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Calculation of bound and continuum states of the Ne3 van der Waals trimer

Romain Guérout1, ∗

1Université Paris-Saclay, CNRS, Laboratoire Aimé Cotton, 91405, Orsay, France.

We use the configuration space Faddeev formalism to calculate bound and continuum states of the
Ne3 van der Waals trimer. Continuum states below the breakup threshold describe the scattering
of a neon atom off of a Ne2 diatomic molecule. We identify a resonant feature which we attribute
to the presence of a three body resonance.

I. INTRODUCTION

One of the most popular theoretical methods for solv-
ing the quantum dynamics of few particles is the adia-
batic hyperspherical formalism. We cannot cite the large
body of work which has been done with this formalism.
We refer the interested reader to a review article on the
subject [1]. In the context of atomic physics, a relatively
less known formalism is the Faddeev method [2]. Orig-
inally developped in the context of nuclear physics, this
formalism has been used both in configuration space [3–6]
as well as in momentum space [7, 8].

Recently, the configuration space Faddeev formalism
has now been successfully applied to atomic physics prob-
lem. Of note is the use of this formalism for the calcu-
lation of a very loosely bound state of the H+

2 molecular
ion [9] without ever making use of the Born-Oppenheimer
approximation. Most of the work done using the config-
uration space Faddeev formalism is concerned with the
calculation of bound states of three particles although
bound and scattering states of four particles are achiev-
able numerically [10].

The quantum dynamics of three particles is a very
rich subject which gives rise to a lot of different phe-
nomena. The most notable one being of course the Efi-
mov effect where an infinite series of loosely three body
bound states appear at so-called “universality windows”,
when the scattering length associated to the pairwise in-
teraction potential diverges. Outside of these universal-
ity windows, the Efimov bound states dissapear but three
body resonances can subsist. Those correspond to three
body quasi-bound states lying in the atom-dimer contin-
uum. Those three body resonances have been studied for
Coulombic [11] or model [12, 13] systems using methods
based on complex scaling which allows to explore outside
of the real energy axis.

In this work, we use the configuration space Faddeev
method to perform atom-dimer scattering on the real en-
ergy axis for the neon van der Waals trimer. We first val-
idate our method by reproducing previously calculated
Ne3 bound states. We identify a resonant feature in the
atom-dimer scattering matrix which we attribute to the
presence of a three body resonance. We then fully charac-
terize this resonance by calculating the three body wave-
function. We note that the configuration space Faddeev
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formalism has been used previously for the study of the
helium trimer [14].

II. THEORETICAL FORMALISM

We set ℏ = 1 and express energies E as E/kB in kelvin
(in the literature, energies are often expressed as E/hc
in cm−1; we have 1 cm−1 ≈ 1.43 K). We consider in the
following a system of spinless particles. For a system of
three particles of masses m1, m2 and m3, we define the
set of equivalent mass-scaled Jacobi vectors as

xi =
√
2µjk (rj − rk) (1)

yi =
√

2µi,jk

(
ri −

mjrj +mkrk
mj +mk

)
(2)

where, here and in the following, (ijk) is a cyclic permu-
tation of (123), the r are the position vectors of the three

particles and µjk =
mjmk

mj+mk
, µi,jk =

mi(mj+mk)
mi+mj+mk

. After

FIG. 1. The three equivalent Jacobi coordinates for a system
of three particles. Unscaled Jacobi vectors are shown.

separation of the motion of the total center of mass, the
Schrödinger equation is

(T̂ + V̂ − E)Ψ(xi,yi) = 0 (3)

where the total wavefunction Ψ can be written in any set
of equivalent Jacobi coordinates. The Faddeev formal-
ism [2] begins by expressing the total wavefunction Ψ
as a linear combination of Faddeev components ϕi each
written in a given Jacobi coordinates

Ψ(xi,yi) = ϕ1(x1,y1) + ϕ2(x2,y2) + ϕ3(x3,y3) (4)

The Schrödinger equation for Ψ becomes three coupled
equations for the Faddeev components

(T̂i + V̂i − E)ϕi(xi,yi) = −V̂i [ϕj(xj ,yj) + ϕk(xk,yk)]
(5)
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where T̂i is the kinetic energy operator written in the
Jacobi coordinates (xi,yi)

T̂i = −∆xi −∆yi

= − 1

xi

∂2

∂x2
i

xi −
1

yi

∂2

∂y2i
yi +

ℓ̂2xi

x2
i

+
ℓ̂2yi

y2i

where ℓ̂2xi
is the square angular momentum operator with

respect to the angular part x̂i of the Jacobi vector xi and
V̂ =

∑3
i=1 V̂i. Note that the differential equation for the

component ϕi only involves the potential Vi and that
eq. (5) is really three equations through cyclic permuta-
tions of (ijk).

In order to numerically solve the coupled differential
equations for the Faddeev components, we follow the pro-
cedure described in [6]. The Faddeev components are
first expanded on a basis of bipolar spherical harmonics

Yα(x̂i, ŷi)

ϕi(xi,yi) =
∑
α

fi,α(xi, yi)

xiyi
Yα(x̂i, ŷi) (6)

Yα(x̂i, ŷi) = [Yℓα(x̂i)⊗ Yλα(ŷi)]LM (7)

ℓ̂2xi
Yα(x̂i, ŷi) = ℓα(ℓα + 1)Yα(x̂i, ŷi) (8)

ℓ̂2yi
Yα(x̂i, ŷi) = λα(λα + 1)Yα(x̂i, ŷi) (9)

where α collects angular momentum quantum numbers
(ℓα, λα) which couple to give a particular value of the
total angular momentum L and will be called in the fol-
lowing a channel. Taking advantage of the orthogonality
relation of the bipolar spherical harmonics, we obtain an
infinite number of coupled integro-differential equations
for the partial Faddeev components fi,α

(ti,α − E)fi,α(xi, yi) +
∑
β

vi,αβ fi,β(xi, yi) = −
∑
β,γ

vi,αγ

∫∫
dx̂idŷi

xiyi
xjyj

Y∗
γ (x̂i, ŷi)fj,β(xj , yj)Yβ(x̂j , ŷj) (10)

where ti,α = − ∂2

∂x2
i
− ∂2

∂y2
i
+ ℓα(ℓα+1)

x2
i

+ λα(λα+1)
y2
i

and vi,αβ
is the channel interaction term

vi,αβ(xi, yi) =

∫∫
dx̂idŷi Y∗

α(x̂i, ŷi)Vi(xi,yi)Yβ(x̂i, ŷi)

(11)
We have written here the most general form of the chan-
nel interaction potential when the functions Vi depends
on both xi and yi. The fact that Vi depends on yi means
that the interaction between particle j and k depend on
the position of the third particle i. This can occur when
taking into account non-additive three body interaction.
The fact that Vi depends on xi can occur when the in-
teraction between particle j and k is anisotropic e.g. in
the case of a dipolar interaction.

In the following, we do not take into account any non-
additive three body term and consider an isotropic in-
teraction between neon atoms. As a consequence, the Vi

only depends on xi = ∥xi∥ and can readily be identified
as pairwise interactions.

Finally, the right-hand side of eq. (10) is the so-called
Jacobi kernel which couples the different Faddeev compo-
nents. Note that the Jacobi kernel is a purely geometrical
term.

In order to numerically solve eq. (10), the partial Fad-
deev components are further expanded onto a basis of
cubic Hermite spline functions sn as

fi,α(xi, yi) =
∑
n,m

ai,αnmsn(xi)sm(yi) (12)

Such an expansion in conjonction with an orthogonal col-
location method leads to the construction of the different

operators appearing in eq. (10) : the kinetic energy oper-
ator T, the channel interaction operator V, an indicator
operator 1 and the Jacobi kernel K. Explicit expressions
for the matrix elements of those operators are given in
the appendix.
For bound states calculation, after imposing that

the wavefunction must vanish at infinity, the prob-
lem is reduced to the generalized eigenvalue problem
(T+ V+ K) v = E1v where v are the solution vectors
collecting the expansion coefficients ai,αnm and E are the
bound states energies.
For a scattering calculation 1, we use the formalism of

the forced Schrödinger equation and the unknown partial
Faddeev component fi,α is split into an incoming and a
scattered part i.e. fi,α = f inc

i,α + fsca
i,α . The incoming part

is a known asymptotic solution for K = 0. The resolution
of the eqs. (10) reduces then to the resolution of the linear
system of equations (T+V+K−E1)v = −Kχ where χ is a
vector of expansion coefficients of the incoming part f inc

i,α .
In a multichannel seting, the corresponding equation is

fi = f inci + fscai (13)

where fi collects N linearly independent solutions of the
scattering problem with N the number of open asymp-
totic scattering channels at a given total energy E.
As a base pair of asymptotic channels function, we

take the functions {φi
v,j(xi) j

i
ε(yi), φ

i
v,j(xi)h

i
ε(yi)} where

φi
v,j(xi) is the wavefuction of a rovibrational state of the

1 We consider only scattering below the three body breakup.
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dimer with energy Ev,j . Although we denote this state
with a rotational quantum number j as customary it
should be clear that we have in fact j = ℓα given the
previous discussion. The functions jiε(yi) and hi

ε(yi) are
regular Ricatti-Bessel and outgoing Ricatti-Hankel func-
tions 2 respectively at energy ε. The energies are related
by E = Ev,j + ε. In a multichannel setting, we collect all
the regular functions in a vector j and all the outgoing
functions in a vector h. We therefore set f inci = 1 j in
order to get a set of N linearly independent solutions.
Asymptotically i.e. as yi → ∞, the Jacobi kernel van-
ishes [5] so that the scattered partial Faddeev compo-
nents behave as a linear combination of the asymptotic
channels functions

fscai −−−−→
yi→∞

Xj+Yh (14)

with X and Y the matrices obtained by projecting each
scattered partial Faddeev component onto each asymp-
totic channels functions. Analyzing the solutions in
terms of regular and outgoing asymptotic channels func-
tions in this way leads to the transition matrix T from
which the scattering matrix S can be obtained

T = (1+X)−1 Y (15)

S = 1+ 2iT (16)

III. APPLICATION

We apply this formalism to the characterization of the
bound and continuum states of Ne3. As a consequence
of the indiscernability of the three neon atoms, the Fad-
deev formalism is modified in the sense that there is a
unique Faddeev component ϕ. Nevertheless, the total
wavefunction is still given by

Ψ(xi,yi) = ϕ(x1,y1) + ϕ(x2,y2) + ϕ(x3,y3) (17)

and most of the general formalism presented above still
apply.

For the interaction potential V (x) between two neon
atoms, we take the analytical form given in [15]

V (x) = Ae−bx −
8∑

n=3

f2n (x, b)
C2n

x2n
(18)

f2n (x, b) = 1− e−bx
2n∑
k=0

(bx)
k

k!
(19)

which consists of a repulsive barrier together with an
attractive dispersion tail. This analytical form for the
Ne-Ne potential was fitted to reproduce measured rovi-
brational states of Ne2.

2 We have hi
ε = −ni

ε+ijiε in terms of regular and irregular Ricatti-
Bessel functions {jiε, ni

ε}.

We use m(20Ne) = 19.992 440 1753 Da [16] in our cal-
culations. The grid in x consists in 50 points ranging
from 0 to 50 a0. The grid is non uniform to allow for
more points at short range and is chosen so as to repro-
duce correctly the rovibrational states of the dimer Ne2.
The same grid has been used for both x and y. Calcula-
tions are done for the Lπ = 0+ symmetry. The angular
basis consists of ℓα = λα with ℓα even and ranging from
0 to 10.

A. Bound states of Ne3

In this section, we present our results for the calcula-
tion of the bound states energies of the trimer Ne3. We
recall that we have to solve the generalized eigenvalue
problem Av = E1v where A = T + V + K consisting of
the kinetic energy operator, the channel interaction po-
tential and the Jacobi kernel. In doing so, it is important
to never have to evaluate 1−1 in order to take advantage
of the sparsity and the banded structure of the indicator
operator 1 which collects the values of the cubic Hermite
spline basis functions at the collocation points. We em-
ploy the following inverse iteration method: given initial
guesses E0 and v0 for the bound state energy and vector
of expansion coefficients, we define the recursion relation

(E01− A)vk = 1vk−1 (20)

Then, the sequence ⟨vk|vk−1⟩
⟨vk|vk⟩ converges towards E0 − Ei

where Ei is a generalized eignevalue i.e. a bound state
energy. Note that the recursion relation (20) is a system
of linear equations for the unkown vk as the operator
E01 − A as well as the solution vector 1vk−1 are given.
This method is largely insensitive to the initial guess v0
for the expansion coefficient vector which we then take
as a random vector.
We show in Table I our results for the bound state en-

ergies of Ne3. We compare our results to those of Ref. [17]
which uses an adiabatic hyperspherical treatment. The
calculations from Ref. [17] use an interaction potential
whose parameters are taken from Ref. [18] which slightly
differ from the parameters from Ref. [15] which we use.
To try to quantify those differences, in Ref. [17] the

ground state energy of Ne2 as well as the scattering length
are respectively −24.1305 K and 32.3 a0. With the po-
tential we use, we obtain −24.2428 K and 28.99 a0 for
those same quantities.
We show in Fig. (2) the convergence of the few least

bounded states of Ne3 to illustrate our inverse iteration
method. We can see how, starting from a uniform range
of initial guesses, the method indeed converges towards
several bound state energies in a few iterations. In this
energy range, we can also see convergence towards states
above the ground state energy of Ne2: those states are
the first few so-called “box states” which result from
the discretization of the continuum as a consequence of
the boundary conditions being imposed on a finite “box”
(x, y) ∈ [0, 50 a0]⊗ [0, 50 a0].
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TABLE I. Bound states energies of Ne3 for Lπ = 0+. Ener-
gies are in units of K and relative to the three body breakup
threshold. The present results are compared with those
based of an adiabatic hyperspherical treatment (Ref. [17])
which uses a slightly different potential (see text for details).

This work Ref. [17]

n = 0 −73.12 −73.17

1 −51.62 −51.63

2 −48.66 −48.55

3 −44.70 −44.77

4 −39.38 −39.55

5 −33.57 −33.82

6 −31.79 −31.62

7 −30.70 −30.82

8 −26.78 −26.98

9 −24.94 −25.42

10 −24.54 −24.60

FIG. 2. Convergence of the few least bounded states of Ne3
via the inverse iteration method. Starting from a uniform set
of initial guesses between −26 K and −24 K (left side of the
graph), converged bound states energies as a function of the
iteration number (right side of the graph). The ground state
of Ne2 is shown as a black dashed horizontal line.

B. Continuum states of Ne3

At energies E greater than the ground state energy
of Ne2(v = 0, j = 0), we are in the atom-dimer contin-
uum. In this situation, the resolution of the Schrödinger
equation after applying the collocation method involves
solving the linear system of equation Av = −Kχ with
A = T+ V+ K− E1. Furthermore, in the context of the
forced Schrödinger equation formalism, this linear sys-
tem is inhomogeneous with a source term of the form
−Kχ where χ is a vector of expansion coefficients for a
particular solution with K = 0. This particular solution
is easy to obtain: when setting K = 0, the Schrödinger
equation separates in an equation in x and an equation
in y. A particular solution has the form φv,j(x)jε(qy)

consisting of a bound state of Ne2 with energy Ev,j and
a Ricatti-Bessel function for the free Ne atom. Conser-
vation of energy gives

E = Ev,j + ε = Ev,j +
q2

2µ1,23
(21)

with µ1,23 = 2
3m being the reduced mass in the y

direction. Let b be a vector collecting the values of
φv,j(x)jε(qy) at the collocation points, the source term
χ is then the solution of the linear system 1χ = b.
Analysis of the scattered solutions in terms of asymp-

totic forms consisting of Ricatti-Bessel and outgoing
Ricatti-Hankel functions gives the transition matrix T
and the scattering matrix S. Important properties of
the scattering matrix are unitarity (which expresses the
conservation of probabilities) and reciprocity (which ex-
presses time reversal symmetry). Those are never im-
posed in our formalism so checking those properties con-
stitutes a stringent numerical test. We define ηU and ηR
the defects from unitarity and reciprocity respectively as

ηU =
∥∥1− SS†∥∥ (22)

ηR =

∥∥S− ST
∥∥

∥S+ ST∥
(23)

where ∥.∥ denote any matrix norm which we take as the
2-norm.
We show in Fig. (3) the calculated quantities ηU and

ηR as a function of the total energy from the onset of
the atom-dimer continuum up to the three body breakup
threshold.

ηU
ηR
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FIG. 3. Defects from unitarity and reciprocity of the calcu-
lated scattering matrix as a function of the total energy.

For a given number of grid points and basis functions in
the x and y directions, a maximum energy can be reliably
described. That is why we see in Fig. (3) that the values
of both ηU and ηR steadily increase as the total energy
increases. At the opening of the first inelastic channel, ηU
is of the order of 10−3 which is very satisfactory. Near
the three body breakup threshold, both quantities are
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around 1 − 10 % and we have reached the limits of the
current grid.

We show in Fig. (4) the elastic cross section for a Ne
atom off of a Ne2 molecule in its ground state v = 0,
j = 0. If we index the T matrix elements according to

-25 -20 -15 -10 -5 0

0.01

0.10

1

10

100

Scattering energy (K)

E
la
st
ic
cr
os
s
se
ct
io
n
(a
02
)

FIG. 4. Elastic cross section for a Ne atom off of a Ne2(v =
0, j = 0) molecule.

the state of the Ne2 molecule i.e. Tvj,v′j′ , the elastic
cross section σel shown in Fig. (4) is

σel =
π

q2
|T00,00|2 (24)

Furthermore, we show in Fig. (5) the various scatter-
ing matrix elements up to the first vibrational excita-
tion threshold. Each scattering matrix element has been
shifted horizontally for clarity.

-25 -20 -15 -10 -5

0

2

4
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10

Total energy (K)

S
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0 2 4 6 8
0

v=0, j=
v=1, j=

Fig. 6

FIG. 5. Scattering matrix elements for a Ne atom off of a
Ne2(v = 0, j = 0) molecule. The matrix elements have been
shifted horizontally for clarity. Each matrix element can be
identified according to where it opens up in energy.

The figure shows the real and imaginary part of each
matrix element. The lowest blue and orange curves cor-
respond to the elastic scattering matrix element S11 for
the process Ne2(v = 0, j = 0) + Ne(q) → Ne2(v = 0, j =

0) + Ne(q), the red and green curves above them corre-
spond to the first inelastic scattering process Ne2(v =
0, j = 0) + Ne(q) → Ne2(v = 0, j = 2) + Ne(q′) corresp-
nding to the S12 matrix element and so on. Note that
threshold laws are readily visible in Fig. (5) where in-
elastic scattering elements for processes Ne2(v = 0, j =

0)+Ne(q) → Ne2(v = 0, j′)+Ne(q′) behave as q′j
′+1 [19].

C. Three body resonance

We show in Fig. (6) the elastic scattering matrix ele-
ment in the energy region below the first inelastic thresh-
old. This corresponds to the energy region highlighted in
Fig. (5).
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FIG. 6. Elastic scattering matrix element for a Ne atom off of
a Ne2(v = 0, j = 0) molecule. This corresponds to the energy
region highlighted in Figure 5. Also shown is the best fit with
a resonant form (open circles, see text for details). Position
and width of the fitted resonance is indicated by arrows.

We can clearly identify a resonant feature which we
attribute to the presence of a three body resonance. In
order to calculate the energy of this resonance, Er, we fit
the scattering matrix element with the following model
in a small energy window around the resonance

S(E) ≈ Sbg(q)
E − E∗

r

E − Er
(25)

Sbg(q) = ei(αq+β) (26)

This model consists of a non resonant background Sbg(q)
which we take as a unit modulus function of an affine
phase and a unitary resonant part [20] describing the
presence of a pole of the scattering matrix in the com-
plex plane. The best fit of the elastic scattering matrix
element with this model is shown in Fig. (6) and leads to
a three body resonance energy

Er = (−23.22− i0.029)K (27)

The width of this resonance Γ = 2|Im(Er)| leads to a
lifetime τ ≈ 0.13 ns. We note that in this energy region,
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the scattering matrix is a single channel quantity which
probably explain why this three body resonance is so well
resolved.

We show in Fig. (7) the total continuum wavefunction
Ψ of Ne3 at the energy of the three body resonance and
slightly off resonance. Given the expression of the ex-
pansion of the Faddeev components in terms of partial
channels (see eq. (6)) and the fact that the hyperradius
ρ is independent of the Jacobi coordinates used, a factor
ρ−2 can be factored out of Ψ. Therefore, we represent in
Fig. (7) the quantity |ρ2Ψ|2 to enhance the features of the
wavefunction at large ρ. The top row of Fig. (7) repre-
sent the wavefunction at the energy of the resonance (to
be precise at E = −23.208 K chosen such that the scat-
tered part of the wavefunction vanishes) while the bottom
row represents the wavefunction slightly off resonance (at
E = −23.5 K) for comparison. The first thing to note
is the difference in the scale of the color code between
the top row and the bottom row. Both wavefunctions
(on and off resonance) are normalized in the same way in
terms of their asymptotic form φ0,0(x) [jε(y) + T11hε(y)]
so comparing the two makes sense. The vast difference
in the scale of the color code confirms that the wavefunc-
tion at resonance exhibits a large probability density at
short range where a transient Ne3 state is formed.
The wavefunction is shown in Jacobi coordinates

(x1, y1) at selected Jacobi angle θ. At each Jacobi angle,
the blue contour delimits the classically allowed region
V = E. Examining the bottom row, we see that the off
resonance wavefunction is as expected: it explores the
whole classically allowed region without any significant
peaks in the probability density. On the contrary, the
wavefunction at resonance exhibits very high density of
probability at certain geometries. There is a strong prob-
ability density at the linear configuration corresponding
to y1 = 0. As it can be better seen at θ = 0◦, this lin-
ear configuration is rather floppy with a non negligeable
probability density for y1 ̸= 0 which is also present at
other Jacobi angles 3. We can then conclude that the
geometry of this three body resonance of Ne3 correspond
to a somewhat linear configuration with a Ne atom in
a broad region between the other two Ne atoms. We
note however that for θ = 90◦ we do not see any proba-
bility density at the equilateral triangle geometry. This
resonance state is not floppy enough to explore that con-
figuration.

As the energy increases and the scattering matrix
becomes a multichannel quantity, the identification of
other resonances usually rely on the eigenphase sum
∆ =

∑
n δn where the e2iδn are the eigenvalues of the

scattering matrix. It is well known [21] that the eigen-
phase sum ∆ shows a characteristic jump of π around
an isolated resonance. We show in Fig. (8) the eigen-
phase sum up to the first vibrational excitation threshold.

3 Note that particle indiscernability is readily visible for θ = 0◦.

Unfortunately, it is difficult to unambiguously identify
other three body resonances at higher energies. Study-
ing Figs. (5) and (8) we can only tentatively report on
broad features around E ≈ −19.5 K, E ≈ −14.5 K and
E ≈ −7.5 K. None of these features show a clear jump of
π in the eigenphase sum though so we cannot say further.

IV. CONCLUSION

Using a configuration space Faddeev formalism, we
have calculated bound and continuum states of the Ne3
van der Waals trimer. We have identify and fully char-
acterize a three body resonance. Our work confirms that
standard scattering on the real energy axis can be an
alternative to the use of complex scaling methods to de-
scribe three body resonances.
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APPENDIX: ORTHOGONAL COLLOCATION
METHOD

Here, we consider unscaled Jacobi coordinates; hence
reduced masses appear explicitly in the kinetic energy op-
erator matrix elements. After defining a maximum value
xmax in the x direction, subdivide the interval [0, xmax]
into nx/2 parts. This defines nx collocation points and
nx/2 + 1 grid points. Let xi and xi denote those col-
location and grid points respectively. Each subinter-
val [xi, xi+1] contains 2 collocation points defined as the
nodes of a 2-points Gaussian quadrature on this subin-
terval.
Cubic Hermite splines functions sn(x) come in two

types and are relative to a given grid point xn. They
satisfy the following properties

Type I: sIn(xn) = 1, dsIn/dx|x=xn
= 0 (28)

Type II: sIIn (xn) = 0, dsIIn /dx|x=xn
= 1 (29)

and the support of sn(x) is [xn−1, xn+1]. These proper-
ties are used to impose a specific logarithmic derivative
at a certain grid point; indeed let f(x) = sIn(x)+ bsIIn (x).

Then d ln f
dx |x=xn

= b.
All cubic spline functions can be defined from primitive

ones, defined on [0, 2] relative to a parameter 0 ≤ a ≤ 2

Type I: sI(x) =

{
(3a−2x)x2

a3 0 ≤ x < a
(x−2)2(3a−2(x+1))

(a−2)3 a ≤ x ≤ 2
(30)

Type II: sII(x) =

{
(x− a)x

2

a2 0 ≤ x < a

(x− a) (x−2)2

(a−2)2 a ≤ x ≤ 2
(31)
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FIG. 8. Unwrapped eigenphase sum (in units of π) up to the
first vibrational excitation threshold. This corresponds to the
same energy range as in Fig. (5).

through appropriate scaling and translation.

The same apply in the y direction over an interval
[0, ymax] with ny colloction points. Then, the two di-
mensional basis function sn(x)sm(y) is defined relative
to a grid point (xn, ym) and its support is the rectangle
whose four corners are (xn±1, ym±1) which we call a grid
tile.

The kinetic energy operator T, the indicator operator 1
and the channel interaction operator V are all local in the
sense that for a given collocation point (n,m), in a given
Jacobi coordinates i, (xi,n, yi,m) it requires the value of
said operator at this collocation point.

A given collocation point belongs at most to 4 different
grid tiles and at most 4 different two dimensional basis

functions will have this grid tile as a support. It follows
that all local operators will have at most 16 non-zero
matrix element per lines leading to a sparse and banded
structure. In addition, those operators benefit from a
factorized structure with respect to the Kronecker prod-
uct ⊗. For instance, we have for the indicator operator
1

[sx]nm = sm(xn) (32)

[sy]nm = sm(yn) (33)

1 = 1nc
⊗ 1nα

⊗ sy ⊗ sx (34)

where nc and nα are the number of Faddeev compo-
nents and the number of channels. While spectral meth-
ods have an overlap operator between basis functions,
pseudo-spectral methods have an operator collecting the
values of the basis functions at the grid points. In our col-
location method, the 1 operator collects the values of the
basis functions at the collocation points. Furthermore,
since we use basis functions having a compact support,
this operator can be viewed as indicating whether a given
collocation point belongs to the support of a given basis
function. Hence the analogy with the indicator function.

For the channel interaction operator V in the case of
isotropic interaction, we have

[vi]nm = Vi(xn)sm(xn) (35)

vi = 1nα
⊗ sy ⊗ vi (36)

V =

v1 0 0

0 v2 0

0 0 v3

 (37)
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For the kinetic energy operator,

[s′′x]nm = s′′m(xn) (38)[
s′′y
]
nm

= s′′m(yn) (39)

dx2 = 1nα ⊗ sy ⊗ s′′x (40)

dy2 = 1nα
⊗ s′′y ⊗ sx (41)

[ℓα]nm =
ℓα(ℓα + 1)

x 2
n

sm(xn) (42)

[λα]nm =
λα(λα + 1)

y2n
sm(yn) (43)

ℓx =


sy ⊗ ℓ1

sy ⊗ ℓ2
. . .

sy ⊗ ℓnα

 (44)

ℓy =


λ1 ⊗ sx

λ2 ⊗ sx
. . .

λnα
⊗ sx

 (45)

ti = − 1

2µjk
(dx2 − ℓx)−

1

2µi,jk

(
dy2 − ℓy

)
(46)

T =

t1 0 0

0 t2 0

0 0 t3

 (47)

At first glance, the Jacobi kernel operator K has no
sparsity nor structure due to its non-local nature: for a
given collocation point (n,m), in a given Jacobi coordi-
nates i, (xi,n, yi,m) it requires the evaluation of the kernel

at points (xj , yj), in other Jacobi coordinates j. How-
ever, the value of the hyperradius ρ2 = µjkx

2
i + µi,jky

2
i

is independent of the Jacobi coordinates used. As a con-
sequence, for a given collocation point (xi,n, yi,m), the
values taken by the points (xj , yj) lie on a elliptical arc
corresponding to the values of the hyperradius. This arc
will intercept only a finite number of grid tiles leading to
some degree of sparsity.
A basic ingredient in evaluating the Jacobi kernel is the

expression of the Jacobi coordinates (xj ,yj) and (xk,yk)
as a function of (xi,yi). This can be done simply by
inspection of Fig. (1) and we get

−xj =
mj

mj +mk
xi + yi (48a)

yj =
mi

mi +mk
xj + xi (48b)

−xk =
mk

mj +mk
xi − yi (48c)

−yk =
mi

mi +mj
xk + xi (48d)

In absence of external fields, the problem has rotational
invariance. As such, the Jacobi vector xi can be chosen
to lie along the z axis of a laboratory reference frame and
we have ∫∫

dx̂idŷi → 8π2

∫ π

0

dθ sin θ (49)

where θ = ̂(xi,yi) is the polar angle of the Jacobi vector
yi. We then have for the Jacobi kernel matrix element for
Faddeev components (i, j), channels (α, β), collocation
points (nm, pq)

[K]iαnm,jβpq = (1− δij)8π
2Vi(xi,m)

∫ π

0

dθ sin θ
xi,myi,n
xjyj

Y∗
α(0, 0, θ, 0)sq(xj)sp(yj)Yβ(θxj

, φxj
, θyj

, φyj
) (50)

where all quantities relative to the j Faddeev component
are functions of θ through eqs. (48).

Local operators have a density vanishing in O(1/N),
where N = ncnαnynx is the total dimension of the op-
erators, due to their banded structure. The density of
the kernel operator is of the order of a few percent in our

experience.
Finally, we work out explicitly the simplification aris-

ing from identical particles as well as the expression of the
total wavefunction Ψ. When expressing the Schrödinger
equation in terms of block operators for the different Fad-
deev components, we have
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for 3 types of particles



t1 + v1 − E11 0 0

0 t2 + v2 − E12 0

0 0 t3 + v3 − E13

+

 0 K12 K13

K21 0 K23

K31 K32 0



ϕ1

ϕ2

ϕ3

 = 0

Ψ = ϕ1(x1,y1) + ϕ2(x2,y2) + ϕ3(x3,y3)

(51)

for 2 types of particles4


[(

t1 + v1 − E11 0

0 t2 + v2 − E12

)
+

(
0 2K12

K21 K23

)](
ϕ1

ϕ2

)
= 0

Ψ = ϕ1(x1,y1) + ϕ2(x2,y2) + ϕ2(x3,y3)

(52)

for 1 type of particle

{[(
t1 + v1 − E11

)
+
(
2K12

)](
ϕ1

)
= 0

Ψ = ϕ1(x1,y1) + ϕ1(x2,y2) + ϕ1(x3,y3)
(53)
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4 We consider particles 2 and 3 identical.
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