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Simple Summary: Japanese macaques, also known as snow monkeys, are known for their ability to
huddle together in cold weather to stay warm. However, the size of these huddling groups can vary
greatly across different regions, with exceptionally large clusters observed on Shodoshima Island
compared to smaller groups in colder areas. This study used computer simulations to understand the
factors influencing these huddling behaviours. By modelling individual decisions to join or leave
a huddle based on temperature, group size, and other simple rules, we found that environmental
conditions and local social dynamics play key roles in determining huddle size. Larger groups tend
to form more clusters, but individual preferences and social tolerance also shape these behaviours.
Our findings highlight how simple behaviours at the individual level can lead to complex group
patterns. Understanding these dynamics not only helps us learn more about how animals survive in
extreme conditions but also provides insights into the social structures and adaptability of Japanese
macaques, which could inform conservation strategies and studies on animal behaviour.

Abstract: Huddling behaviour is observed across various mammalian and avian species. Huddling,
a behaviour wherein animals maintain close physical contact with conspecifics for warmth and social
bonding, is widely documented among species in cold environments as a crucial thermoregulatory
mechanism. Interestingly, on Shodoshima, Japanese macaques form exceptionally large huddling
clusters, often exceeding 50 individuals, a significant deviation from the smaller groups observed in
other populations (Arashyama, Katsuyama, and Taksakiyama) and climates. This study aims to un-
cover the mechanisms behind the formation and size of these huddling clusters, proposing that such
behaviours can be explained by simple probabilistic rules influenced by environmental conditions,
the current cluster size, and individual decisions. Employing a computational model developed in
Netlogo, we seek to demonstrate how emergent properties like the formation and dissolution of
clusters arise from collective individual actions. We investigate whether the observed differences
in huddling behaviour, particularly the larger cluster sizes on Shodoshima compared to those in
colder habitats, reflect variations in social tolerance and cohesion. The model incorporates factors
such as environmental temperature, cluster size, and individual decision-making, offering insights
into the adaptability of social behaviours under environmental pressures. The findings suggest that
temperature plays a crucial role in influencing huddling behaviour, with larger clusters forming in
colder climates as individuals seek warmth. However, the study also highlights the importance of
joining and leaving a cluster in terms of probability in the dynamics of huddling behaviour. We
discussed the large clusters on Shodoshima as a result of a combination of environmental factors
and a unique social tolerance and cohesion among the macaques. This study contributes to our
understanding of complex social phenomena through the lens of self-organisation, illustrating how
simple local interactions can give rise to intricate social structures and behaviours.

Animals 2024, 14, 3468. https://doi.org/10.3390/ani14233468 https://www.mdpi.com/journal/animals

https://doi.org/10.3390/ani14233468
https://doi.org/10.3390/ani14233468
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0001-8206-2739
https://orcid.org/0000-0003-2194-0387
https://orcid.org/0000-0003-3550-2003
https://doi.org/10.3390/ani14233468
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani14233468?type=check_update&version=1


Animals 2024, 14, 3468 2 of 21

Keywords: thermoregulation; individual-based model; computational ethology; primatology;
self-organisation

1. Introduction

Numerous mammalian and avian species, including rodents [1–3], primates [4–9],
and birds [10–13], exhibit a behaviour known as huddling [8], where they maintain close
physical contact with their conspecifics [14]. From birth, rodent litters demonstrate this
instinctively as the dam compiles her pups into a single, warm aggregation. This com-
munal tendency is not only crucial in the early days, evidenced by pups between 2 and
10 postnatal days orienting themselves towards littermates [15], but also plays a significant
role in maintaining group integrity as individuals actively seek to return to the cluster’s
centre when displaced [1,16]. In colder climates, Emperor penguins utilise huddling as a
critical survival strategy, forming large groups to conserve heat during the brutal Antarctic
winters, a behaviour that underscores the dynamic nature of these aggregations [11,12].
Similarly, bats huddle together within roosts to maintain warmth during rest periods,
showcasing huddling as a widespread thermoregulatory mechanism across species [17].
These examples illustrate that huddling, while serving the primary purpose of thermoregu-
lation, also facilitates complex social interactions within and across species, highlighting
its significance in animal behaviour and survival strategies. Huddling also exists in other
mountain primates [4,6,7,9,18,19]. For instance, huddling in snub-nosed monkeys [20–22],
such as Yunnan snub-nosed monkeys (Rhinopithecus bieti) and Sichuan snub-nosed monkeys
(Rhinopithecus roxellana), reflects an adaptive strategy shaped by thermoregulation, predator
avoidance, and social organisation. These behaviours are influenced by environmental
conditions, with larger and more cohesive huddling clusters, particularly involving females
and juveniles, forming during colder nights to conserve heat and reduce predation risks.

On Shodoshima Island, located in the southern part of Japan, Japanese macaques
(Macaca fuscata) [23] exhibit a unique behaviour by forming exceptionally large huddling
clusters, often including more than 50 individuals and, in winter, numbers can even sur-
pass 100 [24–26] (Figure 1). This phenomenon, characterised by its scale, is exclusive to
Shodoshima among Japanese macaques and stands out as a cultural anomaly when com-
pared to the typically smaller cluster sizes observed in other populations of the species
across various habitats. Notably, in the warmer climate of Shodoshima Island, huddles
reached averages of 17.1 and 15.9 individuals in two observed groups [26]. In contrast,
habitats like Shiga Heights experience colder climates where Japanese macaques form clus-
ters rarely exceeding ten individuals, mainly comprising close kin [27]. On average, huddle
sizes among Japanese macaques tend to consist of around three individuals, though this
number varies slightly across different groups and locations. For instance, the Arashiyama
group has an average huddle size of 2.3 individuals [28], the Shiga Heights group aver-
ages 3.1 [27], the Minoo group typically sees huddles of exactly three individuals [29], and
two groups in Takasakiyama observe larger average sizes of 4.5 and 4.7 individuals [26].

The objective of this study is to investigate the underlying mechanisms that govern
the formation and size of huddling clusters among Japanese macaques. Specifically, we aim
to examine whether the dynamics of huddling cluster formation and dissolution can be
attributed to simple probabilistic rules that are influenced by environmental temperature,
the current size of the cluster, and the individual decisions to join or leave a cluster. By
presenting a computational model [30,31] that encapsulates these factors, we propose to
elucidate how such emergent properties arise from the collective interactions of individuals
within these groups [32–35]. So, our model seeks to answer whether the observed variances
in huddling behaviour among different groups of Japanese macaques—such as those on
Shodoshima Island compared to groups in colder regions—can be explained through these
two local decision-making processes, reflecting in a way the social tolerance and cohesion
of Shodoshima macaques. This approach allows us to explore the adaptability of social
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behaviours to environmental pressures and to understand how seemingly complex social
structures and behaviours can emerge from simple, local interactions.
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Figure 1. Extra-large huddling cluster (>51 individuals according to Zhang and Watanabe, 2007 [26]),
or sarudango, formed in Shodoshima. Crédit: Cédric Sueur.

These foundational principles draw parallels with the concept of self-organisation [32,33]
seen across a wide range of biological systems, from insect swarms and fish schools to
human crowds, and even extend to applications in robotics [36,37]. Self-organisation refers
to the process by which pattern and order in a system emerge from local interactions
between parts of an initially disordered system without direction from an external source.
In the context of biological aggregations, such as those observed in Japanese macaques,
self-organised behaviours are crucial for survival, enabling individuals to adapt to envi-
ronmental challenges through collective action. In insects, for example, self-organisation
is evident in the complex structures or the foraging patterns of ants, where individual
actions, guided by simple rules like pheromone trails or local environmental cues, result
in sophisticated colony-level outcomes [38]. Fish schools utilise a similar mechanism [39],
with each fish adjusting its position relative to its neighbours based on simple rules related
to distance and alignment, leading to the dynamic, cohesive movement of the entire school.
Human crowds, too, exhibit self-organised behaviour, with pedestrian flows forming pat-
terns and adapting to obstacles based on individual decisions influenced by the movement
and presence of nearby people [40,41]. In robotics, these principles are harnessed to design
autonomous systems capable of complex behaviours through the implementation of simple,
local rules. Robots in a swarm can coordinate tasks, navigate environments, and respond
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to challenges collectively, mirroring the decentralised decision-making processes found in
natural systems [36,37].

By exploring these concepts within the framework of huddling behaviours in Japanese
macaques, this study seeks to contribute to a broader understanding of how simple be-
havioural rules can give rise to complex social phenomena. It posits that the emergent
properties of huddling, such as the formation and dissolution of clusters in response to
environmental stimuli, can be explained through the lens of self-organisation, offering
insights into the underlying mechanisms that drive social cohesion and adaptability in
animal groups.

2. Material and Methods
2.1. Studied Subjects

All empirical data referenced in this paper have been previously published [9,26,28],
and we have utilised them solely as indicators to demonstrate the accuracy of our model in
capturing the huddling behaviour observed in each of the studied groups. The provisioning
sites are open areas where the macaques are approximately twice a day. The variation
in group size and composition was attributed to maturity, death, or migration. Notably,
during food provisioning, most adult females and a few high-ranking males stayed at the
provisioning site, while other low-ranking males foraged at peripheral sites. The troops
exhibited linear dominance hierarchies among adult females and high-ranking males, which
remained consistent throughout each study period [42]. The methods used in the studies
across these different locations allowed for consistent scoring of huddling behaviours,
including cluster size, the number of clusters, and the timing of joining and leaving events.
The sampling strategies enable comparable observations of huddling dynamics.

Arashiyama [28]: The observations were made at the Arashiyama Monkey Park
(coordinates: 35.011 N, 135.676 E), Iwatayama, in Kyoto, central Japan. The study focused
on the Arashiyama E group of Japanese macaques, which included a mix of adult females,
adult males, and their immature offspring. These macaques were free-ranging within
the park, located on the eastern slope of Iwatayama Hill, and have been habituated by
humans since 1954, with all individuals being identifiable by physical characteristics.
The group size and composition varied between 137 adults observed (101 females and
36 males, 26 December 2000 to 29 March 2001) and 125 adults (99 females and 26 males,
26 December 2001 to 29 March 2002). Data were recorded using scan, opportunistic, and
focal animal sampling. When macaques formed a huddle, he recorded the size, shape, and
composition of the huddle, as well as the posture, body direction, and relative position of
each individual in the huddle. Scan sampling involves systematically observing a group of
individuals at pre-determined time intervals and recording the behaviours or positions of
all visible individuals at the moment of observation. This method provides a snapshot of
group dynamics and is particularly useful for studying behaviours that occur frequently
or are distributed across the group. Opportunistic sampling refers to the observation and
recording of behaviours whenever they are encountered without adhering to a structured
time frame or predefined individual selection. This method is useful for capturing rare
or unpredictable events that might otherwise be missed in systematic sampling. Focal
sampling entails closely observing a single individual for a specified period, recording all
occurrences of specific behaviours exhibited by that individual. This approach allows for
detailed data collection on an individual’s behaviour and is especially effective for studying
activities that are less frequent or highly variable among individuals. In the observed
study, the average size of huddles among the Japanese macaques was approximately
2.32 (2–7) individuals. These huddles were more common and correlated with colder
temperatures, especially noticeable during afternoons when their habitat lacked direct
sunlight. Temperatures ranged from −1.4 ◦C to 15.8 ◦C during the observation period.

The group’s description is summarised in Table 1.
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Table 1. Summary of Japanese macaque study groups, including their geographic locations, coordi-
nates, group sizes, demographic compositions, mean huddle sizes, and temperature ranges during
the study periods. Data represent observations from four study sites: Arashiyama, Katsuyama,
Shodoshima (SA and SB groups), and Takasakiyama (TB and TC groups).

Group
Name

Latitude,
Longitude Group Size Composition Mean Huddle

Size
Temperature
Range (◦C)

Arashiyama 35.011 N, 135.676 E 137 (2000–2001),
125 (2001–2002) 101 females, 36 males 2.32 −1.4 to 15.8

Katsuyama 35.05 N, 133.42 E 68 55 females, 13 males 2.2 2.2 to 17.3
Shodoshima

SA 34.518 N, 134.243 E 454 10 adult males, 149 adult females,
21 subadult males, 164 juveniles, 110 infants 17.1 9 (winter average)

Shodoshima
SB 34.518 N, 134.243 E 333 8 adult males, 120 adult females, 14 subadult

males, 113 juveniles, 102 infants 15.9 9 (winter average)

Takasakiyama
TB 33.258 N, 131.533 E 432 21 adult males, 97 adult females, 23 subadult

males, 163 juveniles, 102 infants 4.6 Varied

Takasakiyama
TC 33.258 N, 131.533 E 743 25 adult males, 175 adult females,

17 subadult males, 319 juveniles, 193 infants 4.8 Varied

Katsuyama [9]: The study focused on a group of free-ranging Japanese macaques
located in Katsuyama (35.05 N; 133.42 E), Okayama Prefecture, Japan, with detailed ge-
nealogical relationships and individual identification established through characteristic
features. The group has been under observation and artificially provisioned since 1958.
Between April 2012 and March 2013, the time of observation, the group’s composition was
68 adults (13 males, 55 females). Huddling behaviour was recorded using 30 min focal sam-
pling periods, during which a single individual was observed, and its huddling behaviour
was documented, including the number and identities of individuals in the huddle, as well
as the start and end times of the behaviour. Temperatures ranged from 2.2 ◦C to 17.3 ◦C
during the observation period. The mean size of huddles was 2.2 individuals.

Shodoshima [26]: The study was conducted at the Choshikei Monkey Park (34.518 N,
134.243 E) on Shodoshima Island, located in the Inner Sea of Japan, which covers an area of
153.5 km2. The island is home to seven natural groups of Japanese macaques, characterised
by its deeply cut glens and vertical cliffs. Among these, Groups SA and SB frequently
visited the park, spending most of their daytime in the vicinity. The provisioning of the
subject group began in 1956, leading to a rapid population increase and the eventual
division into the SA and SB groups in the 1960s. Group SA consisted of approximately
454 individuals, with a composition of about 10 adult males, 149 adult females, 21 subadult
males, 164 juveniles, 110 infants, and some individuals unidentified. Group SB consisted
of approximately 333 individuals, with a composition of about 8 adult males, 120 adult
females, 14 subadult males, 113 juveniles, 102 infants, and some individuals unidentified.
Zhang and Watanabe (2007) [26] stated that the number of monkeys they counted during
each scan sampling was 200 ± 39 or 230 ± 36 in Shodoshima. SA and SB had mean cluster
sizes of approximately 3.5 and 3.9, respectively, with clusters typically being ordinary in size.
Extra-large clusters (more than 51 individuals) were rare, occurring when temperatures fell
below 10 ◦C. In winter, mean cluster sizes surged to 17.1 for SA and 15.9 for SB, showing a
significant increase in clustering behaviour during colder months. The largest cluster sizes
recorded were 137 for SA and 115 for SB, with extra-large clusters comprising 7% of the
total clusters and including about 30% of the groups’ populations. This pattern indicates
a clear tendency for larger clusters during lower temperatures, with winter temperatures
averaging around 9 ◦C.

Takasakiyama [26]: The Takasakiyama Monkey Park (33.258 N, 131.533 E), located on
the east coast of Kyushu and about 295 km south of Choshikei Monkey Park, hosts Study
Groups TB and TC. Group TB consists of approximately 432 individuals, with a composition
of about 21 adult males, 97 adult females, 23 subadult males, 163 juveniles, 102 infants, and
some individuals unidentified. Group TC consists of approximately 743 individuals, with a
composition of about 25 adult males, 175 adult females, 17 subadult males, 319 juveniles,
193 infants, and some individuals unidentified. Zhang and Watanabe (2007) [26] stated
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that the number of monkeys they counted during each scan sampling was 251 ± 34 or
306 ± 49 in Takasakiyama. TB and TC showed no formation of large or extra-large clusters
in summer, with mean cluster sizes remaining small at about 2.8 for both groups. Winter
mean cluster sizes increased slightly to 4.6 for TB and 4.8 for TC, significantly smaller
than those of the Shodoshima groups in winter. Extra-large clusters (more than 51) were
not observed in the Takasakiyama groups during winter, and large clusters (between 20
and 51 individuals) constituted only about 2% of the total, involving a minor portion of
the groups’ populations. Despite similar cold conditions, the clustering behaviour in the
Takasakiyama groups did not significantly change with temperature, illustrating a distinct
difference in social clustering compared to the Shodoshima groups.

2.2. Model Description

Purpose: This section describes the model according to the ODD protocol (i.e., overview,
design concepts, and details) [43,44]. This theoretical investigation utilises computational
simulations in Netlogo 6.4 [45] to align closely with observed behaviours of Japanese
macaques, specifically focusing on the phenomenon of sarudango, or the formation of large
huddling clusters. The primary aim is to simulate the intricacies of huddling behaviour as a
response to cold environmental stimuli and group size, with a keen focus on understanding
how individual decisions to join or leave huddles. In our model, we manipulated four in-
dependent variables: temperature, group size, the probability of an individual joining a
cluster, and the probability of leaving a cluster. We measured two primary outcomes: the
number of individuals per cluster and the total number of clusters. Our hypothesis posits
that as the temperature and the probability of joining a cluster increase, we would see an
increase in the number of individuals per cluster while the total number of clusters would
decrease. Conversely, an increase in group size is anticipated, elevating both the number
of individuals per cluster and the overall number of clusters. The probability of leaving a
cluster is expected to inversely affect both the number of individuals per cluster and the
total number of clusters, potentially leading to smaller cluster sizes and a greater number
of clusters overall. In the model, once an agent joins a cluster, it becomes stationary within
that cluster but continues to assess its internal state and external conditions. The probability
of leaving a cluster is dynamically evaluated at each time step based on the leaving thresh-
old and the agent’s perception of discomfort or suboptimal conditions. If the conditions
exceed the agent’s tolerance level, as determined by the leaving threshold, it will leave the
cluster and resume movement, either to explore or to join another cluster. Field studies
suggest that while macaques prioritise thermal benefits in their initial huddling decisions,
they may adjust their position or cluster membership in response to social relationships,
dominance hierarchies, or environmental changes. The model’s inclusion of a dynamic
leaving probability captures this flexibility, allowing agents to transition between clusters
as needed.

Entities, State Variables, and Scales

• Entities: The model features two main entities: ‘agents’ and ‘patches’. Agents represent
individual monkeys and are homogeneous in terms of attributes, lacking differenti-
ation based on age, dominance, or sex. This simplification allows us to focus on the
fundamental aspects of huddling behaviour without the added complexity of individ-
ual variance. Each agent possesses a set of behavioural rules that govern its decisions
to join or leave huddles based on environmental conditions and the proximity of
other agents. The simulated environment consists of a grid of 16 × 16 patches that
wrap both horizontally and vertically, creating a continuous space for agents to move
within. This spatial arrangement ensures that agents at the edges of the environment
can interact with those on the opposite edge, mimicking an unbounded natural habi-
tat. The patches themselves are uniform, with no specific features or characteristics
that directly influence the agents’ movements or decisions. Instead, the environment
acts as a backdrop against which the dynamics of huddling behaviour emerge. The



Animals 2024, 14, 3468 7 of 21

decision to abstract the environment and standardise the agents serves to highlight
the emergent properties of huddling as a collective behaviour. By stripping away
individual differences and environmental complexities, we aim to distil the essence
of huddling dynamics, focusing on how simple rules of interaction can give rise to
complex social structures.

• State Variables: For macaques, state variables include cluster-id and huddle-time.
‘cluster-id’ plays a crucial role in our simulation, serving as an identifier for the specific
huddle to which an agent belongs. It enables us to track the formation and dissolution
of huddles over time, providing insights into the social dynamics within the macaque
population. ‘huddle-time’ represents the amount of time (in simulation ticks) an
individual has spent within a specific huddle. This variable allows us to analyse
patterns of huddle stability and duration, offering a window into the importance of
huddles for thermal regulation and social interaction among macaques. Each patch in
the environment holds the variable ‘cluster’ to indicate the presence (or absence) of a
huddle. A positive value signifies an active huddle, while a value of −1 indicates no
huddle presence. This distinction is vital for visualising and understanding the spatial
distribution of huddles within the simulated environment.

• Scales: The simulation operates across temporal and spatial dimensions, with each tick
symbolising a discrete unit of time and spatial scale abstracted to represent the size
of the simulated environment, devoid of direct real-world analogues. Temperature
ranges from 0 to 10, simulating varying environmental conditions that influence
huddling behaviour. Temperature affects the macaques’ propensity to form huddles,
with lower temperatures generally encouraging more frequent and larger huddles for
warmth. We explore six distinct group sizes: 70, 100, 130, 160, 300, and 400 individuals,
replicating the group sizes of the macaque populations of Arashiyama, Katsuyama,
Shodoshima, and Takasakiyama. This range allows us to examine how group size
influences the dynamics of huddle formation, maintenance, and the social network’s
structure within the simulated population.

2.3. Design Concepts

• Emergence: The emergent patterns of huddle formation and dissolution in the model
are a direct consequence of individual agents’ decisions, which are influenced by a
combination of stochastic elements and deterministic rules. At each time step, agents
decide whether to join or leave a cluster based on a comparison between their internal
threshold probabilities and a random number.
The joining threshold (J) is defined as a parameter representing the sensitivity of
an individual to join a huddling cluster. It reflects the internal predisposition of an
agent to respond to environmental (e.g., temperature) and social cues (e.g., cluster
size). Specifically, lower values of J indicate that an individual is more likely to join a
cluster, even under less compelling conditions, whereas higher values suggest a more
selective or cautious decision-making process for joining. This threshold balances the
agent’s need for warmth and social interaction against the inherent risks of crowding
or energy expenditure. The probability for an agent to join a cluster (Pjoin) is influenced
by the ambient temperature and the size of the cluster. This probability is calculated
as follows, ensuring that the likelihood of joining increases with the cluster size but
decreases with higher temperatures, reflecting the natural drive for warmth and
sociality. This hypothesis is based on what is observed in the field [26], even if some
variation may exist according to social relationships; here, the aim is to make simple
rules according to aggregation rules observed in self-organisation processes in such
behaviours [46] and such animals [47].

Pjoin =
Nci

Ncmax
× 1

T
× 1

J
(1)
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where J for join-threshold is a predefined value set by the modeller, ranging from 1 to 10,
adjusting the sensitivity of agents to join a cluster. T is the temperature. Nci denotes the size
of the current cluster an individual is considering joining. Ncmax signifies the maximum
cluster size, equivalent to the overall group size, setting an upper limit on cluster growth.

The leaving threshold (L) is a parameter that quantifies an individual’s sensitivity to
discomfort or dissatisfaction within a cluster, prompting the decision to leave. It represents
the internal tolerance level of an agent, where lower values imply a greater likelihood of
leaving even under minor discomfort, while higher values suggest a strong commitment
to staying within the cluster. The parameter accounts for individual variability in the
trade-off between thermal benefits and potential social or spatial constraints within a group.
Conversely, the probability of leaving (Pleave) is set by the agent based on its personal
comfort within the cluster, expressed as follows:

Pleave =
Ncmax − Nci

Ncmax
× 1

L
(2)

where L is the leaving threshold, meaning a constant adjusted by the modeller on the
sensitivity of the agent to leave the current cluster. It ranges from 10 to the group size.
These thresholds are central to the model as they determine the probabilistic decisions
of agents to join or leave a cluster, influencing the dynamics of huddle formation and
dissolution. By incorporating stochastic elements, the model mimics the variability seen
in natural systems, while the deterministic components ensure alignment with observed
behavioural patterns. The joining threshold (J) and leaving threshold (L) were empirically
informed values derived from observations of huddling behaviour in macaques. The
range for the joining threshold (1 to 10) and leaving threshold (starting at 10) reflects
patterns seen in field studies and initial model analyses. These thresholds were chosen
to balance simplicity with biological relevance, aligning with the observed behavioural
tendencies of macaques in huddling contexts. The joining threshold (J) of 1 to 8 was set
to capture variations in individual propensity to join clusters. Lower values represent a
high sensitivity to social and environmental cues for joining, while higher values represent
more selective joining behaviour. This range aligns with empirical observations indicating
that macaques vary in their social dynamics and thermoregulatory needs depending on
environmental conditions and individual social bonds. The leaving threshold (L), starting at
10, was selected to represent the minimal discomfort tolerance observed before individuals
leave a cluster. This threshold begins at a higher value to reflect the fact that leaving a
cluster is generally less frequent than joining, as individuals prioritise maintaining thermal
and social benefits until a significant discomfort is perceived. Preliminary analyses showed
that values for L below 10 and extreme values for J (e.g., beyond 8) did not align well with
field data or yield optimal model fits. The ranked models consistently demonstrated that
thresholds outside these ranges were not among the best-performing models. These choices
are grounded in empirical results from Shodoshima and other macaque populations, as
well as iterative model validation. By testing different values, we confirmed that this
parameterisation optimally captures the dynamics of huddle formation and dissolution,
ensuring biological plausibility and predictive accuracy in our simulations. This approach
highlights how individual thresholds interact with environmental and social factors to
drive emergent huddling patterns.

• Sensing: In this model, agents are endowed with the ability to sense not only the
ambient temperature but also the proximity of conspecifics within a certain range,
which is crucial for making informed decisions about huddling. Specifically, agents
can detect other agents within a radius of 2 patches, a feature that simulates their
perception of nearby individuals [48].

• Interaction: Huddle formation represents a key interaction mode, where macaques
engage in selective positioning and alignment relative to others based on social affinity
and environmental considerations. The ‘update-cluster-positions’ section of your
model is responsible for organising the spatial distribution of agents within a cluster,
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ensuring that they are evenly spaced. This function is critical for simulating how
individual agents position themselves in relation to others within the same cluster,
which can affect their interactions and the overall dynamics of the cluster.

• Stochasticity: This model incorporates stochastic elements to simulate the unpre-
dictability inherent in the agents’ decisions and movements, mirroring the variability
observed in natural systems. At each simulation step, a random number ranging
between 0 and 1 is generated for each agent [49]. This randomness plays a crucial role
in the decision to join a cluster (Pjoin) and the decision to leave a cluster (Pleave).

Details

• Initialisation: The simulation initiates with macaques randomly distributed across
the environment, each assigned a default cluster-id of −1 to denote absence from any
huddle and a huddle-time of zero. At each time step, agents assess their surroundings
and make decisions based on the join and leave probabilities. These probabilities
are dynamically adjusted based on the current environmental temperature and the
social context (e.g., the size of nearby clusters). Agents without a cluster engage
in exploratory movement, randomly turning, and moving forward. This behaviour
allows them to encounter other agents and potentially join new clusters. Once part
of a cluster, agents remain stationary until they decide to leave, based on the leaving
threshold, either to join another cluster or to remain alone.

• Input: Absent specific external inputs regarding variable environmental conditions
or individual macaque traits, the model’s focus narrows to the internal dynamics of
huddle formation, predicated on the agents’ interactions and ambient temperature.

• End: A simulation concludes either when all agents have successfully joined a cluster,
regardless of the total number of clusters formed, or when the simulation surpasses
20,000 steps. This step limit was established based on observations from preliminary
simulations, which indicated that the majority concluded before reaching 20,000 steps.
Implementing this cutoff was necessary because, under certain combinations of inde-
pendent variable values, not all individuals would join a cluster within a reasonable
timeframe, necessitating a predefined endpoint to ensure the simulation’s termination.

• Outputs: We conducted measurements of both the number of clusters and the indi-
viduals per cluster across each simulation. Simulations were performed for various
group sizes (N = 70, 100, 130, 160, 300, and 400), with each group undergoing 100 repe-
titions for each combination of temperature (from 1 to 10◦), joining threshold (from
1 to 10 individuals), and leaving threshold. We realised this using BehaviorSpace
in Netlogo [50,51]. BehaviorSpace (Netlogo 6.4) is a software tool integrated with
Netlogo that allows you to perform experiments with models. BehaviorSpace runs
a model many times, systematically varying the model’s settings and recording the
results of each model run. This process is sometimes called ‘parameter sweeping’.
It lets you explore the model’s ‘space’ of possible behaviours and determine which
combinations of settings cause the behaviours of interest. Specifically, for N = 70, we
tested leaving thresholds at intervals of 10, ranging from 10 to 70, resulting in a total
of 56,000 simulations. For the other group sizes, we used larger intervals of 40 for
the leaving threshold, which resulted in 40,000 simulations per group size. We did
this for two reasons: first, to avoid long calculations, and second, because preliminary
analyses showed a weak influence of leaving threshold on huddling cluster formation.
Altogether, this led to a cumulative total of 256,000 simulations.

2.4. Statistical Analyses

The independent variables in our study included temperature, joining threshold, leav-
ing threshold, and group size. Given the violation of the normality and homoscedasticity
assumptions that underpin the standard linear regression framework, and considering
that the dependent variables represent count data, we opted for a Generalised Linear
Model (GLM) employing negative binomial regression for both dependent variables: the
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number of clusters and the number of individuals per cluster. The Theta values and their
standard errors were examined, confirming the appropriateness of using negative binomial
regression as opposed to a Poisson model. Furthermore, the log-likelihood values for both
models indicate a satisfactory fit to the data, demonstrating the effectiveness of the negative
binomial regression in this context.

Interactions between independent variables initially resulted in elevated Variance Infla-
tion Factors (VIFs), prompting their removal to mitigate multicollinearity [52]. Subsequent
analysis confirmed that the VIF values for all predictors fell well below the threshold of 5,
indicating minimal multicollinearity and ensuring the reliability of the model’s estimates.
This adjustment underscores our model predictors’ independence and the robustness of our
findings. Furthermore, comparative analyses between the GLM with a Poisson distribution
and the Linear Model (LM) with a Gaussian distribution, with and without interactions,
consistently identified the same factors as influential across comparable models. This
consistency reinforces the robustness of our results.

Model selection [53] utilised the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC) through the stepAIC function from the MASS package [54].
This process iteratively evaluated various models to strike an optimal balance between
model complexity and fit quality. Both criteria favoured a model that included all four
predictors, affirming their significant role in explaining the variability observed in the
number of clusters and the number of individuals per cluster. An in-depth examination of
the selected model’s coefficients revealed significant associations between the dependent
variables and the predictors.

For a comprehensive visualisation of our model’s insights, we generated plots show-
casing the estimated coefficients and their confidence intervals. These plots, crafted using
ggplot2 [55], not only supplement our numerical analysis but also facilitate an intuitive
understanding of the predictive relationships. By visually depicting the influence and
precision of each predictor, we offer a clear and accessible interpretation of how each
independent variable affects the number of clusters and the number of individuals per
cluster, enhancing the interpretability of our statistical findings.

Comparison with empirical data: In our study, we aimed to elucidate the impact of
temperature on the social clustering behaviour of primates across various locations by
quantifying the number of individuals per cluster as a function of temperature. To achieve
this, we crafted linear equations for each site based on descriptions of studied subjects
and sites. By coding this information, we could obtain a linear regression for empirical
data to compare with theoretical data: Arashiyama, where we observed a decrement from
3 individuals per cluster at 1 degree to none at 10 degrees, modelled as y = −0.33x + 3.33;
Katsuyama, exhibiting a constant 2.2 individuals regardless of temperature, hence y = 2.2;
Takasakiyama, which demonstrated a reduction from 4.8 to 2.8 individuals across the
temperature range, captured by y = −0.22x + 4.8; and Shodoshima, showing a decrease
from 30 to 20 individuals, represented as y = −1.11x + 31.11. Concerning simulations, we
determined the slope (a) by dividing the change in individuals per cluster by the tem-
perature range, thereby quantifying the rate of change in cluster size with temperature.
The intercept (b) was subsequently derived from the linear equation y = ax + b, leverag-
ing the initial cluster size at the lowest observed temperature. This analytical approach
facilitated a comprehensive understanding of the temperature-dependent dynamics in
primate social clustering, revealing significant variances in how different locations respond
to thermal changes.

Models with group sizes of 300 and 400 individuals were excluded from the statistical
analyses because they produced simulated cluster sizes exceeding the largest observed
cluster size in Shodoshima (>137 individuals) by 9% and 14.5%, respectively, compared to
only 0.3% for N = 160. These discrepancies suggest that the processes driving huddling
behaviour and cluster formation in macaques operate at a smaller scale than the entire
group size, likely involving interactions within local substructures such as families or
nearby individuals. Therefore, to maintain the biological relevance of the model and
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reduce unnecessary variables, we excluded the 300- and 400-individual group sizes from
further analysis. It is important to note that the Shodoshima population itself was not
excluded from the analyses. Instead, the model was adjusted to better align with observed
data from Shodoshima and other sites, as detailed in Table 1 and Figures 2 and 3. All
other group sizes and study sites, including those from Shodoshima, were retained to
ensure a comprehensive comparison across populations. This decision reflects our focus on
modelling huddling dynamics within empirically observed constraints and highlights the
importance of subgroup-level interactions in shaping cluster sizes.
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Figure 2. (a) Number of clusters and (b) number of individuals per cluster as a function of temperature
across different group sizes, with each joining threshold distinguished by colour. Each point is a
simulation, and several simulations may overlap. The data points are plotted directly on the graph to
show the raw distribution of individual clusters, while linear regression lines indicate the overall
trend within each join-threshold category. Plots separate the data by group size (number above each
plot), allowing for a clear comparison of how the relationship between temperature and cluster size
varies across groups.
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Figure 3. (a) Number of clusters and (b) number of individuals per cluster as a function of temperature
across different group sizes, with each leaving threshold distinguished by colour. Each point is a
simulation, and several simulations may overlap. The data points are plotted directly on the graph to
show the raw distribution of individual clusters, while linear regression lines indicate the overall
trend within each join-threshold category. Plots separate the data by group size (number above each
plot), allowing for a clear comparison of how the relationship between temperature and cluster size
varies across groups.

Utilising the lm function in R, we constructed linear models for each unique combina-
tion of group size and join-threshold within our dataset. For each model, we calculated the
absolute difference between the empirical intercept (the y-intercept derived from the Linear
Model) and the corresponding theoretical intercept. We did the same with the slopes. Then,
we ranked the models according to the differences between empirical data and theoretical
data, from the lowest to the highest discrepancy.

All analyses were conducted in Rstudio [56,57] with R and α = 0.05.
Netlogo code, scripts, data, and supplementary materials are available at Zenodo:

https://doi.org/10.5281/zenodo.11233016.

3. Results
3.1. Number of Clusters

The model fitted to our data comprising 165,851 degrees of freedom (165,847 residual
degrees of freedom) revealed a substantial improvement from the null model, as indicated
by a reduction in deviance from 281,187 for the null model to 170,645 for the residual. This

https://doi.org/10.5281/zenodo.11233016
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improvement reflects the significant explanatory power of our predictors. In our GLM anal-
ysis, the number of clusters was found to be negatively influenced by the joining threshold,
as indicated by a coefficient estimate of −0.259 (p < 0.00001, Figures 2a and S1a), suggesting
that an increase in the joining threshold is associated with a decrease in the number of
clusters. Conversely, the leave-threshold, with a coefficient estimate of 0.000142 (p = 0.011,
Figures 3a and S2a), and the temperature, with an estimate of 0.1145 (p < 0.00001), both
showed a positive relationship, indicating that increases in these variables are associated
with an increase in the number of clusters. The group size also had a positive impact on the
number of clusters, with an estimate of 0.00861 (p < 0.00001), suggesting that larger group
sizes are linked to a higher number of clusters. These significant p-values indicate a strong
level of confidence in these relationships (Table 1, Figure 4a).
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Figure 4. The figure depicts the estimated regression coefficients and their 95% confidence intervals
from a Generalised Linear Model (GLM) for (a) the number of clusters and (b) the number of
individuals per cluster. The y-axis represents the predictors, including the model’s intercept, join-
threshold, leave-threshold, temperature, and group size. The x-axis shows the estimated coefficients
reflecting the expected change in the response variable for a one-unit change in each predictor. Points
indicate the magnitude of each estimate, while the bars denote the range of the confidence intervals.
A horizontal line at zero would indicate no effect. This visual summary complements the numerical
output, illustrating the impact and uncertainty of each predictor on the response variable.

3.2. Number of Individuals per Cluster

On 176,000 simulations, 165,853 (5.76%) did not result in any cluster, meaning that
we used only 165853 data points for this GLM. This absence of cluster formation is a
combination of high group size with a high joining threshold and high temperature. In
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the Generalised Linear Model analysis for the number of individuals per cluster, the data
included 165,851 degrees of freedom (165,847 residual) with an initially high null deviance
of 385,500, which was substantially reduced to 174,400 in the residual deviance by including
our predictors. This marked reduction in deviance illustrates the predictors’ significant
capacity to explain the variability in the number of individuals per cluster. Regarding the
influence of the predictors, the joining threshold presented a positive coefficient estimate of
0.294 (p < 0.00001, Figures 2b and S1b), indicating that as the joining threshold increases,
there is a corresponding rise in the number of individuals per cluster. On the other
hand, both the leaving threshold and temperature had negative associations with the
dependent variable, evidenced by estimates of −0.00014 (p = 0.0019, Figures 3b and S2b)
and −0.16 (p < 0.00001), respectively; an increase in these predictors leads to a reduction
in the number of individuals per cluster. Furthermore, the group size was also found
to negatively affect the number of individuals per cluster, with an estimate of −0.00123
(p < 0.00001), suggesting that larger groups tend to have fewer individuals per cluster,
aligning with intuitive expectations, as the finite size of the group limits the total number
of clusters that can form while maintaining an equilibrium in individual distribution. The
substantial z-values coupled with extremely low p-values confirm the statistical significance
of these findings (Table 2, Figure 4b).

Table 2. The table presents the results of two separate Generalised Linear Models (GLMs) with
Poisson distribution: one for the number of clusters and the other for the number of individuals per
cluster. Each model includes estimates of the effect sizes (regression coefficients), their standard errors,
z-values, and associated p-values for the intercept and four predictors: join-threshold, leave-threshold,
temperature, and group size. Positive coefficients indicate a positive effect on the dependent variable,
whereas negative coefficients suggest a negative effect. The p-values test the null hypothesis that each
coefficient is zero, with values less than 0.05 indicating statistical significance.

Number of Clusters Number of Individuals Per Cluster

Estimate Std. Error z Value Pr (>|z|) Estimate Std. Error z Value Pr (>|z|)

(Intercept) 2.09 × 10+00 7.66 × 10−03 273.493 <0.00001 1.95 × 10+00 8.23 × 10−03 236.183 <0.00001

Join-threshold −2.60 × 10−01 7.32 × 10−04 −3.55 × 10+02 <0.00001 2.99 × 10−01 7.84 × 10−04 381.941 <0.00001

Leave-
threshold 1.42 × 10−04 5.61 × 10−05 2.54 × 10+00 0.0111 −1.42 × 10−04 6.07 × 10−05 −2.333 0.0196

Temperature 1.15 × 10−01 6.52 × 10−04 1.75 × 10+02 <0.00001 −1.17 × 10−01 7.03 × 10−04 −165.858 <0.00001

Group size 8.62 × 10−03 6.49 × 10−05 1.33 × 10+02 <0.00001 1.23 × 10−03 7.05 × 10−05 17.504 <0.00001

3.3. Comparison with Empirical Data Distributions

All model fittings are detailed in the Supplementary Materials (Table S1). For the
Arashiyama, Katsuyama, and Takasakiyama groups, we observed consistent results with
the two top models that best fit the empirical data: the group size was 70, with joining
thresholds at 2 and 3, achieving a ranking of 1.5 based on 38 comparisons. For these three
groups, the models with the least fit also showed similarities, indicating a group size of 160
and joining thresholds of 9 and 10.

Regarding the Shodoshima group, the four highest-performing models were closely
ranked, albeit with minor variations: group sizes were 70, 100, 130, and 160; joining thresh-
olds were 2, 3, 4, and 6, with an overall ranking of 8.5 from 38 comparisons. Conversely,
the four models that were the least compatible with the Shodoshima data indicated group
sizes of 100, 130, 160, and 160 and joining thresholds of 9, 10, 10, and 10. The combination
of a group size of 70 with a joining threshold of 4 naturally precludes the formation of
clusters with more than 70 individuals. This is inconsistent with the observations made on
Shodoshima, and it is noteworthy that the proportion of significantly larger clusters (those
with more than 51 individuals) stands at a mere 0.5%. Similarly, a group size of 100 cou-
pled with a joining threshold of 2 also fails to produce clusters exceeding 100 individuals,
deviating from the Shodoshima data, with the proportion of considerably larger clusters
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being 0%. In contrast, the combination featuring a group size of 130 and a joining thresh-
old of 3 does result in clusters surpassing 100 individuals, aligning with the Shodoshima
findings; however, the proportion of exceptionally large clusters is near 0%. Meanwhile,
the configuration with a group size of 160 and a joining threshold of 6 generates clusters
with over 100 individuals, which corresponds well with the Shodoshima observations, and
about 5% of these clusters are significantly larger. Given this analysis, we can infer that the
latter combination (joining threshold = 6, group size = 160) offers the closest match to the
huddling behaviour observed on Shodoshima.

4. Discussion

In this theoretical study, we modelled huddling behaviour in different groups of
macaques using simple rules with four variables linked by simple rules. Understand-
ing behavioural mechanisms in primates and other species through modelling and self-
organisation principles is crucial for deciphering the complex social dynamics within these
groups [47,48,58–60]. Computational models and simulations illuminate various aspects of
primate behaviour, such as grooming [61], fission [44,62], cohesion [34,63], social transmis-
sion [64], and the emergence of complex social networks [65]. These models demonstrate
that simple local interactions and behavioural rules can lead to the emergence of complex
social patterns observed in primate societies and beyond.

The four key parameters incorporated into our model significantly influence the
huddling behaviour of Japanese macaques, affecting both the number of clusters formed
and the number of individuals per cluster. Specifically, ambient temperature and the
threshold for joining a huddle exhibit a pronounced and more substantial impact on this
behaviour compared to the threshold for leaving a huddle and the overall group size.
This analysis elucidates the variations in huddling behaviour observed across different
groups of Japanese macaques. Temperature plays a critical role in influencing huddling
behaviour [16], consistent with our expectations and the model’s design. As temperatures
decrease, the likelihood of an individual joining a cluster increases, serving as a mechanism
for warmth among macaques. This effect is particularly strong in Shodoshima, indicating
a significant impact of temperature on the formation of huddles, or ‘sarudango,’ in this
region [26]. However, in other groups, temperature appears to have a lesser influence on
huddle formation, suggesting that it is not the sole factor driving this behaviour. Despite
huddling being recognised as a thermoregulatory behaviour, its occurrence varies across
regions [9,26,28]. For example, in the colder northern Shimokita region, where one might
expect huddling to be more prevalent, macaques may instead engage in other individual
thermoregulatory behaviours such as sunbathing [66]. Hot spring bathing exists but only
at Jigokudani in the Shiga Heights region [67,68]. This disparity raises intriguing questions
about the regional variations in adaptive behaviours among Japanese macaques and the
factors influencing the spread and adoption of specific thermoregulatory strategies.

Group size exhibits a positive correlation with both the number of clusters and the num-
ber of individuals within each cluster. Interestingly, this correlation is not as pronounced in
the theoretical data as it is in the empirical data, where no significant relationship exists
between the actual group size and the average cluster size. This discrepancy suggests a
potential social or cultural influence on huddling dynamics. Modelling the actual observed
group sizes, particularly for locations like Shodoshima and Takasakiyama, would predict
extraordinarily large clusters of 200 to 400 individuals, which have not been observed
in reality. These findings underscore the significant role of social relationships in hud-
dling behaviour [9,24,26,28]. Previous studies support this conclusion, demonstrating that
huddling, especially among individuals in direct contact [24], is influenced by grooming
relationships and kinship [9]. This evidence points to the complex interplay between social
bonds and physical proximity in shaping the huddling patterns of Japanese macaques.

The likelihood of an individual leaving a cluster emerges as the least influential factor
on both the number of clusters and the number of individuals per cluster. Despite its
relatively minor role, this aspect remains crucial for the dynamics of huddling behaviour.
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The mechanisms of joining and leaving clusters are fundamental to these dynamics, as
they allow individuals the flexibility to move between clusters, potentially joining larger
ones. This process of leaving, although not a dominant factor, facilitates the fluidity of
huddle formation and dissolution without significantly interacting with group size or
temperature. Notably, our model diverges from the pattern of linking the probability
of leaving a cluster to external factors such as temperature or cluster size—a distinction
from the probability of joining a cluster. Nevertheless, this omission does not hinder
the model’s effectiveness in simulating the dynamics of huddling behaviour accurately.
While there are no explicit reports of macaques leaving clusters due to overheating—a
phenomenon observed in other species like penguins—it presents an intriguing area for
further empirical and theoretical investigation. Exploring how such a link might influence
huddling behaviour could enhance our understanding of the complex interplay between
environmental conditions and social dynamics in shaping these group behaviours.

The most significant factor influencing huddling behaviour among Japanese macaques
is the probability of an individual joining a cluster. This mechanism, as demonstrated in
Figures 2 and 3 and as implemented in the model, interacts closely with temperature and,
indirectly, with group size through the mediation of cluster size. Importantly, this parameter
has a distinct value critical for determining the size of ‘sarudango’ at each observed site,
which accounts for the observed differences between various groups, particularly between
the Shodoshima troops and other groups. The threshold for joining a cluster that yields
simulations closely mirroring the situation on Shodoshima is 6, compared to 2 or 3 for other
sites. Notably, even though the threshold is only two to three times higher, it leads to the
formation of clusters with an average size of 30 to 35 individuals, which is approximately
ten times larger than those observed in other groups. This phenomenon resembles self-
organisation [32,33], where local rules give rise to complex patterns not readily explained by
simple mechanisms alone. Furthermore, these differences cannot be adequately explained
by factors other than those already described in the literature, pointing to a cultural
divergence between the Shodoshima troops and others. The classification of Japanese
macaques within the despotic spectrum typically indicates a social system marked by
lower tolerance, higher aggression, and greater inter-individual distances [69–71]. Yet,
the large rest clusters observed on Shodoshima Island constitute a remarkable deviation,
suggesting a level of tolerance, cohesion, and social adaptability not typically expected
in a species known for despotic behaviours [72–74]. This unique social tolerance and
cohesiveness in Shodoshima, akin to some traits seen in groups on Awajishima [75], are
crucial for the formation of these clusters. This indicates that the decision to join a huddle
may not be solely dictated by individual needs for thermoregulation but also influenced
by local social norms and ecological pressures. The case of Shodoshima’s macaques
demonstrates that, despite a general inclination towards despotic social structures within
the species, variations driven by local ecological conditions and historical group dynamics
do exist [72,74,76,77]. Our study highlights how stronger cultural cohesion, as illustrated
by the joining threshold, along with a self-organised amplification process, explains the
unusually large clusters in Shodoshima and the differences from other sites. This insight
underscores the complex interplay between cultural factors and biological behaviours,
contributing to our understanding of the variability within social structures of Japanese
macaques. While the despotic-tolerant dichotomy has been a useful tool for comparative
studies, researchers of Japanese macaques have highlighted that this framework may
oversimplify the nuanced social dynamics observed within populations [67–69]. Factors
such as group history, ecological conditions, and cultural practices likely play a significant
role in shaping these behaviours, as evidenced by the contrast between Shodoshima and
other groups. Our findings emphasise the flexibility within this spectrum, underscoring
the importance of integrating ecological and cultural perspectives into discussions of
social structure.

The self-organisation process in huddling behaviour refers to the emergence of com-
plex patterns from simple rules followed by individuals without a centralised control
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mechanism [32,33]. In the context of Japanese macaques, this process can be understood
through the individual decision-making rules about when to join or leave a cluster based on
environmental conditions (such as temperature) and social interactions (such as proximity
to kin or familiar individuals). The outcome of these decisions at the individual level
leads to the formation of large, cohesive clusters observed in specific sites like Shodoshima,
which differ significantly in size and composition from those in other locations. This phe-
nomenon of self-organisation is grounded in the principles of complex systems, where local
interactions among components (in this case, the macaques) give rise to global patterns (the
size and structure of huddling clusters) that cannot be predicted merely by analysing the
components in isolation. The model implemented in the study captures these dynamics by
incorporating variables such as the probability of joining a cluster, temperature, and group
size, demonstrating how variations in these parameters can lead to substantial differences
in huddling behaviour across different macaque populations. While our study primarily
focused on broader group-level factors such as overall group size, temperature, and joining
and leaving thresholds, the potential influence of family size on huddling behaviour is
an intriguing consideration. In Japanese macaques, kinship relationships often play a
significant role in social interactions, including grooming and physical proximity within
huddles [9,19]. Larger family units could potentially form the core of huddling clusters,
contributing to both cluster size and cohesion. However, explicitly incorporating family
size as a predictor would require detailed genealogical data for each population, which was
beyond the scope of our current modelling approach. Preliminary observations suggest
that family size may indirectly influence huddling behaviour by shaping social bonds and
individual preferences for proximity within clusters. Future research integrating family
structure and kinship data could provide deeper insights into the interplay between social
relationships and huddling dynamics. Such an approach would enhance our understanding
of the micro-level mechanisms driving cluster formation and variability across populations.

We did not include the distinction between island and mainland study sites as a
variable in the model, as this factor is confounded with the specific study sites. Katsuyama
and Arashiyama are located on the mainland, while Shodoshima is a small island, similar
to Awajishima. However, the potential influence of insularity on social tolerance and
cultural behaviour in these populations is an intriguing question. Some researchers have
hypothesised that the higher social tolerance observed in Shodoshima and Awajishima
macaques may be partially driven by the ecological and social constraints associated with
island environments. These constraints could foster stronger social cohesion, reduced inter-
individual competition, and the emergence of cultural behaviours, such as the formation of
large huddling clusters.

The model we devised for this study, while insightful, has its limitations due to its
anonymised approach. Specifically, the probability of an individual joining or leaving a
cluster is determined solely by the number of individuals present within each cluster (i.e.,
anonymous or allelimimetism), without accounting for individual identities and social
relationships (i.e., selective mimetism) [47,49]. This simplification overlooks the signifi-
cant impact that social relationships, kinship ties, dominance hierarchies, and individual
identities have on huddling behaviour [24]. It is important to clarify that this limitation
does not invalidate the model or undermine its viability [78–81]. Rather, it suggests that
individual identity, while not essential for replicating cluster size and dynamics at a macro
level, could enhance our understanding of these processes. Incorporating the identities and
unique characteristics of macaques into our model represents a promising avenue for future
research. However, such an endeavour would necessitate acquiring detailed empirical
social networks for all troops covered in this study, along with precise information on the
identities of individuals engaged in huddling behaviour dynamics. This includes tracking
each individual’s movements into and out of clusters and their interactions at any given
moment. Implementing individual identities within the model presents a considerable
challenge, not only in terms of model complexity but also in gathering the requisite data
in the field with such large groups. Advancements in technology are bringing us ever
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closer to overcoming these hurdles. Automatic identification of individuals [82] and their
behaviours [83] through artificial intelligence offers a path forward, potentially enabling
more nuanced and accurate simulations of huddling behaviour that account for the complex
interplay of social dynamics and individual preferences. This next step would significantly
enrich our understanding of the mechanisms underpinning huddling behaviour and the
social fabric of macaque societies, offering deeper insights into the behavioural ecology of
these primates.

To conclude, our findings underscore the utility of computational models in shedding
light on the intricate social dynamics of animals, revealing how simple local interactions
can give rise to the complex social patterns observed in nature. Our model could be ap-
plied to huddling behaviour in other primate or animal species. Our findings on Japanese
macaques provide an opportunity to compare huddling behaviour with that observed in
other mountain primates, such as snub-nosed monkeys, including Yunnan snub-nosed
monkeys and Sichuan snub-nosed monkeys [20–22]. In both taxa, huddling functions
as an adaptive strategy for thermoregulation, predator avoidance, and social bonding,
influenced by environmental conditions. However, the average cluster size in snub-nosed
monkeys is approximately two individuals, a pattern also observed in Japanese macaques
at Katsuyama (mean = 2.2 individuals) and Arashiyama (mean = 2.3 individuals). These
similarities suggest a comparable baseline for huddling behaviour across these primates
in terms of group size. What sets our study apart is the unique behaviour observed in
Japanese macaques on Shodoshima Island, where clusters regularly exceed 50 individuals
and sometimes surpass 100 during colder months. These exceptionally large clusters are
not observed in snub-nosed monkeys or other Japanese macaque groups. Our computa-
tional model suggests that while environmental factors like temperature play a critical
role in huddle formation, social dynamics such as increased social tolerance and cohesion
among Shodoshima macaques amplify cluster sizes to an extraordinary degree. The ob-
served differences underscore the importance of social structure and ecological context.
While snub-nosed monkeys and Japanese macaques at Katsuyama and Arashiyama form
small, kin-centred clusters under similar environmental pressures, the larger clusters in
Shodoshima reflect a distinct deviation in social organisation. This deviation may arise
from cultural factors and enhanced social tolerance unique to the Shodoshima popula-
tion, which is atypical for the despotic social systems generally described in Japanese
macaques. This study not only advances our understanding of primate social patterns
but also highlights the potential for further nuanced investigations into the biological and
cultural underpinnings of animal behaviours.
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