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Abstract

Hyperbolic spaces have emerged as an effective manifold to learn representations
due to their ability to efficiently represent hierarchical data structures, with little distor-
tion, even for low-dimensional embeddings. In the chosen hyperbolic model, such as the
Poincaré ball, classification is usually conducted by leveraging a signed distance function
to the hyperbolic equivalent of a plane (gyroplanes) or by measuring the alignment to a
virtual fixed prototype. We propose, in a deep learning context, to leverage a different
characterization of a decision boundary: Horospheres, which are level-sets of the Buse-
mann function. They are geometrically equivalent to spheres tangent to the boundary
of the hyperbolic space on a virtual point akin to a prototype. Accordingly, we define a
new horospherical layer that can be adapted to any neural network backbone. In previous
works, prototypes are usually uniformly distributed without using a potentially available
label hierarchy for the task at hand. We also propose a hierarchically informed method
for positioning these prototypes, based on the Gromov-Wasserstein distance. We find
that the combination of a good initialization and optimization of the prototypes improves
the baseline performance for image classification on hierarchical datasets and in two se-
mantic segmentation tasks, conducted on image and point cloud datasets. Source code
will be released upon acceptance.

1 Introduction
Euclidean representations are a natural choice for deep representation learning methods be-
cause of their well defined distance and inner-product. Recently, other embedding spaces
have emerged as attractive alternatives. Indeed, embedding into a different metric space can
improve the representation capabilities [5]. Spherical representations, for instance, have had
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Figure 1: Horospherical learning with smart prototypes. We propose to position ideal
prototypes following the label hierarchy and then optimize their position during training.

a large success in self-supervised representation learning [9, 53] and supervised learning [37]
leveraging the so-called cosine similarity as a measure of alignment between samples repre-
sentations. Other notable examples include the cone of Positive Semi-Definite (PSD) matri-
ces (e.g. [42]) used for covariance matrices or symmetric spaces such as the Siegel space [35]
that naturally embed graphs.

Among those alternative spaces, Hyperbolic spaces have attracted a lot of attention. In-
deed, they were shown to be efficient at embedding trees with minimal distortion [44] com-
pared to euclidean spaces. As a result, Hyperbolic spaces have successfully been used in
several key machine learning tasks.

It is also often possible to derive a hierarchy from the labels of an image dataset. For
example, the ImageNet dataset [13] labels are directly derived from the WordNet [38] hierar-
chy. However, label hierarchies are often unused by deep learning models which discriminate
only among leaf nodes in the hierarchy. We consider that adding hierarchical information in
the training process can be beneficial for the resulting performance.

In this article, we build upon the ability of hyperbolic spaces to embed trees with low
distortion to better model hierarchical classification problems. Our contributions are the
following:

• We introduce a hyperbolic classifier based on trainable horospheres parameterized by
their prototype location and a bias term.

• This classifier can be combined with a hierarchically informed scheme to initially
position horosphere prototypes at the boundary of the Hyperbolic space.

• Our experiments on image classification and semantic segmentation show that the pro-
posed approach improves performance on hierarchical datasets compared to other hy-
perbolic baselines.
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2 Related Work

Prototypical Networks. Prototypical networks rely on comparing the position of samples
with prototypes and learning to project samples as close to the corresponding prototype as
possible. While prototypical networks have been used with success in euclidean spaces [46]
by computing prototypes as the centroid of representations for each class, research has ex-
panded them to other embedding manifolds such as graphs [51], hyperspheres [37] or hyper-
bolic spaces [23, 25] where prototypes are positioned independently from the data or have
their positions updated during training. The initial prototype positioning can sometimes be
directed by prior information such as word embeddings of class labels [33, 37]. In a similar
fashion, we consider prototypes which are not defined as centroids but instead live as points
in the latent representation space.

Hierarchical Learning. Another active area of research in computer vision is lever-
aging label hierarchies to improve downstream performance [3] because it can cause the
model to make less important mistakes. For example, misclassifying between birds of the
same biological family may be less critical than between different biological orders [7]. The
hierarchical information can be used either to design the classification layer itself or as a reg-
ularisation by post-processing predictions hover labels during training [14]. Hou et al. [27]
leverage the Wasserstein distance to penalize predictions which do not respect the class or-
dering which can be seen as a sort of hierarchy. Similarly, Garnot et Landrieu. [21] propose
to use the hierarchy present in datasets combined with prototypical networks in euclidean
space by regularizing the training to limit the distortion between prototypes and the hierar-
chy. Atigh et al. [1] propose to compute probabilities for each node in the label hierarchy as
posteriors for the actual class prediction with a hierarchical softmax.

Hyperbolic Spaces. Hyperbolic spaces have successfully been used in a number of
text [15, 20, 40, 48], data classification [10, 17], and vision [1, 16, 22, 23] related tasks as
an alternative to euclidean or other embedding spaces. Compared to euclidean spaces, a tree
can be embedded in hyperbolic space with minimum distortion [44]. A number of hyper-
bolic neural network layers have been proposed [41] to replace their euclidean counterparts
such as linear layers [19], convolutional layers [45] or even entire hyperbolic networks [49]
where all activations are in hyperbolic space. In particular, hyperbolic representations show
promising results in hierarchical tasks such as action recognition [34, 47] or image segmen-
tation [1] where label hierarchies are well-defined. Most related to us, is Atigh et al. [23] who
introduces Busemann learning with ideal prototypes. We build upon their method by propos-
ing a hierarchically informed positioning scheme for ideal prototypes as well as introducing
a trainable variant of the Busemann prototype classification layer.

3 Background on Hyperbolic Spaces

While euclidean spaces are often the embedding space of choice for representation learning,
hyperbolic spaces have recently emerged as an attractive alternative embedding space [28,
40]. Hyperbolic spaces are Riemannian manifolds with constant negative curvature. There
are multiple models to represent the hyperbolic spaces, in this paper we leverage the Poincaré
Ball model which is defined as:

Hc
d = {x ∈ Rd ,∥x∥2

2 ≤ 1/c}, (1)
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where c > 0. On the Poincaré ball, the hyperbolic distance between two points x,y ∈ Hd
c is

defined as:

dH(x,y) =
1√
c

cosh−1
(

1+2c
∥x− y∥2

2

(1− c∥x∥2
2)(1− c∥y∥2

2)

)
. (2)

In order to project between euclidean and hyperbolic space, one has to resort to exponen-
tial and log maps which project from, respectively to, the tangent space at a defined point.
The tangent space at any point of the Poincaré ball is the euclidean space of the same dimen-
sion, which means that points in euclidean space can be projected on the Poincaré ball using
the exponential map expc

p : Rd →Hc
d .

In euclidean spaces, linear layers are often used as the last layer of a model to discrim-
inate samples among different classes. A linear layer is composed of a set of hyperplanes,
each responsible for an output feature of the layer. The value for each feature is computed
from the distance to the hyperplane. Ganea et al. [19] introduced a derivation of euclidean
hyperplanes in the hyperbolic space, more specifically the Poincaré ball model, called hy-
perbolic gyroplanes. An example of gyroplanes for classification on the Poincaré disk can
be seen in Figure 2. Ideal prototypes [23] have also been proposed as a method to perform
hyperbolic classification. An ideal prototype p is positioned at the infinite of the hyperbolic
space. In the Poincaré ball model, these so-called ideal prototypes are located on the surface
of the corresponding hypersphere p ∈ {x ∈ Rd ;∥x∥ = 1}. The Busemann function can then
be used to measure a distance between p and any point z ∈Hc

d . It is defined as such:

Bp(z) = lim
t→+∞

d(γp(t),z)− t, (3)

where γp : [0,+∞)→Hc
d is a geodesic ray with p at the infinity such γp(+∞) = p. Dur-

ing training, the model tries to minimize the Busemann distance between samples and the
prototype corresponding to the ground truth label.

4 Hierarchically Informed Horospherical Classification

4.1 Horospherical Classifiers
In the article introducing hyperbolic classification based on ideal prototypes [23], authors
left the prototypes fixed during training, thus giving a lot of importance to the prototype ini-
tialisation step. In our work, we propose to update the weight position and add an additional
scalar parameter for each horosphere induced by the prototypes. This parameter acts analo-
gously to the bias term in euclidean hyperplanes. Therefore, a parameterized horosphere can
be defined from its prototypes p ∈ Sd−1 and its bias term a ∈ R. We define this horosphere
level-set as:

Hp,a = {x ∈Hc
d ,−Bp(x)+a = 0}, (4)

where Bp is the Busemann function defined in Equation 3. In the Poincaré ball model,
the Busemann function has the following form:

Bp(x) = log
(
∥p− x∥2

2

1−∥x∥2
2

)
(5)
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Figure 2: Illustration of three hyperbolic classification methods on a simple 3-classes
toy dataset. The first row depicts Gyroplanes [19] (first column), that are arc of circles
orthogonal to the boundaries of the Poincaré ball, Busemann prototypes [1] (second column),
represented in Blue, that are fixed points located at infinity, and our Horospherical classifiers
(third column), depicted as circles tangent to the boundary in one infinite prototypical point.
The second row illustrates the resulting decision function.

and therefore the horosphere Hp,a has a diameter of 1+ tanh(a/2) (see Supplementary).
In order to prevent samples from moving too close to the boundary, one common solution

is to use euclidean clipping before projecting in hyperbolic space [24] to restrict representa-
tions to only a subset of the Poincaré ball. However even with this clipping, the majority of
representations end up close to the new boundary such that only comparing samples based
on their orientation can be enough [39]. In Ghadimi Atigh et al. [23], authors instead use an
additional regularisation term which prevents representations’ radii from growing too close
to the boundary. We include a similar regularisation, not as a loss term, but directly in the
logit ξp,a for an hypersphere parameterized with p,a:

ξp,a(x) =−Bp(x)+a+φ(d) · log
(
1−∥x∥2

2
)
, (6)

where φ(d) weights the impact of this regularisation depending on the dimension d of the
hyperbolic space Hc

d . Adding this regularisation to the scoring function ξp,a penalizes points
from moving too close to the boundary and therefore the level set {x ∈ Hc

d ,ξp,a(x) = 0} is
not strictly an hypersphere tangent to the Poincaré ball at point p. Note that with φ(d) = 0,
we fall back to the parameterized definition from Equation 4. In practice and similarly
to Ghadimi Atigh et al. [23], we use a single scalar hyper-parameter λ ≥ 0 which is fixed
during training to parameterize regularisation such that φ(d) = λ ×d.

While the logit ξp,a can be used to perform binary classification by computing P(ŷ= 1) =
σ(ξp,a(x)), with σ : Rd → [0,1] being the logistic function. Horospheres can be adapted in
a multi-class classification setting by having an horosphere per class and using a softmax
normalization to obtain class membership probabilities. An horospherical layer consists of
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K horospheres and we define the probability of a sample x ∈Hc
d with respect to one of the K

classes as the softmax over the K horosphere logits:

P(ŷ = k | x,p,a) =
exp(ξpk,ak(x))

∑
K
l=1 exp(ξpl ,al (x))

,∀k ∈ {1..K}. (7)

This horospherical multi-class classifier can be trained using the negative log-likelihood
loss over the training data x,y:

Lp,a(x,y) =
1
N

N

∑
i=1

− logP(ŷ = yi | xi,p,a). (8)

We can replace the last linear layer of a euclidean classification fully-connected layer
with an exponential map to project in the Poincaré ball followed by an evaluation of the
horospherical layer in hyperbolic space.

4.2 Uniformly Distributed Ideal Prototypes
The horospherical classifier presented in Section 4.1 is initialized with a set of ideal pro-
totypes. In order to leverage the embedding space, we initialize the layer with prototypes
uniformly distributed around the hypersphere Sd−1 = {x ∈ Rd ,∥x∥2 = 1}. Computing uni-
form positions for a set of points on the hypersphere can be done in different manners [4, 53].
We chose to optimize a set of K points

{
pi ∈ Sd−1; i = 1, . . . ,K

}
on the sphere using the uni-

form loss proposed by Wang and Isola [53]. This uniform loss is based on the pairwise
Gaussian potential. It effectively maximises the pairwise distance between each pairs pi,p j:

Lunif(p) = log

(
1

K(K −1) ∑
i ̸= j

exp(−∥pi −p j∥2
2)

)
. (9)

After optimization, this set of points can be used as ideal prototypes in the Poincaré ball
model. Whereas the Busemann classifier [23] randomly assigns prototypes to class labels, in
the following section, we consider the problem of assigning a class label to each prototype
in a hierarchically informed manner to improve the performance of the classification model.

4.3 Hierarchical Prototypes Assignment
Given a classification task, a label hierarchy encodes the semantic relationship between
classes. The hierarchy can be represented as a tree, where ancestors in the tree correspond to
super-classes. The depth of the hierarchy corresponds to the longest path from the root to any
leaves. Label hierarchies can be built from the semantic and lexical relationships between
labels as is the case in the WordNet hierarchy [38] which is the base for the ImageNet [13]
label hierarchy. In this section, we investigate how to leverage a label hierarchy to position
ideal prototypes to minimize the distortion between the prototypes and the tree induced by
the hierarchy.

Our goal is to assign a prototype for each leaf node in the label hierarchy. However,
labels are placed in the hierarchy tree whereas prototypes are located on the hypersphere.
These two spaces are incomparable, that is, one cannot easily define a metric to compute a
distance between a label on the tree induced by the hierarchy and an ideal prototype on the
hypersphere. If both labels and prototypes were embedded in the same space, they could be
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compared and one could use Optimal Transport [43, 50] to compute a transport plan between
labels and prototypes.

Garnot and Landrieu [21] work around this problem by introducing a scale-free variant of
their comparison loss. Instead, in this context of incomparable spaces, one can resort to the
Gromov-Wasserstein distance [36] (GW). The GW distance is used to compute a transport
plan P between samples from two empirical distributions whose supports are embedded in
incomparable spaces. The GW transport plan is computed by comparing the inner metrics
from each distribution. Therefore, the transport plan is based on the inner structure from each
distribution instead of on the pairwise distances between samples from each distribution.
Given two empirical distributions µ = ∑

n
i=1 δxiai ∈ P(X ) and ν = ∑

n′
j=1 δy j b j ∈ P(Y ) over

two metric spaces (X ,dX ) and (Y,dY) respectively with a and b, two simplex histograms of
n and n′ bins respectively such that ∑

n
i=1 ai = 1 and ∑

n′
j=1 b j = 1. δx is the Dirac measure in

x. M1 and M2 are the matrices of pairwise distance between atoms of µ and ν respectively.
The GW distance solves the following problem:

GW p
p(M1,M2,a,b) = min

P∈U(a,b)
∑

i, j,k,l
|(M1)i,k − (M2) j,l |pPi, jPk,l , (10)

where U(a,b) is the set of linear transport constraints defined by a and b. That is, the
set of doubly stochastic matrices which respect the marginal constraints a and b, U(a,b) ={

P | P ≥ 0,P1|a| = a,P⊤1|b| = b
}

.
Therefore, we place prototypes uniformly on the hypersphere and assign the prototype

using the Gromov-Wasserstein transport plan between the tree metric and the metric of dis-
tances on the sphere. Given MT and MS, the distance metrics and the tree and on the sphere
respectively, one can compute the optimal transport plan between atoms from T and S:

P⋆ = argmin
P∈U(a,b)

∑
i, j,i′, j′

|(MT)i,i′ − (MS) j, j′ |2Pi, jPi′, j′ (11)

where ai = bi = 1/K are uniform marginal distributions for both labels in the hierarchy
and prototypes on the sphere respectively.

The tree metric is taken to be the length of the path between two nodes in the hierarchy.
Therefore, two leaves i and j with the same parent will have a distance (MT)i, j = 2. For
the sphere metric, we use the cosine distance (MS)i, j = 1−⟨pi,p j⟩ which is an increasing
function of the length of the arc between pi and p j and 0 ≤ (MS)i, j ≤ 2.

Since both MS and MT have the same cardinality, the optimal transport plan P⋆ is a per-
mutation matrix which can be use to assign prototypes to nodes in the hierarchy. Therefore,
label i will be assigned to prototype j⋆ as such:

j⋆ = argmax
j∈{1..K}

P⋆
i, j. (12)

Additionally, we also consider the simpler case of positioning hierarchical prototypes on
the Poincaré disk in two dimensions. Firstly, uniformly distributing points on the circle can
be done in a closed form by slicing the circle in arcs of equal length 2π/K as explained in
Section 4.2. The hierarchical structure can also be embedded on the circle without having
to compute an optimal transport plan, by using the graph visualization algorithm used in
Figure 1 called twopi introduced by Wills [54]. We rely on this method in 2 dimensions.

In order to visualize the impact of this positioning scheme, we can compare the pair-
wise distance matrices between the tree hierarchy, uniform prototypes and the prototypes
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Table 1: Results on image classification.
Dataset CIFAR10 [32] CIFAR100 [32] CUB200 [52]
Dimension 2 3 4 50 2 3 4 50 2 3 4 50

Euclidean 89.8±0.2 90.6±0.1 90.8±0.2 91.0±0.1 45.9±0.5 53.3±0.8 56.2±0.2 62.5±0.3 24.3±1.3 46.8±0.7 50.5±1.5 51.8±0.8
Hyperbolic Neural Networks [19] 86.7±5.4 90.2±0.3 90.4±0.2 89.3±0.6 38.7±0.7 43.9±3.8 44.5±0.2 55.9±0.5 24.4±6.0 22.3±12.0 16.9±1.5 33.6±2.1
Metric Guided Prototypes [21] 89.8±0.3 90.4±0.2 90.6±0.3 91.0±0.2 54.2±0.8 57.9±0.6 58.9±0.4 62.4±0.4 31.0±2.8 48.8±1.4 53.2±1.9 57.3±0.7
Busemann - Uniform [23] 89.7±0.3 90.6±0.2 90.7±0.2 88.6±0.1 49.7±0.7 48.7±2.3 50.2±1.5 63.3±0.6 27.6±7.4 40.0±2.0 45.0±1.7 49.5±3.7
Busemann - Smart 89.8±0.1 90.4±0.5 90.7±0.1 88.6±0.1 55.7±0.5 54.8±0.4 55.4±0.3 63.3±0.3 53.3±1.6 54.3±0.4 58.0±1.1 50.4±0.6
Horospherical - Smart 90.1±0.3 90.7±0.2 90.8±0.1 90.8±0.2 53.7±0.8 58.7±0.3 60.0±0.1 60.9±0.1 38.7±4.3 56.4±1.6 56.3±0.8 56.6±0.6

positioned using Gromov-Wasserstein in Figure 1. Before training, the uniformly distributed
prototypes do not exhibit any structure in the metric whereas after optimization, the distance
between prototypes appear less noisy. Before optimization, the hierarchically positioned
prototypes already exhibit a block structure in the spherical metric which by construction
has similarities with the tree metric because their relative distortion is minimized.

5 Experiments

5.1 Image Classification

To evaluate the performance of our hyperbolic classification method, we first conduct ex-
periments on hierarchical image classification datasets. We choose the CUB-200 [52] which
contains 200 bird species. It is composed of 5994 training images and a test set of 5794 im-
ages. Each species belongs to a single family which in turn belongs to an order. This gives us
a hierarchy of depth 3 with 252 nodes, which can be seen on Figure 1. We also experiment
on the CIFAR10 [32] and CIFAR100 [32] which contains 10 and 100 classes of common vi-
sual objects, respectively. We compare the performance of the horospherical classifier with
Hyperbolic Busemann learning [23], both with either uniformly distributed prototypes and
hierarchical prototypes. We also compare them with the Hyperbolic neural networks [19] as
well as the Metric Guided euclidean prototype learning [21]. We test different dimensions d
for the embedding space.

As the backbone, we use a ResNet32 [26]. Models are trained for 1110 epochs for CIFAR
datasets and 2110 for the CUB200 dataset, as done in [23]. The Riemannian variant [2] of
the Adam optimizer [29] implemented in the Geoopt toolbox [30] is used for optimizing the
parameters for the Horospherical method. For other methods without trainable parameters
on manifolds, we use the Adam optimizer. A curvature of c = 1.0 is set for all hyperbolic
methods. The Gromov-Wasserstein transport plan for the hierarchical positioning is com-
puted using the Python Optimal Transport toolbox [18]. All experiments are done with 3
runs.

Results can be seen in Table 1. We can see that the performance is improved with hierar-
chically positioned prototypes and horospherical classifier, especially when the embedding
dimension is small such as with d ≤ 4. On its own, the performance is improved for the
Busemann method when initialized with hierarchically-positioned prototypes.

In order to evaluate a hierarchical metric, we measure the Average Hierarchical Cost
(AHC) [31] on the CUB200 dataset. This metric averages the hierarchical distance between
predictions and the ground-truth by taking the length of the path on the hierarchy between
the prediction and ground-truth label.

Given predictions zi ∈{1, . . . ,C} from a model of N test samples and ground yi ∈{1, . . . ,C}
from the dataset with i ∈ {1, . . . ,N}, The average hierarchical cost is defined as:
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Table 2: Average Hierarchical Cost of different methods on the CUB200 dataset.

Method AHC↓
d = 4 d = 50

Euclidean 2.12 2.18
Metric-Guided Prototypes [21] 1.72 1.80
Busemann - Uniform [23] 1.63 2.07
Horospherical - Smart 1.63 1.80

Table 3: Results on semantic segmentation (%mIoU).
Dataset NuScenes [6] Cityscapes [12]
Dimension d = 2 d = 3 d = 128 d = 2 d = 3 d = 128

Euclidean 54.0±2.4 67.4±0.3 70.5±0.5 35.9 ± 0.0 60.9±4.6 78.8±0.4
HIS [23] 40.2±5.4 58.0±2.7 69.5±0.2 41.3±4.8 45.1±7.7 77.9±0.2
Horospherical - Smart 68.4±0.1 68.7±0.0 69.2±0.3 73.5±0.4 76.1±0.1 78.2±0.4

AHC(z,y) =
1
N

N

∑
i=1

(MT)yi,zi . (13)

This means that an average hierarchical cost of 0 is equivalent to having made predictions
all equal to the ground-truth and the average distance is therefore 0. Correspondingly, a lower
hierarchical cost means a better hierarchical performance. The results for the AHC experi-
ment are shown in Table 2 where we can see that the AHC is better for hierarchically-aware
method and specifically hyperbolic methods in lower dimensions. Our proposed horospher-
ical classifier performs on par with the best method of Metric-Guided in higher dimensions
(d = 50).

5.2 Image and Point Cloud Segmentation

In this section, we evaluate the proposed method on semantic segmentation tasks, for both
2D image and 3D point cloud datasets. We compare with the euclidean baseline as well as
the Hyperbolic Image Segmentation (HIS) method from Atigh et al. [1].

For image segmentation, we consider the Cityscapes dataset [12] which contains 19
classes divided in 7 super-classes (flat, construction, object, nature, sky, human, and ve-
hicle). We use a DeepLab-v3+ [8] backbone trained with the official split for 240 epochs.
We set λ = 0.5. For all hyperbolic methods, c is set to 1.0. Experiments are done with 3
runs and results can be observed in Table 3.

For point cloud segmentation, we perform experiments on the NuScenes [6] dataset
which contains 40k frames, sampled in Boston and Singapore, with a rotating LiDAR. Points
are classified into 16 semantic classes and 1 ignore class. We use the official train split for
training, and report the results obtained on the publicly available validation set. For the class
hierarchy we leverage the NuScenes class description and split into 5 branches (movable
object, vehicle, pedestrian, flat and static). We additionally split the vehicle branch into 4-
wheeled and 2-wheeled. This leads to a hierarchy with 3 layers. As a point cloud processing
backbone, we use the commonly used sparse-voxel Minkowski U-Net [11], with a 10 cm
voxel size. We set λ = 0.1. Results can be seen in Table 3.
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Table 4: Ablation study by freezing prototypes on our proposed horospherical method on
semantic segmentation.

Prototypes Frozen NuScenes [6] Cityscapes [12]
d = 2 d = 3 d = 128 d = 2 d = 3 d = 128

Uniform ✓ 59.6 64.9 67.2 63.2 66.8 76.9
Smart ✓ 64.7 65.9 67.1 66.4 72.9 74.8

Table 5: Ablation study by changing the initialization scheme between uniformly distributed
and smart prototypes for our proposed horospherical classifier.

Dataset CUB200 NuScenes [6] Cityscapes [12]
Dimension d = 2 d = 3 d = 4 d = 50 d = 2 d = 3 d = 128 d = 2 d = 3 d = 128
Metric %Acc %Acc %Acc %Acc %mIoU %mIoU %mIoU %mIoU %mIoU %mIoU

Horospherical - Uniform 21.5±3.3 43.2±2.4 46.3±1.9 55.9±0.8 67.4 68.9 68.8 73.3 75.7 78.3
Horospherical - Smart 38.7±4.3 56.4±1.6 56.3±0.8 56.6±0.6 68.4 68.7 69.2 73.8 76.0 78.6

5.3 Ablation Study

In order to evaluate the impact of the prototype positions during training, we compare the
performance with freezing them during training. This means that the last layer is, akin
to [23], parameter-less. In this setting, we expect that the initial prototypes positions will
have a larger impact than when the prototypes are trained.

This training setup offers similarities with Busemann learning [23] which also has frozen
prototypes. The horospherical layer is different because it uses probabilities computed with
Equation 7 along with the cross-entropy loss defined in Equation 8. Results from the ablation
study can be seen in Table 4. We can see that the initialization has more impact when the
representation dimension is small. We also compare the training performance of initializing
our proposed horospherical classifier with uniformly distributed prototypes instead of hier-
archically positioned prototypes. Results can be seen in Table 5. In this case, we can see that
hierarchical prototypes perform better than uniformly distributed prototypes.

6 Conclusion

We have shown how prototype learning in hyperbolic spaces can be improved using hier-
archically informed prototype positioning based on a measure of distance between the hy-
perbolic boundary and the label hierarchy. Our proposed classifier can be used in several
hyperbolic classification tasks such as image classification, image segmentation and point
cloud segmentation. Based on our experiments, our method has shown improvements over
other euclidean and hyperbolic classification methods, in particular for small embedding di-
mensions. Future work can be oriented towards scaling this classifier in higher dimensions.
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Supplementary Materials - Horospherical Learning with
Smart Prototypes

A Impact of φ(d) regularization
In order to evaluate the impact of the regularization introduced in Equation 6 we perform
an experimental study of varying the value of the φ(d) parameter. Since we use a constant
regularization defined as φ(d) = λ × d, we vary the value of the λ parameter in the range
[0,2].
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Figure 3: Evolution of the accuracy when moving the λ regularisation parameter. We ob-
serve that varying the value of the parameter has little impact on the resulting performance.

B Impact of the bias a

The bias a in Equation 6 acts on the radius of each horosphere. We experiment with disabling
the bias parameter in order to evaluate its impact on the final performance of the model. As
can be seen in Table 6, the bias provides in 2 dimensions an increase in performance but
seems to be of less importance for higher dimensions.

C Radius of an Horosphere
Given an horosphere parameterized by an ideal prototype p ∈ Sd−1 and a bias a ∈R. We can
compute the radius of the said horosphere. Remember that horospheres in the Poincaré ball
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Table 6: Performance when enabling or disabling biases during training of horospherical
classifiers on the CUB dataset.

Method Bias Dimensions
2 3 4 50

Horospherical - Smart 34.4±6.2 56.4±0.8 56.0±0.4 57.5±0.2
Horospherical - Smart ✓ 38.7±4.3 56.4±1.6 56.3±0.8 56.6±0.6

model are hyperspheres tangent to the boundary of the ball. To compute the radius dependent
on a, we will find the two points of the horosphere which are located on the Poincaré ball
radius, one of this point is p, and we refer to the other one as x. By taking p as our first base
vector, x has a single non-null dimension x0.

px0

Figure 4: The position of x along the vector p is x0.

−Bp(x)+a = 0 (14)

log
(
∥p− x∥2

1−∥x∥2

)
−a = 0 (15)

log
(

exp(−a)
∥p− x∥2

1−∥x∥2

)
= 0 (16)

exp(−a)
∥p− x∥2

1−∥x∥2 = 1 (17)

∥p− x∥2 =
1−∥x∥2

exp(−a)
(18)

(1− x0)
2 =

1− x2
0

exp(−a)
(19)

1−2x0 + x2
0 =

1− x2
0

exp(−a)
(20)

1−2x0 + x2
0 = (1− x2

0)exp(a) (21)

1− exp(a)−2x0 +(1+ exp(a))x2
0 = 0. (22)

We find the roots for this polynomial:
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∆ = (−2)2 −4(1− exp(a))(1+ exp(a)) (23)
= 4−4(1− exp(2a)) (24)
= 4exp(2a). (25)

x0 =
2±

√
∆

2(1+ exp(a))
(26)

=
2±
√

4exp(2a)
2(1+ exp(a))

(27)

=
2±2

√
exp(2a)

2(1+ exp(a))
(28)

=
2(1± exp(a))
2(1+ exp(a))

(29)

=
1± exp(a)
1+ exp(a)

(30)

=

{
1. if x = p.
− tanh(a/2) otherwise.

(31)

Therefore, the radius of an horosphere with a bias term a is:

r(a) =
1+ tanh(a/2)

2
. (32)

D Hierarchies
In this section, we include the hierarchies used for positioning prototypes in our experiments
on different datasets. For large hierarchies, we do not include the label of nodes for readabil-
ity purpose. The nodes are coloured following the topological sort of the tree.
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Figure 5: CIFAR10 Hierarchy.
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Figure 6: CIFAR100 Hierarchy.
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Figure 7: CUB200 Hierarchy.
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