
HAL Id: hal-04814278
https://hal.science/hal-04814278v1

Submitted on 2 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stabilization of aperiodic sampled-data switched affine
systems to hybrid limit cycles

Carolina Albea, Mathias Serieye, Alexandre Seuret, Marc Jungers

To cite this version:
Carolina Albea, Mathias Serieye, Alexandre Seuret, Marc Jungers. Stabilization of aperiodic sampled-
data switched affine systems to hybrid limit cycles. European Journal of Control, 2024, 79, pp.101094.
�10.1016/j.ejcon.2024.101094�. �hal-04814278�

https://hal.science/hal-04814278v1
https://hal.archives-ouvertes.fr


Stabilization of aperiodic sampled-data switched
affine systems to hybrid limit cycles

Carolina Albeaa, Mathias Serieyeb, Alexandre Seureta, Marc Jungersc

aUniversidad de Sevilla, Avd. de los Descubrimientos s/n, Sevilla, 41092, Spain.
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Abstract

This paper deals with the stabilization of aperiodic sampled-data switched
affine systems to a predetermined hybrid limit cycle using a hybrid dy-
namical system representation and a control Lyapunov function approach.
Some preliminaries on the hybrid dynamical system formalism provide
the framework for modeling switched affine systems followed by defini-
tions on hybrid limit cycles and related notions. The main result, based
on simple Linear Matrix Inequalities (LMI), guarantees that the solutions
to the closed-loop system converge to a hybrid limit cycle defined by the
states, functioning modes with their corresponding dwell times. The the-
oretical results are evaluated on academic examples and demonstrate the
potential and the originality of the method over the recent literature.

Keywords: Hybrid dynamical systems, Hybrid limit cycles, LMI, Control
Lyapunov function.

1. Introduction

Hybrid systems represent a class of dynamical systems that can be de-
scribed by a combination of continuous- and discrete-time dynamics. This
allows us to portray a wide range of systems encountered on many occa-
sions in different fields of application including power electronic, robotic
or biology [11], [18], [12].

As a subclass, switched systems can be described as a family of regular
systems and a rule orchestrating which one to follow at each time. This



rule is of great importance when considering switched affine systems, es-
pecially from the control point of view since it represents the only solution
to control the system. Furthermore, the fact that the subsystems do not
necessarily share a common equilibrium prevents, in general, from the
asymptotic stabilization to a single equilibrium point. Numerous contri-
butions have been motivated by the question of stabilizing switched affine
systems to an operating point because of this characteristic [1], [10]. The
drawback of many results in continuous-time is an arbitrarily high switch-
ing frequency to maintain the state trajectories in the vicinity of the desired
equilibrium, generating eventually a Zeno behavior, i.e., an infinite num-
ber of switches in a bounded interval of the ordinary time (see [17, Def.
2.5]).

For the purpose of implementing the control input or due to physical
constraints, it is then necessary to relax the control objectives. A common
method is to design a sampled-data switching function, through either a
continuous-time model [2],[20] or the discretized model [14],[27]. How-
ever, it is important to note that the resulting methods only ensure practi-
cal stability, meaning that the convergence is only guaranteed towards the
surrounding of the desired operating point. Once a solution reaches that
region, nothing can be said about the behavior of the state trajectories. To
characterize in a thinner manner the steady state, an interesting solution
is to consider the stabilization to a limit cycle.

Indeed, apart from equilibrium points, dynamical systems may show
asymptotic behaviors such as limit cycles, that are defined as closed and
isolated trajectories resulting from periodic solutions. Limit cycles are a
specific case of limit sets and their study was initiated at first by H. Poin-
caré [24]. Through his researches, H. Poincaré provides a simple character-
ization of !-limit sets for dynamical systems in dimension 2. Results that
are not easy to generalize in higher dimensions nor in the hybrid system
framework, remain relevant in this context. For instance, the reader may
refer to the cases of piece-wise linear hybrid systems [16], switching sys-
tems [21], relay feedback systems [22], piece-wise affine systems [23] or,
more generally, hybrid systems [30]. In most of the cases, the approach to
analyze the stability of a limit cycle is to derive the Poincaré-Bendixon the-
orem. One of the main difficulties is, however, to determine the switching
instants related to that limit cycle. A first step to circumvent this issue was
to consider discrete-time switched affine systems such as in [13] and lat-
ter [28]. In both papers, the authors proposed a control law design based



on the resolution of a linear matrix inequality (LMI) problem originating
from [7] on periodic systems. On the other hand, the two proposed control
laws are different and so are the contributions. Reference [13] focuses on
the convergence of the system’s states to the periodic state-trajectories us-
ing a time-varying control law, while the authors from [28] came up with
a time-independent control law allowing to extend the result to the case
of uncertain switched affine systems, presenting then additional robust-
ness compared to the first solution. In a second step, the authors of [13]
derive their result to the case of continuous-time switched affine systems
[15], where the steady state is forced to be periodic.

In this paper, the hybrid dynamical system framework is adopted to
model switched affine systems following the paradigm given in [17]. Such
a formulation has been already proposed in [33, 34] or in [2]. By using
this formulation, this work focuses on the design of a closed-loop hybrid
dynamical system, guaranteeing the Uniformly Globally Asymptotically
Stability (UGAS) property of a given attractor by solving LMIs. This at-
tractor is characterized by a hybrid limit cycle defined by the states, func-
tioning modes and their corresponding dwell times, which is not neces-
sarily assumed to be uniform for all modes. To do so, the definition of
hybrid limit cycles and the conditions of their existence are adapted to the
current formalism following the thread given in [28]. The remainder of
the paper concerns to compare our result with previous ones and some
illustrative examples with a short part on the selection of the cycle to min-
imize a given cost function aiming at evaluating the amplitude of the cor-
responding limit cycle of the plant and its distance to a desired functioning
point.

Hence, the main contributions of this paper are:

• To provide UGAS property, which implies robustness of the system
with respect to measurement errors, for instance [17, Chap.3].

• To design controllers that consider the aperiodic sampled-data switch-
ing, different to discrete-time or continuous-time approaches where
the switching are periodic.

• To improve the transient time, which is an indirect result obtained of
considering the real trajectory of the signals, i.e., comprising conti-
nuous-time and discrete-time signals.



Notations: Throughout the paper, N (N�) denotes the set of (strictly pos-
itive) natural numbers, R the real numbers, Rn the n-dimensional Eu-
clidean space and Rn�m the set of all real n � m matrices. For any n in
N, matrix In denotes the identity matrix of Rn�n. When no confusion is
possible, the subscript of this matrix that precises its dimension will be
omitted. For any matrix M of Rn�n, the notation M � 0 (M � 0) means
that M is symmetric positive (negative) definite and det(M) represents
its determinant. The set of symmetric positive definite matrix of Rn�n is
denoted as Sn+. Notation diagNi=0Mi stands for the block diagonal matrix
composed of the elements Mi in the block position (i; i). k � k denotes the
Euclidean norm. For a symmetric positive definite matrix P and a vector
x, we denote kxkP =

p
x>Px, the weighted norm. For a symmetric matrix,

�m(�) and �M(�) denote its minimal and maximal eigenvalues respectively.

2. Sampled-data switching affine model

2.1. System data
Consider the continuous-time switched affine system governed by

8><
>:

_x(t) = A�(t)x(t) +B�(t)

�(t) 2 u(x(tk)) � K; 8t 2 [tk; tk+1)
x0 2 Rn;

(1)

where x(t) 2 Rn is the state vector and x0 its initial condition, �(t) is a
sampled-data switching signal which indicates the active mode in each
time sampling interval [tk; tk+1) and u the state feedback control law to
be designed. The sequence ftkgk2N is a strictly increasing sequence of time
instants for which it is assumed that there exist two positive scalars Tm > 0
and TM > 0 such that the difference between two successive sampling
instants verifies

tk+1 � tk 2 [Tm; TM ]; 8k 2 N; (2)

so that the sequence ftkgk2N tends to infinity as k tends to infinity. Finally,
system (1) is composed of K subsystems defined through matrices Ai 2
Rn�n and Bi 2 Rn�1 for all i 2 K = f1; 2; ::;Kg, which are assumed to be
constant and known.



2.2. General hybrid dynamical model
Since switched affine systems, which may occur after given one or sev-

eral dwell times defined a priori by the designer, represent a subclass of
hybrid systems, it is reasonable to model (1) with the hybrid formalism
given in [17]. The switches of the control law that may occur after given
one or several dwell times defined a priori by the designer, correspond to
the discrete-time behavior in hybrid systems while the continuous-time
behavior is represented by the differential equation given in (1). More
formally, the sampled-data model written in the framework of hybrid dy-
namical systems is given by

H0 :

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

2
6664
_x
_�
_�
_T

3
7775 = f0(x; �; �; T ) (x; �; �; T ) 2 C0

2
6664
x+

�+

�+

T+

3
7775 2 G0(x; �; �; T ) (x; �; �; T ) 2 D0:

(3)

In this formulation, new state variables � and T have been introduced
and represent a timer that accounts for the time elapsed since the last jump
and the length of the sampling interval, respectively. The state vector of
the hybrid system denoted as (x; �; �; T ) belongs to the set H0 given by

H0 = Rn �K� [0; TM ]� [Tm; TM ]: (4)

In equation (3), the (set-valued) maps f0 and G0 capture respectively
the flow and jump maps, defined as follows:

f0(x; �; �; T ) =

2
6664
A�x+B�

0
1
0

3
7775 (x; �; �; T ) 2 H0;

G0(x; �; �; T ) =

2
6664

x
u(x; �; �; T )

0
[Tm; TM ]

3
7775 (x; �; �; T ) 2 H0;

(5)



where u(x; �; �; T ) is the control law to be designed. Equation (3) also
indicates the sets C0 and D0, referred to as the ”flow” and ”jump” sets
respectively. Depending in which set the state (x; �; �; T ) is, it changes ac-
cording to one of the dynamics. It is worth noting that, according to these
maps, the switching signals � 2 K and T 2 [Tm; TM ] remain constant while
(x; �; �; T ) is in C0 and the state vector x 2 Rn is constant when (x; �; �; T )
is in D0. To model the sampled-data switched affine system given in (1)
using the hybrid formalism, the sets C0 andD0 must be designed such that
the system jumps only when the variable � is equal to T 2 [Tm; TM ]. The
flow and jump set are thus defined as follows

C0 = f(x; �; �; T ) 2 H0 : � � Tg
D0 = f(x; �; �; T ) 2 H0 : � = Tg: (6)

Other hybrid models can be derived for the sampled-data switched
affine systems and the one given above is not unique. For instance, it
is possible to remove variable T from H0 by modifying the timer. More
precisely, one can introduce a timer � 0 defined by _� 0 = �1 during flows
and � 0+ 2 [Tm; TM ]. The flow and jump sets would then be defined by
conditions � � 0 and � = 0, respectively. The interest of introducing the
variable T to denote the length of the sampling interval will appear in the
next developments, more specifically in Section 4.

3. Hybrid limit cycles of switched affine systems

Through this section, the objective is to clarify the notion of hybrid
limit cycles considered in this paper. Indeed, switched affine systems, as
a particular class of hybrid and nonlinear systems, may exhibit a natu-
ral periodic behavior and various studies [3, 14, 27] have shown such a
behavior when the control action is constrained by periodic updates for
instance. It is then relevant to consider the convergence of the solutions to
the switched affine systems to one or several time-varying steady states.
Limit cycles generally refer to isolated and closed trajectories [31, 32] or
to limit sets which are closed orbits [26]. In any case, limit cycles repre-
sent the stationary state of sustained oscillations, which do not depend on
initial conditions but depend exclusively on the parameters of the system,
i.e., they are intrinsic properties.



3.1. Definitions of hybrid limit cycles
Let us consider the following definitions borrowed from [17].

Definition 1. For any solution � to hybrid system H0, the subset dom� �
R�0 � N is a hybrid time domain if for each (T ; J) 2 dom�,

dom� \ ([0; T ]� f0; :::; Jg) =
J[

k=0

([tk; tk+1]� fkg):

Definition 2. A solution � to systemH0 is complete if dom� is unbounded.

Definition 3 (Hybrid limit cycle). For a given complete solution �� to H0,
with a given state feedback u�(x; �; �; T ), the orbit ��(t; k), (t; k) 2 dom��

is said to be a hybrid limit cycle under two conditions:

1. It is periodic, i.e., there exist a scalar T � > 0 and an integer N� > 0 such
that

��(t+T �; k+N�) = ��(t; k); 8(t; k) 2 dom��:

2. It is isolated, i.e., for a given switching signal ��, there exists no other
periodic orbit in its neighborhood.

According to the dynamics of hybrid system (3), the switching signal
� as well as the dwell time T are piece-wise constant functions. In the
sequel, the switching sequence and the dwell time sequences we are re-
ferring to will stand for the sequence f�(tk; k)g1k=0 and fT (tk; k)g1k=0. We
will use notations � and T to denote the switching rules, i.e. f�(k)g1k=0 =
f�(tk; k)g1k=0, and the dwell time associated with each switching rule, i.e.
fT(k)g1k=0 = fT (tk; k)g1k=0, respectively. If a switching sequence is peri-
odic, we will refer as a cycle in a set1 C � KN � RN defined below.

Definition 4 (Set of cycles). The set of periodic sequences from N to K � R,
denoted as C � KN � RN, are defined as

C=
n
�� = (�;T) 2 KN�RN : 9N 2N�; 8` 2 N; ��(`+N) = ��(`)

o
: (7)

1Notation KN � RN stands for the set of functions from N to K� R.



Finally, for a given cycle �� 2 C, we define the minimal period of �� as N��

and the minimal domain as D�� = f1; 2; : : : ; N��g and the following modulo
notation is introduced

b`c�� = ((`� 1) modN��) + 1; 8` 2 N; ` � 1:

That is, in particular, b`c�� = `, for any ` 2 D�� and bN�� + 1c�� = 1.

3.2. Necessary and sufficient conditions of existence of periodic solutions
In the previous section, a quite general definition of hybrid limit cycles

has been given. The interest is here to characterize the limit cycles of sys-
tem (3), by introducing a periodic control law, which is defined using a
given cycle �� = (�;T) in C, i.e., the closed-loop system is given byH0 with
the periodic control law �(t; k) = �(k) and T (t; k) = T(k), for all (t; k) in
dom(�).

Since the jumps occur eventually each time the timer � reaches T , it
allows us to take benefit of the discrete-time (linear) periodic system lit-
erature as for instance [6, 8]. The necessary and sufficient conditions to
the existence of a periodic solution of �� were introduced in [28] and are
adapted here to the hybrid system framework. Let us first introduce some
notations that will be useful afterwards. With the periodic control law de-
fined by �� = (�;T), the relation between two successive switching instants
is given, as in [26], by

x(tk+1; k) = ���(k)x(tk; k) + ���(k); 8k 2 N; (8)

where

���(k) = eA�(k)T(k) and ���(k) =
Z T(k)

0
eA�(k)(T(k)�s)B�(k)ds; k 2 N: (9)

With the periodic control law, it is clear that the state variables �, � and
T are by construction periodic of period N�� . To ensure that the orbit ofH0

is periodic of period N�� , the following equality must hold

x(tk; k) = x(tk+N�� ; k +N��):

The periodic orbit will then be denoted by �which is defined as follows

�(�; i) = eA�(i)� �(0; i) +
R �
0 e

A�(i)(��s)B�(i)ds; 8i 2 D�� ;
�(T(i); i) = �(0; bi+ 1c��): (10)



×
ρ(0,1) = ρ(T4,4)

×

×

ρ̇(τ, i) = A1ρ(τ, i) + B1, i ∈ {1, 2, 3}
ρ̇(τ, 4) = A2ρ(τ, 4) + B2

×

ρ(τ,2)

ρ(0,3) = ρ(T2,2)

ρ(0,4) = ρ(T3,3)

ρ(0,2) = ρ(T1,1)
ρ(τ,1)

ρ(τ,3)

ρ(τ,4)

Figure 1: Illustration of the construction of a plant limit cycle for system (1) with K =
f1; 2g, � = f1; 1; 1; 2g, T = fT1; T2; T3; T4g, where Ti, for all i 2 D�� , are strictly positive
scalars and D�� = f1; 2; 3; 4g. The blue (resp. red) arrows represent the trajectories of
�(�; i), for all � 2 [0; Ti] and i 2 D�� associated with mode 1 (resp. 2) such that �(i) = 1
(resp. �(i) = 2).

To better understand the previous calculations and the associated no-
tations, Figure 1 is included to illustrate the following relevant notions:

• plant limit cycle f�(�; i)g�2[0;T(i)];i2D�� and

• hybrid limit cycle f�(�; i); �; �(i);T(i)g�2[0;T(i)];i2D�� .

Before stating the next lemma on the existence and uniqueness of pe-
riodic orbits ofH0, let us define the monodromy matrix associated with any
cycle �� = (�;T) 2 C of period N�� , which corresponds to the transition
matrix over the period of the cycle and which is given by

���� =
N��Y
i=1

���(i); (11)

where matrices ���(i) are given in (9).

Lemma 1. For a given cycle �� = (�;T) 2 C, the hybrid system H0 admits a
unique periodic solution ��(t; k) if and only if 1 is not an eigenvalue of (����)

N�� .



Moreover, if this assumption holds, the periodic solution is given by
2
6664
x�(t; k)
��(t; k)
� �(t; k)
T �(t; k)

3
7775 =

2
6664
�(� (t; k); bk � �c��)

�(k � �)
� (t; k)

T(k � �)

3
7775 ; 8(t; k) 2 dom��; (12)

where � 2 D�� and � is defined in (10).

Remark 1. Before presenting the proof of this lemma, let us recall that a similar
study of limit cycles has been already conducted in [13] in the context of discrete-
time system and in [15] in the context of sampled-data systems. Nevertheless,
these original contributions present the existence of periodic solutions (rather than
limit cycles) as an assumption, while Lemma 1 provides a necessary and sufficient
constructive condition for the existence of a periodic solution toH0.

Proof. Noticing that (10) holds for any (t; k) 2 dom�, in particular, at
each jump, as x� remains constant during jumps, this implies

�(0; bk + 1c��) = �(T(k); bkc��) = ���(k) �(0; bkc��) + ���(k); 8k 2 N;

where ���(i) and ���(i) are defined in (9) for all i 2 D�� . Gathering them

in the vector � =
h
�>(0; 1); : : : ; �>(0; N��)

i>
, simple calculations yield the

following relation
(InN�� � A��) � = B�� ; (13)

where, if N�� = 1, A�� = ���(1) and B�� = ���(1) and, if N�� � 1, they are given
by

A�� =

2
66664

0 : : : 0 ���(N��)

���(1) 0
. . . ...

���(N���1) 0

3
77775 ; B�� =

2
66664

���(N��)

���(1)
...

���(N���1)

3
77775 : (14)

The plant limit cycle �(� (t; k); bkc��), for all (t; k) 2 dom�� is completely
defined and is unique if there exists a solution to (13). Therefore, the proof
is reduced to showing that the condition on the monodromy matrix ����

implies that (13) has a unique solution. First, it can be noticed that matrix
A�� has a close relation to matrix ��� , indeed, the following equality holds

det (�InN�� � A��) = det
�
�N��In � ����

�
: (15)



Moreover, the spectrum of the cyclic augmented matrix A�� is the set of
all N��-roots of the n eigenvalues of the monodromy matrix (see the argu-
ment of [6, page 322, Section 3.2]). Hence, the previous equation shows
that the monodromy matrix elevated to the power N�� does not have the
eigenvalue 1 if and only if the matrix (InN�� � A��) is non-singular and con-
firms the uniqueness of the periodic solution of period N�� .

3.3. Necessary and sufficient conditions of existence of hybrid limit cycles
Note that the previous lemma only guarantees the existence and the

uniqueness of a periodic solution to hybrid systemH0 of period N�� . How-
ever, the condition therein does not ensure that this solution is isolated,
as required for being a limit cycle. The question is now to understand
whether there exists other periodic solutions to the same system, but with
a larger period MN�� , for any integer M � 1. This is formulated in the
following lemma.

Lemma 2. For a given cycle �� 2 C, the hybrid system H0 admits a unique limit
cycle if and only if 1 is not an eigenvalue of (����)

M , for any strictly positive integer
M .

Proof. The proof is available in [28, Lemma 1]. The underlying idea is to
avoid the case where the monodromy matrix has an eigenvalue which is
an M -root of 1, which would make the periodic trajectory not isolated.

To illustrate the difference between Lemmas 1 and 2, consider the fol-
lowing example, with K = f1g, A1 = [ 0 �11 0 ], B1 = [ 10 ] and the cycle of
period N�� = 1 and ��1 = (�1(1) = 1;T(1) = �=2). Simple computations
yield

eA1� =

"
cos(� ) � sin(� )
sin(� ) cos(� )

#
;
Z �

0
eA1(��s)B1ds =

"
sin(� )

1� cos(� )

#
;

and with � = T(1) = �=2, we obtain ���1 = [ 0 �11 0 ] and ���1 = [ 11 ]. In such a
situation, the following statements hold:

• Consider cycle ��1 = (f1g; f�
2
g). Noting that the spectrum of ����1 =

[ 0 �11 0 ] does not admit 1 as an eigenvalue, since the eigenvalues of
[ 0 �11 0 ] are �i, which are 4-roots of 1. Therefore, Lemma 1 guarantees
the existence of a unique periodic solution of period T(1), which is
the solution

�(t; k) = �(� ) =

"
cos(� ) � sin(� )
sin(� ) cos(� )

# "
0
1

#
+

"
sin(� )

1� cos(� )

#
=

"
0
1

#
;



that is constant during flows and jumps. However, this constant (and
periodic) solution is not isolated as commented below.

• Consider the same example but with ��2 = (f1; 1; 1; 1g; f�
2
; �
2
; �
2
; �
2
g).

The monodromy matrix associated with this cycle

����2 = (����1)
4 = I;

so that the conditions of Lemma 2 are not verified. Consequently,
Lemma 2 states that the constant trajectory characterized above is
not isolated. To see this issue, let us introduce, the solution given by

�(�; i) =

" �" sin (� + (i� 1)�=2)
1 + " cos (� + (i� 1)�=2)

#
;

for any scalar " in R. This solution is periodic of period 4Ts. How-
ever, since " is arbitrary, this periodic solution is not isolated.

Corollary 1. If the monodromy matrix ��� is Schur stable, then the hybrid system
H0 admits a unique hybrid limit cycle.

Proof. Recalling equation (15), if A�� or, equivalently, ��� is Schur sta-
ble, the magnitude of all their eigenvalues are strictly less than 1. Conse-
quently, none of them can be an M -root of 1. Then, Lemma 2 ensures the
existence and uniqueness of a limit cycle.

4. Problem formulation

Recall that the objective is to ensure the convergence and stability of
any solution � to �� of the hybrid system H0. Therefore, it is more suited
to rewrite H0 in a hybrid system that depends on the position of cycle
(it will be defined by variable �), instead of the functioning mode �. We
denote the hybrid state vector by � = (x; �; �; T ) and we define the hybrid
systemH as follows

H :

(
_� = f(�) � 2 C
�+2 G(�) � 2 D; (16)



with function f and the set-valued map G now given by

f(�) =

2
6664
A�(�)x+B�(�)

0
1
0

3
7775 and G(�) =

8>>><
>>>:

2
6664

x
q
0

T(q)

3
7775
9>>>=
>>>;
q2u(�);

where u(�) is a set valued map from H = Rn � D�� � [0; TM ] � fT(i)gi2D�� ,
where TM = maxi2D�� T(i) and where only variable � from H0 has been
replaced by � which lies in D�� . Hence the hybrid state vector � belongs to
the set H. Likewise, the flow set and the jump set are now

C =

8>>><
>>>:
� 2 H : � =

2
6664
x
�
�
T

3
7775 ; � � T

9>>>=
>>>;

and D =

8>>><
>>>:
� 2 H : � =

2
6664
x
�
�
T

3
7775 ; � = T

9>>>=
>>>;
:

(17)
The well-posedness in the context of hybrid dynamical systems allows

to apply several useful results [17, Chap. 6]. The selection of the control
law u(x; �; �; T ) is critical to ensure this property. Following [17, Th. 6.8,
p. 122], the sufficient conditions of well-posedness are summarized in the
following proposition.

Proposition 1. [17, Th. 6.8, p. 122] System H (f;G; C;D) is well-posed if it
verifies the basic hybrid conditions, stated below

• Sets C and D are closed subsets of H � Rn+3.

• f : Rn+3 ⇒ Rn+3 is outer semi-continuous and locally bounded relative to
C, C � domF , and f(�) is convex for every � 2 C;

• G : Rn+3 ⇒ Rn+3 is outer semi-continuous and locally bounded relative to
D, D � domG.

Now, we are in position to formulate the problem.

Problem 1. Consider the hybrid systemH. Then the objectives are:

(i) To design a control law that ensures the UGAS of the selected hybrid limit
cycle designed by �� = (�;T), where the dwell times are not necessarily
uniform.



(ii) To select a hybrid limit cycle according to some system specifications: posi-
tion of each �(0; i), i 2 D�� , distances to the operating point and amplitude
of the trajectories.

5. Main result

5.1. Stabilization to a hybrid limit cycle
Stability properties of a hybrid limit cycle ofH associated with a given

cycle �� = (�;T) 2 C is analyzed here and later we will focus on the selec-
tion of a hybrid limit cycle.

Theorem 1. For a cycle �� = (�;T) 2 C, assume that there exist matrices Pi in
Sn+, for i 2 D�� , solution to the following inequalities

Pi � 0; �i =�
>
��(i)Pbi+1c�����(i) � Pi � 0; 8i 2 D�� ; (18)

where matrices ���(i) are given in (9). Then, the following statements hold:

(i) System H admits a hybrid limit cycle (12), associated with cycle ��, i.e., �
given in (10) is unique and isolated.

(ii) System (16) with the control law

u(�) =

(
argmin
i2D��

(x� �(0; i))> Pi(0) (x� �(0; i))

)
� K; (19)

where the �(�; i)’s have been defined in (10), and where

Pi(� ) = e
��A>

�(i)Pie
��A�(i) ; 8(i; � ) 2 D�� � [0; TM ];

satisfies the basic hybrid conditions in Proposition 1.

(iii) The set

A =

8>>><
>>>:
� 2 H : � =

2
6664
�(�; i)
i
�

T(i)

3
7775 ; � � T(i); 8i 2 D��

9>>>=
>>>;

(20)

is an attractor, i.e., is UGAS for system (16) with the control law in (19).



(iv) Moreover, if the components f�(0; i)gi2D�� are two by two different, then
the state-dependent control law u(�) converges in finite time to a periodic
function, which is a shifted version of ��. Specifically, there exist k0 2 N
and an integer � 2 D�� such that

u(�(tk; k)) = f�(k+�)g; T (u(�(tk; k))) = T(k+�); 8k � k0: (21)

Proof. Each item shall be proven one by one.
Proof of (i): Consider �P = diagN��

i=1 Pi, where matrices Pi are solution to (18).
Therefore, we can see from (14) that

A>�� �PA�� � �P = diagN��
i=1

�
�>��(i)Pbi+1c�����(i) � Pi

�
� 0: (22)

Hence, matrix A�� is Schur stable as well as the associated monodromy
matrix ���� . The LMI condition given in (18) is a sufficient condition to the
existence of a unique hybrid limit cycle as stated in Corollary 1.

Proof of (ii): The objective is here to show that H satisfies the basic hybrid
conditions in Proposition 1 with control law (19). The first and the second
ones trivially hold since f is not a set valued map but a continuous func-
tion. The more challenging part relies on the last item of Proposition 1,
which concerns the outer semi-continuity of G, more precisely of u in (19).
Let us first recall the definition of outer semi-continuous functions in the
context of this paper. The set-valued mapping

� : � 7! argmini2D��
(x� �(�; i))> Pi(� ) (x� �(�; i))

is outer semi-continuous (osc) at �� if

lim sup
�!��

�(�) � �(��);

where the operator lim sup is defined for the set-valued mapping in [25,
Section 5.B]).

Then, let us note that functions � 7! (x� �(�; i))> Pi(� ) (x� �(�; i))
are continuous and locally bounded, for all i 2 D�� . Following the proof
techniques in [25, Ex.5.22, p.162], the function � is outer semi-continuous,
which is exactly the last item of Proposition 1. Hence, system H with the
control law (19) satisfies the basic hybrid conditions.



Proof of (iii): Consider the candidate Lyapunov function given by

V (�) = (x� �(�; �))> e�"�P�(� ) (x� �(�; �)) ; 8� 2 H; (23)

where " is a sufficiently small positive scalar to be defined.
Let us first note that function V (�) is quadratic in x for all �; �;T(i) in

the compact set D�� � [0; TM ] � fT(i)gi2D�� and, thus, is locally Lipschitz,
radially unbounded. To show this, let us first notice that, by assumption
matrices Pi are symmetric positive definite and that matrices eA�(i)� are
non singular for all (i; � ) in D�� � [0; TM ]. This implies that matrices Pi(� )
are also symmetric positive definite for all (i; � ) in D�� � [0; TM ]. Then,
the continuity of matrices function considered over the compact set D�� �
[0; TM ] ensures that there exists �1 > 0 such that

�1In � Pi(� ); 8(i; � ) 2 D�� � [0; TM ]: (24)

Then, re-injecting this inequality in the definition of V , we get that

V (�) � �1e
�"�kx� �(�; � )k2 � �1e

�"TM j�j2A; 8� 2 H; (25)

which implies its strict positiveness for all � =2 A. Moreover it can be easily
verified that V (�) = 0 if � 2 A. The characterization of A as a subset of
H such that V (�) = 0 and � � T(i) renders A a closed set. In addition,
since matrices Pi, and consequently Pi(� ), are positive definite, A is also
bounded. Therefore, A is a compact subset of H.

Following the argument of [17, Th.3.18], one shall ensure that the deriva-
tive of V (�) along the flows is strictly negative for all � 2 C n A and that
the difference of V (�) across the jumps is strictly negative for all � 2 DnA.
More formally, this means that there exists a sufficient small � > 0 the next
two inequalities need to hold

hrV (�); f(�)i � ��j�j2A 8� 2 C n A; (26)
�V (�) = max

g2G(�)\(C[D)
V (g)� V (�) � ��j�j2A 8� 2 D n A; (27)

First note that during flows _�(�; �) = A�(�)�(�; �)+B�(�), which is direct
from the definition given before (x�(t; k) = �(�; bkc��)). Hence, the next
equations hold

d
dt
[x� �(�; �)] = A�(�)x+B�(�) � A�(�)�(�; �)�B�(�)

= A�(�) (x� �(�; �)) ;
d
dt
(e�"�P�(� )) = �e�"�

�
A>�(�)P�(� )+P�(� )A�(�)+"P�(� )

�
:



The expression of d
dt
V (�) = hrV (�); f(�)i for any � 2 C n A is given by

hrV (�); f(�)i = (x��(�; �))> d

dt

�
e�"�P�(� )

�
(x��(�; �))

+ 2e�"� (x� �(�; �))>A>�(�)P�(� ) (x� �(�; �))

= �" (x��(�; �))>e�"�P�(� ) (x��(�; �)) = �"V (�): (28)

Then, using inequality (25), we get

hrV (�); f(�)i � �"�1e
�"Tm j�j2A:

Since " is a positive scalar, the previous inequality guarantees the sat-
isfaction of the first Lyapunov condition (26).

To complete the proof, we still have to ensure (27), i.e., �V (�) is nega-
tive for all � 2 D nA. Let us prove that V (x; q; 0;T(q))� V (x; �;T(�);T(�))
is negative definite, 8� 2 D�� ; 8q 2 u(x; �;T(�);T(�)). The control law
selects the argument i 2 D�� that minimizes (x��(0; i))>Pi(0) (x��(0; i)).
Hence, we have

V (x; q; 0;T(q)) � V (x; i; 0;T(i)) ; 8i 2 D�� ; 8q 2 u(�):
In particular, selecting i = b� + 1c�� yields

�V (�) �V (x; b� + 1c�� ; 0;T(b� + 1c��))� V (x; �;T(�);T(�))
� (x� �(0; b� + 1c��))> Pb�+1c�� (0) (x� �(0; b� + 1c��))
� (x� �(T(�); �))> e�"T(�)P�(T(�)) (x� �(T(�); �)) :

Since equation (13) guarantees that �(T(�); �) = �(0; b� + 1c��), the
following simplification can be made

�V (�) �(x��(T(�); �))>
�
Pb�+1c�� (0)�e�"T(�)P�(T(�))

�
(x��(T(�); �))

� (x��(T(�); �))>
�
Pb�+1c���e�"T(�)��>��(�)P���1��(�)

�
(x��(T(�); �))

� (x��(T(�); �))>��>��(�)
�
�>��(�)Pb�+1c�����(�)�e�"T(�)P�

�
��1��(�) (x��(T(�); �)) :

The previous inequality can be rewritten using the notation �i defined
in the LMI conditions (18) of Theorem 1. Recalling that e�"TM � e�"T(�), for
all � in D�� , it yields,

�V (�)� (x��(T(�); �))>��>��(�)
�
��+(1�e�"TM )P�

�
��1��(�) (x��(T(�); �)) : (29)



Since 1�e�"T(�) tends to zero as " tends to zero, the satisfaction of LMI
�� � 0 ensures that there exists sufficiently small " > 0 and �2 > 0 such
that

�� � �(1�e�"TM )P� � �2�
>
��(�)���(�):

Re-injecting this expression upper bound into (29) leads to

�V (�)� ��2kx��(T(�); �)k2 � ��2j�j2A; (30)

which corresponds to the second Lyapunov condition in (27). Then proof
is concluded by selecting � = min(�1"e

�"Tm ; �2) to recover exactly condi-
tions (26) and (27).

Proof of (iv): The proof of the last item is obtained by showing that
there exists a sufficiently small and positive � such that if solutions to H
evolve in S� = f�(tk; k) 2 H; V (�) � �2gTD, then the following condition
is satisfied when the trajectory enters in D:

(x(tk+1; k)� �(0; b� + 1c��))>Pb�+1c�� (x(tk+1; k)� �(0; b� + 1c��))
< (x(tk+1; k)� �(0; j))>Pj(x(tk+1; k)� �(0; j)); (31)

for all j 2 D�� , with j 6= b�+1c�� , that is the solution to the next optimization
problem (19) is b�+1c�� . The convergence of the Lyapunov function to zero
has been proven, hence, reaching the level set S� is always possible. The
shift � from equation (21) is determined at time k0 (related to the time
needed to reach S�) thanks to the solution � of the optimization problem.
One should notice that thanks to the equivalence of weighted norms, there
exist constants ci;j > 0; 8(i; j) 2 D�� , such that

kxkPi � ci;jkxkPj : (32)

For example, it is always possible to select ci;j =
q
�M(Pi)=�m(Pj).

Then, thanks to item (ii) and � 2 S", we have,

kx(tk+1; k)� �(0; b� + 1c��)kPb�+1c��
< kx(tk; k)� �(0; �)kP� � �: (33)

Now, from the fact that � is in S", together with equations (8) and (10),
it follows

kx(tk+1; k)� �(0; b� + 1c��)kP� = k���(�)(x(tk; k)� �(0; �))kP�
� k���(�)kP�kx(tk; k)� �(0; �)kP�
� k���(�)kP��;



where k���(�)kP� denotes the matrix norm induced by the weighted norm
k � kP� . Due to relations (32) and triangular inequalities, it yields

k�(0;b�+1c��)��(0; j)kP��k���(�)kP�"
� k�(0; b�+1c��)��(0; j)kP��k��(�)(T�)(x(tk; k)��(0; �))kP�
� k�(0; b� + 1c��)��(0; j)+���(�)(x(tk; k)��(0; �))kP�
� kx(tk+1; k)� �(0; j)kP�
� c�;jkx(tk+1; k)� �(0; j)kPj ; 8j 2 D�� :

Under the condition that all �(0; i)’s are different two by two, it is al-
ways possible to find a positive scalar " such that the strict inequalities
0 < c�;j� < k�(0; b� + 1c��) � �(0; j)kP� � kA�(�)kP�� hold for any j 2 D�� ,
j 6= b� + 1c�� . Combining the two latter inequalities leads to

� < kx(tk+1; k)� �(0; j)kPj ; 8j 2 D��nfb� + 1c��g: (34)

Then, inequalities (33) and (34) yield

kx(tk+1; k)� �(0; b� + 1c��)kPb�+1c��
� � < kx(tk+1; k)� �(0; j)kPj ;

8j 2 D��nfb� + 1c��g:
This last inequality ensures that the argument that minimizes the qua-

dratic terms is b� + 1c�� and concludes the proof.
Theorem 1 provides the hybrid version of [28, Th.1], which was con-

ducted only in the discrete-time framework. Whereas the LMI are the
same as in [13] and [28], Theorem 1 does not only describe the stabiliza-
tion to hybrid limit cycles composed of discrete limit cycles, i.e., the set
of �(0; i)’s but the whole hybrid (continuous and discrete) trajectories that
occur in between these discrete points. This makes the main differences
with respect to [28, Th.1].

Note that the previous analysis can be simplified by consider the Lya-
punov function (23) with " = 0. However, this make that the Lyapunov
function remains constant during flows. To guarantee the uniform asymp-
totic stability of the closed-loop system, one has to invoke a relaxed stabil-
ity condition provided in [29, Th.1].

5.2. Optimal selection
At many occasions, the objective is to steer the state of the switched

system as close as possible to a desired reference point xref 2 Rn to meet



some practical specifications. [28, Prop.2] shows that the hybrid limit cycle
� associated with a selected �� is not affected by any coordinate transfor-
mation.

Theorem 1 presents a stabilization condition to a limit cycle that is char-
acterized by an a priori given cycle �. As different cycles lead to different
limit cycles, an important question concerns the evaluation of the best or
the most appropriate limit cycle to be selected according to a given cost
function, which accounts for instance the distance of the plant limit cy-
cle to a desired functioning point of interest, denoted here as xref in Rn.
This notion refers to the distance of a point xref to the union of N�� single-
tons f�(0; i)gi2D�� . This question was also raised in [15] and latter in [28].
Among the possible ways to build such a cost function, we consider here
the following cost function, defined for a given sampling period Ti

J(��; ��� ; xref) = J1(��; ���) + J2(��; ��� ; xref); 8 (��; ��� ; xref) 2 C � (Rn)N�� �Rn;
(35)

where ��� denotes here the values of the plant limit cycle issued from the
unique solution to (13) for a given cycle ��. Moreover,

J1(��; ���) = sup
i2D��

 
sup
j2D��

(���(0; i)� ���(0; j))
>H1 (���(0; i)� ���(0; j))

!
;

J2(��; ��� ; xref) =

0
@xref � 1

N��

X
i2D��

���(0; i)

1
A
>

H2

0
@xref � 1

N��

X
i2D��

���(0; i)

1
A ;

where H1 and H2 are two positive (semi-)definite matrices. The first term
of the cost function aims at evaluating the amplitude of the oscillations
within the limit cycle. The second one refers to the distance between the
desired position xref to the average values of the plant limit cycle. The
cost function defined in (35) is based on the knowledge of �(0; i), i 2 D�� .
It might be possible to consider more complex cost functions, which con-
sider the whole arcs (�(�; i); i; �; T ) in A. Following the previous discus-
sion, the following proposition is stated.

Proposition 2. Consider a given bounded subset 
 � C, such that for any � 2

, the monodromy matrix ��� is Schur stable. For a given desired reference xref ,
the optimal cycle and plant limit cycle is the one that is solution to the following
optimization problem

�� 2 argmin�2
 J(�; xref ; ��)
s.t. ��� is Schur stable. (36)



This optimization problem provides an optimal solution with respect
to the distance of the ��(0; i) to the reference xref . However, other opti-
mization metrics can be used. Note that the previous optimization prob-
lem does not involve the decision variables of the LMI condition.

6. Comparison with previous results

This section proposes a comparison between the present contribution
and the few recent papers ([15], [13] and [28]) from the existing literature
on limit cycles and switched affine systems.

• Discrete vs. Sampled-data systems: [13] and [28] deal with discrete-time
switched affine systems arising from a periodic discretization. The
analysis provided therein does not allow concluding on the inter-
sampling behavior. On the contrary, Theorem 1 presents a contribu-
tion on aperiodic sampled-data control providing an extended anal-
ysis of [28], which also accounts for the inter-sampling period.
This is made possible thanks to hybrid dynamical systems formula-
tion, which takes into account both the continuous- and the discrete-
time behaviors of the aperiodic sampled-data systems thanks to the
associated Lyapunov function.

• Interpretation of the LMI condition: It is worth noting that the LMI con-
dition in the theorem is the same as the one presented in [13] or [28],
apart from a shift of index in the matrices Pi. However, as for the
LMI condition for the stability analysis or stabilization of discrete-
time and sampled-data systems, the same LMI condition can have
different interpretations. In this paper, we show that the same LMI
condition provided additional values to the contribution presented
in [13] or [28]. More precisely, the LMI condition in this paper guar-
antees

– the existence of a discrete-time limit cycle consisting of points
f�(0; i)gi2D�� , which was only an assumption in [13]. In addi-
tion, the authors of [13] only regarded the problem of periodic
solutions of the switched affine systems, without studying the
isolation property of this solution. As discussed in Section 3.3,
the isolation property requires a dedicated analysis.



– The existence of a discrete-time hybrid limit cycle consisting
of points f�(0; i); �(i);T(i)gi2D�� . Indeed, in [28], we have de-
monstrated that the control law provided in [13] does not nec-
essarily converge to a hybrid limit cycle, i.e., the state vector
and the control law and its dwell time, but only to a plant limit
cycle, i.e., only the projection of the hybrid limit cycle in x (see
example 2 in [28]).

– The existence of a continuous-time hybrid limit cycle consist-
ing of points f�(�; i); �(i); �;T(i)gi2D�� ;�2[0;T(i)], including modes,
timer and dwell time, in addition to the plant limit cycle.

These guarantees are obtained through the construction of our ma-
trix A� which differs to the one used in [13]. This former is the sum of
a block diagonal matrix composed of matrices ���(i) and a block circu-
lant matrix composed of the identity matrix, i.e., the reverse process
as A� in (14). This small difference simplifies the proof of existence
of a hybrid limit cycle since the LMI condition directly and elegantly
ensures that matrix A� is Schur stable.

• Comparison of the control strategies of Theorem 1 and [13]: First of all,
from the intuitive point of view, the control law proposed in [13]
aims at finding the mode that minimizes the increment of the Lya-
punov function while our control law aims at minimizing the Lya-
punov function itself. This small difference makes that the control
law in [13] requires the exact knowledge of the system transition ma-
trices ���(i), which prevents from extending the result to the uncertain
case as demonstrated in [28]. This extension is not presented in this
paper but will be treated in future work.
Second, the control law in [13] is time-dependent, while ours is a
pure state-feedback, which makes it more robust with respect to the
initial conditions. The authors of [13] have included an initialization
process to find the best initial selection of the mode to be included in
the control law. Our solution does not require such an initialization
process.

• Comparison of the control strategies of Theorem 1 and [15, Theorem 1]: The
authors of [15] propose a different solution to the stabilization prob-
lem of periodic sampled-data switched affine systems. The main dif-
ferences are listed below:



– this paper addresses the case of periodic sampled-data switched
affine system, while here we have introduced the possibility to
consider several dwell times, that are not necessarily commen-
surate to sub-sampling time.

– The existence of a plant limit cycle is not studied therein but is
presented as an assumption on the existence of a periodic func-
tion.

– The expression of the control law proposed in [15] is expressed
using an integral of a quadratic expression of state variable over
the inter-sampling period. Compared to our simple control law
where the parameters are the solution of the LMI condition,
the control law in [15] thus requires several manipulations and
computations of integral to be evaluated. Even though these
calculations are performed off-line, it is required to do them
with caution.

7. Alternative stabilization conditions

The authors of [15] provide a stability condition in their Theorem 2
which is expressed in terms of a timer-dependent differential LMI condi-
tion, which is rewritten using our notation:

P (t)A�(i) + A>�(i)P (t) + _P (t) � 0; 8t 2
2
4i�1X
j=1

T(j);
iX

j=1

T(j)

1
A ; 8i 2 D�� ;

P (0) = P (
P

j2D��
T(j)):

It is then relevant to understand the differences and the advantages be-
tween the condition (18) and the previous condition. To do so, the author
of [9] studied equivalent formulation of LMI (18) in the case of periodic
but also aperiodic sampling. In particular, a corollary of Theorem 1 in
this paper, in which the sampling period is denoted as �T =

P
j2D��

T(j), is
proposed here:

Proposition 3. Condition (18) holds if and only if there exist timer-dependent
matrix functions Si : [0; Ti] ! Sn+ for all i 2 D�� and a sufficiently small " > 0
such that

A>�(i)Si(� ) + Si(� )A�(i) + _Si(� ) � 0; 8� 2 [0;T(i)]; 8i 2 D��

Sbi+1c�� (0)� Si(T(i)) + "I � 0:
(37)



Proof. The proof is direct by applying the equivalence between items (b)
and (d) of Theorem 1 in [9] with

Si  Sbi+1c�� ; Sj  Si; Ai  A�(i+1)
T(i+ 1)

�T
; �  �

T(i+ 1)
�T

;

where the left-hand side refers to the notations used in [9] and the right-
hand side to the notations of this paper. Then, this particular selection
leads to

A>�(i+1)Sbi+1c�� (� ) + Sbi+1c�� (� )A�(i+1) + _Sbi+1c�� (� ) � 0; 8� 2 [0;T(i+ 1)];

Sbi+1c�� (0)� Si(T(i)) + "I � 0;

for all i 2 D�� . Shifting back the first equation yields the results.
It can be easily understood that condition (37) is equivalent to the con-

dition presented in Theorem 2 in [15], and consequently is equivalent to
condition (18). To follow the developments presented in [15], we are in
position to state the following result as a direct consequence of this propo-
sition, which presents a discretization scheme to solve the differential LMI
condition (37).

Corollary 2. If there exist matrices fPigi2D�� such that

	i1 = A>�(i)Pbi+1c�� + Pbi+1c��A�(i) +
Pbi+1c�� � Pi

T(i)
� 0;

	i2 = A>�(i)Pi + PiA�(i) +
Pbi+1c�� � Pi

T(i)
� 0;

(38)

for all i 2 D�� , then inequalities (18) holds true.
The reverse implication is not true.

Proof. Consider the particular case with the matrix functions

Si(� ) =
T(i)� �

T(i)
(Pi � "I) +

�

T(i)
(Pbi+1c�� + "I); 8i 2 D�� ;

where " > 0 is a sufficiently small positive scalar such that Pi � "I , for all
i 2 D�� . Then, conditions (37) with this particular case write

T(i)��
T(i)

(	i2 � "�2)+
�

T(i)
(	i1 � "�1) � 0;

(Pbi+1c�� � "I)� (Pbi+1c�� + "I) + "I = �"I � 0;



where �� = 2
T(i)I + (�1)�(A>�(i)�A�(i)), where � = 1; 2 are constant ma-

trices. Hence, if conditions 	i1 and 	i2 are verified, then there exists a
sufficiently small " > 0 such that the previous inequality holds.

Remark 2. Corollary 2 shows that both inequalities 	i1 � 0 and 	i2 � 0 are
sufficient to assess the stability of the closed-loop system. However, this discretiza-
tion process is conservative, since the selection of functions Si is very restrictive.
As a consequence, conditions (38) are conservative compared to the necessary and
sufficient condition provided in Theorem 1.

Remark 3. Corollary 2 presents a simple discretization process consisting of ma-
trices Si that depend linearly on � . In [3, 15], the authors consider a more accurate
discretization method where matrices Si are piece-wise linear with respect to � ,
which provide a less conservative condition. Nevertheless, since conditions (37)
are equivalent to (18) in the case of constant and known matrices (Aj; Bj)j2K,
such conservative discretization is not needed.

8. Illustrative examples

In this section, different examples allow us to illustrate the results pre-
sented in this paper.

8.1. Example 1
This first example is borrowed from [2]. The continuous system of the

form (1) is composed by the three following unstable modes:

A1 =

"
0 0:5
0 �1

#
; B1 =

"
1
0:5

#
;

A2 =

"
0:1 0
�1 �1

#
; B2 =

" �1
�0:5

#
;

A3 =

"
0 1
�1 0

#
; B3 =

"
0
2

#
:

(39)

To compare the results obtained in [2] with ours, we consider the de-
sired equilibrium point xref = [0:1 0:2]>. The method employed to guaran-
tee the stabilization of the system in the vicinity of xref in [2] is to define an
attractive set where the state must converge to using a periodic sampled-data
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Figure 2: Example 1: Comparison between the attractive set from [2] and some limit
cycles for T(i) = 0:6s for all i 2 D�� . Note the window in the top-left corner giving a full
view of the above mentioned attractor.

time-triggered control law. In order to highlight the differences between at-
tractors, Figure 2 depicts some limit cycles of different lengths selected
thanks to the minimization of the cost function J in (35) with H1 = 0 and
H2 = I2. Solving the optimization problem (36) with 
 given as follows


 =
n
�� 2 C : N�� � 8; Ti 2 [1; 4]

\
N
o
;

which means, in other words, that the length of cycles � is less than or
equal to 8, and the dwell times are limited to 1; 2; 3; 4, we have obtained
the three limit cycles that deliver the lowest costs. The associated cycles
are given by

��1 : �1 = f2; 1g; T1 = f1; 1g;
��2 : �2 = f2; 1; 2; 1g; T2 = f1; 1; 2; 2g;
��3 : �3 = f2; 1; 2; 1; 2; 1g; T3 = f1; 1; 1; 1; 2; 2g:

Figure 3 shows the simulation of the closed-loop systems with three
different switching control laws associated with cycles ��1, ��2 and ��3, re-
spectively. The plots in Figure 3 show the converge to the solutions to
the desired hybrid limit cycles, after a short transient. In particular, the
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Figure 3: Example 1: Plots of the evolution of the plant state x and the switching control
signal � with respect to time for the cycles ��1 (left), ��2 (middle) and ��3 (right).

switching signals � follows a periodic behavior after the transient as stated
in item (iv) of Theorem 1.

To complement Figure 3, the same simulations are presented in Fig-
ure 4, which shows trajectories of the plant state in the state space plan.
Overall, Figures 3 and 4 show the impact of the a priori selection of the
cycle �� as the three solutions have very different behaviors.

Interestingly, one can see that these cycles do not contain the mode 3,
therefore, the control law is restricted to a subset of K. Figure 5 depicts the
maximal absolute characteristic multiplier of the monodromy matrix for
an arbitrarily selected cycle ��4 = (�4 = f3; 2; 1g; T4 = f2Ts; Ts; Tsg), for all
Ts < 10. This shows that the stability of the monodromy matrix strongly
depends on the selection of the sampling period Ts.
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Figure 4: Example 1: Plots showing the evolution of the plant state x in the state space
plan for the cycles ��1 (left), ��2 (middle) and ��3 (right).

8.2. Example 2
This example is borrowed from [13] and [15] where the authors intro-

duced several control laws to guarantee the Global Asymptotic Stability
(GAS) of a predefined limit cycle. Consider system (1) with the following
data

A1 =

"�4 �3
�3 2:5

#
; A2 =

"
4 �1
1 �2

#
; B1 =

"
0
�2
#
; B2 =

"
0
8

#
: (40)

The objective is to make the state of the plant converges as close as
possible to the reference xref = [�9 ?]>, where ? means whatever value.
Therefore, we selected H1 = H2 = [ 1 0

0 0 ] in the cost function (35) to evalu-
ate the candidate stable cycle. The solution to this optimization problem
provides that the cycles

��?1 : �
�
1 = f1; 1; 1; 1; 1; 1; 1; 1; 1; 2g;

T�1 = f0:1; 0:1; 0:1; 0:1; 0:1; 0:1; 0:1; 0:1; 0:1; 0:1g; (41)
��?2 : �

�
2 = f1; 1; 1; 2g;T�2 = f0:3; 0:3; 0:3; 0:1g; (42)

��?3 : �
�
3 = f1; 1; 2g;T�3 = f0:8; 0:1; 0:1g (43)

generate the closest limit cycle to xref , respectively. One can see in Figure 6,
that the control law provided in this paper and from the control given
in [13, Theorem 2] exhibit different trajectories of the closed-loop system.
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Figure 5: Example 1: Illustration of the maximal absolute characteristic multiplier of the
monodromy matrix for the cycle ��4 = (�4 = f3 2 1g;T4 = f2Ts; Ts; Tsg) with respect to
Ts.

Despite involving the solution to the same LMI condition, the control laws
have different merits.

The main differences between the solution presented in this paper,
which can be seen as the hybrid version of [28], has been already discussed
in Section 4.3. The main difference refers to the time-varying nature of the
control law, which is provided here:

u(x; �; k) = argmin
j2K

"
x� �(0; bkc��)

1

#>
Lk;j

"
x� �(0; bkc��)

1

#
� K; (44)

where Li;j =
�
A>
j
Pbi+1c��

Aj�Pi A>
j
Pbi+1c��

bi;j

� b>
i;j
Pbi+1c��

bi;j

�
and with bi;j = Aj�(0; i) + Bj �

�(0; bi+ 1c��) and with the clock-dependent Lyapunov function

V (x; �; k) = (x� �(0; bkc��))>Pbkc�� (x� �(0; bkc��)); 8x 2 Rn: (45)

The underlying motivation behind this control law and the associated Lya-
punov function is to find, for a given x, the best mode j in K that min-
imizes the Lyapunov function at the next sampling instant. It can also
be seen that, according to the definition of their Lyapunov function and
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Figure 6: Example 2: Evolution of the states of the plant in the state space for cycles (41)–
(43), using Theorem 1 and [13, Theorem 2]. Figures a), b) and c) are associated with the
cycles (41), (42) and (43), respectively.

their control law, the position in the limit cycle is enforced to be �(0; bkc��),
which is imposed by the time, while in our formulation, the control law
only depends on x.

Another difference deals with the complexity of the control law. For a
given cycle �, control law (19) aims at selecting the best mode that mini-
mizes the quadratic term in V , looking for the best position in the cycle.
The control law (44) however finds the best mode that minimizes (45), at
the next sampling instant k+1. Therefore, depending on whether N�� > K
or N�� < K, control (19) or (44) can reduce the computational cost and the
transient respectively.

The control law (19) for cycle ��1 in (41) is parameterized with the fol-



lowing matrices:

P1 =

"
0:4796 0:3865
0:3865 0:3662

#
; P2 =

"
0:4085 0:3482
0:3482 0:3535

#
; P3 =

"
0:3757 0:3358
0:3358 0:3591

#
;

P4 =

"
0:3623 0:3371
0:3371 0:3749

#
; P5 =

"
0:3598 0:3463
0:3463 0:3975

#
; P6 =

"
0:3611 0:3589
0:3589 0:4238

#
;

P7 =

"
0:3608 0:3717
0:3717 0:4521

#
; P8 =

"
0:3523 0:3804
0:3804 0:4799

#
; P9 =

"
0:3368 0:3866
0:3866 0:5086

#
;

P10 =

"
0:6212 0:4722
0:4722 0:4114

#
:

Note that matrices Pi, for i = 1; : : : ; 9 are very similar, which makes
sense since they are all related to the use of the same mode 1. However,
matrix P10 is clearly different from the others since it is the only one related
to mode 2.

As the numerical values that are needed to compute the control law in
[15] were not provided, a deepest comparison with the control law pro-
vided in this paper has not been included.

8.3. Example 3: DC-DC three cells-power converters
A more practical example is borrowed from [5] which also treats the

asymptotic stability of a hybrid limit cycle. It is well known that power
converters can be modeled as switched affine systems by considering cur-
rent and voltage variables as the continuous states and the switching sig-
nal reflecting the positions of the power switches as the discrete-events.
Hence, considering the DC-DC three-cells converter depicted in Figure 7,
the state vector x(t) gathers the capacitors voltages v1(t) and v2(t) and the
load current i(t). The control signals are the cell switches denoted as ui
and �ui = 1 � ui, such that ui = 1 (ui = 0) means that the upper switch is
closed (opened) and the lower one is opened (closed). The different modes
are derived from the combination of the cell switches as presented in Ta-
ble 1 and they correspond to the system matrices defined as follows, for
any u1, u2 and u3 in f0; 1g

A(u1; u2; u3) =

2
64

0 0 u2�u1
C1

0 0 u3�u2
C2

u1�u2
L

u1�u3
L

�R
L

3
75 ; B(u1; u2; u3) =

2
64

0
0

Vdcu3
L

3
75 : (46)
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Figure 7: Example 3: Schematic of a three-cell converter.

First of all, note that there does not exist a linear combination of ma-
trices Ai, that is Hurwitz stable, so that the stabilization conditions pro-
vided in [15] cannot be satisfied. It was also noticed in [19, Ex.3] that this
system is not controllable if R = 0 because of the particular structure of
matrices Ai’s making that there does not exist a cycle � such that the con-
dition of Lemma 2 is verified for this system. However, this is possible in the
case where R 6= 0. In order to find all the candidate cycles, it is possi-
ble to follow the procedure from [28] to which we can add another step
to the sieve to consider the technological constraint of the multi-cellular
converter: the adjacency condition, i.e., only one switch can take place at
each transition. In the consecutive papers [4, 5], the authors detail with a
lot of specificity the different desired cyclic behaviors around the reference
xref = [Vdc=3 2Vdc=3 Iref ]

> for the multilevel power converter considered
while we only evaluate the cycles thanks to the cost function (35). How-
ever, the authors from [5] can only guarantee the local asymptotic stabi-
lization of system (1), (46) to the following predefined limit cycle with the
discrete signal sequence

��0 = (�0 = f1; 2; 1; 3; 1; 5g; T0 = f10�4; 10�4; 10�4; 10�4; 10�4; 10�4g);
studied in [4]. On Figure 8, it is possible to observe the global stabilization
to the limit cycle associated with �0 in the state space. The same simulation
is illustrated on Figure 9 with a different view.



Figure 8: From left to right, the first figures depicts the global view of the evolution of the
state x in a state space. The last three figure on the right-hand side are figures illustrating
the plant limit cycle where the system converges. In each column, the blue line represents
the evolution of the state x and the red crosses the point of the plant limit cycle �(0; i),
associated with the cycle ��0.

Table 1: Example 3: Converter parameters and switching states.

(a) DC-DC three-cells converter parameters

Parameters Vdc C1,C2 L R Iref
Values 60V 40�F 5mH 20
 0:6A

(b) Values u1, u2 and u3 for each mode i

i 1 2 3 4 5 6 7 8
u1 0 1 0 1 0 1 0 1
u2 0 0 1 1 0 0 1 1
u3 0 0 0 0 1 1 1 1

The control law (19) is defined with the following matrices:

P1=

2
64
0:9027 0:1167 0:1647
0:1167 0:6595 0:0634
0:1647 0:0634 0:1098

3
75; P2=

2
64
0:7236 �0:0603 �0:0970
�0:0603 0:6930 0:0915
�0:0970 0:0915 0:1201

3
75;

P3=

2
64
0:8429 �0:1494 �0:1512
�0:1494 0:7595 0:1258
�0:1512 0:1258 0:1163

3
75; P4=

2
64
0:7022 �0:0790 0:0824
�0:0790 0:7819 �0:1420
0:0824 �0:1420 0:1317

3
75;

P5=

2
64
0:7220 �0:1253 0:0886
�0:1253 0:8904 �0:1732
0:0886 �0:1732 0:1153

3
75; P6=

2
64
0:7846 0:0786 0:1241
0:0786 0:6472 0:0554
0:1241 0:0554 0:1191

3
75:
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Figure 9: Example 3: Evolution of x function of the time.

9. Conclusion

Throughout this paper, the stabilization of continuous-time switched
affine systems to hybrid limit cycles, using an aperiodic sampled-data con-
trol law has been provided. The hybrid limit cycles are not only defined
by the state of the switched affine system (1), but also by the mode and
their dwell time. Our solution extends the existing solution given in [15],
which is shown to be a particular and conservative solution to the same
problem. Although the main result seems to be similar to [13] and to [28],
this extension requests the use of a new Lyapunov function to perform the
stabilization analysis. In addition, the knowledge of the complete plant
limit cycle, i.e., in continuous-time allows the designer to consider more
complex cost functions to reduce the chattering effect for instance. On an-
other side, compared to recent literature, the design of the global stabiliz-
ing switching control law (19) is based on simple LMI conditions, which
are already known in the literature on periodic (linear) systems. Future
work will consider robustness issues with respect to uncertainties affect-
ing the system’s matrices, i.e., in the situation, where matrices Ai and Bi

are not assumed to be constant and known, and/or where the dwell-times
can suffer from jitters’ effect. Following the techniques presented in [28],
this would require to extend the notion of hybrid limit cycles to a set of all
the possible trajectories that are affected by the uncertainties.
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