different from previ-
ous assumptions, namely the spatial independence of errors,
as patches of positive and negative errors are clearly visible
due to the spatial autocorrelation of errors. Patches are often
associated with what we call “checkerboard patterns” with
adjacent pixels displaying successively high and low abso-
lute values, for instance in 13C around x = 0.5 and y = 0
to 0.25 where high negative values of errors (blue pixels)
are next to low values (white pixels). The autoregressive be-
havior does not produce significant changes in slope pattern
structures. Figure 13B shows the typical random patterns al-
ready observed in Figure 7D for a noisy flat DEM, with the
same global texture. The typical wavelength of the patterns
do not change significantly from our results in Figure 7D as

they are restricted to less than three pixels on average in the
slope direction. Figure 13D highlights slope patterns simi-
lar to the ones previously reported in Figure 6D. Patches of
low (in blue) and high (in yellow) slopes are preferentially
aligned northward, normal to the westward slope direction.
Figure 14 is similar to Figure 13, except the definition of
𝑊 which follows the inverse exponential law described in
equation 9. Visual analysis of Figures 14A anc C underlines
that autocorrelation is less pronounced than for the contigu-
ity law due to the absence of well-defined patches. However,
negative and positive vertical errors are located within pref-
erential areas with aggregates of blue and red pixels. More-
over, the checkerboard pattern effect previously identified for
the contiguity matrix is no longer present using the expo-
nential weight matrix. Slopes (figures 14B and D) do not
differ significantly from results with spatially independent
errors (figures 7D and 6D): slope patterns that are character-
istic of deviations from synthetic results remain of the same
wavelength and direction, that is, random patterns for the flat
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Figure 12: A) Slope map from synthetic DEM with a 3×3 gaussian filter. B) Slope map from CaSSIS DEM, from the area
presented in Figure 1E.

DEM (14B) and stretched slope patterns aligned normally to
the main slope direction (14D).
3.4. Precision laws for martian DEM

Now, we aim to provide an assessment of slope errors in
a more quantitative way. These estimations are designed to
be used as a first constraint on slope errors for studies based
on topography data. Figure 15 shows the different compo-
nents of the total slope error for the synthetic DEM with
HiRISE parameters (spatial resolution of 1 m/pixel, 𝜎 = 0.25
m, see table 1). Again, we assume that vertical errors d𝑧 are
spatially independent. Each bar is created from RMS com-
ponent calculations (equations 12 and 13) using one slope
map computation on a noisy tilted synthetic DEM. We ob-
tain the total RMS for a synthetic DEM’s input slope ranging
from 0 to 80°, with adaptive steps of 2° between 0 and 10°,
steps of 5° between 10 and 50° and steps of 10° between
50 and 80°: this involves seventeen slope map computations
based on the synthetic DEM to obtain the results. Figure 15
represents a stacked bar plot, with orange bars representing
RMSQ component (equation 12) and blue bars representing
RMSpx component (equation 13). Examples are displayed
for an initial slope of 0° and 30° to describe how RMS val-
ues are related to visible slope patterns. For low input slope
values, we can see that RMSQ is the main source of errors,
as its contribution reaches almost 90% of the total error for
0°. The top-left illustration in Figure 15 emphasizes that the
mean value of output slopes is significantly higher (around
7.3° with this set of parameters) than the input slope 𝜃 = 0°.
As input slope increases, the part of RMSQ decreases: its
contribution is around 5% around 30° of input slope. RMSQbecomes negligible when input slope exceeds 40°. Hence,
RMSQ provides information about how different the mean

value of a map is from our expectations. On the right part of
the Figure 15, the slope map for an input slope of 30° is rep-
resented. The mean slope value is approximately the same
between synthetic and noisy slope maps, with a difference
of less than 0.2°. The main component of errors come from
pixel by pixel slope variations, which is the RMSpx value.
RMSpx is visible in the succession of red to blue/blue to
red slope difference patterns along the slope direction. For
slopes higher than 60°, RMS values significantly decrease
to become negligible for subvertical surfaces. However, this
effect may not be representative of real data, as DEM er-
rors can be higher in steep slope areas, especially for DEMs
produced by stereophotogrammetry. We will discuss this in
more detail in part 4. We now estimate the impact of dif-
ferent martian orbiter’s cameras using vertical accuracy as-
sessments and spatial resolution of their DEM products from
literature as summarized in table 1. Results are presented in
Figure 16 under the form of cumulative histograms like the
example from Figure 15. Each histogram is an average result
from a thousand computations, with a 3𝜎 bars to show the
computations variability. Note that the vertical scale varies
for each camera. To better compare the magnitude of the
uncertainties laws, we advise the reader to refer to the fig-
ure 17. Each line shows results for particular camera param-
eters (table 1): from top to bottom, HiRISE (16A, B and C),
CaSSIS (16D, E and F), MOC (16G, H and I) and HRSC
(16J, K and L). Each column represents one law of errors,
namely independence (16A, D, G and J), autoregression us-
ing contiguity matrix (16B, E, H and K) and autoregression
using inverse exponential matrix (16C, F, I and L). HiRISE
is the camera displaying the highest RMS values with re-
spect to other cameras, reaching at least RMS ∼ 8° for a 0°
DEM input slope including spatial autocorrelation (16B and
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Figure 13: Vertical error distributions and slope calculations assuming an autoregressive law with a contiguity weight matrix as
defined in equation 8, yielding to spatial autocorrelation of errors as highlighted in A) and C). A) and B) are respectively synthetic
DEM errors and slope values for a horizontal surface. C) and D) are the same results for a tilted surface with a slope of 𝜃 = 30°.
Positive errors in A) and C) are displayed in red, negative errors in blue.

C) or not (16A). This result is unsurprising as all calcula-
tions are made based on the dimensionless vertical error d̃𝑧,
and HiRISE has the highest d̃𝑧 of all cameras. Other cam-
eras display a maximum RMS ∼4 – 4.3° (CaSSIS, 16D, E
and F), ∼3.5 – 3.9° (MOC, 16G, H and I) and ∼3.2 – 3.5°
(HRSC, 16J, K and L), also for lowest input slopes 𝜃. The
global shape of the RMS versus 𝜃 law does not vary with
cameras or definition of vertical errors: it always starts with
a maximum for 𝜃 = 0°, then RMS decreases until a flattening
for low slope values around 4 to 20°, depending on the cam-
era (HiRISE presents this flattening for slightly lower values
than others). The RMSpx component (blue part of the his-
togram) of global RMS error also differs for HiRISE com-
pared with other cameras. The RMSpx’s peak is shifted to-
wards higher 𝜃 for HiRISE than other cameras for every law
of errors: around 𝜃 = 20° instead of 𝜃 = 15°. This yields
to limited changes in RMS component ratio for the lowest
𝜃, with the highest amount of RMS caused by RMSQ. Sur-
prisingly, the vertical error laws definition does not signif-

icantly change RMS values for every camera. We however
notice that autoregressive errors modeled from the contigu-
ity matrix imply slightly lower RMS values, typically around
5 – 10% lower. This effect is more visible in Figure 17
which summarizes RMS values for each camera and error
laws within one plot, with HiRISE in 17A, CaSSIS in 17B,
MOC in 17C and HRSC in 17D. The dashed line is RMS for
the autoregressive errors with contiguity matrix. This law
always shows the lowest RMS values for each camera. The
solid and dotted lines are the results for independent errors
and autoregressive errors with exponential matrix, respec-
tively. Error bars are also displayed on this representation
and remain small regarding RMS values.

4. Discussion
Our models are at least partially able to retrieve the dis-

tinctive slope patterns that occur on Mars steep slopes in the
martian DEM. Hence, we interpret vertical errors as a pos-
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Figure 14: Same as Figure 13 with DEM vertical errors following an autoregressive law with an exponential weight matrix as
defined in equation 9, yielding to spatial autocorrelation of errors as shown in A) and C).

sible source for patterns aligned normally to the slope di-
rection. This interpretation is quite robust as patterns are
present in slope maps for every law of vertical errors we
model. Introducing more complex shapes such as craters and
channel features highlight how slope patterns are stretched
with respect to changing slope directions, which fits with our
observations. Slope patterns found for noisy flat surfaces are
therefore less convincing regarding the real slope patterns
for CaSSIS data (figure 1E). Discrepancies can be explained
by a mix of random vertical errors with small scale topogra-
phies of which dimensions are of the same order as the DEM
spatial resolution, as small-scale features induce more vari-
ability in DEM elevations. Random noise has been invoked
by previous studies to explain random patterns, for instance
on HiRISE DEM elevations (Kirk et al., 2008). Also, smooth-
ing filters improve the visual comparison between our syn-
thetic and real DEMs. New studies need to focus on the im-
pacts of various filters used in the making of such elevation
data, in particular, they should assess how topography is af-
fected by filtering process. In this study, we chose to provide
laws for synthetic DEMs free of any filtering effect to pro-

vide general laws applicable to the widest range of DEMs.
By using synthetic DEMs, we manage to perform slope

error calculations. The challenge is to evaluate our results
against previous works on DEM quality assessment. Slope
uncertainties have been studied within Kirk et al., 2003 for
MOC using RMS estimations versus baseline through fast
Fourier transform techniques, yielding RMS values between
1 – 3°, which is consistent with our estimations. Heipke
et al., 2007 and Kirk et al., 2008 use the same method to
find RMS values, with results of ∼5° for HRSC (with a 50
m baseline which corresponds to the spatial resolution we
take for HRSC DEM from Gwinner et al., 2009) and ∼2° for
HiRISE (at 1 m/pixel, Kirk et al., 2008). Our RMS values
are lower on HRSC (around 1 – 2°) and higher on HiRISE
(around 4 – 5°) than these previous results. Causes of such
differences can be multiple: the d𝑧 parameter we define (ta-
ble 1) varies with DEM and as we show it, slight variations of
d𝑧 induces substantial changes in slopes and by extension in
RMS values. Potential sources of errors from the DEM are
multiple (e.g. Fisher and Tate, 2006, we take the example of
a DEM produced by stereophotogrammetry to illustrate this
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Figure 15: Cumulative histogram including RMSQ (in orange) and RMSpx (in blue) with HiRISE parameters, with emphasis put
on slope differences pattern at initial slopes 𝜃 = 0° and 30°.

idea for the next development): stereocorrelation between
two images as well as interpolation methods or triangulation
steps are all affected by the stereopipeline used in the making
of a DEM. ASP (Ames Stereo Pipeline, Beyer et al., 2018),
SOCET SET (®BAE Systems, used in HiRISE team’s DEM,
Kirk et al., 2008) or 3DPD (CaSSIS DEM, Re et al., 2019)
are examples of stereopipelines applied in DEM production
on Mars. ASP and SOCET SET stereopipeline results have
been investigated on a HiRISE DEM by Tebolt et al., 2020.
Authors present how slope calculations can yield varying
spatial textures depending on the stereopipeline used to cre-
ate the HiRISE DEM (ASP or SOCET SET). The standard
deviation of the slope distribution is also visually different
(Tebolt et al., 2020, their Figure 13). Thus, even if global
structure of stereopipelines remain comparable, more spe-
cific procedures to remove jitters or filters applied to images
within the stereopipelines differ. Also, we must take into ac-
count that camera parameters are different as well as the cho-
sen method to create DEM (stereophotogrammetry, LiDAR,
photoclinometry are three examples). Such differences lead
to some complexities in the determination of DEM errors
for each DEM created. This assumes first order spatially ran-
dom errors on synthetic DEM are the more acceptable choice
regarding all variables for the production of DEM data.

We define vertical errors as normally distributed, assum-
ing that all corrections have been applied to remove spa-
tially correlated errors in the DEM. We can argue this from a
purely theoretical point of view, as errors are both typically

the sum of systematic errors (constant shift or predictable
shift, e.g. Eisenhart, 1963) and normally distributed errors
(random noise, e.g. Ku et al., 1966). Considering real data,
this definition is probably too simple and can be contested
in the face of the number of possible sources of DEM errors
leading to slope result variability(e.g. Fisher and Tate, 2006).
This is the reason why we simulate the possible spatial corre-
lation of errors, in order to understand the impact of similar
errors in neighboring pixels. The source of correlated er-
rors can be linked to how DEMs are created. For instance,
the stereophotogrammetry method performs a stereocorrela-
tion process between two images. That is then used to cre-
ate disparity maps, which contain the offsets between what
have been interpreted as corresponding pixels between the
two images. However, the quality of the disparity map is not
constant due to varying illumination conditions of some ar-
eas or low contrast regions in shadows or homogeneous sur-
faces. These uncertainties can lead to errors in pixels match-
ing. Matching error is more common in steep terrains due
to the lack of image contrast induced by shadowing. This is
why there are interpolated areas within HiRISE DEM (Kirk
et al., 2008) or lower stereo correlation quality parts on CaS-
SIS DEM (Re et al., 2019). Thus, it seems that spatial cor-
relation of errors arises from stereocorrelation.

The choice of computing slopes on synthetic DEMs needs
also to be discussed. One of the main differences comes from
our knowledge of the “true” surface. For a synthetic DEM,
we have perfect knowledge of the surface as we model them
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Figure 16: RMS values for different sets of parameters to model martian cameras. Each component of RMS is described under the
form of a cumulative histogram, with RMSQ (in orange) and RMSpx (in blue). A) B) and C) are cumulative histograms assuming
an independence law, an autoregressive law with a contiguity weight matrix and an autoregressive law with an exponential weight
matrix, respectively, for HiRISE parameters. The same structure is followed in D), E), F) for CaSSIS parameters, G), H), I) for
MOC parameters and J), K), L) for HRSC parameters.

as a true surface. The vertical elevation has the highest pre-
cision available, as the DEM surface is defined from an ana-
lytical function, so precision is only limited by the computer
error on the numbers, which is very small. The introduction
of vertical errors is well known, and providing constraints
on the way vertical errors are propagated to slopes is quite

straightforward. The main issue is to find the best statistical
descriptors of slope errors distribution. For real DEM data,
elevation values are the combination of the real surface and
vertical errors. It is difficult, if not impossible, to extract
DEM vertical errors at pixel scale as they are included in the
estimation of standard deviations (e.g. Stillman et al., 2020)
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Figure 17: RMS values as a function of the input slope for each camera’s parameters. Four slope errors laws are represented for
A) HiRISE, B) CaSSIS, C) MOC and D) HRSC.

with the “true” topography.
Finally, we must emphasize that there are multiple meth-

ods to compute local slopes on a DEM. We choose to focus
on the default method from commonly used GIS software
(such as QGIS or ArcGIS), namely Horn’s method (Horn,
1981), as it may be the favored method for geomorphologi-
cal studies. Other slope computation methods using a sim-
ilar technique of a 3×3 pixel moving window can result in
significant local differences (Hodgson, 1995; Raaflaub and
Collins, 2006; Tang et al., 2013). The discrepancies be-
tween methods for a given DEM are mainly dependent on the
number of pixels used in the calculations of spatial deriva-
tives (𝜕𝑧/𝜕𝑥 and 𝜕𝑧/𝜕𝑦, equation 11): the fewer pixels that
are included in the slope calculation, the higher the mean
slope value (especially in steep slopes areas, Tang et al.,
2013) and standard deviation value (Raaflaub and Collins,
2006) will be. Variations of mean slope values in steep ter-
rains are in the order of a few degrees, but can reach ∼8°
for a high resolution DEM between two different algorithms
(Tang et al., 2013). Hence, the choice of method for com-
puting local slope produces levels of variability compara-
ble to the addition of random errors or autocorrelated er-
rors. We thus recommend first a careful review of slope
algorithms (see for instance Hodgson, 1995; Raaflaub and
Collins, 2006; Skidmore, 1989; Tang et al., 2013) before
their use in geomorphological studies, and secondly to keep
in mind that the error laws presented in this study are only

applicable to Horn’s method. The alternative calculation
methods may be studied following our protocol to provide
new insights on how DEM vertical errors are propagated on
slopes, including quantitative comparisons with the results
from classical Horn’s method.

5. Conclusion
We provide estimations of slope errors from a fully nu-

merical method. We create synthetic DEMs of various geo-
logical terrains (craters with simple or complex shapes, chan-
nels, tilted or flat surface) and add vertical errors following
constraints from previous studies on martian DEMs. After
computing slope values from DEM data, we are able to dis-
criminate the slope errors from the slope map in order to
quantify them and build slope error laws. For tilted and
noisy synthetic DEMs, we model slope error patterns dis-
playing typical stretching perpendicular to the slope direc-
tion or random patterns on surfaces with low slopes, which
is consistent with observations on slope values for real DEM
data. Thus, we conclude that these slope patterns are caused
by DEM vertical errors, which can be spatially autocorre-
lated or not. Slope error estimations have been calculated
using RMS components following the definition from Pon-
tius et al., 2008 for sets of parameters modeling four martian
cameras: HiRISE, CaSSIS, MOC and HRSC. We find that
for the same DEM vertical error distribution, the highest re-
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sulting slope errors are restricted to low slope values. The
highest slope variability is instead included within mid slope
values, from around 10 to 40°. We recommend the use of the
laws presented in this work as a first estimation of slope er-
rors. We advise considering these new laws jointly with the
careful examination of previous studies in order to evaluate
slope uncertainties in topography studies. From this initial
work, further development would seek to include alternative
ways to compute slopes, to quantify how different each of
the slope algorithms are and how they propagate vertical er-
rors to slope errors. We can also imagine different shapes for
synthetic models, especially including high frequency vari-
ability in topography through the addition of boulders, or
modelling other vertical error distributions to obtain a more
complete understanding of DEM slope errors. Finally, as the
effect smoothing filters have on the production of DEMs re-
mains poorly understood; some substantial work still needs
to be done to provide useful and practical tools to facilite
future study of topographic data by the planetary sciences
community.
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