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HYPERTRANSCENDENCE AND LINEAR DIFFERENCE
EQUATIONS, THE EXPONENTIAL CASE

THOMAS DREYFUS

Abstract. In this paper we study meromorphic solutions of linear shift
difference equations with coefficients in C(x) involving the operator ρ :
y(x) 7→ y(x + h), for some h ∈ C∗. We prove that if f is a solution
of an algebraic differential equation, then f belongs to a ring that is
generated by periodic functions and exponentials. Our proof is based
on the parametrized difference Galois theory initiated by Hardouin and
Singer.
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Introduction

Given a solution of a functional equation we might wonder if it is a solution
of another kind of functional equation. If the two functional equations are
too different we would expect that very few functions are solutions of both
functional equations. The goal of this paper is to state a result in that
direction. Before recalling the state or the art, let us state our main result
and its framework.

Let ρ be the automorphism of C(x) defined by ρ : y(x) 7→ y(x + h) with
h ∈ C∗. Let M(C) be the field of meromorphic functions on C. We say
that f ∈ M(C) is differentially algebraic over C(x), if there exist m ∈ N,
0 6= P ∈ C(x)[X0, . . . , Xm] such that P (f, ∂xf, . . . , ∂

m
x f) = 0. We say that f

is differentially transcendental otherwise. Let Ch := {f ∈ M(C)|ρ(f) = f}
be the field of h-periodic functions. The goal of this paper is to prove:

Theorem 1. Let n ∈ N∗, and let A ∈ GLn(C(x)). Let Y := (f1, . . . , fn)> ∈
(M(C))n be a solution of ρ(Y ) = AY . If every fi is differentially algebraic
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over C(x), then there exist ` ∈ N∗, λ1 . . . , λk ∈ C, such that for all 1 ≤ i ≤ n,
fi ∈ C`h(x)[eλ1x, . . . , eλkx].

As a straightforward corollary, we find:

Corollary 2. Let f ∈M(C) such that

a0f + · · ·+ anρ
nf = 0, ai ∈ C(x), a0, an 6= 0.

If f is differentially algebraic over C(x), then there exist ` ∈ N∗, λ1 . . . , λk ∈
C, such that f ∈ C`h(x)[eλ1x, . . . , eλkx].

Proof of Corollary 2. Since ρ and ∂x commute, for all i ∈ N, ρi(f) is differen-
tially algebraic over C(x). Then, each entry of Y := (f, ρ(f) . . . , ρn−1(f))> ∈
M(C)n is differentially algebraic over C(x). Since

ρ(Y) =


0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 · · · 0 1
−a0/an −a1/an · · · · · · −an−1/an

Y,
we conclude with Theorem 1. �

The first proof of differential transcendence of a function is due to Hölder,
see [Höl87]. The author proved that the Gamma function is differentially
transcendental. His approach mainly uses the functional equation ρ(Γ) = xΓ
(here h = 1).

More recently in [BG93], it is proved that if f ∈ M(C) is solution of a
linear ρ-equation and a linear differential equation, then there exist ` ∈ N∗,
λ1 . . . , λk ∈ C, such that f ∈ C`h(x)[eλ1x, . . . , eλkx]. The strategy of the
authors is to study the singularities of the solutions of a linear ρ-equation,
linear differential equation, and prove that there is an incompatibility, un-
less the function is sufficiently simple. Similar results were known for q-
difference equations (ρ : y(x) 7→ y(qx), q ∈ C∗, |q| 6= 1) and Mahler equa-
tions (ρ : y(x) 7→ y(xp), p ∈ N≥2), and were proved in an unified way in
[SS19].

The question of showing that a solution of a linear ρ-equation is not solu-
tion of an algebraic differential equation is much more complicated. Contrary
to the case of a linear differential equation, the number of unknowns grows
too fast to hope to predict the potential equation in a brute-force search.
Another approach that fails is the study of the singularities, since a solution
of an algebraic differential equation may have a very large set of singularities.

Old results were known for affine equations of order one of the form
ρ(y) = ay + b, when ρ is the shift operator considered above, the q-difference
operator or a Mahler operator, see for instance [Höl87, Moo96, Mah30, Nis84,
Ran92, Ish98, Har08, HS08, Ngu12].

For higher order equations we need the Galois theory of difference equa-
tions to be able to prove similar results. More precisely, given a linear ρ-
system, we may associate a Galois group of matrices that encodes the alge-
braic (resp. algebraic and differential) relations among the solutions. The
bigger this group is, and fewer relations there are. So if we are able to prove
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that the Galois group is sufficiently large, we might expect that the solutions
are differentially transcendental. The first attempt of this strategy could be
found in [Har08] for a modern proof of Hölder’s theorem of the differential
transcendence of the Gamma function. This approach has been generalized
into a complete theory in [HS08] and has been applied to prove that when
the Galois group is big, the solutions are differentially transcendental, see
[HS08, DHR18, DHR21, AS17, ADR21]. The general idea behind the latter
papers is that when the solutions are differentially algebraic and the Galois
group is big, then the functions are solutions of linear differential equations.
We then use the results above mentioned of [SS19] to prove that they are
too trivial and force the Galois group to be small, leading to a contradiction.
The Galois theory of [HS08] has been applied to a very different context to
prove in [DHRS18] that some generating series of walks in the quarter plane
are differentially transcendental.

At this stage, we are able to prove that the solutions of linear ρ-equations
are differentially transcendental or trivial only when the Galois group is big,
or small (affine equations). It remains to treat the medium cases. This is the
goal of [ADH21] where it is proved that when the Galois group is medium,
then the ρ-equation is equivalent to a smaller one. Then an induction proof
on the rank of the equation allows the authors to prove that either the
solution is differentially transcendental, or it belongs to a small field. The
results of [ADH21] are stated for meromorphic solutions at infinity and the
shift operator, for the q-difference operator, and for the Mahler operator.
For the shift case and meromorphic function on C which is the framework of
this paper, the statement is much more complicated to set for two reasons:

• the exponential functions eλx, λ ∈ C, are meromorphic solutions of
linear ρ-equations and linear differential equations.
• the meromorphic functions that are `h-periodic for some ` ∈ N∗
are solutions of linear ρ-equations, and some of them are solution of
differential equations.

Then, the set of functions that are both solutions of a linear ρ-equation and
differential equation is bigger than the ground field C(x). To avoid this prob-
lem, the authors of [ADH21] consider the situation where f is solution of a
linear ρ-equation in coefficients in C(x) and belong to a field of meromorphic
function F ⊂ M(C), with ρ(F ) = F , {f ∈ F |ρ(f) = f} = C, and for all
λ1 . . . , λk ∈ C, F ∩C(x, eλ1x, . . . , eλkx) = C(x). Then it is proved that either
f ∈ C(x), or f is differentially transcendental. Thus, Theorem 1 generalizes
this result in this context since we avoid the assumptions on F . The strategy
of the proof of Theorem 1 is in some sense similar to the one in the recent
paper [dS22] that deals with another framework.

The paper is organized as follows. In Section 1 we give a reminder of
the difference Galois theory and in Section 2, the parametrized difference
Galois theory. In Section 3, we deal with difference Galois groups that are
irreducible and connected, and in Section 4 we complete the proof of Theo-
rem 1.
Aknowledgment. The author would like to thank the anonymous referee
for the helpful comments.
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1. Difference setting

The goal of this section is to give a short review of the main results of
difference algebra and difference Galois theory that will be used in this paper.
We refer to [Coh65] for more details on difference algebra and [vdPS97] for
more details on difference Galois theory. In what follows, all fields are of
characteristic zero, and all rings are unitary.

A difference ring is a ring (R, ρ) is a ring equipped with an automorphism.
We define similarly the notion of difference fields, difference algebras, etc...
When no confusion arises, we will denote by R the difference ring (R, ρ).
The ring of constants is defined by Rρ := {r ∈ R|ρ(r) = r}. If R is a field,
Rρ is also a field and will be called the field of constants.

Example 3. If we consider the notation of the introduction, (C(x), ρ) and
(M(C), ρ) are difference fields, and we have C(x)ρ = C andM(C)ρ = Ch.

A ρ-ideal I ⊂ R is an ideal such that ρ(I) ⊂ I. We say that the difference
ring is ρ-simple if the only ρ-ideals are {0} and I.

Let k be a difference field. Let us assume that C := kρ is algebraically
closed. We consider the difference system

(1.1) ρ(Y ) = AY, A ∈ GLn(k).

A Picard-Vessiot ring extension for (1.1) over k is a difference ring extension
R|k such that

• There exists U ∈ GLn(R), such that ρ(U) = AU , such matrix is
called a fundamental matrix;
• R = k[U, 1/det(U)];
• R is a simple difference ring.

A Picard-Vessiot ring extension exists and is unique up to isomorphism of
k-ρ-algebras.

Given a Picard-Vessiot ring extension R|k, the Picard-Vessiot extension
Q is the total ring of fractions of R. We have Qρ = Rρ = kρ = C. We
define the difference Galois group as the group of ring automorphisms of Q,
leaving k invariant and commuting with ρ, that is

Gal(Q|k) = {σ ∈ Aut(Q|k)|σ ◦ ρ = ρ ◦ σ}.

For any fundamental matrix U ∈ GLn(Q), an easy computation shows
that U−1σ(U) ∈ GLn(C) for all σ ∈ Gal(Q|k). By [vdPS97, Theorem 1.13],
the faithful representation

Gal(Q|k) → GLn(C)

σ 7→ U−1σ(U)

identifies Gal(Q|k) with a linear algebraic subgroup G ⊂ GLn(C). Choosing
another fundamental matrix of solutions U leads to a conjugate representa-
tion.

Specific results for shift equations. In this paragraph, we consider the
field C(x) equipped with the automorphism ρ : y(x) 7→ y(x + h), h ∈ C∗,
and give some specific results.
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Remark 4. Note that Y(x) is a meromorphic solution of Y(x+h) = A(x)Y(x)
if and only if Z(x) := Y(hx) is a meromorphic solution of Z(x + 1) =
A(hx)Z(x). Furthermore, an entry of Y is differentially algebraic over C(x)
if and only if the corresponding entry of Z is differentially algebraic over
C(x). Hence, we may apply the specific results of [Pra86, HS08], originally
stated for h = 1, for a general h ∈ C∗ in this paper.

Fix B ∈ GLn(C(x)); then there exists V ∈ GLn(M(C)) such that
ρ(V ) = BV ([Pra86, Theorem 1]). Let Ch be the algebraic closure of
Ch and consider Ch ⊗ M(C) equipped with the structure of a ρ-ring via
ρ(c⊗ f) = c⊗ ρ(f).

The following result will be used in the sequel.

Lemma 5. The ring R = Ch(x)[V, 1/det(V )] ⊂ Ch ⊗M(C) is a Picard-
Vessiot ring extension for ρ(Y ) = BY over Ch(x).

Proof. We want to apply [DHR18, Lemma 2.3], in this context. Since there
are no derivations yet, a differential closed field is just an algebraically closed
field. So we want to use the above lemma with F = Ch(x, V ) ⊂ M(C),
k̃ = Ch, and k = Ch. Note that k = Ch is not algebraically closed but this
assumption is not used for the proof of the following statements. By [DHR18,
Lemma 2.3], Ch⊗Ch(x, V ) is a simple difference ring and (Ch⊗Ch(x, V ))ρ =
Ch. By [HS08, Corollary 6.15], the total quotient ring of Ch ⊗ Ch(x, V ) has
field of constants that is also Ch. Let Q be the total quotient ring of R.
Then, since R ⊂ Ch ⊗ Ch(x, V ), we have Rρ = Qρ = Ch. We conclude
with [HS08, Propositions 6.17], see also [vdPS97, Corollary 1.24] that R =
Ch(x)[V, 1/det(V )] is a Picard-Vessiot ring extension for ρ(Y ) = BY over
Ch(x). �

The change of variables Z := TY , T ∈ GLn(C(x)), transforms the system
ρ(Y ) = AY with A ∈ GLn(C(x)) into ρ(Z) = BZ where B := ρ(T )AT−1 ∈
GLn(C(x)). Let A,B ∈ GLn(C(x)). We will say that [A] and [B] are equiva-
lent over C(x) if there exists T ∈ GLn(C(x)) such that B = ρ(T )AT−1. The
following theorem has been proved in [vdPS97, Propositions 1.20 and 1.21].

Theorem 6. Let G := Gal(Q|C(x)). There exists T ∈ GLn(C(x)) such that
ρ(T )AT−1 ∈ G(C(x)).

2. Differential setting

We refer to [HS08] for more details on what follows. A differential ring
(R, δ) is a ring equipped with a derivation, that is an additive morphism
satisfying the Leibnitz rule δ(fg) = fδ(g) + δ(f)g. We define similarly the
notion of differential fields, differential algebras, etc... The ring of δ-constants
of R is defined by

Rδ = {r ∈ R | δ(r) = 0} .
If R is a field, Rδ is also a field and will be called the field of constants.
Let (R, δ) be a differential ring extension for the differential field (k, δ). We
say that f ∈ R is differentially algebraic over k if there exist m ∈ N, and
0 6= P ∈ k[X0, . . . , Xm] such that P (f, δf, . . . , δmf) = 0. We say that f is
differentially transcendental over k otherwise.
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A (ρ, δ)-ring (R, ρ, δ) is a ring equipped with an automorphism ρ and a
derivation δ that commutes with ρ. We define similarly the notion of (ρ, δ)-
fields, etc...

Example 7. If we consider the notation of the introduction, (C(x), ρ, ∂x) and
(M(C), ρ, ∂x) are (ρ, ∂x)-fields, and we have C(x)∂x =M(C)∂x = C.

We say that I is a (ρ, δ)-ideal of R if I is an ideal such that ρ(I) ⊂ I and
δ(I) ⊂ I. We say that (R, ρ, δ) is (ρ, δ)-simple if its only (ρ, δ)-ideals are {0}
and R.

Let us denote by R{X1, . . . , Xn}δ the ring of differential polynomials in
the indeterminates δiXj . We recall that a differential field (L, δ) is called
differentially closed or δ-closed if, for every set of δ-polynomials F , the system
of δ-equations F = 0 has a solution in some δ-field extension of L if and only
if it has a solution in L. There always exists a differential field extension
that is differentially closed.

Assume that k is a (ρ, δ)-field with C = kρ differentially closed and let
A ∈ GLn(k). A (ρ, δ)-Picard-Vessiot ring extension for ρ(Y ) = AY over k
is a (ρ, δ)-ring extension S|k such that

• There exists U ∈ GLn(S);
• S = k{U, 1/det(U)}δ;
• S is a simple (ρ, δ)-ring.

A (ρ, δ)-Picard-Vessiot ring extensions exists and is unique up to isomor-
phisms of k-(ρ, δ)-algebras. Given a (ρ, δ)-Picard-Vessiot ring extension S|k,
the (ρ, δ)-Picard-Vessiot extension QS is the total ring of fractions of S. We
have QρS = Sρ = kρ = C. We define the (ρ, δ)-Galois group as the group of
ring automorphisms of QS , leaving k invariant and commuting with ρ and
δ, that is

Galδ(QS |k) = {σ ∈ Aut(QS |k)|σ ◦ ρ = ρ ◦ σ, σ ◦ δ = δ ◦ σ}.

For any fundamental matrix U ∈ GLn(QS), an easy computation shows
that U−1σ(U) ∈ GLn(C) for all σ ∈ Galδ(QS |k). By [HS08, Theorem 2.6],
the faithful representation

Galδ(QS |k) → GLn(C)

σ 7→ U−1σ(U)

identifies Galδ(QS |k) with a linear differential algebraic subgroup
H ⊂ GLn(C), that is a group of matrices whose entries satisfy a set of al-
gebraic differential relations. Choosing another fundamental matrix of solu-
tions U leads to a conjugate representation.

Specific results for shift equations. The field Ch may be equipped with
a structure of differential field with the derivation δ := ∂x.

Let C̃h be a differentially closed field containing Ch. Consider C̃h(x), that
is equipped with a structure of (ρ, δ)-field with

(
C̃h(x)

)ρ
= C̃h, ρ(x) = x+h

and δ(x) = 1. Note that ρ and δ commute. Consider C̃h ⊗M(C) equipped
with the structure of a (ρ, δ)-ring via ρ(c ⊗ f) = c ⊗ ρ(f) and δ(c ⊗ f) =

δ(c)⊗ f + c⊗ δ(f). Note that (C̃h ⊗M(C))ρ = C̃h.
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The following result that is the analogue of Lemma 5 and its proof is
totally similar.

Lemma 8. Let B ∈ GLn(C(x)) and let V ∈ GLn(M(C)) such that
ρ(V ) = BV . The ring S = C̃h(x){V, 1/det(V )}δ is a (ρ, δ)-Picard-Vessiot
ring extension for ρ(Y ) = BY over C̃h(x).

Let B ∈ GLn(C(x)). Given ` ∈ N∗, we may iterate the difference system
ρ(Y ) = BY by considering ρ`(Y ) = B[`]Y , where B[`] = ρ`−1(B)× · · · × B.
Let G[`] be the difference Galois group of the system ρ`(Y ) = B[`]Y and G
be the difference Galois group of ρ(Y ) = BY .

The following lemma is a slight adaptation of [DHR21, Proposition 4.6]
in the particular case where the parametric operator is the identity, see also
[ADH21, Proposition 4.10].

Lemma 9. Let B ∈ GLn(C(x)). Let Y ∈ M(C)n be a nonzero vector
solution of ρ(Y ) = BY . Then, there exists ` ≥ 1, such that

• There exists a (ρ`, δ)-Picard-Vessiot extension for ρ`(Y ) = B[`]Y over
C̃h(x), that is a field, and with fundamental solution admitting Y as
first column.
• G[`] is the connected component of the identity of G.

Proof. As we can see in the proof of [DHR21, Proposition 4.6], there exists
` ≥ 1, such that the (ρ`, δ)-Picard-Vessiot extension for ρ`(Y ) = B[`]Y over
C̃h(x), is a field and G[`] is the connected component of the identity of G.
By [Pra86, Theorem 1], let V ∈ GLn(M(C)) solution of ρ`(Y ) = B[`]Y ,
with Y as first column. By Lemma 8 the ring C̃h(x){V, 1/det(V )}δ is a
(ρ`, δ)-Picard-Vessiot ring extension for ρ`(Y ) = B[`]Y over C̃h(x). Since the
(ρ`, δ)-Picard-Vessiot extension is a field, C̃h(x){V, 1/det(V )}δ is an integral
domain and its field of fraction is isomorphic to the (ρ`, δ)-Picard-Vessiot
extension. �

3. Irreducible Galois group

Recall that we consider the system ρ(Y ) = AY with A ∈ GLn(C(x)). By
[Pra86, Theorem 1], there exists U ∈ GLn(M(C)) such that ρ(U) = AU . Let
QC be a Picard-Vessiot extension for ρ(Y ) = AY over C(x). In this section,
following [ADH21, Section 5.2] we consider the case where Gal(QC|C(x)),
the difference Galois group of ρ(Y ) = AY over C(x), seen as an algebraic
subgroup of GLn(C), is irreducible and connected. Recall that an algebraic
subgroup G ⊂ GLn(C) is said to be irreducible; if and only if for all C-vector
spaces V ⊂ Cn, G(V ) ⊂ V implies that V is either {0} or Cn. The proof is
very similar to [ADH21, Section 5.2], and only the points where this proof
is really different to the one of [ADH21, Section 5.2] will be detailed.

Proposition 10. Let us assume that n ≥ 2. If Gal(QC|C(x)) is irreducible
and connected, then every column of U contains at least one element that is
differentially transcendental over C̃h(x).
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As a key argument, we will use the following result due to [AS17,
Lemma 5.1]. It says that the (ρ, δ)-Galois group must be as big as pos-
sible when the difference Galois group has an identity component that is
semisimple.

Proposition 11. Let B ∈ GLn(C(x)). We let G̃ ⊂ GLn(C̃h) denote the
difference Galois group of ρ(Y ) = BY over C̃h(x), and H ⊂ GLn(C̃h) denote
the (ρ, δ)-Galois group of ρ(Y ) = BY over C̃h(x). If the identity component
of G̃ is semisimple, then H = G̃.

Proof of Proposition 10. Let us argue by contradiction assuming that there
exists one column of the fundamental solution U whose coordinates are all
differentially algebraic over C̃h(x). By Lemma 5, Ch(x)[U, 1/det(U)] is a
Picard-Vessiot ring extension for ρ(Y ) = AY over Ch(x) and by Lemma 8,
C̃h(x){V, 1/det(V )}δ is a (ρ, δ)-Picard-Vessiot ring extension for ρ(Y ) = AY

over C̃h(x). The difference Galois group of ρ(Y ) = AY over C̃h(x) is
Gal(QC|C(x))(C̃h) and is therefore irreducible. Hence, the same reason-
ing as the proof of [ADH21, Proposition 5.4] shows that all entries of U are
differentially algebraic over C̃h(x). Then, det(U) is also differentially alge-
braic over C̃h(x). We observe that the determinant det(U) is solution to the
equation

(3.1) ρ(y) = det(A)y

and that the difference Galois group of this equation over C(x) is the group
det(Gal(QC|C(x))). We claim that det(U) is differentially algebraic over
Ch(x). We find that ∂xdet(U)

det(U) is solution of ρ(y) − y = ∂xdet(A)
det(A) . Let

b̂(x) := ∂xdet(A)
det(A) ∈ C(x). By Remark 4, we may use [HS08, Proposition 3.1],

to deduce that there exist a nonzero linear differential operator L̃ with co-
efficients in C̃h, and g̃ ∈ C̃h(x), such that L̃(̂b) = g̃(x + h) − g̃(x). Since L̃
has coefficients in C̃h, it follows that the poles of L̃(̂b), seen as an element
of C̃h(x) are the poles of b̂, which are in C, because b̂(x) ∈ C(x). With
0 6= L̃(̂b) = g̃(x + h) − g̃(x), it follows that the poles of g̃(x) ∈ C̃h(x) are
also in C. Taking the partial fraction decomposition yields that the equa-
tion L̃(̂b) = g̃(x + h) − g̃(x) is equivalent to a polynomial equation with
coefficients in C. Since C is algebraically closed it has a solution in C,
proving the existence of a nonzero linear differential operator L with coef-
ficients in C, and g′ ∈ C(x), such that L(̂b) = g′(x + h) − g′(x). Then,
L(∂xdet(U)

det(U) (x))− g′(x) is ρ-invariant. This shows that det(U)(x) is differen-
tially algebraic over Ch(x). By Remark 4, we may use [HS08, Corollary 3.4],
to deduce that there exist some nonzero elements c ∈ C and g ∈ C(x) such
that det(A) = cρ(g)/g. Let d ∈ C such that edh = c−1/n and consider
the matrix V = Uedx ∈ GLn(M(C)). It is solution of ρ(Y ) = BY with
B = c−1/nA. We have det(B) = ρ(g)/g. By Lemma 8, C̃h(x){V, 1/det(V )}δ
is a (ρ, δ)-Picard-Vessiot ring extension for ρ(Y ) = BY over C̃h(x). Let G
be the difference Galois group of ρ(Y ) = BY over C(x), G̃ the difference
Galois group of ρ(Y ) = BY over C̃h(x), and H the (ρ, δ)-Galois group over



HYPERTRANSCENDENCE, THE EXPONENTIAL CASE 9

C̃h(x). Same reasons as in the proof of [ADH21, Proposition 5.4] shows that
G is irreducible, the connected component G0 of the identity of G is also
irreducible, and there exists ` ≥ 1 such that the difference Galois group of
ρ`(Y ) = B[`]Y over C(x) is G0. Furthermore, det(B[`]) = ρ`(g)/g and there-
fore, G0 ⊂ SLn(C). With [ADH21, Lemma 4.2] we find that G0 is primitive
(we refer to the latter paper for the notion of primitive groups that will not
be used again in the sequel). By [SU93, Proposition 2.3], we finally obtain
that G0 is semisimple. Then, G̃0 = G0(C̃h), the identity component of G̃, is
semisimple too.

We infer from Proposition 11 that H = G̃. We recall that all entries of U
are differentially algebraic over C̃h(x). Then the same holds for V = Uedx.
The same reasoning as in the proof of [ADH21, Proposition 5.4] shows that
G is a finite group. Since it is connected, we deduce that G0 = {In}, where
we let In denote the identity matrix of size n. Since by assumption n ≥ 2,
this provides a contradiction with the fact that G0 is irreducible. �

4. Proof of the main result

We are now ready to prove Theorem 1. Recall that Y := (f1, . . . , fn)> ∈
(M(C))n is a solution of ρ(Y ) = AY , with A ∈ GLn(C(x)). Let
C∞h = ∪∞`=1C`h and let Rh,exp be the ring of C∞h (x)-linear combinations be-
tween {eλix, λi ∈ C}. We have to prove that when all the entries of Y are
differentially algebraic over C(x), they all belong to Rh,exp. If Y is zero the
result is clear. So let us assume that Y is nonzero. Let Q be the Picard-
Vessiot extension for ρ(Y ) = AY over Ch(x) and let Gal(Q|Ch(x)) be the
difference Galois group. By Lemma 9, with δ = 0, there exists ` ≥ 1, such
that

• we have a Picard-Vessiot extension for ρ`(Y ) = A[`]Y over (Ch(x), ρ`)
that is a field;
• the fundamental solution U of the Picard-Vessiot extension over

(Ch(x), ρ`) admits Y as first column;
• the difference Galois group of ρ`(Y ) = A[`]Y over Ch(x) is the com-
ponent of the identity of Gal(Q|Ch(x)).

In virtue of [Pra86, Theorem 1], we may assume that U ∈ GLn(M(C)).
Note that (C(x), ρ`, δ) is a (ρ`, δ)-field and R`h,exp ⊂ Rh,exp is a (ρ`, δ)-
ring. So, without loss of generality, we may replace A by A[`], h by `h,
and reduce to the case where the Picard-Vessiot extension Q is a field, the
difference Galois group over Ch(x) is connected, and the Picard-Vessiot ex-
tension for ρ(Y ) = AY over Ch(x) admits a fundamental solution with Y
as first column. Let QC be the Picard-Vessiot extension for ρ(Y ) = AY
over C(x) and let Gal(QC|C(x)) be the difference Galois group. Since
Gal(Q|Ch(x)) = Gal(QC|C(x))(Ch), we find that Gal(QC|C(x)) is connected
too.

Let us prove Theorem 1 by induction on n, the order of the equation.
The global strategy of the proof will be quite similar to [ADH21], but the
arguments will differ inside each step of the proof.

(1) Case n = 1 (initialization of the induction).
(2) Reduction to the affine case when n ≥ 2.
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(3) Case of affine equations.
Step 1: Case n = 1.

Let us prove Theorem 1 in the case n = 1.

Proposition 12. Let 0 6= a ∈ C(x). If f ∈ M(C) is solution of ρ(y) = ay
and is differentially algebraic over C(x), then f ∈ Rh,exp.

Proof. If f = 0 the result is clear. Assume that f 6= 0. By Remark 4, we
may apply [HS08, Corollary 3.4], to deduce that there exist nonzero elements
c ∈ C and d(x) ∈ C(x) such that f(x + h)/f(x) = a(x) = cd(x + h)/d(x).
Let c′ ∈ C such that ec′h = c. We find that c1(x) := f(x)

d(x)ec′x
is ρ-invariant.

We have proved that c1(x) ∈ Ch and therefore f(x) = c1(x)d(x)ec
′x ∈ Rh,exp

as expected. �

Step 2: Reduction to the affine case.
Let us now begin the induction step of the proof of Theorem 1. Let us fix

n ≥ 2 and assume that Theorem 1 holds for equations of order strictly less
than n. We assume that each entry of Y is differentially algebraic over C(x)
and prove that Y has entries in Rh,exp. By Proposition 10, Gal(QC|C(x)) is
reducible. By [ADH21, Lemma 4.4], there exists T ∈ GLn(C(x)) such that

Z := TY is solution of a bloc system ρ(Z) = BZ where B =

(
B1,1 B1,2

0 B2,2

)
,

and Bi,i, i = 1, 2, has size ni < n. Let us further assume that n1 is minimal
for this property. The goal of this step is to prove that when n1 > 1 the
results holds. More precisely, we want to prove the following:

Proposition 13. If each entry of Y is differentially algebraic over C(x) and
n1 > 1, then Y ∈ (Rh,exp)n.

Let G1 be the difference Galois group of ρ(Y ) = B1,1Y over C(x). The
group G1 is irreducible and connected, see [ADH21, Section 5.3].

Let (g1, . . . , gn)> = TY. The entries of Y are all differentially algebraic
over C(x) if and only if the same holds for the entries of (g1, . . . , gn)>. Sim-
ilarly, Y ∈ (Rh,exp)n if and only if (g1, . . . , gn)> ∈ (Rh,exp)n. So it suffices to
show that if all the entries of (g1, . . . , gn)> are differentially algebraic over
C(x), then (g1, . . . , gn)> ∈ (Rh,exp)n. Let Y1 be the vector (g1, . . . , gn1)>

and Y2 be the vector (gn1+1, . . . , gn)>. We have ρ(Y1) = B1,1Y1 + B1,2Y2
and ρ(Y2) = B2,2Y2. By induction hypothesis, when each entry of Y is dif-
ferentially algebraic, we find that Y2 ∈ (Rh,exp)n2 . Then, when each entry
of Y is differentially algebraic over C(x), we have

(4.1) Y ∈ (Rh,exp)n ⇐⇒ Y1 ∈ (Rh,exp)n1 .

Toward the proof of Proposition 13, we are going to prove that when each
entry of Y is differentially algebraic over C(x), then the entries of Y1 belong
to a certain ring. Since Y2 ∈ (Rh,exp)n2 , there exist λ1, . . . , λk ∈ C and
` ∈ N∗ such that the entries of Y2 belong to C`h(x)[eλ1x, . . . , eλkx]. Up to
replacing the ρ-equation by a ρ`-equation, we may reduce to the case where
` = 1. Recall that C̃h is a differentially closed field containing Ch. Let K̃0,
be the (ρ, δ)-ring that is the total ring of fraction of the ring generated by
the entries of Y2 over C̃h(x).
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Lemma 14. If each entry of Y is differentially algebraic over C(x) and
n1 > 1, then Y1 ∈ (K̃0)

n1.

Proof. Assume that each entry of Y is differentially algebraic over C(x). Let
us prove the contrapositive: let us assume that Y1 /∈ (K̃0)

n1 and let us prove
that n1 = 1. Recall that U ∈ GLn(M(C)) is such that ρ(U) = AU . Let
V = TU ; this is a fundamental solution of ρ(Y ) = BY . By Lemma 8, QS ,
the total ring of fractions of C̃h(x){V, 1/det(V )}δ, is a (ρ, δ)-Picard-Vessiot
extension for ρ(Y ) = BY over C̃h(x). LetH = Galδ(QS |C̃h(x)) be the (ρ, δ)-
Galois group of ρ(Y ) = BY over C̃h(x). By the (ρ, δ)-Galois correspondence,
see [HS08, Theorem 2.7], we deduce the existence of some σ ∈ H, such that
σ(gi) = gi for every i, n1 + 1 ≤ i ≤ n and

(σ(gi))
>
i≤n 6= (gi)

>
i≤n .

Hence w := Y1 − σ(Y1) is a nonzero vector. Since the coordinates of Y1 are
differentially algebraic over C̃h(x) and σ belongs to the (ρ, δ)-Galois groupH,
the coordinates of σ(Y1) are also differentially algebraic over C̃h(x). There-
fore the coordinates of w are differentially algebraic over C̃h(x). Furthermore,
Y1 and σ(Y1) are both solution to the system

ρ(Y ) = B1,1Y +B1,2Y2 .

It follows that
ρ(w) = B1,1w .

Since we have
C̃h = C̃h(x)ρ ⊂ (QS)ρ = C̃h ,

we find by an adaptation of Lemma 9, the existence of a positive integer s and
a (ρs, δ)-Picard-Vessiot field extension Q1 for the system ρs(Y ) = (B1,1)[s]Y

over C̃h(x) such that w is the first column of a fundamental matrix W .
Furthermore, the difference Galois group of ρs(Y ) = (B1,1)[s]Y over C(x) is
equal to G1 since the latter is connected. Let us build a fundamental solution
of ρs(Y ) = (B1,1)[s]Y with coefficients in M(C) and whose all coordinates
of the first column are differentially algebraic over C̃h(x). By [Pra86, Theo-
rem 1], there exists W1 ∈ GLn1(M(C)) such that ρs(W1) = (B1,1)[s]W1.
By Lemma 8, the total ring of fractions of C̃h(x){W1, 1/det(W1)}δ is a
(ρs, δ)-Picard-Vessiot extension for ρs(Y ) = (B1,1)[s]Y over C̃h(x). Re-
call that the entries of w are differentially algebraic over C̃h(x). Since
the two (ρs, δ)-Picard-Vessiot ring extensions C̃h(x){W, 1/det(W )}δ and
C̃h(x){W1, 1/det(W1)}δ are isomorphic, we deduce that without loss of gen-
erality, we may assume that the entries of the first column of W1 are dif-
ferentially algebraic over C̃h(x) too. The group G1 being connected and
irreducible, Proposition 10 implies that n1 = 1. This proves the result by
contraposition. �

Let us descend from K̃0 to C̃h ⊗Rh,exp.

Lemma 15. If Y1 ∈ (K̃0)
n1, then Y1 ∈ (C̃h ⊗Rh,exp)n1.
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Proof. Recall that Y is solution of ρ(Y ) = AY and is the first col-
umn of the fundamental solution U ∈ GLn(M(C)). By Lemma 5,
R = C̃h(x)[U, 1/det(U)] is a Picard-Vessiot ring extension for ρ(Y ) = AY

over C̃h(x). Let us consider λ1, . . . , λk ∈ C, such that the entries of
Y2 belong to Ch(x)[eλ1x, . . . , eλkx]. Let W = Diag(eλ1x, . . . , eλkx). By
Lemma 5, R1 = C̃h(x)[W, 1/det(W )], is a Picard-Vessiot ring extension
for ρ(Y ) = Diag(eλ1h, . . . , eλkh)Y over C̃h(x). The following idea has been
suggested by Charlotte Hardouin. Consider the ideal

I1 = {s ∈ R1|sY ∈
(
R1

)n}.
Let us prove that it is a ρ-ideal. Let s ∈ I1. We have

ρ(s)Y = ρ(s)A−1AY = A−1ρ(sY).

With sY ∈
(
R1

)n we therefore deduce that we have A−1ρ(sY) ∈
(
R1

)n.
Hence ρ(s) ∈ I1. This shows that I1 is a ρ-ideal. The latter is not reduced
to (0) since it contains the common denominator of the entries of Y. Since
R1 is a simple ρ-ring, and I1 6= (0), we deduce that 1 ∈ I1, proving that
Y has its entries in C̃h(x)[eλ1x, . . . , eλkx, e−(λ1+···+λk)x]. This completes the
proof. �

Let us finish the proof of Proposition 13. Assume that the entries of
Y are differentially algebraic over C(x) and n1 > 1. We have seen that
Y2 = (gn1+1, . . . , gn)> ∈ (Rh,exp)n2 and by Lemma 14, and Lemma 15, Y1 =

(g1, . . . , gn1)> ∈ (C̃h ⊗ Rh,exp)n1 . Since T−1(g1, . . . , gn)> = Y, it follows
that Y ∈ (C̃h ⊗Rh,exp)n. The following lemma will terminate the proof of
Proposition 13.

Lemma 16. If Y ∈ (C̃h ⊗Rh,exp)n, then Y ∈ (Rh,exp)n.

Proof. Let 0 6= P ∈ Ch[x] of minimal degree such that we may write PY =

c1Z1 + · · · + cκZκ with ci ∈ C̃h and Zi with entries that are Ch[x]-linear
combination between the {eλix, λi ∈ C}. Since Y ∈ (Rh,exp)n if and only if
PY ∈ (Rh,exp)n it suffices to show that PY ∈ (Rh,exp)n. Let us assume that
κ is minimal which implies that the Zi are Ch linearly independent. Since
functions solutions of linear difference equation form a ring it follows that
every entries of Zi are solution of linear difference equation in coefficients in
C(x). Let us consider a difference equation such that every yi are solutions,
where yi is the first entry of Zi. Let ρ(Y ) = ÃY be the corresponding system
and let m be its size. Since ρ(ci) = ci the first entry of PY is solution of
the same equation as the yi. We use that fact that there are at most m
linearly independent solutions, to deduce κ ≤ m. By [Pra86, Theorem 1], let
W ∈ GLm(M(C)) with ρ(W ) = ÃW such that the κ first columns are the
(yi, ρ(yi), . . . , ρ

m−1(yi))
>. Since U and W have coefficients in GLm(M(C)),

there exists C0 ∈ GLm((M(C))ρ) = GLn(Ch) such that UC0 = W . This
proves that the above ci are in Ch, proving that PY ∈ Rh,exp as expected. �

Step 3: Affine case.
Let us finish the proof of Theorem 1. Let us recall that we assume that
the entries of Y are differentially algebraic over C(x) and we have to prove
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that Y ∈ (Rh,exp)n. By Proposition 13, it remains to consider the case
where n1 = 1. By (4.1) it suffices to show that g1 ∈ Rh,exp. Recall that g1
is a differentially algebraic solution of the affine equation ρ(g1) = ag1 + b

where a = B1,1 ∈ C(x) and b = B1,2(g2, . . . , gn)> ∈ Rh,exp. Let C̃h be
a differentially closed field containing Ch. By [HS08, Proposition 3.8], the
(ρ, δ)-Galois group of ρ(y) = ay over C̃h(x) is not all of GL1(C̃h). By [Pra86,
Theorem 1], let h0 ∈M(C) be a nonzero solution of ρ(y) = ay. In virtue of
Lemma 8, the total ring of fractions of C̃h(x){h0, 1/h0}δ is a (ρ, δ)-Picard-
Vessiot extension for ρ(Y ) = aY over C̃h(x). With [HS08, Proposition 6.26],
h0 is differentially algebraic over C̃h(x). By Remark 4, we may use [HS08,
Corollary 3.4], to find that there exist nonzero c ∈ C and g ∈ C(x) such that
a = cρ(g)/g. Let c′ ∈ C such that ec′h = c. We have g1 ∈ Rh,exp if and only
if ĝ := g1

ec′xg
∈ Rh,exp. We have ρ(ĝ) = ĝ + b

ρ(ec′xg)
. The latter is solution

of an equation of the form ρ(y) = y + b′ where b′ := b
ρ(ec′xg)

∈ Rh,exp. So
without loss of generality we may reduce to the case where a = 1. Then, g1
is solution of ρ(y) = y + b where b ∈ Rh,exp. Let ` ∈ N∗ and λ1, . . . , λk ∈
C, such that b ∈ C`h(x)[eλ1x, . . . , eλkx]. We have ρ`(g1) = g1 + b[`], with
b[`] := b + · · · + ρ`−1(b) ∈ C`h(x)[eλ1x, . . . , eλkx]. Since R`h,exp ⊂ Rh,exp is
(ρ`, δ)-ring, we may replace the ρ-equation by a ρ`-equation to reduce to
the case ` = 1. We deduce from the proof of Lemma 9 that there exists
` ≥ 1, such that C̃h(x){eλ1x, . . . , eλkx, e−(λ1+···+λk)x}δ is a (ρ`, δ)-Picard-
Vessiot ring extension for ρ`(Y ) = Diag(eλ1h, . . . , eλkh)[`]Y over C̃h(x) that is
an integral domain. Again, replacing the ρ-equation by a ρ`-equation we may
reduce to the case where the (ρ, δ)-ring C̃h(x){eλ1x, . . . , eλkx, e−(λ1+···+λk)x}δ
in an integral domain and its field of fractions has C̃h as field of constants.

By [HS08, Proposition 3.1], there exists a linear differential opera-
tor with coefficients in C̃h and g ∈ Frac(C̃h(x){eλ1x, . . . , eλkx}δ) =

C̃h(x)(eλ1x, . . . , eλkx), such that L(b) = ρ(g) − g. Consider W =

Diag(eλ1x, . . . , eλkx). The field C̃h is algebraically closed. By a straight-
forward adaptation of Lemma 5, R1 = C̃h(x)[eλ1x, . . . , eλkx, e−(λ1+···+λk)x],
is a Picard-Vessiot ring extension for ρ(Y ) = Diag(eλ1h, . . . , eλkh)Y over
C̃h(x). Consider the ideal

J1 = {s ∈ R1|sg ∈ R1}.

Let us prove that it is a ρ-ideal. Let s ∈ J1. We have ρ(sg) ∈ R1. But
ρ(sg) = ρ(s)(g + L(b)) and ρ(s)L(b) ∈ R1, proving that ρ(s)g ∈ R1. Hence
ρ(s) ∈ J1 showing that J1 is a ρ-ideal. Since R1 is a simple ρ-ring, and by
construction J1 6= (0), we deduce that 1 ∈ J1 and therefore

g ∈ C̃h(x)[eλ1x, . . . , eλkx, e−(λ1+···+λk)x].

Let us write b =
∑
bie

λix, g =
∑
g̃ie

λix, bi, g̃i ∈ C̃h(x), λi ∈ C. Then, using
the C̃h(x)-linear independence of the eλx, λ ∈ C, we find equations of the
form Li(bi) = ehλiρ(g̃i) − g̃i, where Li is a linear differential operator with
coefficients in C̃h. By Remark 4, we may use [HS08, Lemma 6.4], to deduce
the existence of ĝi ∈ C̃h(x) such that bi = ehλiρ(ĝi)− ĝi. Then, there exists
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g′ ∈ Vect
C̃h(x)

[eλ1x, . . . , eλkx], such that b = ρ(g′)−g′. Equating the constant
coefficients yields the existence of g′′ ∈ Rh,exp such that b = ρ(g′′) − g′′.
Recall that b = ρ(g1)− g1. We then find that g1 − g′′ is ρ-invariant. Hence,
g1 − g′′ ∈ Ch and therefore g1 ∈ Rh,exp. This completes the proof.

References

[ADH21] Boris Adamczewski, Thomas Dreyfus, and Charlotte Hardouin. Hypertranscen-
dence and linear difference equations. Journal of the American Mathematical
Society, 34(2):475–503, 2021.

[ADR21] Carlos E Arreche, Thomas Dreyfus, and Julien Roques. Differential transcen-
dence criteria for second-order linear difference equations and elliptic hyperge-
ometric functions. Journal de l’École polytechnique Mathématiques, 8:147–168,
2021.

[AS17] C. E. Arreche and M. F. Singer. Galois groups for integrable and projectively
integrable linear difference equations. J. Algebra, 480:423–449, 2017.

[BG93] J.-P. Bézivin and F. Gramain. Solutions entières d’un système d’équations aux
différences. Ann. Inst. Fourier, 43:791–814, 1993.

[Coh65] R. M. Cohn. Difference Algebra. Interscience Publishers John Wiley & Sons,
New York-London-Sydeny, 1965.

[DHR18] T. Dreyfus, C. Hardouin, and J. Roques. Hypertranscendance of solutions of
Mahler equations. J. Eur. Math. Soc. (JEMS), 20:2209–2238, 2018.

[DHR21] Thomas Dreyfus, Charlotte Hardouin, and Julien Roques. Functional relations
for solutions of q-difference equations. Mathematische Zeitschrift, 298(3):1751–
1791, 2021.

[DHRS18] T. Dreyfus, C. Hardouin, J. Roques, and M. F. Singer. On the nature of the
generating series of walks in the quarter plane. Invent. Math., 213:139–203,
2018.

[dS22] Ehud de Shalit. Algebraic independence and difference equations over elliptic
function fields. arXiv preprint arXiv:2207.13377, 2022.

[Har08] C. Hardouin. Hypertranscendance des systèmes aux différences diagonaux.
Compos. Math., 144:565–581, 2008.

[Höl87] O. Hölder. Über die Eigenschaft der Gammafunction keiner algebraischen Dif-
ferentialgleichung zu genügen. Math. Ann., 28:1–13, 1887.

[HS08] C. Hardouin and M. F. Singer. Differential galois theory of linear difference
equations. Math. Ann., 342:333–377, 2008.

[Ish98] K. Ishizaki. Hypertranscendency of meromorphic solutions of a linear functional
equations. Aequationes Math., 56:271–283, 1998.

[Mah30] K. Mahler. Arithmetische Eigenschaften einer Klasse transzendental-
transzendenter Funktionen. Math. Z., 32:545–585, 1930.

[Moo96] E. H. Moore. Concerning transcendentally transcendental functions. Math.
Ann., 48:49–74, 1896.

[Ngu12] P. Nguyen. Équations de Mahler et hypertranscendance. PhD thesis, Institut
de Mathématiques de Jussieu, 2012.

[Nis84] Ke. Nishioka. A note on differentially algebraic solutions of first order linear
difference equations. Aequationes Math., 27:32–48, 1984.

[Pra86] C. Praagman. Fundamental solutions for meromorphic linear difference equa-
tions in the complex plane, and related problems. J. Reine Angew. Math.,
369:101–109, 1986.

[Ran92] B. Randé. Équations fonctionnelles de Mahler et applications aux suites p-
régulières. Thèse de l’Université Bordeaux 1, 1992.

[SS19] R. Schäfke and M. Singer. Consistent systems of linear differential and differ-
ence equations. J. Eur. Math. Soc. (JEMS), 21:2751–2792, 2019.

[SU93] M. F. Singer and F. Ulmer. Galois groups of second and third order linear
differential equations. J. Symbolic Comput., 16:9–36, 1993.

[vdPS97] M. van der Put and M. F. Singer. Galois Theory of Difference Equations,
volume 1666 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1997.



HYPERTRANSCENDENCE, THE EXPONENTIAL CASE 15

Institut de Mathématique de Bourgogne, UMR 5584 CNRS, Université de
Bourgogne, F-21000, Dijon, France

Email address: thomas.dreyfus@math.cnrs.fr


	Introduction
	1. Difference setting
	2. Differential setting
	3. Irreducible Galois group
	4. Proof of the main result
	References

