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A B S T R A C T

This study evaluates a surrogate modeling approach that provides rapid ensemble predictions of air pollutant
dispersion in urban environments for varying meteorological forcing, while estimating irreducible and
modeling uncertainties. The POD–GPR approach combining Proper Orthogonal Decomposition (POD) and
Gaussian Process Regression (GPR) is applied to emulate the response surface of a Large-Eddy Simulation (LES)
model of the Mock Urban Setting Test (MUST) field-scale experiment. We design and validate new methods for
(i) selecting the POD-latent space dimension to avoid overfitting noisy structures due to atmospheric internal
variability, and (ii) estimating the uncertainty in POD–GPR predictions. To train and validate the POD–GPR
surrogate in an offline phase, we build a large dataset of 200 LES 3-D time-averaged concentration fields, which
are subject to substantial spatial variability from near-source to background concentration and have a very large
dimension of several million grid cells. The results show that POD–GPR reaches the best achievable accuracy
levels, except for the highest concentration near the source, while predicting full fields at a computational cost
five orders of magnitude lower than an LES. The results also show that the proposed mode selection criterion
avoids perturbing the surrogate response surface, and that the uncertainty estimate explains a large part of
the surrogate error and is spatially consistent with the observed internal variability. Finally, POD–GPR can be
robustly trained with much smaller datasets, paving the way for application to realistic urban configurations.
1. Introduction

Accidental releases of pollutants into the atmosphere, such as from
industrial accidents, can degrade air quality and have significant short-
and long-term health impacts [1,2]. In urban environments, these risks
are exacerbated by high population density and reduced ventilation
due to the urban canopy, leading to local pollution peaks [3–5]. For
accurate mapping of these peaks and associated exposures, it is nec-
essary to develop microscale dispersion models that take into account
(i) the effect of urban buildings on the local flow, and (ii) the inherently
multiscale and turbulent nature of the Atmospheric Boundary Layer
(ABL).

To gain relevant insight into these processes, there is a growing
consensus in the research community for the use of Computational
Fluid Dynamics (CFD) [6,7]. Advanced models based on Reynolds-
Averaged Navier–Stokes (RANS) and Large-Eddy Simulation (LES) are
able to represent complex flow structures, in particular due to the inter-
actions between the atmosphere and the built environment. However,
their use in operational applications remains limited because their high
computational cost prevents them from being used in real time, for

∗ Corresponding author.
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example in emergency response. Moreover, they still suffer from a lack
of accuracy compared to field and wind tunnel measurements due to
the large uncertainties involved [8–10]. These uncertainties can be
classified into three different groups:

◦ boundary condition uncertainties due to measurement and represen-
tativeness errors in calibration data, and to boundary condition
modeling assumptions, in relation to: (i) the meteorological forc-
ing [11–13], (ii) the urban geometry representation [14–16], and
(iii) the pollutant source [17,18];

◦ structural modeling uncertainties, inherent to the model solver and
its underlying modeling assumptions, mainly related to turbu-
lence modeling [19–25];

◦ aleatory uncertainties, mostly due to the turbulent and therefore
stochastic nature of the ABL, and referred to as internal vari-
ability, which results in an irreducible uncertainty and is largely
responsible for the discrepancies between field measurements and
CFD model predictions [8,10,26–29].

In this work, we focus on atmospheric uncertainties, i.e. in how to
represent the impact of large-scale atmospheric forcing uncertainties
https://doi.org/10.1016/j.buildenv.2024.112287
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and internal variability on microscale LES field predictions. We have
chosen not to consider structural modeling uncertainties, as these have
been extensively studied and remain small in the LES context. Instead,
we have chosen to investigate how to design a surrogate modeling
approach to quantify boundary condition uncertainties in LES, while
accounting for internal variability. To our knowledge, the coupling
between these two sources of uncertainty has not yet been studied,
while this is one challenge expressed by Dauxois et al. [10] and Wu
and Quan [30].

Surrogate modeling, also known as reduced-order modeling, aims
t accurately emulating the response surface of complex and expensive
umerical models, while significantly reducing computational time. By
nabling real-time and large ensemble predictions, surrogate model-
ng is well suited to address the dual challenges of high cost and
ncertainty in LES models, making it a hot topic of research in the
FD field [31,32]. For parametric studies, surrogate models are mostly

based on fully data-driven approaches, which consist of learning the
response surface of the CFD model from a dataset of reference sim-
ulations precomputed during an offline phase, to then provide fast
predictions during an online phase. They have been successfully used to
emulate urban wind and/or pollutant dispersion, with respect to urban
geometry [33–36], or meteorological forcing and pollutant source [37–
39]. Surrogate models are therefore valuable for ensemble prediction in
more complex frameworks such as urban design optimization [30,33],
sensitivity analysis [40,41], uncertainty quantification [11,42], and
ata assimilation [43–46].

While surrogate models have proven to be valuable tools for dealing
with uncertainties related to CFD model boundary conditions, few stud-
ies have addressed the representation of internal variability, which is at
east as important [26,27,29]. Moreover, surrogate models introduce a
ew form of structural uncertainty: the model reduction error, i.e. the
rror of the surrogate model relative to the full-order model. Our aim
s to evaluate the model reduction error in a comprehensive and robust
ay, and to assess the ability of the surrogate model to retrieve reliable

nformation on internal variability from the LES dataset and compare
t with the model reduction error.

To this end, we adopt a surrogate modeling approach called POD–
PR [47], which combines Proper Orthogonal Decomposition [48,49]
nd Gaussian Process Regression [50]. It is a robust and standard

method that has already been used for urban wind and pollutant
dispersion prediction [38,39,41,51–53]. In this study, we construct a
OD–GPR model for the MUST experiment of propylene dispersion in
 simplified urban canopy [54]. For this purpose, we generate a large
ataset of 200 LES using the model validated by Lumet et al. [29]
y varying the wind boundary forcing. We choose LES over the more

common and less expensive RANS approach because: (i) LES is expected
to reduce structural uncertainties due to turbulence modeling compared
to RANS [28,55], and (ii) LES provides instantaneous snapshots of the
most energetic atmospheric eddies and can thus be used to estimate
he effect of the microscale internal variability of the ABL on tracer
ispersion [29], which is central to the objective of this study.

The novelty of the proposed surrogate modeling approach is related
o the POD latent space, i.e. the reduced space compressing the LES

information, and is twofold. First, we define a method to choose a
priori the POD-latent space dimension, based on the projection of the
internal variability into the latent space. Secondly, knowing the internal
ariability in the LES data and using regression uncertainty estimates

from Gaussian processes, we develop a mathematical framework for
propagating these uncertainty estimates from the POD latent space to
he physical space to help interpret the uncertainty results, which to
ur knowledge has been little studied in physical applications.

This article is structured as follows: Section 2 briefly introduces the
learning dataset of LES simulations. Section 3 describes the POD–GPR
urrogate modeling approach and introduces our methods to estimate
rediction uncertainty and select the latent space dimension. Finally,
ection 4 provides a comprehensive validation of the POD–GPR predic-

tions, uncertainty estimates, and ability to handle reduced-size training
datasets.
2 
2. Learning dataset of large-eddy simulations

This section summarizes the key points of the LES model for the
MUST experiment, which has been extensively validated in previous
work [29] and which is used here to build the surrogate learning
ataset. Details are given on the choice of the parameter space, the
ield quantities of interest and the associated internal variability.

2.1. The MUST field campaign

MUST is a field-scale experiment conducted in September 2001 at
the US Army Dugway Proving Ground test site in Utah’s desert to collect
xtensive measurements of urban pollutant dispersion [54,56]. During

the field campaign, a series of trials were carried out by releasing
a passive tracer, propylene, at different locations within an urban-
like canopy consisting of 120 regularly-spaced shipping containers. It
is a canonical experiment for dispersion model validation: (i) it was
selected as one of the reference case studies for the COST Action 732

FD dispersion model intercomparison [57], and (ii) it has been used in
a large number of CFD studies involving RANS [58–64] or LES [27,65–
67]. In this study, we focus on the trial 2681829 corresponding to
neutral atmospheric conditions.

2.2. LES model of the MUST field experiment

We use the AVBP1 [68,69] code to build the LES model. AVBP
olves the LES-filtered Navier–Stokes equations on unstructured mesh
sing a second-order Lax–Wendroff finite-volume centered numerical
cheme [68] and using pressure gradient scaling since the atmospheric

flow features a low Mach number [70]. Tracer dispersion is modeled
by the LES-filtered advection-diffusion equation using an Eulerian ap-
proach. Subgrid-scale turbulence is modeled using the Wall-Adaptative
Local Eddy-Viscosity (WALE) model [71] for subgrid momentum trans-
port, and a gradient-diffusion hypothesis for subgrid tracer transport
(with the turbulent Schmidt number equal to S𝑡𝑐 = 0.6).

The computational domain is a rectangular box with dimensions of
420 m by 420 m by 50 m, discretized with a boundary-fitted mesh of 91
million tetrahedra, with a resolution ranging from 0.3 m in the canopy
to 5 m at the top of the domain.

In terms of boundary conditions, the wind velocity vector 𝐮 imposed
at the inlet and expressed in the fixed coordinate system aligned with
the containers defined by Yee and Biltoft [54] reads:

𝐮 = 𝐮 + 𝐮′ with 𝐮(𝑧) = 𝑢∗
𝜅

ln
(

𝑧 + 𝑧0
𝑧0

)

⎛

⎜

⎜

⎝

cos(𝛼𝑖𝑛𝑙 𝑒𝑡)
sin(𝛼𝑖𝑛𝑙 𝑒𝑡)

0

⎞

⎟

⎟

⎠

, (1)

where the logarithmic wind profile used for the time-averaged part
𝐮 is set with 𝜅 the von Kármán constant equal to 0.4, 𝑧0 the aero-
dynamic roughness length equal to 0.045 m [54], and 𝑢∗ the friction
velocity. The inlet wind velocity fluctuations 𝐮′ are prescribed using
the synthetic turbulence injection method from Smirnov et al. [72],
which allows to impose a level of wind speed fluctuations that is
nisotropic and height-dependent. The prescribed Reynolds stress ten-

sor is computed from a precursor run (corresponding to a simulation
with the same surface roughness but without obstacles, and with peri-
odic boundary conditions at the inlet and outlet inspired by Vasaturo
t al. [73]) and is further described in Lumet et al. [29]. At the lateral
oundaries, symmetry boundary conditions are used. Static pressure is
mposed at the outlet and top boundaries. Standard laws of the wall are

imposed for the ground and obstacle boundaries. The pollutant source
s modeled by a local source term in the advection-diffusion equation

to match the experimental volumetric flow rate. A comprehensive
description of the boundary conditions is given in Lumet [46].

1 AVBP documentation, see https://www.cerfacs.fr/avbp7x/

https://www.cerfacs.fr/avbp7x/
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To be comparable to the MUST observational time series, we need
o simulate a 200-s time sequence for each snapshot of the learning
ataset. Before running this time sequence, we need to initialize each

simulation until first- and second-order statistics of the flow and tracer
variables reach a stationary state. For this initialization, a spin-up time
𝑡𝑠𝑝𝑖𝑛−𝑢𝑝 of 1.5 times the convective time scale is used:

𝑡𝑠𝑝𝑖𝑛−𝑢𝑝 = 1.5 ×
(

𝐿
𝑈𝑏𝑢𝑙 𝑘

)

= 1.5 × 𝜅 𝐻 𝐿
𝑢∗

[

(𝐻 + 𝑧0) ln
(

𝐻+𝑧0
𝑧0

)

−𝐻
] , (2)

with 𝐿 = 420m the domain length and 𝐻 = 50m the domain height.
his spin-up time is specific to each snapshot as the bulk velocity 𝑈𝑏𝑢𝑙 𝑘

s an uncertain quantity (Section 2.3). Note that the average computa-
tional cost for a given simulation of 200 s is around 15,000 core hours,
which motivates the development of a surrogate model to speed up
predictions.

2.3. Definition of the input parameter space

2.3.1. Choice of input parameters
In this work, we focus on atmospheric parametric uncertainties.

For the surrogate model to be useful, it must capture the dependence
of the tracer dispersion on the most influential and uncertain atmo-
spheric parameters of the LES model. In preliminary work (Lumet
[46], Chapter III), we carried out one-at-a-time sensitivity analysis and
howed that the inlet wind direction 𝛼𝑖𝑛𝑙 𝑒𝑡 and the friction velocity 𝑢∗

are the two parameters that most significantly affect the LES mean
concentration predictions. In particular, the aerodynamic roughness
length 𝑧0 is well identified in the MUST experiment (𝑧0 is equal to
0.045 ± 0.005m according to observations, Yee and Biltoft [54]) and

as found to have a negligible impact. For these reasons, we consider
nly two uncertain parameters:

𝜽 =
(

𝛼𝑖𝑛𝑙 𝑒𝑡, 𝑢∗
)

, (3)

to define the input space of the surrogate model. Note that this choice
is quite common in urban flow surrogate modeling [11,37,42]. Note
also that, under neutral conditions, the mean concentration is inversely
roportional to the friction velocity and the reduction problem could

thus be simplified by predicting dimensionless quantities, as done
by Sousa et al. [44] and Lamberti and Gorlé [74]. This normalization
was investigated in Lumet [46], Chapter IV, but we choose to present
results with multiple input dimensions here for generalization purposes.

2.3.2. Parameter variation ranges
The surrogate model must cover a wide, but plausible and feasi-

le, range of variation in the input parameters (Eq. (3)). Based on a
icroclimatology constructed using all available data from the closest

micrometeorological station to the MUST site (Lumet [46], Chapter IV),
all wind directions are likely to occur and more than 99% of the
horizontal wind speed measurements at 𝑧 = 10m are below 12 m s−1,
which corresponds to a friction velocity 𝑢∗ of 0.89 m s−1 and which is
therefore chosen as the maximum friction velocity here. We limit the
minimum friction velocity to 0.07 m s−1, which corresponds to a wind
speed of about 1 m s−1 at an altitude of 10 m, since we are interested
in windy conditions. To reduce the number of LES, we also restrict the
range of variation for the inlet wind direction to wind directions for
which the plume crosses the array of containers. In the end, the input
parameter space reads

𝛺𝜽 = [−90◦, 30◦] × [0.07m s−1, 0.89m s−1]. (4)

2.3.3. Parameter space sampling
To sample the input parameter space (Eq. (4)), we use Halton’s

sequence (1964). As a low-discrepancy sequence, it samples the space
uniformly and more efficiently than a purely random sequence for a
imited number of samples, avoiding redundant sampling in the same
reas and it is well adapted to a small number of parameters. Fig. 1

shows the location of the 200 samples thus obtained in the uncertain
parameter space.
3 
2.4. Generation of the LES dataset

We run an LES for each of the 200 input parameter samples (Fig. 1)
to provide the learning dataset for the surrogate model. The main
uantity of interest for the surrogate modeling approach is the 3-
 mean (time-averaged) concentration field averaged over the 200-s

analysis time period of the MUST experiment.
To generate this ensemble, the computational domain is rotated

to align with the mean wind direction 𝛼𝑖𝑛𝑙 𝑒𝑡 to avoid inducing lateral
onfinement and numerical instabilities due to the shear-free boundary

conditions at the domain sides. The spin-up time before collecting
LES statistics is scaled by the friction velocity according to Eq. (2) to
account for the slowing down of the flow establishment with decreasing
𝑢∗. Finally, the Reynolds stress tensor prescribed for the turbulent
injection method is rescaled by 𝑢2∗ following similarity theory.

The total cost of generating this LES ensemble is about 5.7 million
ore hours. Note that a subset of the most relevant data from these

simulations, including all the data used in this study, is available in
open access [76].

Fig. 2a shows the topology of the LES ensemble with the example
f the mean concentration 𝑐 at one specific location within the canopy
the green square in Fig. 2b, c corresponding to the tower B in the

MUST experiment). The mean concentration increases linearly with
decreasing friction velocity. The dependence on the wind direction is

ore complex with a concentration maximum obtained for 𝛼𝑖𝑛𝑙 𝑒𝑡 ≈ 30◦
nd a rapid decay in both directions down to 0 ppm as the plume
o longer crosses the probe location. The two examples of horizontal
uts of the LES mean concentration fields (Fig. 2b, c) obtained for

two different wind conditions highlight the high spatial variability of
the fields, especially within the plumes, which is a challenge for the
urrogate modeling problem.

2.5. Noise in the learning dataset

Atmospheric flows are naturally unsteady with strong variations
occurring over a wide range of frequencies corresponding to the time
scales of the atmospheric eddies. When considering statistics over finite
emporal periods, this internal variability yields sampling errors and
s therefore a source of aleatory uncertainty, which is inherent to the
hysical system under study and thereby irreducible. For the MUST
ase, internal variability has a significant impact on the tracer con-
entration statistics when computed over the standard 200-s analysis
eriod [29,77]. One of the challenges of this study is to build a sur-
ogate model that explicitly estimates this uncertainty when emulating

the mean concentration fields.
To quantify the effect of internal variability on the LES predictions,

we use the stationary bootstrap approach from Lumet et al. [29], which
elies on resampling of the sub-averages of the physical fields using
he algorithm of Politis and Romano [78] and which involves a mean
ootstrap block length to account for temporal correlation between sub-
verages. This approach is applied separately for each snapshot in the

dataset (Fig. 1) using 1,000 bootstrap replicates to estimate the internal
variability.

Fig. 3 confirms that the internal microscale variability of the ABL
significantly affects the LES learning dataset, with spatially-averaged
relative standard deviations of up to just over 20% for a few samples
of the LES dataset. Looking at the mean concentration fields, these
deviations can be even larger locally, especially in areas of strong
gradients or close to the source. We note in Fig. 3 that the noise induced
by internal variability is not homogeneous in the input parameter
space, as it increases as the friction velocity decreases. This is because
as advection decreases, the temporal correlation of concentration in-
creases, which increases the uncertainty of the mean over the 200-s
analysis period (less independent information to estimate the mean).
We also note that the noise decreases as 𝛼𝑖𝑛𝑙 𝑒𝑡 moves away from the
median value of −30◦, due to a zoning bias: the plume moves further
outside the domain at the boundary angles (Eq. (4)), and there is
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Fig. 1. Input parameter space sampling obtained with Halton’s sequence. Each point is a pair of parameters for which we perform an LES prediction. The training (80%) and
test (20%) sets are represented as blue squares and green circles, respectively. The horizontal red shaded area corresponds to the parameter space sub-section scanned by taking
a margin of ±5% around the constant friction speed 𝑢𝑝𝑙 𝑜𝑡∗ = 0.45m s−1. The vertical shaded area is similarly defined around the constant inlet wind direction 𝛼𝑝𝑙 𝑜𝑡

𝑖𝑛𝑙 𝑒𝑡 = −43◦ with a
margin of ±2◦. The test samples within these ranges (red triangles) are used in Section 4.3 to evaluate the surrogate model.
Fig. 2. (a) LES prediction of the local mean (time-averaged) concentration 𝑐 at tower B at 𝑧 = 2m for each sample of parameters 𝜽 = (𝛼𝑖𝑛𝑙 𝑒𝑡 , 𝑢∗) from Fig. 1. (b, c) Horizontal cuts
of the mean concentration at 𝑧 = 1.6m for the two samples

(

𝛼(81)
𝑖𝑛𝑙 𝑒𝑡 , 𝑢(81)∗

)

=
(

−27.7◦ , 0.08m s−1) and
(

𝛼(133)
𝑖𝑛𝑙 𝑒𝑡 , 𝑢(133)∗

)

=
(

7.73◦ , 0.60m s−1) in (a). The green square corresponds to the
tower B, and the red star corresponds to the tracer source.
therefore a larger proportion of the domain where the concentration
is zero at these angles.

This quantification of the noise in the learning dataset is of
paramount importance for the construction and validation of surrogate
models. In particular, this information can be used to select the dimen-
sion of the latent space to prevent the surrogate model from overfitting
the noise associated with internal variability (Section 3.4). Internal
variability estimates can also be used as a reference to check that the
surrogate model uncertainty is not underestimated (Section 3.3), and
as a performance target for the surrogate model (Section 3.5).

3. Surrogate modeling approach

This section presents the POD–GPR surrogate modeling approach
and specifies the inputs/outputs and metrics used for validation. The
focus is on two points. The first point is how to estimate the uncer-
tainty associated with POD–GPR predictions and relate it to internal
4 
variability. The second point is how to make an informed choice about
the surrogate latent space dimension.

3.1. Problem statement

The goal of the surrogate model is to emulate as closely as possible
the response surface of the LES model (Section 2.2) with respect to the
input parameters 𝜽 =

(

𝛼𝑖𝑛𝑙 𝑒𝑡, 𝑢∗
)

defined over the space 𝛺𝜽 (Eq. (4),
Section 2.3). This means finding a function:

surrogate ∶ 𝛺𝜽 ⟶ R𝑁 , (5)
𝜽 ⟼ 𝐲surrogate,

that minimizes ∫𝛺𝜽
‖

‖

‖

𝐲surrogate(𝜽) − 𝐲LES(𝜽)
‖

‖

‖

d𝜽, where 𝐲LES ∈ R𝑁 is the

field to be emulated, discretized on a grid of 𝑁 nodes, and where
𝐲 is its counterpart predicted by the surrogate. This function is
surrogate
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Fig. 3. Relative uncertainty of the mean concentration in the parameter space
estimated using stationary bootstrap [29] and averaged over the whole spatial domain.
Each circle corresponds to the averaged uncertainty of one LES sample of the learning
dataset obtained from Halton’s sequence (Fig. 1).

obtained here by learning from the training set
{

𝜽(𝑖), 𝐲LES(𝜽(𝑖))
}𝑁𝑡𝑟𝑎𝑖𝑛
𝑖=1

with 𝑁𝑡𝑟𝑎𝑖𝑛 = 160 (80% of the full LES dataset, see Fig. 1).
In this study, we focus on the emulation of the time-averaged tracer

concentration fields, which are noisy due to the internal variability of
the ABL (Section 2.5). Taking into account this aleatory uncertainty
in the construction and validation of the surrogate model is a key
challenge we address here.

To reduce the computational cost associated with the high dimen-
sion 𝑁 of the solver grid on which the fields of interest are expressed,
we interpolate all the fields on an analysis mesh twice as coarse,
centered around the container array, and with a height limited to 20 m
as most of the tracer is located in this area. This leads to an analysis
mesh of 𝑁 = 1.88 × 106 nodes, with characteristic cell sizes ranging
from 0.6 m to 4 m, which facilitates efficient model reduction. We have
checked that using a coarser-resolution mesh has a negligible effect on
the surrogate model accuracy (not shown here).

3.2. The POD–GPR surrogate model

3.2.1. Principle
We choose to use a POD–GPR surrogate model because it has

proven to be efficient, relatively inexpensive and robust [39,47,79].
The fundamental principle of the POD–GPR approach is to combine:

(i) a reduction step using Proper Orthogonal Decomposition
(POD) [48,49], which is very popular in fluid mechanics
[32,80,81] and consists in finding a low-dimensional space,
called latent space, of dimension 𝐿 ≪ 𝑁 , on which the fields to
be emulated 𝐲(𝜽) are projected;

(ii) and a regression step using standard Gaussian Process Regression
(GPR) [50], which consists in learning from the training set, the
relationship between the LES model input parameters 𝜽 and the
latent coefficients

{

𝑘𝓁(𝜽)
}𝐿
𝓁=1 resulting from the field projection

onto the latent space.

This reduction-regression approach allows (i) to reduce the dimen-
sion of the regression problem to 𝐿 latent variables (𝐿 ≪ 𝑁) and
thereby drastically reduce the computational burden of the learning
task; and (ii) to separate the parametric dependence of the field from
the spatial variability.

The POD–GPR model is implemented as a standard statistical
learning approach, i.e. with an initial training phase consisting of
(i) preprocessing the LES fields, (ii) building the POD reduced basis
based on the training set, and (iii) optimizing the GPR models in the
5 
latent space (Fig. 4a). This training phase is done offline and only once.
The trained POD–GPR can then provide online field predictions for new
inputs 𝜽 as follows: (i) the associated POD reduced coefficients are
predicted by the fitted GPR models, and (ii) the inverse POD projection
and inverse fields scaling are applied to these coefficients to recover
the physical field 𝐲surrogate (Fig. 4b). The following sections present the
theoretical elements of the POD and GPR techniques required for this
study.

3.2.2. Field preprocessing and dimension reduction using POD
With POD, the field dimension is reduced by linearly projecting

the fields into the latent space generated by the basis of the POD
modes

{

𝝍𝓁
}𝐿
𝓁=1 ∈ R𝑁×𝐿. These modes are the eigenvectors obtained by

diagonalizing the covariance matrix 𝐂 = 1
𝑁𝑡𝑟𝑎𝑖𝑛 − 1 (𝐒) (𝐒)T ∈ R𝑁×𝑁

of the snapshot matrix 𝐒 =
(

𝐲(1)LES|...|𝐲
(𝑁𝑡𝑟𝑎𝑖𝑛)
LES

)

∈ R𝑁×𝑁𝑡𝑟𝑎𝑖𝑛 composed of
the training set of mean concentration fields, with  a preprocessing
that includes centering. The choice of the preprocessing is fundamental,
and the one retained in this study is further defined in Eq. (7). The basis
is then truncated to retain only the 𝐿 eigenvectors

{

𝝍𝓁
}𝐿
𝓁=1 associated

with the 𝐿 largest eigenvalues
{

𝛬𝓁
}𝐿
𝓁=1 of the covariance matrix 𝐂.

These eigenvectors are the most informative about the coherent spa-
tial structures emerging from variations in the wind conditions 𝜽 =
(𝛼𝑖𝑛𝑙 𝑒𝑡, 𝑢∗). The question of how to choose 𝐿 is discussed in detail in
Section 3.4.

The projection of one preprocessed field  (𝐲) onto the POD latent
space can be formulated as

 (𝐲) =
𝐿
∑

𝓁=1

√

𝛬𝓁𝑘𝓁𝝍𝓁 , (6)

where
{

𝑘𝓁
}𝐿
𝓁=1 are the POD reduced coefficients defined as the coef-

ficients in the projection of the given field 𝐲(𝜽) normalized by
√

𝛬𝓁 .
This scaling, called POD whitening [82], ensures that the set of reduced
coefficients

{

𝑘𝓁
}𝐿
𝓁=1 is centered and has unit component-wise variances

on average, so that the regression problem is well posed for GPR.
The orthogonality of POD modes leads to some very useful prop-

erties [49,83]: (i) the POD decomposition (Eq. (6)) is the linear
combination that reproduces the most variance of the original set, and
(ii) POD reduced coefficients are uncorrelated, i.e. Cov(𝑘𝑖, 𝑘𝑗 ) = 0, if 𝑖 ≠
𝑗, which justifies why we build one GPR model per mode (Fig. 4).

For pollutant dispersion applications, a particular difficulty arises
from the wide disparity of the concentration scale, which significantly
limits POD approximation accuracy. This can be addressed by pre-
processing the fields before building the POD, as this changes the
meaning of the optimality and orthogonality properties of the POD
modes [84], and thus conditions the POD ability to efficiently represent
fields in a smaller dimension. Using a logarithmic preprocessing, which
is a natural choice for concentrations since they can be assumed to
follow a log-normal distribution [85], results in better overall pro-
jection performance for the MUST case study (not shown here —
see [46], Chapter IV, for further discussion on preprocessing choices).
The logarithmic preprocessing used in this study reads:

 ∶ R𝑁 ⟶ R𝑁 , (7)

𝐲(𝐱𝑘) ⟼
√

𝜔(𝐱𝑘)
𝛺

[

ln(𝐲(𝐱𝑘) + 𝑦𝑡) − ⟨ln(𝐲LES(𝐱𝑘) + 𝑦𝑡)⟩t r ain
]

, 1 ≤ 𝑘 ≤ 𝑁 ,

where 𝜔(𝐱𝑘)∕𝛺 is the relative volume of the node 𝐱𝑘, 𝑦𝑡 is a threshold
set to 10−4 ppm to avoid issues with concentration values close to
zero, and ⟨⋅⟩t r ain denotes the mean over the training set. This choice
provides an effective compromise that does not over-cut low concen-
trations and does not over-emphasize very low variances, which are
mainly numerical noise. Note that this preprocessing also includes the
centering required for POD [49], and volume node weighting to avoid
over-weighting refined locations [84].
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Fig. 4. Schematic of the POD–GPR surrogate model. Its operation is divided into two phases: the training phase (a) and the prediction phase (b). For the training phase, first,
a preprocessing  is applied to the LES training fields, which are then used to build the POD basis {𝝍1}𝐿𝓁=1; then 𝐿 independent GPs are optimized to learn the dependence of
the POD reduced coefficients {𝑘𝓁}𝐿𝓁=1 on the input parameters 𝜽. For the prediction phase, the optmized GPs predict the POD reduced coefficients associated with any set of wind
conditions 𝜽, then the inverse POD projection and inverse scaling  −1 are applied to recover the associated physical field.
r

a

p

p

3.2.3. Latent coefficients estimation by Gaussian processes
Once the POD latent space is constructed, the next step is to predict

the POD reduced coefficients
{

𝑘𝓁(𝜽)
}𝐿
𝓁=1 for any new wind conditions

𝜽 = (𝛼𝑖𝑛𝑙 𝑒𝑡, 𝑢∗) ∈ 𝛺𝜽 ⊂ R2 (Fig. 4b). Since POD coefficients are
ncorrelated, we simplify this vector regression problem into 𝐿 scalar
egression problems solved by GPR [50]. There are three main reasons
or this choice: (i) simple interpolation may fail to predict latent space
omponents [86]; (ii) GPR was found to be one of the best machine
earning regression methods for predicting POD-reduced coefficients of
ES concentration fields [87]; and (iii) GPR models predict probability

distributions and not just pointwise estimates, which is in line with our
objective to quantify surrogate model uncertainties.

The principle of Gaussian processes (GP) is that the data distribution
an be described by a Gaussian stochastic process, implying

𝑘𝓁 = 𝑓𝓁(𝜽) + 𝜖𝓁 with
{

𝑓𝓁(𝜽) ∼ (𝟎, 𝑟𝓁(𝜽,𝜽∗)), ∀(𝜽,𝜽∗) ∈ 𝛺2
𝜽

𝜖𝓁 ∼  (0, 𝑠2𝓁),
(8)

where 𝑟𝓁 is the GP covariance function, or kernel, and where 𝜖𝓁 is an
dditive Gaussian noise with variance 𝑠2𝓁 accounting for the fact that

the 𝑘𝓁 are subject to an irreducible noise due to the internal variability
of the mean concentration (Fig. 3). Note that we assume that the prior
distribution of the GP is zero on average since POD reduced coefficients
re centered on average.

Given the property that any finite subset of realizations of a GP
ollows a multivariate Gaussian distribution, the posterior probability
istribution of the quantity of interest 𝑘∗𝓁(𝜽

∗) knowing the training set
𝜽𝑡𝑟𝑎𝑖𝑛,𝐊𝑡𝑟𝑎𝑖𝑛

𝓁 } is

𝑘∗𝓁(𝜽
∗)||
|{𝜽𝑡𝑟𝑎𝑖𝑛 ,𝐊𝑡𝑟𝑎𝑖𝑛

𝓁
}
∼ 

(

𝜇𝓁 , 𝜎2GP(𝑘∗𝓁)
)

, (9)

with:

P

6 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜇𝓁 = 𝑟𝓁(𝜽∗,𝜽𝑡𝑟𝑎𝑖𝑛)
[

𝑟𝓁(𝜽𝑡𝑟𝑎𝑖𝑛,𝜽𝑡𝑟𝑎𝑖𝑛) + 𝑠2𝓁𝐈
]−1 𝐊𝑡𝑟𝑎𝑖𝑛

𝓁 , (10a)

𝜎2GP(𝑘
∗
𝓁) = 𝑟𝓁(𝜽∗,𝜽∗) + 𝑠2𝓁

− 𝑟𝓁(𝜽∗,𝜽𝑡𝑟𝑎𝑖𝑛)
[

𝑟𝓁(𝜽𝑡𝑟𝑎𝑖𝑛,𝜽𝑡𝑟𝑎𝑖𝑛) + 𝑠2𝓁𝐈
]−1 𝑟𝓁(𝜽𝑡𝑟𝑎𝑖𝑛,𝜽∗). (10b)

In the regression context, these equations give the mean GPR pre-
diction (Eq. (10a)) and the associated variance (Eq. (10b)), which
quantifies two forms of uncertainty: (i) the uncertainty linked to the
noise in the training data and related to the term 𝑠2𝓁𝐈, and (ii) the
egression uncertainty that depends on the distance between the new

input parameters 𝜽∗ and the training parameters 𝜽𝑡𝑟𝑎𝑖𝑛. Both equations
involve the kernel function 𝑟𝓁 to measure these distances. In this study,
we use a standard Matérn kernel with the hyperparameter 𝜈 = 5∕2 [88].

In the end, each GP has four hyperparameters: the noise variance 𝑠2𝓁 ,
nd three parameters involved in the Matérn kernel [88]: the maximum

allowable covariance, and the two length scales associated with each
of the two input parameters 𝛼𝑖𝑛𝑙 𝑒𝑡 and 𝑢∗. These hyperparameters are
determined by maximum log-likelihood estimation [89] during GP
optimization (Fig. 4a). Note that the input parameters 𝜽 are rescaled
to [0, 1]2 by min–max normalization to facilitate the GP optimization.

3.3. Uncertainty estimation of POD–GPR predictions

Below we explain how the GPR estimated uncertainty (Eq. (10b)) is
ropagated from latent space to physical space through the POD inverse

projection. This is useful to quantify the uncertainty of POD–GPR field
redictions.

POD–GPR predictions are defined as linear combinations of the
OD reduced coefficients 𝑘 (𝜽) (Eq. (6)), which are uncorrelated (by
𝓁
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POD modeling assumption) and normally distributed (Eq. (9)). Conse-
uently, at each grid node 𝐱𝑘, the POD–GPR prediction  (𝐲(𝜽, 𝐱𝑘)) also
ollows a normal distribution of mean (Eq. (6)) and variance (Eq. (11)):

𝜎2POD−GPR
(

 (𝐲(𝜽, 𝐱𝑘))
)

=
𝐿
∑

𝓁=1
𝛬𝓁 𝜎

2
GP(𝑘𝓁(𝜽))𝝍𝓁(𝐱𝑘)2, (11)

with 𝜎2GP(𝑘𝓁(𝜽)) the 𝓁th GP variance (Eq. (10b)).
Using logarithmic preprocessing (Eq. (7)), we deduce that the POD–

GPR prediction of mean concentration follows a log-normal distribution
of mean (Eq. (12a)) and variance (Eq. (12b)):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐲POD−GPR(𝜽, 𝐱𝑘) =
√

𝛺
𝜔(𝐱𝑘)

𝐿
∑

𝓁=1

√

𝛬𝓁 𝑘𝓁 𝝍𝓁(𝐱𝑘) + ⟨ ln(𝐲LES + 𝑦𝑡) ⟩t r ain,

(12a)

𝜎2POD−GPR(𝐲(𝜽, 𝐱𝑘)) =
[

exp (𝑠2(𝜽, 𝐱𝑘)) − 1
]

× exp ( 2 𝐲(𝜽, 𝐱𝑘) + 𝑠2(𝜽, 𝐱𝑘)
)

,

(12b)

with 𝑠(𝜽, 𝐱𝑘)2 =
(

𝛺
𝜔(𝐱𝑘)

) 𝐿
∑

𝓁=1
𝛬𝓁 𝜎

2
GP(𝑘𝓁(𝜽))𝝍𝓁(𝐱𝑘)2.

Equation (12b) provides an estimate of the uncertainty around
the POD–GPR mean prediction (Eq. (12a)). This uncertainty is the
sum of the GP variances 𝜎2GP(𝑘𝓁(𝜽)), which quantify the noise error
in the training data and the regression error for each mode. In the
present context, these two forms of error correspond to the uncertainty
associated with the internal variability of the ABL (Section 2.5) and to
the structural model error associated with model reduction. It is worth
noting that this estimate does not include the error associated with the
projection into the POD latent space.

3.4. A priori choice of latent space dimension

The choice of the POD latent space dimension is case-dependent
nd has a critical effect on the accuracy of the surrogate model. On
he one hand, the higher the number of POD modes, the more variance
f the original ensemble is captured in the POD reduced basis. On the
ther hand, high-order modes are likely to encode noise in the training
et [90], and are therefore best set aside to prevent GPs from overfitting

noise during learning. In this section, we present an innovative method
to select 𝐿 as a trade-off between the total variance embedded in the
POD reduced basis and the amount of noise carried by the POD modes.

POD projection error. First, we evaluate the POD projection error,
.e. the error obtained after reconstructing the fields projected onto
he POD latent space through inverse POD transformation, for varying
umber of modes 𝐿 following the approach adopted by Nony et al.
39]. Fig. 5a shows that the POD projection normalized mean square
rror (NMSE) quickly decreases with the number of modes, and that
 small number of modes (𝐿 ≈ 5 − 10) allows to obtain very fine
MSE scores. We verify that the eigenvalues 𝛬𝓁 are a good proxy

or quantifying the amount of information retrieved by each POD
ode [49] and can therefore be used to select 𝐿 as done by Xiao et al.

51].

Internal variability in the POD latent space. To quantify how the noise
f the physical fields (see Section 2.5) is captured by each POD mode,

we project 𝐵 = 1000 bootstrap replicates of the LES fields onto the
POD basis according to the procedure shown in Fig. 6. From the set

of replicates
{

𝜇𝑏

(

{

𝑘(𝑖)𝓁
}𝐿

𝓁=1

)}𝐵

𝑏=1
thus obtained, we can estimate the

internal variability of the POD reduced coefficients for each mode order
𝓁, and do so for each sample (𝑖) in the training set. Fig. 5b shows that
he standard deviation of the 𝑘𝓁 averaged over the training set increases

significantly as the mode order 𝓁 increases. In particular, for 𝓁 ≤ 5, the
tandard deviation of the 𝑘𝓁 bootstrap replicates remain small (< 3%),

implying that these modes correspond to systematic patterns associated
with the plume structure and its dependence on the wind conditions.
7 
The standard deviation of the 𝑘𝓁 bootstrap replicates then increases
rapidly reaching about 15%. This implies that field features linked to
internal variability are mainly captured by higher order modes, which
is consistent with the literature [90]. This in turn implies that we need
o limit the number of modes 𝐿 to avoid introducing noise into the
OD-GPR surrogate model.

A priori criterion to choose the POD latent space dimension. Based on
these findings, we propose to measure the ratio between the inter-
nal variability noise and the fraction of the total ensemble variance
represented by each mode defined as
⟨𝜎2boot st r ap(𝑘𝓁)⟩t r ain

𝛬𝓁
, (13)

where ⟨𝜎2boot st r ap(𝑘𝓁)⟩t r ain is the variance of the POD reduced coefficients
eplicates averaged over the training set, and where 𝛬𝓁 is the 𝓁th
igenvalue in the POD decomposition.

The ratio in Eq. (13) is shown in Fig. 5c and provides a way to
choose the latent space dimension 𝐿 that minimizes both the noise and
the POD projection error, and it has the advantage of being completely
a priori as it does not require either the test set or the evaluation of
the full POD–GPR model. Results show that this ratio is close to zero
for the first six modes and then increases sharply with mode order. We
therefore choose to truncate the POD decomposition before the inflec-
tion point using 𝐿 = 10 modes to project the mean concentration fields.
This approach for selecting the latent space dimension is evaluated a
posteriori in Section 4.3.

3.5. Surrogate validation methodology

We present now the metrics used to quantify the surrogate model
eduction error, before estimating the best values achievable for each
etric given the internal variability.

3.5.1. Quantification of the surrogate error
The POD–GPR model accuracy is estimated on a set of independent

est samples (𝑁𝑡𝑒𝑠𝑡 = 40, corresponding to 20% of the full LES dataset,
ee Fig. 1). This is essential to assess the ability of the model to

generalize information from the training set to new meteorological
forcing parameters (𝛼𝑖𝑛𝑙 𝑒𝑡, 𝑢∗).

To assess the surrogate error, we use standard air quality metrics
from Chang and Hanna [91] to compare the mean concentration field
predicted by the surrogate model 𝐜sur r ogat e with the LES counterpart
𝐜LES. When validating POD–GPR predictions, which are probabilistic
see Section 3.3), we define 𝐜𝑠𝑢𝑟𝑟𝑜𝑔 𝑎𝑡𝑒 as the mean of the probabil-

ity distribution predicted by the POD–GPR (Eq. (12a)). The metrics
used in this study are: the normalized mean square error (NMSE),
the fraction of predictions within a factor of two of observations
FAC2), the geometric variance (VG), and the figure of merit in space
FMS):

NMSE =
⟨

(

𝐜LES − 𝐜sur r ogat e
)2

⟩

⟨ 𝐜LES ⟩ ⟨ 𝐜sur r ogat e ⟩
, (14)

FAC2 = ⟨ 𝝃 ⟩ with 𝝃(𝐱𝑘) =
⎧

⎪

⎨

⎪

⎩

1 if 0.5 ≤ 𝐜sur r ogat e(𝐱𝑘) ∕ 𝐜LES(𝐱𝑘) ≤ 2,
1 if 𝐜sur r ogat e(𝐱𝑘) ≤ 𝑐𝑡 and 𝐜LES(𝐱𝑘) ≤ 𝑐𝑡,
0 else,

(15)

VG = exp
(

⟨

(

ln �̃�LES − ln �̃�sur r ogat e
)2

⟩

)

, (16)

FMS(𝑐𝓁) =
𝛺∩(𝑐𝓁)
𝛺∪(𝑐𝓁)

, (17)

where ⟨⋅⟩ denotes spatial averaging weighted by the dual volume of
the node 𝐱𝑘, 𝑐𝑡 is a concentration threshold defining �̃� = max(𝐜, 𝑐𝑡),
as suggested by Chang and Hanna [91] and Schatzmann et al. [77]
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Fig. 5. (a) POD projection error evaluated over the training set with NMSE (Eq. (14)) as a function of the number of modes retained, and the POD eigenvalues 𝛬𝓁 associated with
each mode 𝓁. (b) Internal variability standard deviation of the POD reduced coefficients 𝜎boot st r ap(𝑘𝓁 ) estimated from 𝐵 = 1000 bootstrap replicates obtained using the procedure
shown in Fig. 6, and averaged over the training set. (c) Ratio between the internal variability noise variance 𝜎2

boot st r ap(𝑘𝓁 ) averaged over the training set and the POD eigenvalues
𝓁 associated with each mode 𝓁. The red dotted line indicates the number of modes selected for this study.
Fig. 6. Schematic of the propagation of the internal variability from the physical space to the POD latent coefficients. First, the POD basis is computed from the training set
of LES fields {𝐲(𝑖)LES}

𝑁𝑡𝑟𝑎𝑖𝑛
𝑖=1 . Then, to propagate the internal variability of a given field 𝐲(𝑖)LES into the latent space, 𝐵 bootstrap replicates 𝜇𝑏(𝐲

(𝑖)
LES) are computed using the bootstrap

approach from Lumet et al. [29], and then projected onto the POD basis to get a set of 𝐵 realizations 𝜇𝑏

(

{𝑘(𝑖)𝓁 }𝐿𝓁=1
)

of the POD reduced coefficients of the field 𝐲(𝑖)LES.
to avoid issues with values close to zero in FAC2 and VG metrics. In
this study, we use a threshold of 𝑐𝑡 = 10−4 ppm, considering that errors
on lower concentrations are mainly due to numerical noise. Finally,
𝛺∩(𝑐𝓁) denotes the volume, in m3, of the domain in which both 𝐜sur r ogat e
nd 𝐜LES are over a user-specified tracer value 𝑐𝓁 . Conversely, 𝛺∪(𝑐𝓁)

denotes the volume where 𝐜sur r ogat e ≥ 𝑐𝓁 or 𝐜LES ≥ 𝑐𝓁 .
The use of different metrics than the loss used during training is

important because of the multi-order nature of the concentration field.
NMSE is more sensitive to errors at high concentrations, while VG
assesses prediction accuracy at low concentrations. FMS quantifies how
close the two plume shapes are relative to a given concentration level.

he scores that a perfect model would obtain are reported in Table 1.
8 
3.5.2. Estimation of the internal variability
LES data are noisy due to internal variability (Section 2.5). It

would therefore be pointless to try to build a surrogate model whose
accuracy exceeds this uncertainty. To quantify the error due to internal
variability alone, we use the bootstrap approach proposed in Lumet
et al. [29] to generate two independent sets of bootstrap replicates of
the same LES field. We then compute the average difference between
each pair of replicates using the metrics introduced in Section 3.5.1.
For each metric, we obtain the amount of error due to internal
variability only, which is the expected error when comparing two
independent realizations of the mean concentration fields for the same
input parameters.
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Table 1
Prediction accuracy of the POD–GPR surrogate model evaluated using the metrics defined in Section 3.5.1 and averaged over
the test set. The standard deviations of the scores over the test set are also given, as well as the individual scores for test
samples #81 and #187, which represent the lowest and highest FAC2 scores achieved by the POD–GPR, respectively. For
comparison, the perfect scores for the metrics, the mean error due to internal variability only (Section 3.5.2) and the mean
error due to standalone reduction dimension are given.

FAC2 NMSE VG FMS FMS
(1 ppm) (0.01 ppm)

Perfect score 1 0 0 1 1
Internal variability 0.95 1.80 1.39 0.83 0.93

POD projection error 0.91 20.4 1.33 0.75 0.93

POD–GPR prediction error 0.91 20.6 1.39 0.75 0.92
Standard deviation 0.04 43.2 0.68 0.11 0.03

Test sample #81 0.74 23.4 5.25 0.79 0.85
Test sample #187 0.96 8.08 1.07 0.86 0.94
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This is done for every LES sample in the dataset, and the ensemble-
veraged internal variability errors give an upper bound estimate of
he best overall accuracy achievable for each metric when validating
he POD–GPR surrogate model.

4. Surrogate model validation

In this section, we present a thorough evaluation of the POD–GPR
urrogate model. We first assess its accuracy over the test set and its
fficiency (Section 4.1). We then validate the innovative aspects of
ur approach: the POD–GPR uncertainty estimation (Section 4.2), and
he selection of the number of POD modes (Section 4.3). Finally, we

study how the POD–GPR model behaves when reducing the training
set (Section 4.4). All results are given for the mean concentration field,
ut the POD–GPR approach can be applied to emulate other fields, such
s the wind velocity and turbulent kinetic energy or the concentration
luctuations and peaks, as shown in Lumet [46], Appendix B.1.

4.1. Evaluation of the surrogate model field predictions

We evaluate here the POD–GPR predictions of mean concentration
ollowing the methodology introduced in Section 3.5, using the mean

internal variability error as the reference for validation. We use a latent
space dimension of 𝐿 = 10 in accordance with the informed choice
made in Section 3.4.

Prediction accuracy. The overall performance of the surrogate model
is quantified using standard air quality metrics (Section 3.5.1). Table 1
shows the obtained scores averaged over the test set. Overall, the POD–
GPR model yields very satisfactory results, with most scores close to
the error due to internal variability only, which is the best achievable
accuracy. However, the scores for FMS(1 ppm) and especially NMSE
remain relatively far from the internal variability error, indicating that
OD–GPR is less good at predicting high concentration values. These
arge errors near the source can be particularly detrimental for assess-

ing acute exposure to pollutant species. For this type of application, we
recommend using a different preprocessing of the data to give more
weight to high concentration areas during training.

Table 1 also shows that the POD–GPR prediction errors are almost
identical to the standalone POD projection errors (i.e. errors obtained
by simply reconstructing the test fields after projection onto the POD
asis by inverse POD transformation). This implies that the accuracy
f the POD–GPR model is mostly limited by the accuracy of the
OD and not by the GPR. The poor prediction performance for high

concentrations is thus explained by the fact that the POD is not well
adapted to the multiscale and nonlinear nature of the concentration
fields. In particular, the use of a logarithmic preprocessing before the
POD degrades the reconstruction of high concentrations in the vicinity
of the emission source, but has the advantage of preserving the other
metrics and in particular the shape of the plume compared to linear
processing (Lumet [46], Chapter IV).
 d

9 
There is quite a large spread of POD–GPR errors across the test
samples, especially for the quadratic metrics NMSE and VG, indicating
he presence of test sample outliers. This variability over the input
arameter space is mainly explained by the fact that as the friction
elocity decreases, the internal variability increases (Fig. 3), which
akes the mean concentration noisier and therefore more difficult to

predict. In addition, FMS(1 ppm), and to a lesser extent FMS(0.01 ppm)
and FAC2, are subject to a zoning effect as they depend on the size
of the plume within the domain of interest (Eqs. (15) and (17)). For
xample, these scores are improved when the wind direction carries the
lume outside the container array (i.e. for 𝛼𝑖𝑛𝑙 𝑒𝑡 ≈ 30 ◦or 𝛼𝑖𝑛𝑙 𝑒𝑡 ≈ −90 ◦).

Field prediction examples. For a more detailed assessment of the POD–
PR model accuracy, we also examine its predictions in the physical

pace. Figs. 7a, b, c, and d compare 2-D cuts of the mean concentration
at 𝑧 = 1.6m predicted by LES and POD–GPR. Results are given for
he test sample #187

(

𝛼(187)𝑖𝑛𝑙 𝑒𝑡 , 𝑢
(187)
∗

)

=
(

21.8◦, 0.59m s−1) for which
OD–GPR obtains the best FAC2 score over the test set, and for the
est sample #81

(

𝛼(81)𝑖𝑛𝑙 𝑒𝑡, 𝑢
(81)
∗

)

=
(

−27.7◦, 0.08m s−1) associated with the
orst FAC2 score. The global scores obtained for these two particular

napshots are summarized in Table 1.
In both cases, the POD–GPR model reproduces well the main

eatures of the LES concentration field, in particular the shape and
orientation of the plume. The spatial distribution of the different con-
centration levels is also well reproduced, which is confirmed by the
ear superposition of the 0.01 ppm and 10 ppm concentration contour
ines between LES and POD–GPR (Fig. 7d, h).

However, for the sample with the worst FAC2 (#81), the POD–
GPR underestimates the spanwise spread of the plume and signifi-
cantly overestimates the mean concentration near the emission source
(Fig. 7g). This is consistent with the poor NMSE obtained (Table 1)
and this is due to the poor reproduction of high concentrations by the
POD with logarithmic preprocessing. For this sample (corresponding
to a low friction velocity and therefore subject to substantial internal
variability), the POD–GPR tends to smooth the irregularities observed
at the edges of the plume, thus poorly predicting the local abrupt
decrease in concentration.

Efficiency. In terms of computational cost, it takes approximately 30 s
to train the POD–GPR model using a single core of an Intel Ice Lake
CPU. This includes field preprocessing, POD basis decomposition and
GPR optimization. This training cost is insignificant compared to the
cost of building the training dataset (Section 2.4). Once trained, the
model provides a prediction of the full 3-D concentration field in
about 0.03 s. This approach is therefore compatible with applications
requiring a large ensemble of predictions and/or real-time predictions.

4.2. Assessment of the surrogate model uncertainty estimation

We evaluate here the ability of the POD–GPR model to provide re-
alistic uncertainty estimates by comparing them to the actual surrogate
rror over the test set and to the internal variability present in the LES
ataset.
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Fig. 7. Horizontal cuts at 𝑧 = 1.6m of two test mean concentration fields estimated by LES (a, b) and POD–GPR (c, d), and the absolute difference between the two (e, f). The left
column corresponds to the test sample #187 for which POD–GPR achieves the best FAC2 (Eq. (15)) score over the test set, and the right column corresponds to the test sample
#81 which is associated with the worst FAC2 score. The LES and POD–GPR predictions of 0.01 ppm and 10 ppm iso concentration levels are shown in (g, h).
Uncertainty reliability. Fig. 8a shows the uncertainty reliability diagram
comparing actual surrogate error (𝑦-axis) and surrogate model uncer-
tainty estimates (𝑥-axis). The POD–GPR uncertainty is underestimated
compared to the actual POD–GPR error for most domain nodes, espe-
cially for the lowest concentration values. Nevertheless, the estimated
trend is consistent, i.e. the larger the actual error, the larger the prior
estimate. Furthermore, the overall level of precision is satisfactory as
the estimated uncertainty is in the right order of magnitude (within the
green dashed lines) for 98% of the domain nodes. This is confirmed by
the response surface of the POD–GPR (Fig. 13a, b), as the predicted
envelopes appear to cover the test samples well. We can therefore
be confident in the uncertainty predicted by the POD–GPR surrogate
model despite a tendency to underestimate.
10 
To further investigate the cause of this underestimation, the uncer-
tainty reliability is examined directly in the latent space in Fig. 8b. We
find that for the estimation of the reduced POD coefficients by the GPs,
the uncertainty estimate is very close to the error made on average,
except for the high-order modes 8 and 10. This increase in error for
higher-order modes is consistent with the fact that they are more
affected by internal variability (Fig. 5b). The following conclusions can
be drawn: (i) the variance of the GP posterior distribution (Eq. (10b))
is realistic, and (ii) the underestimation observed in the physical space
in Fig. 8a comes from the inverse POD projection. This is consistent
with the fact that the POD projection error is not taken into account
when estimating the total POD–GPR uncertainty (Section 3.3), yet the



E. Lumet et al. Building and Environment 267 (2025) 112287 
Fig. 8. Reliability diagrams in the physical space and in the latent space: (a) Root mean square error (RMSE) of the POD–GPR concentration prediction over the test set versus
the POD–GPR estimated uncertainty at each node where the concentration is larger than the tolerance 𝑐𝑡 = 10−4 ppm. Each hexagon is colored according to the number of node
points in the hexagon. (b) RMSE of the GP prediction of the POD reduced coefficients 𝑘𝓁 over the test set versus the GP estimated uncertainty, each mode 𝓁 is represented by
a numbered circle (the POD latent space dimension is 𝐿 = 10). The green solid lines correspond to the identity function, and the dashed lines in (a) show the range of plus or
minus one order of magnitude.
Fig. 9. GP noise variance 𝑠2𝓁 hyperparameter obtained by log-likelihood maximization for each mode 𝓁 as blue bars, and maximal (resp. average) noise on the POD reduced
coefficients over the training set as orange (resp. green) bars.
total POD–GPR error is essentially due to the POD projection error as
indicated in Table 1.

Ability to estimate internal variability a posteriori. We now examine the
nature of the estimated uncertainty in more detail, and assess the
proportion due to internal variability. The first point is to study how the
noise of the LES fields projected onto the POD latent space is captured
by GPR. Fig. 9 shows that the values of the GP variance hyperparame-
ters 𝑠2𝓁 obtained by maximum likelihood estimation are very close to the
maximum level of internal variability of the POD reduced coefficients
over the training set estimated by bootstrap. This is a strong result
because the bootstrap estimates of the internal variability are not used
to train the GPs.

The fact that the GP noise variance parameter matches the maxi-
mum level of internal variability (Fig. 9) implies that GPs overestimate
the variance of the POD reduced coefficients for most samples where
the internal variability is low. This is a structural limitation due to the
fact that the GP additive noise does not depend on the input parameter
space (Eq. (8)), while the variance due to internal variability does
11 
(Fig. 3). As a result, in the physical space, the POD–GPR uncertainty
predictions tend to be underestimated compared to the actual internal
variability for samples where the internal variability is high, while they
are overestimated for samples with low internal variability. This could
be partially overcome in the future by implementing input-dependent
noise variance hyperparameters, as suggested by Miyagusuku et al.
[92].

Fig. 10 shows that the uncertainty estimated by the POD–GPR is
overall consistent with the LES internal variability over the training
set, as the level of variability is in the right order of magnitude for 99%
of the domain nodes. For most of the domain, the POD–GPR tends to
overestimate the internal variability (hexagonal cells of high density
beyond the green line), which is consistent with the GP noise matching
the maximum level of internal variability in the latent space (Fig. 9).
Note that this analysis is performed over the training set since for theses
samples the GPR regression covariance is zero, and thus the POD–
GPR uncertainty estimate only corresponds to the estimated internal
variability. Finally, we note that the estimated uncertainty envelopes
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Fig. 10. Internal variability of the mean concentration estimated by bootstrap and
averaged over the training set versus the POD–GPR estimated uncertainty at each node
where the concentration is larger than the tolerance 𝑐𝑡 = 10−4 ppm. Each hexagon is
colored according to the number of node points in the hexagon. The green solid lines
correspond to the identity function and the dashed lines show the range of plus or
minus one order of magnitude.

are consistent with the LES internal variability when looking at the
POD–GPR response surfaces (Fig. 13a, b).

In this internal variability analysis, the second point is to evaluate
the spatial consistency of the POD–GPR uncertainty estimates with
respect to the spatial distribution of internal variability to verify that
the uncertainty is properly propagated from the POD latent space to
the physical space (Section 3.3). We find that the variance predicted
by the POD–GPR is consistent with the internal variability of the
LES in terms of magnitude and structure, as shown in Fig. 11 for
the training sample #016

(

𝛼(016)𝑖𝑛𝑙 𝑒𝑡 , 𝑢
(016)
∗

)

=
(

−79.5◦, 0.14m s−1) for
which the POD–GPR uncertainty estimate is the closest to the internal
variability estimated by bootstrap and for the training sample #180
(

𝛼(180)𝑖𝑛𝑙 𝑒𝑡 , 𝑢
(180)
∗

)

=
(

−58.1◦, 0.56m s−1), where POD–GPR overestimates
the internal variability the most. Despite the overall agreement, the
POD–GPR variability estimates appear to be overestimated within the
plume and significantly underestimated near the plume edges (Fig. 11e,
f), which is consistent with the overall tendency to underestimate low
internal variability levels (Fig. 10). This is explained by the fact that
there are high concentration gradients near the plume edges and thus
high internal variability levels, a feature not well represented by the
POD projection, which is based solely on mean concentration and not
on its variability.

In summary, the POD–GPR uncertainty estimates derived in Section 3.3
(i) represent, in a spatially coherent manner, the inherent internal
variability of the mean concentration field thanks to the ability of
the GPs to accurately infer the level of noise in the training set,
and (ii) properly explain the actual surrogate errors at predicting the
mean concentration. This particularly reinforces the robustness of the
POD–GPR and its relevance to uncertainty quantification applications.

4.3. A posteriori validation of the latent space dimension

We revisit our choice of the number of POD modes (𝐿 = 10)
obtained by following the a priori statistical approach we propose in
Section 3.4. For this purpose, we evaluate the effect of the number of
modes 𝐿 on the performance of the full POD–GPR model on the test
set (i.e. by varying 𝐿 from 5 to 50 in the construction of the POD–GPR
model).
12 
Validation metrics. Fig. 12 shows how the metrics defined in Sec-
tion 3.5.1 change when modifying the POD latent space dimension 𝐿.
The POD–GPR prediction accuracy over the test set increases with the
number of modes and reaches a plateau for a larger number of modes
(𝐿 ≈ 15–25) than the NMSE on the training set used in our mode choice
approach (Fig. 5). This may indicate that integrating a larger number
of modes into the POD–GPR model could lead to improved surrogate
model accuracy.

Response surfaces. As an additional diagnostic, Fig. 13 shows that
using a larger number of modes significantly deteriorates the POD–
GPR response surfaces, making them very noisy and implausible as,
with 𝐿 = 50 modes (Fig. 13e, f), the POD–GPR model is no longer
able to retrieve the inversely proportional dependence of concentration
on friction velocity expected from theory and retrieved for the con-
figuration with 𝐿 = 10 modes (Fig. 13a, b). This degradation is due
to the fact that high-order modes mostly account for noisy structures
due to internal variability (Fig. 5b), and are therefore not informative
on systematic structures related to the wind conditions. As a result,
when including high-order modes, the GPs attempt to learn unphysical
dependence on the input parameters, resulting in the shortwave noise
observed in Fig. 13. Still, the increase in uncertainty with the response
surface deterioration suggests that the POD–GPR uncertainty estimate
is robust. However, the fact that the degradation of the POD–GPR
response surface is not seen by the global metrics, which continue to
improve as the number of modes increases (Fig. 12), shows that one
should not draw conclusions based on scalar metrics alone.

In the light of these tests, our prior selection method for the latent
space dimension is convincing. The resulting trade-off of 𝐿 = 10 yields
good validation scores, while avoiding the problem of response surface
noise. However, we acknowledge that using a slightly larger number
of modes (𝐿 ≈ 15–20) would also be appropriate and even slightly
improve the surrogate model accuracy. Defining an optimal criterion
for latent space dimension selection based on the noise/signal ratio
defined in Eq. (13) is therefore an interesting prospect, but requires
more validation cases.

4.4. Robustness to training set reduction

In order to assess the potential of the POD–GPR approach for future
applications, we examine how the POD–GPR accuracy evolves as the
size of the training set decreases (without changing the test set). This is
particularly important to investigate the possible trade-offs between the
ability of the model to generalize from training data and the substantial
cost of building the LES training dataset.

The surrogate model is trained for decreasing training set sizes from
𝑁𝑡𝑟𝑎𝑖𝑛 = 160 to 𝑁𝑡𝑟𝑎𝑖𝑛 = 40 by keeping only the first samples in Halton’s
sequence. To make the comparison fair, we systematically evaluate
the averaged prediction errors over the same test set of 𝑁𝑡𝑒𝑠𝑡 = 40
samples. Results are shown in Fig. 14a, b, c and d in terms of FAC2,
VG, FMS(1 ppm), FMS(0.01 ppm). The decrease in accuracy is fairly
constrained and evolves linearly with the training set size, with a loss
of 0.08 in FAC2 and 0.12 in VG for every 10 training samples removed.
More importantly, the accuracy decreases less rapidly than that of
the nearest neighbor model (1–NN), which trivially predicts the mean
concentration field as equal to the closest training field in the parameter
space (see Appendix). This is especially true for the low concentration
values, as the VG score is significantly higher with the 1–NN model
than with the POD–GPR model for small training set sizes (Fig. 14b).

Regarding the NMSE metric (Fig. 14e), the evolution with 𝑁𝑡𝑟𝑎𝑖𝑛 is
quite chaotic for the POD–GPR and worse than for the 1–NN approach.
As previously mentioned, this is related to the high POD projection
error near the source when using the logarithmic transformation, and
we can consider that the POD–GPR approach with the present prepro-
cessing is not designed to make predictions near the source, regardless
of the training set size.
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Fig. 11. Horizontal cuts at 𝑧 = 1.6m of the standard deviation of the mean concentration induced by internal variability estimated using bootstrap (a, b), predicted by POD–GPR
(c, d), and the relative difference between the two (e, f). The left column corresponds to the training sample #016 and the right column corresponds to the training sample #180.

Fig. 12. POD–GPR prediction error as a function of the number of the modes 𝐿 and evaluated with FAC2 (a), NMSE (b), VG (c) averaged over the test set. Green lines correspond
to perfect scores; and red dashed lines correspond to the mean level of error due to internal variability only. Error levels corresponding to the selected number of modes (𝐿 = 10)
are shown as black dotted lines.
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Fig. 13. POD–GPR prediction of the mean concentration at tower B at 𝑧 = 2m (see tower location in Fig. 2) as a function of the inlet wind direction 𝛼𝑖𝑛𝑙 𝑒𝑡 (a, c, e), and of the
friction velocity 𝑢∗ (b, d, f). Shaded areas correspond to the 95% confidence intervals estimated by the POD–GPR according to the procedure detailed in Section 3.3. Each row
corresponds to the results obtained with a different latent space dimension 𝐿 ∈ {10, 25, 50}. When varying one parameter, the other is set constant to either 𝑢𝑝𝑙 𝑜𝑡∗ = 0.45m s−1 (a, c,
e), or 𝛼𝑝𝑙 𝑜𝑡

𝑖𝑛𝑙 𝑒𝑡 = −43 ◦(b, d, f), and the test samples closest to the two segments of parameter space thus scanned (see Fig. 1) are represented by horizontal red bars. The uncertainty
n LES test samples induced by internal variability is depicted as red vertical error bars.
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Fig. 15 shows that the POD–GPR uncertainty predictions are very
robust to training set size reduction. We find that, on average, the
POD–GPR uncertainty predictions explain overall well its actual error
over the test set even with only 40 training samples (Fig. 15a, b,
c). Similarly, the ability of the POD–GPR to represent the internal
ariability of the mean concentration is well preserved (Fig. 15d, e,
), although we note a tendency to underestimate it when the training

set size is reduced, as there are fewer close neighboring points for the
GPs to estimate the noise in this case.

In summary, the ability of the POD–GPR model to generalize from
a training set of limited size is better than for the 1–NN baseline ap-
proach, justifying the use of such a more sophisticated surrogate model.
We find that for this problem, 40 LES training samples are sufficient
to achieve good levels of accuracy for most metrics. Furthermore, the
 b

14 
uncertainty estimates provided by POD–GPR remain consistent as the
raining set size decreases, despite a tendency to overestimate.

5. Conclusion

In this study, a data-driven surrogate dispersion model based on
he two-stage POD–GPR approach was trained and rigorously evaluated
sing a large dataset of 200 LES simulations reproducing microscale
ispersion scenarios of the field-scale MUST experiment for varying
eteorological forcing. The resulting surrogate model is able to capture
ell the general plume shape within the canopy, approaching the best
chievable accuracy given the internal variability in the LES data, while
eing very computationally efficient.
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Fig. 14. Surrogate modeling errors for decreasing training set sizes. The mean concentration prediction error is assessed using the metrics defined in Section 3.5.1: namely FAC2
a), VG (b), FMS (c, d), and NMSE (e). Results are given for the POD–GPR as blue circles and the 1–NN model as orange squares. Perfect scores are represented as green lines;
nd red dashed lines correspond to the mean level of error due to internal variability only.
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The main novelty of this study is the in-depth analysis of the
POD-GPR surrogate model uncertainty and of the weight of internal
variability, thus meeting the need expressed by Tominaga et al. [7],
Dauxois et al. [10] and Wu and Quan [30]. Future developments are
required to account for the POD projection error in the POD–GPR
ncertainty estimate to avoid error underestimation. But the present
ncertainty estimates already explain the differences between the POD–
PR predictions and the LES references quite well, being in the right
rder of magnitude in 97% of cases. This work thus represents an
mportant methodological step towards the representation of total
ncertainty in microscale urban pollutant dispersion, as aleatory and
odeling uncertainties have not been considered in most uncertainty

uantification [11,42] and data assimilation [25,43–45,93,94] studies
to date.

A second important contribution of this study is the method for
selecting a priori the POD latent space dimension, which is based on
 trade-off between the accuracy of the POD reconstruction and the

noise captured by the POD modes estimated by bootstrap as in Lumet
t al. [29]. The threshold used here to make this trade-off need to be
onsolidated and made more objective in future studies by considering
 wide range of cases. For this study, the retained dimension (𝐿 =

10) is smaller than the dimension chosen based on the standalone
reconstruction error [39,51], but this choice is justified by the fact
that using more modes (𝐿 > 25) significantly noises and degrades the
POD–GPR response surface despite slightly better global metrics such
as FAC2 and NMSE. This highlights that a surrogate model validation
rocess learning from LES data, especially for the concentration vari-

able, should not be based solely on global metrics but requires more

local and structural analyses.

15 
In this study, the main shortcoming of the POD–GPR approach
is its lack of accuracy in areas of high concentration, i.e. close to
the source. This is mainly due to POD, as a linear transformation
is not well suited to the wide disparity in concentration scales and
introduces projection errors. A promising way to overcome this issue is
the mixture-of-experts approach, inspired by the work of El Garroussi
et al. [95], whose key idea is to train several POD–GPR models, each
orresponding to a different preprocessing, to capture the different con-
entration scales ([46], Appendix B.3). Another promising perspective

is the use of nonlinear dimension reduction techniques such as neural
network autoencoders [38,53,87,96]. However, a difficulty lies in the
nterpretation of the nonlinear latent space and in the identification of
he internal variability noise.

We emphasize that the drastic reduction in prediction time offered
by the POD–GPR approach comes at the expense of a very high com-
utational cost for building the LES learning database (on the order
f a million core hours), which may hinder the use of this approach
n practical engineering applications. Therefore, defining the minimum
umber of LES samples required for training is a key issue in LES
urrogate modeling. In this study, we show that the POD–GPR approach
opes very well with a reduction of the training set down to 40
amples for two input parameters. The number of training samples
ould be further reduced by applying adaptive sampling methods to
arget learning zones [97,98].

Finally, it should be recognized that the POD–GPR surrogate model
presented in this study is limited in its generalization ability as it
was only trained for the MUST building layout and source location.
In the future, learning the dependence of pollutant dispersion on
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Fig. 15. Reliability diagrams of the POD–GPR uncertainty estimates for varying training set size 𝑁𝑡𝑟𝑎𝑖𝑛 ∈ {40, 80, 120}. (a, b, c) Root mean square error (RMSE) of the POD–GPR
concentration prediction over the test set and (d, e, f) internal variability of the mean concentration estimated by bootstrap and averaged over the training set, both versus the
POD–GPR estimated uncertainty at each node where the concentration is larger than the tolerance 𝑐𝑡 = 10−4 ppm. Each hexagon is colored according to the number of node points
in the hexagon. The green solid lines correspond to the identity function and the dashed lines show the range of plus or minus one order of magnitude. The FAC10 scores give
the percentage of points between the two dashed lines (similarly as in Eq. (15)).
urban geometry and source location will require significantly larger
training datasets, which may not be feasible due to the computational
cost of LES. Multi-fidelity approaches that combine the high-fidelity
information provided by LES with a less expensive model such as a
RANS model [74,99,100], are a promising way to enrich the learning
dataset while minimizing computational cost, thus paving the way for
the uncertainty-aware POD–GPR surrogate model to be used for more
general and complex urban pollutant dispersion studies.
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Appendix. The nearest neighbor control surrogate model

We use a Nearest Neighbor model (1–NN) as a simple baseline
model against which we compare the POD–GPR accuracy. It is an
appropriate control model because it represents the generalization error
obtained by simply querying the available simulation dataset, and thus
represents the minimum level of error that the POD–GPR must exceed
to be worth using. The 1–NN is a classical 𝑘-Nearest Neighbor (𝑘–NN)
model [89] with only one neighbor (𝑘 = 1). The 1–NN prediction is
simply defined as the nearest LES field in the training set:

𝐲surrogate(𝜽) = 𝐲𝑡𝑟𝑎𝑖𝑛LES (𝜽∗), with 𝜽∗ = min
1≤𝑖≤𝑁𝑡𝑟𝑎𝑖𝑛

𝑑(𝜽𝑡𝑟𝑎𝑖𝑛𝑖 ,𝜽), (A.1)

where 𝑑 is the Euclidean distance in a rescaled input space:

𝑑(𝜽(1),𝜽(2)) =

√

√

√

√

√

(

𝛼(2)inlet − 𝛼(1)inlet

𝛼max
inlet − 𝛼min

inlet

)2

+ 𝜁2
(

𝑢(2)∗ − 𝑢(1)∗

𝑢max
∗ − 𝑢min

∗

)2

(A.2)

where 𝛼min
inlet , 𝛼

max
inlet , 𝑢

min
∗ , and 𝑢max

∗ are the input space boundaries, and 𝜁
is a rescaling factor that distorts the distances in the parameter space.

The hyperparameter 𝜁 gives more or less weight to the friction ve-
locity when searching for the closest LES field in the dataset (Eq. (A.1)).
It is optimized during training by cross-validation [89] with 8-fold
resampling of the training set. The best compromise between RMSE,
VG and FMS(1 ppm) scores is obtained for 𝜁 = 0.275, which reduces
the distances along the friction velocity axis and therefore gives more
weight to the inlet wind direction parameter.

Data availability

The dataset used in this paper is openly available on a public
repository (PPMLES, [76]). A notebook describing the construction
and validation of the POD–GPR surrogate model is openly available at
https://github.com/eliott-lumet/pod_gpr_ppmles. Other analysis codes

https://dx.doi.org/10.5281/zenodo.11394347
https://github.com/eliott-lumet/pod_gpr_ppmles
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developed for this study are available from the corresponding author
upon reasonable request.
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