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Abstract Friction-induced vibration emanating from aircraft braking system is a key issue in the design phase,
due to the significant damage it can cause to the brake structure. Although the problem of unstable vibrations
in aircraft braking systems has been studied by a number of researchers, the suitability of the mechanical
modeling strategy for predicting instabilities remains an open problem. The need for relevant numerical models
is therefore essential in order to be as predictive as possible during the design phase. Preliminary studies must
therefore be carried out to validate or invalidate the modeling hypotheses traditionally used. Indeed the stability
analysis of an aircraft braking system is performed in order to study a low-frequency instability. An industrial
model is used, hence reducing the number of degrees of freedom (DoF) is of utmost importance in order to have
reasonable computation times. When studying low-frequency phenomena, this can be achieved by neglecting
the deformations of the disks. However, no current study has shown that this hypothesis is realistic. So the aim
of this paper is to assess the effect of the rigidity hypothesis on the results predicted by the stability analysis.
In order to do so, the stability analysis results of a model with rigid disks and one with non-rigid disks are
compared, with a particular attention on the main instability phenomenon. It is found that considering rigid
disks has a very limited influence on the frequency of the low-frequency eigenmodes, but it over-predicts the
real part of the unstable eigenmode. Besides, a component mode synthesis (CMS) technique is shown to reduce
significantly the size of the non-rigid disks model while ensuring a satisfying precision regarding eigenmodes
prediction.

Keywords Mode-coupling instability · Stability analysis · Component mode synthesis · Structural
deformation

1 Introduction

Friction-induced instabilities affect braking systems in a large spectrum of vehicles: studies have dealt with this
topic in bicycles [1], cars [2–5], trains [6–13] or aircraft [14,15]. Such issues have been known for decennia,
but their prediction and mitigation is still a challenge for industries [16–18]. Several theories have been used
to explain the physical origins of friction-induced vibrations [19] and extensive comprehensive reviews on
mechanisms of the brake instabilities and friction-induced vibration are available [2,20–23].
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Two complementary approaches are used to predict the severity of friction-induced instabilities: the first
step is to perform a stability analysis. This is achieved by linearizing the system around a static equilibrium
point and then computing the eigenmodes and eigenfrequencies. The real part of the eigenmodes is studied with
Complex Eigenvalue Analysis (CEA): this tool is largely used in the industry, automotive being one example
[24]. It is quite fast to compute and provides useful insight into the eigenmodes of the system. Sometimes this
is not sufficient though, as it has been showed that in some cases the predictions of the CEA do not match the
behavior of the real system, in particular when several instabilities are taken into account [25,26]. Besides,
stability analyses only provide local information about the bifurcation point. It is often important to know not
only whether an instability will manifest, but also the vibration levels that the structure will be exposed to. Other
methods appeared in order to compensate for the downsides of the CEA: for instance, nonlinear approaches
such as the Harmonic Balance Method (HBM) [27] and the shooting method [12] allow to determine the
steady-state solution. The nonlinear time simulation provides the transient-state solution as well and direct
access to vibration levels [28]. Those methods take into account nonlinearities and are valid even after the
bifurcation point is reached. The main downside is the computation time required, significantly higher than
for a CEA [27].

Industrial models are interesting because they can deal with complex phenomena and precisely describe
the behavior of a given system. In order to do so, a high number of degrees of freedom (DoF) are considered.
The main difficulty is to reduce the size of the model while keeping a satisfying precision on the phenomena
under study. When dealing with an industrial model, the first step is usually to apply a reduction method to the
internal modes of the structures. The most common ones are the Craig-Bampton [29] (fix-interface modes)
and the Craig-McNeal [30] (free-interface modes) methods. For the reduction of the interface modes, other
techniques can be applied, for instance hyper-reduction [31] or Double Modal Synthesis [32,33]. Once the
simulation time for one set of parameters is satisfactory, it is possible to pursue with more in-depth study of
friction-induced vibration and even to improve the system through optimization [34].

Aircraft braking systems are similar to disk brakes found in the automotive industry, the main difference
being that several disks are stacked together, hence multiple disk-on-disk contact surfaces appear. Dealing
with aircraft braking systems, the main unstable modes appear at low frequencies (in general a few hundred
hertz). The disks deformation is very limited in this frequency range, so it is possible to simplify the model by
considering rigid disks. This hypothesis does not prevent the instabilities from appearing in phenomenological
models [35,36]. Besides, in some contexts considering rigid or deformable bodies has a remarkable impact on
either the results provided by the model or its computation time [37,38].

The paper deals with the issue of model size reduction toward simulating friction-induced instabilities,
with an application to an industrial model of an aircraft braking system. In particular, it describes the effects
of the rigidity hypothesis on the stability analysis of the braking system model. It will assess whether the
hypothesis provides a satisfying model for stability analysis by comparing the performance (i.e., precision and
model size) for a rigid-disk model and for a non-rigid-disk model. On the other hand, taking into account the
disks deformation requires to increase the size of the model, which will in turn increase the computation time
required. Therefore, this paper uses a Component Mode Synthesis (CMS) method in order to analyze whether
it can be combined with the non-rigid model and improve its computation time.

First of all, the industrial braking system is described: the principle of braking and the main subsystems
are listed, then the main instability affecting the system is introduced. Two models are then described and
compared: one with rigid disks model and one with non-rigid disks. Their contact formulations are compared
and the results obtained through stability analysis are shown. After assessing the improvement obtained through
considering disks deformation, the results obtained through CMS are described in order to assess the efficiency
of this reduction method.

2 Model of the braking system

2.1 Industrial model and context

Figure 1 shows the Finite Element model of an aircraft braking system. It is made of a stacking of rotors and
stators. Several pistons are installed on a piston housing and they control the braking through the contact
pressure. The disks are guided in order to allow only for axial translation between the disks and the structure.
The rotors are guided by the wheel rim, while the stators are guided by the axle. Before the braking sequence
is started, the disks move at different rotating speeds and they are not in contact. Once the pressure in the
piston housing raises, pistons make contact with the first disk and push the heat sink (assembly of the rotors
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Fig. 1 Finite Element model of an aircraft braking system with its rotation axis

Fig. 2 Framework for obtaining the reduced model

and the stators) together. Friction forces appear and a braking torque is generated, allowing the plane to reduce
its speed.

During the development of a new braking system, a series of tests is performed in order to monitor
its behavior thanks to several accelerometers. Vibrations exceeding the requirements are observed on some
occasions, and after investigation the cause is often found to be the presence of a mode-coupling instability
[15,39]. The one studied in this paper is called whirl and is characterized by a low frequency, around 200 Hz.
It will be defined by f0 in the rest of the paper. Displacement-wise, whirl is an out-of-plane oscillation of the
heat sink and the piston housing. An illustration of this eigenmode is provided in Annex A. In the context of
braking systems, whirl can spur high-intensity vibrations. Such levels lead to disks wear and can jeopardize
the structural integrity of the landing gear. It is then fundamental to be able to control this instability and to
limit the vibration levels associated to it. This requires to be able to predict the behavior of a given braking
system depending on its architecture and on the braking conditions.

A complete aircraft braking system model is defined by several millions of DoF. At the same time, the most
important phenomena are generally located in the low-frequency range. Hence, it is possible to simplify the
behavior of the model while being able to reproduce the required instabilities. Figure 2 illustrates the method
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employed to obtain the reduced model. First, the braking system is separated into two substructures: each of
them is then reduced through a Craig-Bampton method and their convergence is verified for the frequency
range of interest. The following step is to recombine the two substructures using their boundary conditions.

2.2 Equation of motion of the braking system

The equation of motion of the system is written as follows:

Mẍ + Cẋ + Kx = fext + fNL(x) (1)

The matrices M and K are the mass and stiffness matrices of the braking system. The forces applied to
the system are divided into two entities. fext corresponds to the external forces on every DoF of the system: in
the paper, the weight of the plane and the pressure forces coming from the pistons are taken into account. The
nonlinear forces are described by fNL(x). The influence of the rotation of the wheel is neglected here, hence no
gyroscopic terms appear in Eq. 1. The stiffness matrix is composed of a structural term K0, directly extracted
from the Finite Element model, and a term depending on the contact laws between the disks Kc.

K(μ) = K0 + Kc(μ) (2)

The damping matrix C is defined in the modal basis of the undamped system such as:

C0
i i = 2ωi,0ξi (3)

Where ωi,0 defines the angular frequency of the i th mode and ξi corresponds to the associated modal damping
ratio. Identifying the modal damping of a mechanical system is a very difficult and delicate task, but for the sake
of simplicity, here a constant modal damping ratio of 3% is considered for all eigenmodes. A transformation
is then required in order to write the damping matrix in the same basis as the mass and the stiffness ones.

In order to operate such transformation, let us consider the undamped and frictionless system:

Mẍ + K(μ = 0)x = 0 (4)

Both matrices are real and symmetrical, hence they are diagonalizable. By scaling the eigenvectors with respect
to the mass matrix, we obtain:

�TM� = I (5)

Where I corresponds to the identity matrix. The modal matrix � is obtained by solving the eigenvalue problem
of the system’s equation of motion. The damping matrix verifies the following equation:

�TC� = C0 (6)

C0 is a diagonal matrix which terms are given by Eq. 3. Hence, it is possible to obtain an expression for the
damping matrix in the basis of the DoF of the model:

C = M�C0�TMT (7)

By defining the damping matrix in such way, the real part of each eigenmode is shifted by a value propor-
tional to its eigenfrequency:

ri (ξi ) = ri (0) − ωiξi (8)
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2.3 Stability analysis

Here the main steps required to perform a stability analysis are summarized.
Under the hypothesis that Eq. 1 admits a sliding equilibrium point xeq, it verifies:

Kxeq = fext + fNL(xeq) (9)

A solution can easily be found in the linear case. If nonlinear forces are considered, methods such as
Newton–Raphson are used to evaluate the solution.

Once an equilibrium point is calculated, a point x̄ in its vicinity can be defined as follows:

x̄ = xeq + ε (10)

By taking ε → 0, a Taylor expansion of the right side of the system is performed:

fNL(x) = fNL(xeq) + JfNL(xeq)ε + o(ε) (11)

JfNL(xeq) is the Jacobian matrix of the nonlinear forces evaluated in xeq. Hence, by writing Eq. 1 for x = x̄,
the following expression is obtained:

Mε̈ + Cε̇ + (
K − JfNL(xeq)

)
ε = 0 (12)

The eigenvalues and eigenvectors of this system of equations provide the information on the eigenmodes
of the mechanical system. A mode is defined as unstable if the real part of the associated eigenvalue is positive.

2.4 Contact expressions

In this section, the analytical expressions of contact used in the article are described. A penalty algorithm is
used: this requires to define a contact stiffness k and to calculate the distance between two disks in contact, in
order to obtain the normal and tangent forces. Let us consider a point placed on the contact surface of a disk,
defined by its polar coordinates (r, θ). The normal and tangent forces are given by:

{
fN(r, θ) = kd(r, θ)

−→uz
fT(r, θ) = μkd(r, θ)

−→uθ
(13)

where d(r, θ) is the gap between the point (r, θ) and the surface of the next disk.

2.4.1 Rigid disks model (integral formulation)

The rigid disks model is illustrated by Fig. 3a and b. Since the disks are considered to be rigid, every point of a
disk can be described by the 6 DoF of its center. Displacements are assumed to be small. For a given couple of
disks, the relative displacement and rotation of their centers allow to write the distance d(r, θ) for every point
of the contact surface as follows:

d(r, θ) = dz + r sin θαx − r cos θαy (14)

Where dz is the relative displacement over −→z and αx (respectively, αy) is the relative rotation over −→x
(respectively, −→y ).

By an integration over the contact surface of a disk, an analytical expression of the corresponding forces
(Fx , Fy , Fz) and moments (Mx , My , Mz) is obtained.

F integral
x = −

∫ 2π

0

∫ Re

Ri
fT (r, θ)sin(θ)rdrdθ = −1

3
μkIπ

(
R3
e − R3

i

)
αx (15)

F integral
y =

∫ 2π

0

∫ Re

Ri
fT (r, θ)cos(θ)rdrdθ = −1

3
μkIπ

(
R3
e − R3

i

)
αy (16)

F integral
z =

∫ 2π

0

∫ Re

Ri
fN (r, θ)rdrdθ = kIπ

(
R2
e − R2

i

)
dz (17)
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Fig. 3 Summary of the models used to represent the disks

M integral
x =

∫ 2π

0

∫ Re

Ri
fN (r, θ)sin(θ)r2drdθ = 1

4
kIπ

(
R4
e − R4

i

)
αx (18)

M integral
y = −

∫ 2π

0

∫ Re

Ri
fN (r, θ)cos(θ)r2drdθ = 1

4
kIπ

(
R4
e − R4

i

)
αy (19)

M integral
z =

∫ 2π

0

∫ Re

Ri
fT (r, θ)r2drdθ = 2

3
kIμπ

(
R3
e − R3

i

)
dz (20)

kI is the contact stiffness used for the integral formulation, Ri and Re are the internal and external radii of
the disks.

2.4.2 Non-rigid disks model (discrete formulation)

For the non-rigid disks model, the information about of the displacement of every point of the disk is individual
and cannot be extracted from the DoF of the center. Hence, a fixed number N of points is chosen on the Finite
Element model and the DoF of those points are retrieved. Figure 3c is an example where 8 points per contact
surface are used. As a consequence, the axial distance d(r, θ) is only known for these points, which leads to a
discrete expression for the disks contact.

di = zrotor,i − zstator,i (21)

Replacing the integral formulation by the discrete one, the forces become:

Fdiscrete
x =

N∑

i=1

Fdiscrete
x,i = −μkD

N∑

i=1

di sin θi (22)

Fdiscrete
y =

N∑

i=1

Fdiscrete
y,i = μkD

N∑

i=1

di cos θi (23)

Fdiscrete
z =

N∑

i=1

Fdiscrete
z,i = kD

N∑

i=1

di (24)
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kD is the contact stiffness used in the discrete formulation. The moments are obtained by using the fulcrum
expression. For a given point, its moments are written:

Mdiscrete
i =

⎛

⎝
Fdiscrete
x,i

Fdiscrete
y,i

Fdiscrete
z,i

⎞

⎠ ×
⎛

⎝
ri cos θi
ri sin θi

0

⎞

⎠ (25)

The total moments are obtained by summing the moments for each point.

2.5 Component mode synthesis

CMS is a general term describing reduction techniques aiming to decrease the number of DoF of a given model.
In this paper a Finite Element model is used, which makes CMS techniques particularly suitable with respect
to other existing techniques. First of all, they can be implemented directly from a FE model. Besides, the goal
is to ensure the precision of the model until a limit frequency, and this is exactly what CMS techniques provide,
as it will be shown in Sect. 3.4. The method introduced here aims to reduce the number of interface DoF and
is well-adapted to the case of frictional contact. Let us consider the reduced model with non-rigid disks. The
Craig-Bampton reduction and substructuring assembly have been applied. The vector u contains every DoF
issued from the model reduction. To simplify the expressions, the undamped linear system is considered in
this example. The DoF vector is organized as follows:

u =
(

u0
ui

)
(26)

The vector u0 contains the DoF which will not be affected by the CMS. Here it corresponds to the physical
DoF of the system, other than the ones in the disks, as well as the non-physical DoF remaining after the
Craig-Bampton reduction. The vector ui contains the DoF of the disks interfaces and they are the ones that
will be reduced in this step. The goal is to write the system equation in a new basis which dimension will be
smaller than u, while ensuring a satisfying precision on the eigenmodes estimation.

Using Eq. 26, the motion equation becomes:

Mü + Ku =
(

Moo Moi
Mio Mii

)(
üo
üi

)
+

(
Koo Koi
Kio Kii

)(
uo
ui

)
=

(
0
0

)
(27)

Modal synthesis consists of two steps. First, the modal basis of the interfaces is truncated in order to
reduce the dimension of the reduced basis. If a non-null friction coefficient is considered, the matrix Kii is
non-symmetric, so the right and left eigenvectors need to be separated.

(
Kii(μCMS) − ω2Mii

)
φr = 0 (28)

φl
T (

Kii(μCMS) − ω2Mii
) = 0 (29)

Once the eigenvectors φr and φl are obtained, the modal basis is sorted in the ascending order of its
eigenfrequencies and the truncation is realized at the nth mode. The truncated left (respectively, right) modal
basis is written Vl,n (respectively, Vr,n) and the related vector is written un.

The second step of the CMS consists of solving the static problem. Let us write the second line of Eq. 27:

− ω2Mioüo − ω2Miiüi + Kiouo + Kiiui = 0 (30)

By considering the static solution, i.e., ω = 0, the following relation is obtained:

ui = −Kii
−1Kiouo (31)

By combining Eqs. 28, 29 and 31, an expression of the transformation matrices associated to the modal
synthesis are obtained.

Tl =
(

I 0
−Kii

−1Kio Vl,n

)
(32)
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Tr =
(

I 0
−Kii

−1Kio Vr,n

)
(33)

After modal synthesis, Eq. 27 becomes:

M̃ ¨̃u + K̃ũ = 0 (34)

Where

M̃ = Tl
T MTr (35)

K̃ = Tl
T KTr (36)

ũ =
(

u0
un

)
(37)

The precision and the effectiveness of the modal synthesis are both regulated by the choice of n.
It is important to note that the friction coefficient μCMS used here can be different from the value used in

the non-reduced stiffness matrix K. This proves to be useful in the case μCMS = 0. In this case, the right and
left eigenvectors in Eqs. 32 and 33 are identical, which simplifies the equations and reduces the computations
required to obtain the reduced system without making the distinction between left and right eigenvectors.
Depending on the system under study, this assumption might have a meaningful impact on the precision [33].

3 Results

3.1 Coherence of the contact expressions

It is important to verify that the integral and discrete contact expressions are coherent with each other. In order
to do so, the stiffness coefficients kI and kD need to be related. In the discrete formulation, the contact forces
are simulated by a number N of axial springs. Hence, the total force can be calculated by considering N parallel
spring of stiffness kD . By dividing by the total surface of the disk, a stiffness per unit of surface is obtained.

kD = π
(
R2
e − R2

i

)

N
kI (38)

The forces and moments obtained for the integral and the discrete formulation can be compared for the
rigid-disk case using the previous equations. If a discrete description of the rigid disks model is considered,
Eq. 21 becomes:

di = dz + ri sin θiαx − ri cos θiαy (39)

As an example, the case where the points are distributed on a single radius is taken. R0 will define such
radius. By using Eqs. 22 to 25:

Fdiscrete
x = −1

2
πμkI R0(R

2
e − R2

i )αx (40)

Fdiscrete
y = −1

2
πμkI R0(R

2
e − R2

i )αy (41)

Fdiscrete
z = πkI (R

2
e − R2

i )dz (42)

Mdiscrete
x = 1

2
πkI R

2
0

(
R2
e − R2

i

)
αx (43)

Mdiscrete
y = 1

2
πkI R

2
0

(
R2
e − R2

i

)
αy (44)

Mdiscrete
z = πμkI R0

(
R2
e − R2

i

)
dz (45)

When the expressions are compared using Eq. 38, two ratios appear. The first one is:

η1 = F integral
x

Fdiscrete
x

= F integral
y

Fdiscrete
y

= M integral
z

Mdiscrete
z

= 2

3

Re

R0

(
1 − (

Ri
Re

)3

1 − (
Ri
Re

)2

)

(46)
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Fig. 4 Values of the ratios depending on the dimensions of the disks. The solid line is the function η = 1, the dashed lines
surround the ± 5% zone. The black dot is the ratio obtained with the parameters used in the model

Fig. 5 Reference model with contact points distributed along three radii

It is the ratio for the in-plane forces Fx , Fy and the axial moment Mz . The second one is:

η2 = M integral
x

Mdiscrete
x

= M integral
y

Mdiscrete
y

= 1

2

R2
e

R2
0

(
1 − (

Ri
Re

)4

1 − (
Ri
Re

)2

)

(47)

It is the ratio for the in-plane moments Mx , My . The ratio of the axial forces Fz is equal to 1 because of
Eq. 38.

Figure 4 shows the values of ratios η1 and η2 depending on Re, Ri and R0. It is interesting to see that for a
given dimension ratio for the disks, R0 can be chosen to have one of the two ratios equal to 1, but not both (the
only exception being the degenerate case Ri = Re). For the paper, the radius R0 was chosen to be halfway
between the internal and external radii, which leads to errors around 2% for η1 and 5% for η2.

This comparison allows to check that both formulations give similar results in the rigid disks case and it
allows to estimate the discretization error depending on the extraction points.

3.2 Choice of point distribution

When considering a non-rigid disks model, the number and place of the contact points affect the results
provided by the model. It is then fundamental to ensure that the choice of points will not introduce an important
error on the stability analysis for the frequency range of interest. At the same time, a high amount of points
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Fig. 6 Convergency of the non-rigid model with respect to the reference model, as a function of the number of points per contact
surface

per surface of contact will increase the computation time, so a compromise has to be found. A convergence
study has been performed in order to verify the minimum amount of points required to ensure the precision of
the results. A reference model was considered, with contact points distributed along three radii. Such discrete
distribution showed to give consistent results with respect to the Finite Element model, which is why it is
considered as a reference model. The example of one contact surface is given in Fig. 5. This model contains
around 7000 DoF, 10 times more than the rigid disks model. The stability analysis is performed and then its
results are compared to a model containing between 3 and 40 points per contact surface, distributed on a single
radius (the example for 8 points is provided in Fig. 3c). The convergence of the model is quantified through the
whirl eigenfrequency and through the MAC (Modal Assurance Criterion). The MAC is a correlation criterion
between two families of vectors. For two given vectors x and y, their MAC is calculated as follows:

MAC(x, y) = |< x, y∗ >|2
< x, x∗ >< y, y∗ >

(48)

where x∗ indicates the conjugate of x and < ·, · > the scalar product of two vectors. If the mode shapes are
identical, the MAC will have a value of 1. For modes with different shapes, the MAC is less than 1, a MAC
value close to 0 indicating that the mode shapes are very different. When two models are compared, their
eigenmodes are sorted by frequency: in the case of a couple of complex eigenmodes, the unstable mode (i.e.,
the one with a positive real part) is put before the stable one (i.e., the one with a negative real part).

The results are illustrated by Fig. 6. Convergence is observed for both indicators, the MAC having a faster
convergence than the eigenfrequency. In order to compare the 40 points model to the reference model, the
MAC for the first 40 eigenmodes is displayed in Fig. 6b. The whirl eigenmodes are number 10 and 11, so the
one-radius model is considered to be an accurate representation of the non-rigid disks model as far as whirl
is concerned. For the rest of the article, every time the non-rigid model is mentioned, it will be the one-radius
model with 40 points per contact surface. It contains around 2700 DoF.

3.3 Stability analysis without CMS

This section is dedicated to comparing the stability results depending on whether disks deformation is
considered. In this paper, three characteristics are monitored in order to assess the precision of each model: the
eigenfrequency of the unstable whirl mode, its real part and the eigenvectors (through the MAC). The MAC
is calculated based on the DoF shared by the two models. The DoF used for applying the contact laws are not
taken into account. Here the rigid disks model and the 40-points non-rigid disks model are compared. First of
all, stability analyses are carried out for the case μ = 0 (see Fig. 7) and for the case μ > μc (see Fig. 8). μc
is the critical friction coefficient and indicates the friction coefficient for which the real part of whirl becomes
positive. Such definition entails that every unstable mode is associated to a different value of μc. As far as whirl
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Fig. 7 Comparison of the rigid model and the non-rigid one for μ = 0

Fig. 8 Comparison of the rigid model and the non-rigid one for μ > μc

is concerned, it is equal to 0.14 for the rigid-disk model. The whirl eigenmodes are number 10 and 11. In both
cases, the MAC shows that the first eigenmodes are very similar, the main exception being the stable whirl
eigenmodes obtained in Fig. 7a. The lower value for the MAC can be explained by observing the shape of the
eigenmodes. For μ = 0, no coupling is present, so the two eigenmodes consist of one horizontal oscillation
and one vertical oscillation. An illustration of the eigenmodes is provided in Annex A. Those eigenmodes are
present in both models, but with an angular shift θ .

The value of θ can be linked to the fairly low value of the MAC observed for this couple of eigenmodes.
As an example, let us consider two vectors x1 and x2. x2 is obtained by rotating x1 of an angle θ .

x1 =
(
x0
y0

)
x2 =

(
x0 cos θ + y0 sin θ
y0 cos θ − x0 sin θ

)
(49)

By applying Eq. 48, we obtain:

MAC (x1, x2) = cos2 θ (50)

Once the coalescence is obtained (see Fig. 8b), such shift is no longer present. From the MAC pictures, it
can be observed that the deformation of the disks has an influence starting with the 15th mode, which is located
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Fig. 9 Comparison of the stability charts

at around 2 f0 ( f0 being the whirl eigenfrequency for the reference model). For the whirl eigenmodes, an error
equal to 2.0% on the MAC and equal to 5.5% on the frequency is obtained. In order to take into account the
real part of the unstable eigenmodes, the stability chart is plotted for the models (see Fig. 9).

Five mode couplings can be observed for the non-rigid disks model in the frequency range of interest.
Figure 9b gives the notation used for those eigenmodes. The lowest frequency one, m1, consists in the oscillation
of the whole brake following the deflection of the axle. The brake and the tire move in phase. m2 is essentially
a displacement of the tire, while m3 is very similar to m1, but the brake and the tire move in opposition of
phase. Whirl is designated by m4, and for m5 the displacement of the piston housing is similar to the one of
whirl, but the axle moves as a rigid body (see Annex A).

Regarding the critical friction coefficient μc, the value estimated with the non-rigid disks model is equal
to 0.20, a value 33% higher than the one obtained with the rigid disks model. This highlights the importance
of taking into account disks deformation. Such discrepancy in the real part estimation will lead to a different
propensity and onset of the whirl depending on which model is used. At this stage it is important to remember
that the stability analysis is only a first step for the design of aircraft braking system in regard to friction-induced
vibrations. It is well-known that the stability analysis may lead to an over-estimation or an underestimation of
the unstable modes observed in the real nonlinear vibration behavior due to the fact that linear conditions (i.e.,
the linearized stability around an initial equilibrium point) are not valid during transient oscillations [26].

In conclusion, the non-rigid disks model is more accurate regarding the prediction of stability analysis, but
its main drawback is the increase in the number of DoF considered. The following part discusses the use of
CMS to reduce the size of the model while keeping a satisfying precision.



The influence of disks deformation on the stability analysis           (2025) 95:13 Page 13 of 20    13 

3.4 Performance of the CMS

The CMS step introduced here is led by two parameters, as shown in Eqs. 28, 29, 32 and 33: the friction coeffi-
cient μCMS used to build the transformation matrices and the number of interface modes n. The performance of
the CMS is defined as both the precision of the reduced model with respect to the reference, and the reduction
of the number of DoF. The goal is to assess the influence of two CMS parameters on those performances, in
order to select a fitting set of (n, μCMS) which will guarantee a good prediction of whirl.

In order to monitor the precision of the model after applying CMS, a relative error is defined for the first
m eigenmodes:

∀i ∈ [1,m], xi = | fi − fi,0|
fi,0

(51)

Where fi indicates the i th frequency of the model under study and fi,0 the i th frequency of the model without
CMS. The same equation can be written for the real parts instead of the eigenfrequencies. It is then possible
to obtain the mean error through the following equation:

x̄ (m) = 1

m

m∑

i=1

xi (52)

Likewise, the standard deviation of the error is defined by:

σ(m) =
√√
√√

m∑

i=1

(xi − x̄ (m))2 (53)

here the value m = 40 is chosen in order to cover the [0; 5 f0] frequency range.

3.4.1 Rigid disks model

It is possible to apply the CMS method to the rigid disks model. If the rigidity hypothesis is considered to be
satisfying, this proves to be useful in order to reduce the number of DoF of the model. Similarly to the non-rigid
case, CMS is applied to the model with μCMS = 0 and with n between 0 and the maximum number of DoF
of interface. Since 9 disks are considered, nmax = 54. The results are given in Fig. 10 using the mean error
and its standard deviation from Eqs. 52 and 53 for both eigenfrequencies and real parts. Figure 10a shows the
convergence depending on the number of DoF. Results are similar to the non-rigid case, with a steep decrease
of the mean error following the value of n. The standard deviation follows a different trend, increasing around
n = 20. This indicates that the error decreases in a heterogeneous way among the eigenmodes under study. For
the rigid-disk case, the situation n = 0, which corresponds to the Guyan reduction of the model [40], is already
precise with respect to the reference model. Such reduction is then used in order to verify its performance and
the stability chart is given in Fig. 10b. For μ = 0.3, the error on whirl prediction is equal to 0.12% for the
eigenfrequency and 3.20% for the real part. The model reduced with CMS is precise for whirl prediction and
the number of DoF was decreased with respect to the reference model.

3.4.2 Non-rigid disks model

Here the reference model is the non-rigid disks model without CMS and with μ0 = 0.3. For the reduced
model, 40 contact points are extracted from every contact surface, so n belongs in the range [0; 1920].

First of all, the influence of n on the first eigenmodes is studied. In order to do so, CMS is applied for
different values of n and the first eigenmodes are compared to the ones obtained without CMS, with respect
to frequencies and real parts. The global result is shown in Fig. 11. As far as the frequencies are concerned,
the error function is monotonous and decreasing. The same conclusion cannot be applied to the real parts,
for which the error increases in some ranges of n. The evolution of the error for each eigenmode is given in
Fig. 12. It can be seen that the error is generally more important on the high-frequency eigenmodes. Besides,
the convergence speed is not the same for every eigenmode: for instance, Fig. 12a shows that the couple 26–27
has a frequency error higher than its neighbors for n = 100. These modes involve the ovalization of the disks,
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Fig. 10 CMS applied to the rigid disks model

Fig. 11 Precision of the model on its first 40 eigenmodes using CMS. The red dots shows the error for n = 0, the green dots for
n = 100 and the gray ones for the intermediate values of n. Calculations carried out for μ = 0.3

hence they would not appear in the rigid disks model. Regarding real parts, it is interesting to note that the
couple 14–15 (m5 in Fig. 9b) has a higher error for n = 100 than for n = 0.

Another important step is to evaluate the influence of μCMS on the precision of the reduced model. In
particular, the case μCMS = 0 needs to be investigated for the reasons mentioned in Sect. 2.5. Simulations
are run for μ = μ0 in the non-reduced system, whereas μCMS varies between 0 (dark blue line) and 0.3 (red
line). Figure 11 shows the results. It is important to note that the case μCMS = μ0 does not lead to the highest
precision, for both eigenfrequencies and real parts. Regarding the eigenfrequencies (see Fig. 11a), the error
globally decreases with n, with a steep slope for n < 20. The value of μCMS has very little influence on the
precision, regardless of the value of n. More significant differences are observed for the real parts in Fig. 11b:
in particular, the error increases steeply around n = 40. Once again, the case μCMS = μ0 is the one with the
highest mean error. As mentioned previously, the case μCMS = 0 is interesting for its computation time. Its
results are compared more in detail with the ones provided by μCMS = μ0 in Fig. 13. For this specific model
and for the frequency range of interest, the two options show very limited differences, so μCMS = 0 is chosen.

To ensure that the reduced model is precise with respect to the reference, the MAC is plotted in Fig. 14 for
three values of n and for μCMS = 0. It is observed that n = 10 improves the precision on the high-frequency
eigenmodes with respect to n = 0, whereas an increase toward n = 100 has no significant effect. Besides,
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Fig. 12 Precision of the reduced model depending on the value of μCMS: μCMS = 0 (blue), μCMS = 0.1 (cyan), μCMS = 0.2
(green) and μCMS = 0.3 (red). Calculations carried out for μ = 0.3

Fig. 13 Comparison of CMS results between μCMS = 0 and μCMS = μ0 on the first 40 eigenmodes, depending on the number
of interface modes n. Calculations carried out for μ = 0.3

every diagonal value in the MAC for n = 10 is higher than 99%. Hence, n = 10 is chosen as a satisfying
compromise between model size and precision on the first eigenmodes of the system.

To summarize the main results of the study, the rigid model, the non-rigid one without CMS and the
non-rigid one with CMS (n = 10, μCMS = 0) are compared. The corresponding stability charts are shown
in Fig. 9. It is seen that in order to ensure a proper estimation of the behavior of the reference model, while
also reducing the number of DoF, CMS is a better alternative than considering rigid disks. It is interesting to
note that, even though the transformation matrices for CMS are built using μCMS, the reduced matrices grant
a satisfying precision in the friction coefficient range [0; 0.3].

4 Conclusion

This paper aimed to compare the stability analysis for an aircraft braking system, depending on whether disks
deformation is taken into account. It was found that eigenfrequencies and modal shapes are predicted in a
similar way by both models, but there was an important discrepancy on the real part estimation. The rigid
disks model over-estimates the instability of the system compared to the non-rigid disks model. This paper
also introduced a CMS technique as a solution to reduce the size of the non-rigid disks model and allowed
to determine an efficient reduction set considering both precision and model size. This allowed to obtain a
non-rigid disks model with a number of DoF very similar to the rigid-disk model. This reduction method
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Fig. 14 Comparison of a few reduced models with respect to the reference model using MAC, calculations carried out for μ = 0.3

showed to be well-suited to the system under study, because a very sharp reduction (very low value of n) and
on a real basis (μCMS = 0) proved to introduce a very limited error with respect to the non-reduced solution
in the frequency range of interest.

These findings have an important effect for the development of aircraft braking systems. It was shown that,
even though disks deformation does not play a significant role in the whirl eigenmode shape, it affects the real
part of the mode, hence the propensity of the instability. In the paper, deformation reduces the real part and
increases the critical friction coefficient, so a rigid disks model would over-estimate the instability propensity.
This would lead to poor prediction of the onset of instability and thus of vibration performance for a given
design, and it would lead to non-optimal design solution for aircraft safety.

Although it is not possible to draw up an exhaustive list of topics of interest for future developments,
further studies relating to the prediction of friction-induced vibrations and transient nonlinear phenomena for
aircraft braking systems, including disk deformations, would be essential to verify whether this leads to similar
conclusions. Similarly, it could be interesting to compare in deep all the numerical results with experiments.
On first analysis, it appears that the instability frequency predictions found in this study are in agreement
with previously published experimental results [39]. However, it would be interesting to be able to carry out
experimental studies demonstrating that disks deform during vibration. This would require the implementation
of a complex experimental protocol and dedicated measurement resources. Finally, it would also be interesting
to be able to propose technological solutions that would reduce or even eliminate these instability phenomena.
This requires a sufficiently reliable numerical model to be able to implement a robust and well-managed design
strategy.
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Annex A: illustrations of the eigenmodes

Figures 15 and 16 illustrate the whirl unstable mode and the physical interactions between the elements of
the aircraft brake system (with the wobbling motion of piston housing as well as the rotors and stators). The
eigenmodes are illustrated through the displacement of the heatsink, the axle and the piston housing on the FE
model. For the interested reader, Figs. 17 and 18 show the two initial stable modes at μ = 0 that contribute to
the whirl mode coupling at μ = μc. Finally Fig. 19 shows the high-frequency unstable mode denoted m5.

Fig. 15 Whirl eigenmode, isometric view

Fig. 16 Whirl eigenmode, top view
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Fig. 17 Horizontal eigenmode for μ = 0, isometric view

Fig. 18 Vertical eigenmode for μ = 0, isometric view

Fig. 19 High-frequency unstable mode, isometric view (denoted m5 in Fig. 9b)
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