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WiFi-Visual Data Fusion For Indoor Robot Localization

Yuehua Ding, Jean-François Dollinger, Vincent Vauchey, Mourad Zghal

Abstract— In this paper, we propose a WiFi-Visual robot
localization method for limiting the unbounded error of image-
only localization due to visual environment similarity. The lo-
calization problem is modeled as a classification problem based
on the WiFi-Visual data collected at labelled positions. The
heterogeneous WiFi-Visual data is harmonized by representing
the WiFi features in image form to adapt to the strong image
processing capacity of the neural network. The WiFi features
in image form are fused with the visual features provided by
the robot camera. The fused WiFi-Visual features are jointly
exploited by a neural network to classify WiFi-Visual features
of an unknown position to the most likely class. The labelled
position corresponding to the most likely class is taken as the
estimated position of the robot. Experiments are carried out on
the physical robot platform TIAGO++, which can provide the
real-time ground truth reference position. Experiment results
show that the proposed WiFi-Visual data fusion method can
effectively limit the exceptional unbounded localization errors
of image-only localization. The RMSE of the proposed method
is less than 2 meters. This value is smaller than that of WiFi
localization. The proposed method has more stable performance
than WiFi-only localization and image-only localization. Its
performance can be further improved by Kalman filtering.
During the experiment, a demo video was recorded and it is
provided along with this paper 1.

I. INTRODUCTION

Rapid developments of information technologies are
spurring the rise of robot applications in healthcare, industry
[1] and so on. To this end, robot localization plays a
crucial role for robot’s autonomous movements [2]. Various
technologies are emerging for robot localization.

Light detection and ranging (LiDAR) [3] can offer ac-
curate mapping and localization, but LiDAR is expensive.
In addition, the performance of LiDAR degrades in geo-
metrically ambiguous environments and robot kidnapping
situations.

To cope with the limitations of LiDAR, image localiza-
tion and WiFi localization are two promising ways. Visual
methods are based on computer vision, image processing and
artificial intelligence (AI) [4]–[7]. Radio methods are based
on radio signal processing and the geometric principle or
adaptation of radio data. The radio methods are quite rich,
plenty of technologies can be used, such as ultra-wide band
(UWB) [8], frequency modulated continuous wave (FMCW)
[9], WiFi [10]–[14] etc.

Nowadays, the friendly prices of camera and WiFi make
the visual method and the radio method using WiFi at-
tractive. Visual localization is usually accurate, however,
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it can have unbounded localization errors between visually
similar points. WiFi localization is less accurate than visual
localization because of considerable variations of WiFi signal
strength. Fortunately, WiFi signal variation is mainly limited
in its coverage range, which can be exploited to avoid
catastrophic positioning errors.

Motivated by the complementary natures of WiFi local-
ization and visual localization, the contribution of this paper
consists in the proposition of a WiFi-Visual data fusion
method, which can limit the unbounded localization error of
image-only localization by combining the generally excellent
localization accuracy of visual positioning and the bounded
localization errors of WiFi localization.

The remaining parts of this paper are organized as fol-
lows: part II presents the localization problem, the proposed
method is presented in part III, the experiment results are
analyzed in part IV, part V concludes this paper.

II. PROBLEM STATEMENT

WiFi-Visual robot localization is based on the information
collected by robot WiFi antenna and camera. The positioning
process can be modeled as follows:

(x̂n, ŷn) = g(Wn,Vn) (1)

where g(·) is a positioning algorithm. (x̂n, ŷn) represents the
estimate of the nth position (xn, yn). Wn and Vn represent
the WiFi data and image data collected at this position,
respectively. Usually, Wn can be the received signal strength
indicator (RSSI). Without loss of generality, Wn is supposed
to have M WiFi samples from K access points, Wn is
written as follows:

Wn =
[
wn,0 wn,1 · · · wn,K−1

]
(2)

with

wn,k =
[
wn,0,k wn,1,k · · · wn,M−1,k

]T
(3)

where (·)T represents matrix transpose. wn,k represents M
WiFi samples collected at position (xn, yn) from access point
k. wn,m,k represents the mth sample received at the nth

position from access point k. The image data Vn includes
a sequence of S photos, which are sampled by the robot
camera at (xn, yn). Vn can be represented as:

Vn =
[
Vn,0 Vn,1 · · · Vn,S−1

]
(4)

where Vn,s represents an image. The localization in (1) is
to minimize the error between (x̂n, ŷn) and (xn, yn).

The problem is usually transformed into a classification
problem by uniformly dividing the whole localization surface
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into N pieces of small square areas, which are corresponding
to classes L0, L1, · · · , LN−1. Without loss of generality, the
nth position is supposed to be located at square n belonging
to class Ln. The problem in (1) is rewritten as:

(x̂n, ŷn)← L̂n = g(Wn,Vn) (5)

where (x̂n, ŷn) is obtained by taking the center position of
the estimated class L̂n.

III. PROPOSED ALGORITHM

In this section, a novel WiFi-Visual data fusion method
is proposed for robot localization. The WiFi features are
represented in terms of spectrum matrix and correlation
matrix, both of them are in image forms. Before the feature
extraction, data preprocessing is performed as follows:

wn,k ←
wn,k − µk

σk
(6)

Vn ←
Vn

255
(7)

where µk and σk represent the mean value and standard
deviation of the RSSI of access point k. WiFi localization is
heavily influenced by RSSI variations from time to time. To
alleviate this effect, the relatively stable WiFi features, such
as spectrum and correlation matrix are considered.

Remark: (6) and (7) are normalization processes. To fa-
cilitate the representation without influencing the reading, we
always use wn,k and Vn before and after the normalization
processes. In the following steps of the proposed algorithm,
Wn and Vn refer to the elements normalized by (6) and (7)
by default.

A. Spectrum

To obtain the spectrum features of WiFi data, the spectrum
of the WiFi data collected at each position can be analyzed.
Two-dimensional Fast Fourier Transform (FFT) can be ap-
plied on Wn.

W̃n = FT
MWnFK (8)

where FK is the K ×K discrete Fourier transform matrix.
W̃n can be considered as a two dimensional image, it is
a spectrum matrix of WiFi data received at (xn, yn). Each
row in W̃n can be considered as the spatial spectrum at the
corresponding instant of sampling. Each column stands for
the temporal spectrum of the corresponding access point.

B. Correlation matrix

WiFi signals arrive at different positions by experiencing
different propagation paths, which can influence the cor-
relation matrix across different access points. At position
(xn, yn), its access points correlation matrix is given by:

Rn =
WT

nWn

M
(9)

where Rn is a matrix of K×K dimensions. Rn is symmetric
and it can be visualized as an image.

C. WiFi-Visual Feature Fusion

The visual features are the photo sequence
Vn,0,Vn,1, · · ·Vn,S−1 taken at (xn, yn). One notes
that the spectrum W̃n, the correlation matrix Rn and the
visual features Vn are in image form, however, Rn, Wn,
W̃n and Vn are of different dimensions. Rn, Wn, W̃n are
K ×K, M ×K, M ×K matrices respectively. Vn can be
considered as a tensor of dimensions S×3×height×width,
it contains S RGB images of dimensions 3×height×width.
They should be further represented in the same dimensions.
One notes that height × width represents the pixels
information of R (or G or B) channel for a color image
taken by the robot, the values of height and width are at
the magnitude level of hundreds or thousands. K and M are
much less than these values. For unifying the features, the
images are down-sampled as small images of dimensions
K × K, which are the dimensions of Rn. If M < K,
Wn and W̃n can be filled with zeros to augment their
dimensions from M ×K to K ×K (for M > K, we have
similar processing method). Finally, all these features are
unified as K ×K, they are input into a neural network g(·)
for robot localization:

p = g(W̃n,Rn,Wn,Vn) (10)

where p is a likelihood vector output by g(·). p can be
considered as a probability vector, it is written by

p = [p((x1, y1)|Wn,Vn), · · · , p((xN , yN )|Wn,Vn)]
T

(11)
Based on Eq. (10), the robot position is estimated as follows:

p((x̂n, ŷn)|Wn,Vn) = max p((xi, yi)|Wn,Vn) (12)

IV. EXPERIMENTS

A. Experiment platform

In this paper, we use a real physical robot TIAGO++ [15]
as the experiment platform. TIAGO++ is a robot platform
based on ROS. It has its own WiFi card and camera, which
can be used directly to sample the WiFi signal and visual
environment. The LiDAR position and mapping system in
TIAGO++ makes simultaneous localization and mapping
(SLAM) easy, which offers a reference map and real-time
positions of high accuracy (centimeter-level). The reference
positions given by its LiDAR system are taken as ground-
truth values for comparison, the criterion of root mean square
error (RMSE) is used. RMSE is calculated as:

RMSE =

√√√√ 1

Q

Q−1∑
q=0

[(x̂q − xq)2 + (ŷq − yq)2] (13)

where Q is the number of test points. (x̂q, ŷq) is the estimated
position of the qth test point. (xq, yq) is the reference posi-
tion given by the robot LIDAR system, which is considered
as the ground-truth position.

The parameters K, M and S are 58, 10 and 4 respectively.
For a localization, 10 samples of RSSI data are taken from
58 logic access points, and 4 images are sampled on the
visual environment.



Fig. 1. Mapping in the ground floor of the teaching building.

B. Data collection and training

The experiment environment is shown by Fig.1, the sam-
pled positions are marked in blue color. For each position
marked in blue, 1000 samples are taken on WiFi signal
by the robot, and then the robot takes 100 images on the
visual environment around itself. As shown in Fig.1, there
are 43 blue points. Therefore, a database including 43000
WiFi samples and 4300 image samples is constructed. For
the selection of neural network, LeNet [16] is chosen as
a fundamental structure. The training process is shown by
Fig. 2, where the combinations of WiFi features and visual
features are input into the network for training.

Fig. 2. Training

C. Test results analysis

For test, the robot goes out of the laboratory, and moves
in the corridors and the hall. The robot is localized by
a PC connecting to WiFi, the PC can send a localization
request to the robot, which returns the WiFi-visual data and
ground truth position to the PC. The ground truth positions
are marked in red color in Fig. 3, which compares the
localization results of the proposed method (marked as WiFi-
image) with those obtained by separately using WiFi features
(marked as WiFi) and photo features (marked as image) in
training.

One can note that the image localization trajectory is
closest to the true trajectory with an exception of a catas-
trophic localization error. Fig. 3 visualizes this catastrophic
localization error produced by image localization in the
environment of corridor similarity. Fig. 4 shows that this
error distance is more than 11 meters.

Fig. 4 quantifies the localization errors of these 3 methods.
In terms of average precision without counting the catas-
trophic situation, the image method can reach the precision
around 1.1 meters, which is the best performance among
the three methods, the WiFi-image method ranks the second
with the RMSE precision of 1.59 meters, the WiFi method
is the third at the level of 2.56 meters. Unfortunately, the

Fig. 3. Trajectory comparison

Fig. 4. Localization error comparison

accuracy of the image method can be seriously degraded
by homogeneous or unknown environments. In this test, the
overall accuracy for the image method is the worst at 2.63
meters.

This catastrophic phenomenon in image localization is
illustrated by the histogram in Fig 5, where the statistical
data is represented by the bars of different colors. The errors
of the image localization are mainly concentrated at 1-meter
level with a catastrophic exception at 10-meter level. Fig.
6 illustrates the difference among the performances of the
three methods in terms of cumulative density function (CDF),
localization using image-only information has no dominant
advantage over the other two, it can achieve the best CDF
performance for the errors less than 2 meters, however, WiFi-
image localization has the best CDF performance in limiting
the errors bigger than 2 meters.

Remark: The tests for the trajectory points in Fig. 3 are
independent. Changing the order of the test points does not
influence the localization performance. Each point can be
considered as an initial localization point. Based on the test



Fig. 5. Histogram of localization errors

Fig. 6. CDF of localization errors

performance and the coverage range of different WiFi access
points, the proposed method can effectively resolve the
robot kidnapping problem caused by the layout environment
change. This is particularly the case when the robot is waken
up in a changed environment.

D. Performance discussion with Kalman filtering

To verify the performance of the proposed method under
Kalman filtering, another group of test is carried out at the
same test site. Fig. 7-9 illustrate the test results. In gen-
eral, the performances for the three methods without using
Kalman filtering are consistent with the results presented
above. Fig. 7 shows that the image method usually has the
best performance in terms of accuracy, this observation is
also illustrated by the statistical tools, such as histogram in
Fig. 8 and CDF in Fig. 9. Unfortunately, its average accuracy
is not satisfactory due to exceptionally catastrophic case, as
shown in Fig. 7, a localization error about 12 meters happens
during the image localization.

Fig. 7. Localization error comparison (Kalman filtering)

Fig. 8. Histogram comparison (Kalman filtering)

The improvements brought by Kalman filtering are obvi-
ous for WiFi localization and WiFi-image localization. Fig.
7 shows that, in average sense, Kalman filtering can reduce
the WiFi localization error by 0.5 meter, and WiFi-image
localization error by 0.2 meter, respectively. In the histogram
of Fig. 8, the localization errors of WiFi localization and
WiFi-image localization are concentrated in an interval from
0 to 3 meters.

One interesting point is that Kalman filtering can not bring
improvement to image localization with catastrophic errors.
In the CDF of Fig. 9, the image method (without Kalman
filtering) is more likely to have localization error less than
1 meter (about 70%), and the probability of its localization
error less than 2 meters is about 90 %. However, the image-
Kalman method is not better than image localization without
Kalman filtering. This is because Kalman filtering can slow
down the rapid variation of the estimated robot position by
exploiting the historical information. In the same principle,
Kalman filtering can also slow down the estimated position



Fig. 9. CDF comparison (Kalman filtering)

recovery from the catastrophic state to a normal state, just
like it slows down rapid performance degradation.

V. COMPARISON WITH OTHER METHODS IN THE
ENVIRONMENT OF CONSIDERABLE CHANGE

Additional experiment is carried out at the end of Septem-
ber 2024, which is 2 months before this conference and 7
months after the experiments above. During these 7 months,
the visual environment is changed in the teaching building.
New colorful logos are attached in the walls and doors, some
separating boards are removed. The WiFi access points are
reorganized. All these changes bring considerable challenges
to localization. In this case, the proposed method is also
compared with the existing algorithms, such as weighted
K-nearest neighbors (WKNN) [17], and whale optimization
algorithm (WOA) [18] based on Gaussian process regression
(GPR) [19]. Fig. 10 shows the localization performance of
different methods in terms of error distance of individual
points and RMSE. On can observe that the visual localization
degrades significantly due to the visual environment change.
The performance of visual localization (RMSE = 3.999 m) is
even worse than WiFi localization (RMSE = 2.483 m), which
has no significant degradation, thanks to the permanent MAC
addresses of the access points despite the reorganization
of the WiFi resources. It is also a surprise to find that
the proposed WiFi-image localization method can reach the
best performance (RMSE = 2.103 m) , which is better than
WKNN (RMSE = 2.488 m) and GPR-based-WOA (RMSE =
2.930 m). The CDF performance of WiFi-image localization
ranks the first too, according to Fig. 11.

VI. CONCLUSIONS

A WiFi-Visual data fusion is proposed for indoor robot lo-
calization to limit the unbounded error of image localization
in similar visual environments. The localization problem is
formulated as a classification problem based on WiFi-Visual
features. To jointly exploit the heterogeneous WiFi-Visual
data, the WiFi features are represented in image form in order

Fig. 10. Localization error comparison with existing methods (In-field test
7 months after the collection of training data)

Fig. 11. CDF comparison with existing methods (In-field test 7 months
after the collection of training data)

to have the same representation form of visual features. The
two features of an unknown position are combined together
and input to a neural network, which classifies the input
features to the most likely class. The center position of this
class is taken as the estimated position. The in-field test
is carried out on a true robot platform with ground truth
mapping and positioning system. The test results show that
the proposed method can effectively limit the exceptional
unbounded localization errors of image localization. The
RMSE of the proposed method is less than 2 meters, which
is smaller than that of WiFi-only localization. In addition,
the performance of the proposed method is more stable than
those of WiFi-only localization and image-only localization.
Kalman filtering can also be used to improve the localization
accuracy.
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